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ABSTRACT

Segmentation of anatomical regions of the brain is one of the fundamental problems in medical image analysis. It is
traditionally solved by iso-surfacing or through the use of active contours/deformable models on a gray-scale MRI
data. In this paper we develop a technique that uses anisotropic di�usion properties of brain tissue available from DT-
MRI to segment out brain structures. We develop a computational pipeline starting from raw di�usion tensor data,
through computation of invariant anisotropy measures to construction of geometric models of the brain structures.
This provides an environment for user-controlled 3D segmentation of DT-MRI datasets. We use a level set approach
to remove noise from the data and to produce smooth, geometric models. We apply our technique to DT-MRI data
of a human subject and build models of the isotropic and strongly anisotropic regions of the brain. Once geometric
models have been constructed they may be combined to study spatial relationships and quantitatively analyzed to
produce the volume and surface area of the segmented regions.
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1. INTRODUCTION

Di�usion tensor magnetic resonance imaging1,2 (DT-MRI) is a technique used to measure the di�usion properties of
water molecules in tissues. Anisotropic di�usion can be described by the equation
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where C is the concentration of water molecules and D is a di�usion coe�cient, which is a symmetric second order
tensor
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Figure 1 presents a \slice" of the di�usion tensor volume data of human brain used in our study. Each sub-image
presents the scalar values of the associated di�usion tensor component for one slice of the dataset.

Tissue segmentation and classi�cation based on DT-MRI o�ers several advantages over conventional MRI, since
di�usion data contains additional physical information about the internal structure of the tissue being scanned.
However, segmentation and visualization using di�usion data is not entirely straightforward. First of all, the di�usion
matrix itself is not invariant with respect to rotations, and the elements that form the matrix will be di�erent
for di�erent orientations of the sample or �eld gradient and therefore cannot themselves be used for classi�cation
purposes. Moreover, 3D visualization and segmentation techniques available today are predominantly designed for
scalar and sometimes vector �elds. Thus, there are two fundamental problems in tensor imaging: a) �nding an
invariant representation of a tensor that is independent of a frame of reference and constructing a mapping from the
tensor �eld to a scalar or vector �eld, and b) visualization and classi�cation of tissue using the derived scalar �elds.

The traditional approaches to di�usion tensor imaging involve converting the tensors into an eigenvalue/eigenvector
representation, which is rotationally invariant. Every tensor may then be interpreted as an ellipsoid with principal
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Figure 1. a: Slice of a tensor volume where every \element" of the image matrix corresponds to one component of
the tensor D.

axes oriented along the eigenvectors and radii equal to the corresponding eigenvalues. This ellipsoid describes the
probabilistic distribution of a water molecule after a �xed di�usion time.

Using eigenvalues/eigenvectors one can compute di�erent anisotropy measures1,3{5 that map tensor data onto
scalars and can be used for further visualization and segmentation. Although eigenvalue/vector computation of the
3x3 matrix is not expensive, it must be repeatedly performed for every voxel in the volume. This calculation easily
becomes a bottleneck for large datasets. For example, computing eigenvalues and eigenvectors for a 5123 volume
requires over 20 CPU-minutes on a powerful workstation. Another problem associated with eigenvalue computation
is stability - a small amount of noise will not only change the values but also the ordering of the eigenvalues.7

Since many anisotropy measures depend on the ordering of the eigenvalues, the calculated direction of di�usion and
classi�cation of tissue will be signi�cantly altered by the noise normally found in di�usion tensor datasets. Thus it
is desirable to have an anisotropy measure which is rotationally invariant, does not require eigenvalue computations
and is stable with respect to noise. The tensor invariants with these characteristics were �rst proposed by Ulug and
Zijl.8 In Section 2 of this paper we formulate a new anisotropy measure for tensor �eld based on these invariants.

Visualization and model extraction from the invariant 3D scalar �elds is the second issue addressed in this paper.
One of the popular approaches to tensor visualization represents a tensor �eld by drawing ellipsoids associated with
the eigenvectors/values.9 This method was developed for 2D slices and creates visual cluttering when used in 3D.
Other standard CFD visualization techniques like tensor-lines do not provide meaningful results for the MRI data
due to rapidly changing directions and magnitudes of eigenvector/values and also amount of noise present in the
data. Recently Kindlmann10 developed volume rendering approach to tensor �eld visualization using eigenvalue-
based anisotropy measures to construct transfer function and color maps, that highlight some brain structures and
di�usion patterns.

In our work we perform iso-surfacing on the 3D scalar �elds derived from our tensor invariants to visualize and
segment the data. An advantage of iso-surfacing over other approaches is that it can provide the shape information
needed for constructing geometric models, and computing internal volumes and external surface areas of the extracted
regions. A detailed discussion of the modeling method is given in Section 3. Section 4 presents the results of tensor
invariant calculations and model segmentation technique with examples from a DT-MRI scan of a human head.
Section 5 then describes the quantitative analysis of obtained geometric models.



Finally, there has been a number of recent publications11,12 devoted to brain �ber tracking. This is a di�erent
and more complex task than the one addressed in this paper and requires data with a much higher resolution and
better signal-to-noise ratio than the data used in our study.

2. TENSOR INVARIANTS

Tensor invariants (rotational invariants) are combinations of tensor elements that do not change after the rotation of
the tensor's frame of reference, and thus do not depend on the orientation of the patient with respect to the scanner
when performing DT imaging. The well known invariants are the eigenvalues of di�usion tensor (matrix) D, which
are the roots of corresponding characteristic equation

�3 � C1 � �
2 + C2 � �� C3 = 0; (3)

with coe�cients

C1 = Dxx +Dyy +Dzz

C2 = DxxDyy �DxyDyx +DxxDzz �DxzDzx +DyyDzz �DyzDzy (4)

C3 = Dxx(DyyDzz �DzyDyz)

� Dxy(DyxDzz �DzxDyz) +Dxz(DyxDzy �DzxDyy):

Since the roots of Equation (3) are rotational invariants, the coe�cients C1, C2 and C3 are also invariant. In the
eigen- frame of reference they can be easily expressed through the eigenvalues

C1 = �1 + �2 + �3

C2 = �1�2 + �1�3 + �2�3 (5)

C3 = �1�2�3:

and are proportional to the sum of the radii, surface area and the volume of the \di�usion" ellipsoid. Then instead
of using (�1; �2; �3) to describe the dataset, we can use (C1; C2; C3). Moreover, since Ci are the coe�cients of
characteristic equation, they are less sensitive to noise, then roots �i of the same equation.

Any combination of the above invariants is, in turn, an invariant. We consider the following dimensionless
combination: C1C2=C3. In the eigenvector frame of reference it becomes
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and we can de�ne a new dimensionless anisotropy measure
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It is easy to show that for isotropic di�usion, when �1 = �2 = �3, the coe�cient Ca = 1. In the anisotropic case,
this measure is identical for both linear, directional di�usion (�1 >> �2 � �3) and planar di�usion (�1 � �2 >> �3)
and is equal to
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Thus Ca is always � �max=�min and measures the magnitude of the di�usion anisotropy. We again want to
emphasize, that we use eigenvalue representation here only to analyze the behavior of the coe�cient Ca, but we use
invariants (C1; C2; C3) to compute it using Equations (5) and (7).



Figure 2. Isotropic C1 and anisotropic Ca tensor invariants for the tensor slice shown in Figure 1

3. GEOMETRIC MODELING

Two options are usually available for viewing the scalar volume datasets, direct volume rendering14,15 and volume
segmentation16 combined with conventional surface rendering. The �rst option, direct volume rendering, is only
capable of supplying images of the data. While this method may provide useful views of the data, it is well-known
that it is di�cult to construct the exact transfer function that highlights the desired structures in the volume
dataset.17 Our approach instead focuses on extracting geometric models of the structures embedded in the volume
datasets. The extracted models may be used for interactive viewing, but the segmentation of geometric models
from the volume datasets provides a wealth of additional bene�ts and possibilities. The models may be used for
quantitative analysis of the segmented structures, for example the calculation of surface area and volume; quantities
that are important when studying how these structures change over time. The models may be used to provide the
shape information necessary for anatomical studies and computational simulation, for example EEG/MEG modeling
within the brain.18 Creating separate geometric models for each structure allows for the straightforward study of
the relationship between the structures, even though they come from di�erent datasets. The models may also be
used within a surgical planning/simulation/VR environment,19 providing the shape information needed for collision
detection and force calculations. The geometric models may even be used for manufacturing real physical models of
the structures.20 It is clear that there are numerous reasons to develop techniques for extracting geometric models
from di�usion tensor volume datasets.

The most widely used technique for extracting polygonal models from volume datasets is the Marching Cubes
algorithm.21 This technique creates a polygonal model that approximates the iso-surface embedded in a scalar
volume dataset for a particular iso-value. The surface represents all the points within the volume that have the same
scalar value. The polygonal surface is created by examining every \cube\ of eight volume grid points and de�ning a
set of triangles that approximates the piece of the iso-surface within the space bounded by the eight points. While
the Marching Cubes algorithm is easy to understand and straightforward to implement, applying it directly to raw
volume data from scanners can produce undesirable results, as seen in top row images in Figures4, 7. The algorithm
is susceptible to noise and can produce many unwanted triangles that mask the central structures in the data. In
order to alleviate this problem, we utilize a deformable model approach to smooth the data and remove the noise-
related artifacts. Many types of deformable models have been proposed for extracting structures from volumes.16,22

We utilize level set models as they have been shown to be 
exible and e�ective for segmentation.23,24,26{28 Level set
methods produce active deformable surfaces that may be directed to conform to features in a volume dataset while
simultaneously applying a smoothing operation based on local surface curvature.28 Most importantly, they easily
change topology during deformation and have no �xed parameterization, allowing them to represent complex shapes.

3.1. Level Set Models

A level set model30,29 speci�es a surface as a level set (iso-surface) of a scalar volumetric function, � : U 7! <, where
U � <3 is the range of the surface model. Thus, a surface S is

S = fsj�(s) = kg ; (9)



and k is the isovalue. In other words, S is the set of points s in <3 that composes the kth iso-surface of �. The
embedding � can be speci�ed as a regular sampling on a rectilinear grid. The surfaces may propagate with (time-
varying) curvature-dependent speeds. Level set methods provide the mathematical and numerical mechanisms for
computing surface deformations as iso-values of � by solving a partial di�erential equation on the 3D grid (U). That
is, the level set formulation provides a set of numerical methods that describes how to manipulate the grey-scale
values in a volume, so that the iso-surfaces of � move in a prescribed manner. See Figure 3.

Figure 3. Level set models represent curves and surfaces implicitly using grey scale images. For example an ellipse
is represented as the level set of an image (left). To change the shape of the ellipse we modify the grey scale values
of the image by solving a PDE (right).

There are two di�erent approaches to de�ning a deformable surface from a level set of a volumetric function
as described in Equation (9). Either one can think of �(s) as a static function and change the iso-value k(t) or
alternatively �x k and let the volumetric function dynamically change in time, i.e. �(s; t). Following the second
approach, we can mathematically express the dynamic model as

�(s; t) = k: (10)

To transform this de�nition into partial di�erential equation that can easily be solved by standard numerical tech-
niques, we di�erentiate both sides of Equation (10) with respect to time t, and apply the chain rule:

@�(s; t)

@t
+r�(s; t) �

ds

dt
= 0: (11)

Equation (11) is sometimes referred to as a \Hamilton-Jacobi-type" equation and de�nes an initial value problem for
the time-dependent �. Let ds=dt be the movement of a point on a surface as it deforms, such that it can be expressed
in terms of the position of s 2 U and the geometry of the surface at that point, which is, in turn, a di�erential
expression of the implicit function, �. This gives a partial di�erential equation (PDE) on �: s � s(t)

@�

@t
= �r� �

ds

dt
� �r� � F (s;D�;D2�; : : : ); (12)

where F is a user-de�ned \speed" term which generally depends on a set of order-n derivatives of �, Dn�, evaluated
at s, as well as other functions of s. Typically F (x) combines a data term with a smoothing term, which prevents
the solution from �tting too closely to noise-corrupted data. There are a variety of surface-motion terms that can
be used in succession or simultaneously in a linear combination to form F (x). For the work presented in this paper,
we combine a feature attraction term and a smoothing term weighted by a factor �,28

F = Fattr + �Fcurv: (13)

The �rst term Fattr is due to the attraction to the edges in the volume. It attracts the surface models to certain grey
scale features in the input data. For instance, the gradient magnitude indicates areas of high contrast in volumes.
By following the gradient of such grey scale features, surface models are drawn to minimum or maximum values of
that feature. Typically grey scale features, such as the gradient magnitude are computed with a scale operator, e.g.,
a derivative-of-Gaussian kernel. If models are properly initialized, they can move according to the gradient of the

gradient magnitude and settle onto the edges of an object at a resolution that is �ner than the original volume. For
this work we used the attraction force

Fattr = rj(r(G � I(x))j; (14)



where the volume data I(x) is convolved with a Gaussian kernel G with � � 0:5, such that a positive sign moves
surfaces towards maxima and the negative sign towards minima.

There are a variety of options for the curvature smoothing terms in Equation (13), and the question of e�cient,
e�ective higher-order smoothing terms is the subject of on-going research.29 For the work presented in this paper
the smoothing term uses the mean curvature KM of the level set S to form a vector in the direction of the surface
normal n:

Fcurv = KMn = (r � n)n = r �

�
r�

jr�j

�
r�

jr�j
: (15)

It is weighted by a factor �, allowing the user to control the amount of smoothing, and is tuned for each dataset. The
level set propagation stops when the Fattr and �Fcurv terms cancel each other, or when the number of computational
iterations reaches a user-speci�ed value.

Level set models have a number of practical and theoretical advantages over conventional surface models, especially
in the context of deformation and segmentation. Level set models are topologically 
exible; they easily represent
complicated surface shapes that can, form holes, split to form multiple objects, or merge with other objects to form
a single structure. These models can incorporate many (millions) of degrees of freedom, and therefore they can
accommodate complex shapes. Indeed, the shapes formed by the level sets of � are restricted only by the resolution
of the sampling. Thus, there is no need to re-parameterize the model as it undergoes signi�cant changes in shape.

The solutions to the partial di�erential equations described above are computed using �nite di�erences on a
discrete grid. The use of a grid and discrete time steps raises a number of numerical and computational issues that
are important to the implementation. However, it is outside of the scope of this paper to give a detailed mathematical
description of such a numerical implementation. Rather we shall give a short outline below and refer to the actual
source code which is publicly available�.

Equation (12) to (15) can be solved using �nite forward di�erences if one uses the up-wind scheme, proposed
by Osher and Sethian,30 to compute the spatial derivatives. This up-wind scheme produces the motion of level-set
models over the entire range of the embedding, i.e., for all values of k in Equation (10). However, this method
requires updating every voxel in the volume for each iteration., which means that the computation time increases as
a function of the volume, rather than the surface area, of the model. Because segmentation requires only a single
model, the calculation of solutions over the entire range of iso-values is an unnecessary computational burden.

This problem can be avoided by the use of narrow-band methods, which compute solutions only in a narrow
band of voxels that surround the level set of interest.24 In previous work25 we described an alternative numerical
algorithm, called the sparse-�eld method, that computes the geometry of only a small subset of points in the range
and requires a fraction of the computation time required by previous algorithms. We have shown two advantages to
this method. The �rst is a signi�cant improvement in computation times. The second is increased accuracy when
�tting models to forcing functions that are de�ned to sub-voxel accuracy.

4. SEGMENTATION

In this section we demonstrate the application of our methods to the segmentation of DT-MRI data of the human
head. We use a high resolution data set from a normal volunteer which contains 60 slices each of 128x128 pixels
resolution. The raw data is sampled on a regular uniform grid.

We begin by generating two scalar volume datasets based on the invariants described in Section 2. The �rst scalar
volume dataset (V1) is formed by calculating the trace (C1) of the tensor matrix for each voxel of the di�usion tensor
volume. It provides a single number that characterizes the total di�usivity at each voxel within the sample. Higher
values signify greater total di�usion irrespective of directionality in the region represented by a particular voxel. A
slice from this volume can be seen in Figure 2 (left). The second scalar volume dataset (V2) is formed by calculating
(C1; C2; C3) invariants for each voxel and combining them into Ca. It provides a measure of the magnitude of the
anisotropy within the volume. Higher values identify regions of greater spatial anisotropy in the di�usion properties.
A slice from the second scalar volume is presented in Figure 2 (right). The measure Ca does not by de�nition

�The level-set software used to produce the morphing results in this paper is available for public use in the VISPACK
libraries at http://www.cs.utah.edu/�whitaker/vispack.



distinguish between linear and planar anisotropy. This is su�cient for our current study since the brain does not
contain measurable regions with planar di�usion anisotropy. We therefore only need two scalar volumes in order to
segment the DT dataset.

We then utilize level set methods to extract smoothed models from the two derived scalar volumes. Our level
set segmentation approach consists of de�ning a set of suitable pre-processing techniques for initialization and se-
lecting/tuning di�erent feature-extracting terms in the level set equation to produce a surface deformation. Within
our segmentation framework a variety of operations are available in each stage. A user must \mix-and-match" these
operations in order to produce the desired result. We only describe those operations needed to produce the models
in this paper. A more detailed description of our segmentation methods may be found in.28

Because level set models move using gradient descent, they seek local solutions, and therefore the results are
strongly dependent on the initialization, i.e., the starting position of the surface. Thus, one controls the nature
of the solution by specifying an initial model from which the surface deformation process proceeds. We are able
to computationally construct reasonable initial estimates directly from the input data by combining a variety of
techniques.

The �rst step involves �ltering the input data with a low-pass Gaussian �lter (� � 0:5) to blur the data and
thereby reduce noise. This tends to distort shapes, but the initialization need only be approximate. Next, the volume
voxels are classi�ed for inclusion/exclusion in the initialization based on the �ltered values of the input data (k � 7:0
for V1 and k � 1:3 for V2). For grey scale images, such as those used in this paper, the classi�cation is equivalent
to high and low thresholding operations. These operations are usually accurate to only voxel resolution, but the
deformation process will achieve sub-voxel results. The �nal step before the actual level set deformation consist of
performing a set of topological or logical operations on the voxels to \clean up" the initialization surface. This allows
for the removal of undesired internal and external structures, which is extremely helpful to obtain simple models. It
includes unions or intersections of voxel sets to create the better initializations. Speci�cally the topological operations
consist of connected-component analyses (e.g. 
ood �ll) to remove small pieces or holes from objects.

The initialization described above positions the model near the desired solution while retaining certain properties
such as consistent geometry, connectivity, etc. Given this rough initial estimate, the level set surface deformation
process, as described in Section 3.1, moves the surface model toward speci�c features in the data.

Figures 4 and 5 present two models that we extracted from DT-MRI volume datasets using our techniques.
Figure 4 contains segmentations from volume V1, the measure of total di�usivity. The image in the �rst row shows
a marching cubes iso-surface using an iso-value of 7.5. In the bottom we have extracted just the ventricles from
V1. This is accomplished by creating an initial model with a 
ood-�ll operation inside the ventricle structure shown
in the middle image. This identi�ed the connected voxels with value of 7.0 or greater. The initial model was then
re�ned and smoothed with the level set method described in Section 3, using a � value of 0.2.

Figure 5 again provides the comparison between direct iso-surfacing and and level set model, but on the volume
V2. The image in the top-left corner is a marching cubes iso-surface using an iso-value of 1.3. There is signi�cant high-
frequency noise and features in this dataset. The challenge here was to isolate coherent regions of high anisotropic
di�usion. We applied our segmentation approach to the dataset and worked with neuroscientists from LA Childrens
Hospital, City of Hope Hospital and Caltech to identify meaningful anatomical structures. We applied our approach
using a variety of parameter values, and presented our results to them, asking them to pick the model that they felt
best represented the structures of the brain. Figure 5 contains three models extracted from V2 at di�erent values
of smoothing parameter � used during segmentation. Since we were not looking for a single connected structure in
this volume, we did not use a seeded 
ood-�ll for initialization. Instead we initialized the deformation process with
an iso-surface of value 1.3. This was followed by a level set deformation using a � value of 0.2. The result of this
segmentation is presented on the bottom-left side of Figure 5. The top-right side of this �gure presents a model
extracted from V2 using an initial iso-surface of value 1.4 and a � value of 0.5. The result chosen as the \best" by
our scienti�c/medical collaborators is presented on the bottom-right side of Figure 5. This model is produced with
an initial iso-surface of 1.3 and a � value of 0.4. Our collaborators were able to identify structures of high di�usivity
in this model, for example the corpus callosum, the internal capsul, the optical nerve tracks, and other white matter
regions.

We can also bring together the two models extracted from datasets V1 and V2 into a single image. Figure
6 demonstrates that we are able to isolate di�erent structures in the brain and show their proper spatial inter-



Table 1. Total polygon count in the models Npoly, surface areas A and volumes V and before/after application of
the level set smoothing to datasets V1 and V2.

Data set Npoly A(cm2) V (cm3)
V1 36,620/15,096 188/85 26/22
V2 142,212/81,488 760/743 98/87

relationship. For example, it can be seen that the corpus callosum lies directly on top of the ventricles, and that the
white matter fans out from both sides of the ventricles.

Finally, to verify the validity of our approach we applied it to the second data set of a di�erent volunteer. This
data set has 20 slices of the 256x256 resolution. We generated the anisotropy measure volume V2

2 and performed the
level-set model extraction using the same iso-values and smoothing parameters as for V2. The results are shown in
Figure 7.

5. MODEL PROPERTIES

Once a user has produced a satisfactory model of the desired segmented structures s/he may perform a number of
quantitative geometric calculations on the resulting polygonal model, e.g. total area, volume, and average curvature.
Though most of these measures are interesting from the modeling point of view, the volume of the ventricles, for
example, can have clinical applications for disorder diagonosis and population comparison.

The models generated in the previous section are represented by triangle meshes consisting of vertices vi, con-
nectivities and associated normal vectors. The total surface area of the model can be easily computed by adding the
areas Ai of each triangle

A =

NpolyX
i=1

Ai =

NpolyX
i=1

1

2
j(v1i � v2i )� (v1i � v3i )j; (16)

where vki is the k'th vertex of triangle i. Assuming that all of the extracted models are composed of closed polygonal
surfaces, we can compute enclosed volume as a a signed sum of the pyramids with a base composed of the i'th
triangle and a top vertex places at the origin of the dataset.32 Then

V �
1

6

NpolyX
i=1

Ai �
1

3
(v1i + v2i + v3i ) �Ni; (17)

Table 1 lists values of polygon count, surface area and total volume, for the models extracted from scalar volume
datasets (V1 and V2), before and after the level set algorithm is applied to the volumes. We note that the polygon
count drops, because of the simpli�ed form of the �nal extracted triangular mesh. The total surface area decrease
is also due to smoothing imposed by the level set model. Volume decrease is partially caused by the removal (i.e.
collapse) of small high frequency fragments cluttering the model and partially due to deformations of the model.

6. CONCLUSIONS

In this paper we have developed a computational pipeline for DT-MRI level set modeling and segmentation. We
proposed a new rotationally invariant anisotropy measure, which does not require eigenvalue computations. We used
the invariants to generate scalar volumes that characterize the total di�usivity and di�usion anisotropy of a DT-MRI
scan of a human brain. Applying level set modeling and segmentation techniques to the derived scalar volumes we
created geometric models of speci�c brain structures, e.g. the ventricles, corpus callosum, and the internal capsul.
The geometric models were then used for quantitative analysis, including volume and surface area calculations.
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Figure 4. Segmentation using isotropic measure V1 for the �rst DT-MRI dataset. The �rst row is the marching
cubes iso-surface with 7.5.iso-value. The second row is the result of 
ood-�ll algorithm applied to the same volume
and used for level set initialization. The third row is the �nal level set model.



Figure 5. Model segmentation from volume V2. Top left image is an iso-surface of value 1.3, used for initialization
of the level set. Clockwise, are the results of level set development with corresponding � values of 0.2, 0.4 and 0.5



Figure 6. Combined model of ventricles and (semi-transparent) anisotropic regions: rear, exploded view (left),
bottom view (right), side view (bottom). Note how model of ventricles extracted from isotropic measure dataset V1
�ts into model extracted from anisotropic measure dataset V2



Figure 7. Segmentation using anisotropic measure V2 from the second DT-MRI dataset. The �rst row is the
marching cubes iso-surface with iso-value 1.3. The second row is the result of 
ood-�ll algorithm applied to the
volume and used for level set initialization. The third is the �nal level set model.


