Wind-Driven Snow Buildup Using a Level Set Approach

Tommy Hinks

University College Dublin

Dr Ken Museth

DreamWorks Animation

Outline

- Problem Description
- Related Work
- Level Sets
- Our Method
- Results
- Future Work

Problem Description

Criteria

- Transportation
- Buildup

Related Work

[FO02]

IntuitiveSimple scenes

Explicit Surfaces

[Fea00, MMAL05]

- Arbitrary scenes
- Subdivision
- Refinement
- Sharp edges

Implicit Surfaces

Metaballs [NIDN97]

- ▲ Arbitrary scenes
- Smooth
- 🕈 Manual
- "Blobby"

Level Sets

Distance Field

Propagation

Constructive Solid Geometry

Intersection Union Difference

Scene Components

- Source(s)
- Scene Object(s)
- Wind Field(s)

Method II - Surfaces

Stability Criterion

Method III - Transportation

Snow Packages

- Wind Packages
- Slide Packages

- Distance field:
 - Collision detection
 - Closest Point Transform

Method IV - Buildup

Stabilize Domain

Ensure tangent plane is inside

Shape function

Results I

Varying Temperature [1.5 h]

−2°C $-8^{\circ}C$

Large Volume [3 h]

(Model courtesy of the Stanford 3D Scanning Repository)

Results II

High Resolution [4 h]

House Scene [4 h]

Height Field

Triangles

Level Set

(Model courtesy of the Stanford 3D Scanning Repository)

Future Work

- Redistribution
- Density Transportation
- Global Propagation
- Parallelize Level Set Operations

Thanks!

Questions?

