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Abstract

This paper presents a framework for extracting surface models from
a broad variety of volumetric datasets. These datasets are produced
from standard 3D imaging devices, and are all noisy samplings of
complex biological structures with boundaries that have low and
often varying contrasts. The level set segmentation method, which
is well documented in the literature, creates a new volume from
the input data by solving an initial-value partial differential equa-
tion (PDE) with user-defined feature-extracting terms. Given the
local/global nature of these terms, proper initialization of the level
set algorithm is extremely important. Thus, level set deforma-
tions alone are not sufficient, they must be combined with powerful
initialization techniques in order to produce successful segmenta-
tions. Our level set segmentation approach consists of defining a
set of suitable pre-processing techniques for initialization and se-
lecting/tuning different feature-extracting terms in the level set al-
gorithm. This collection of techniques forms a toolkit that can be
applied, under the guidance of a user, to segment a variety of vol-
umetric data. Users can combine these methods in different ways
and thereby access a wide range of functionalities, several of which
are described in this paper and demonstrated on noisy volume data.

1 Introduction

As visualization tasks grow in size and complexity, the problem of
presenting data effectively is accompanied by another, potentially
more difficult problem—how to extract presentable data from the
flood of raw information produced by large simulations and high
resolution instruments. Thus, the field of data visualization is in-
timately tied to more traditional studies of data analysis such as
signal and image processing, pattern recognition, artificial intelli-
gence, and computer vision. However, in contrast to more conven-
tional areas of data analysis, the field of visualization explicitly in-
cludes the user in the process of filtering, extracting, and rendering
meaningful data.

This paper deals with a specific visualization problem—that is,
how to build meaningful 3D models of complex structures from
noisy datasets generated from 3D imaging devices. In certain cir-
cumstances such data can be visualized directly [1, 2, 3, 4]. While
direct techniques can provide useful insights into volume data,
they are insufficient for many problems. For instance, direct vol-
ume rendering techniques typically do not remove occluding struc-
tures, i.e., they do not allow one to “peel back” the various layers
of the data to expose the inner structures that might be of inter-
est. They also do not generate the models needed for quantitative
study/analysis of the visualized structures. Furthermore, direct vi-
sualization techniques typically do not perform well when applied
directly to noisy data, unless one filters the data first. Techniques
for filtering noisy data are abundant in the literature, but there is
a fundamental limitation—filtering that reduces noise tends to dis-
tort the shapes of the objects in the data. The challenge is to find
methods which present the best tradeoff between fidelity and noise.

Level set segmentation relies on a surface-fitting strategy, which
is effective for dealing with both small-scale noise and smoother

intensity fluctuations in volume data. The level set segmentation
method, which is well documented in the literature [5, 6, 7, 8],
creates a new volume from the input data by solving an initial-
value partial differential equation (PDE) with user-defined feature-
extracting terms. Given the local/global nature of these terms,
proper initialization of the level set algorithm is extremely impor-
tant. Thus, level set deformations alone are not sufficient, they
must be combined with powerful initialization techniques in or-
der to produce successful segmentations. Our level set segmen-
tation approach consists of defining a set of suitable pre-processing
techniques for initialization and selecting/tuning different feature-
extracting terms in the level set algorithm. We demonstrate that
combining several pre-processing steps with level set deformations
produces a powerful toolkit that can be applied, under the guidance
of a user, to segment a wide variety of volumetric data.

There are more sophisticated strategies for isolating meaningful
3D structures in volume data. Indeed, the so called segmentation
problem constitutes a significant fraction of the literature in image
processing, computer vision, and medical image analysis. For in-
stance, statistical approaches [9, 10, 11, 12] typically attempt to
identify tissue types, voxel by voxel, using a collection of measure-
ments at each voxel. Such strategies are best suited to problems
where the data is inherently multi-valued or where there is sufficient
prior knowledge [13] about the shape or intensity characteristics of
the relevant anatomy. Alternatively, anatomical structures can be
isolated by grouping voxels based on local image properties. Tra-
ditionally, image processing has relied on collections of edges, i.e.
high-contrast boundaries, to distinguish regions of different types
[14, 15, 16]. Furthermore deformable models, incorporating differ-
ent degrees of domain-specific knowledge, can be fitted to the 3D
input data [17, 18]. The work of this paper demonstrates a mathe-
matical and computational framework which effectively combines
or unifies classification, filtering, and surface-fitting approaches to
modeling and visualizing 3D data.

2 Example Datasets

Our work is largely motivated by the desire to produce a semi-
automatic segmentation approach which can partly or fully replace
the tedious and extremely time-consuming process of manual data
segmentation – a solution which to our initial surprise is widely
used by colleagues in biology and medicine. Thus, to scientists
working in these fields even an approximate scheme which can
segment out approximately 90% of the model is immensely use-
ful because it reduces the manual labor needed to produce a final
result. We stress that there exists no fully automatic solution to
the segmentation problem typically encounter in 3D imaging. For
example, Figure 1(a) shows one of 270 slices of an electron tomog-
raphy (ET) volume of a spiny dendrite provided by the National
Center for Microscopy and Imaging Research, at UC San Diego.
The complex structure of the dendrite and the noisy nature of the
data make the rendering of such volume data difficult. Figure 1(b)
shows the results of attempting to isolate the relevant structures in
this dataset by extracting isosurfaces at greyscale value of 129. For
this example we have blurred the data with a small Gaussian ker-



(a) (b)

Figure 1: a) One slice of a 154�586�270 ET scan of a spiny den-
drite shows low contrast and high noise content in a relatively com-
plex data set. b) An isosurface rendering, with prefiltering, shows
how noise and inhomogenieties in density interfere with visualizing
the 3D structure of the dendrite.

(a) (b)

Figure 2: a) One slice of a 130� 128� 128 magnetic resonance
(MR) volume of a human head shows high-contrast, relatively
noise-free data with numerous internal structures. b) An isosurface
rendering, with a small wedge removed for visualization, shows
aliasing and internal structures that are not appropriate for the ap-
plication.

nel (σ = 1:0) to try to improve the appearance of the isosurfaces.
Despite the smoothing the isosurfaces are quite noisy, and contain
many small, disconnected pieces that are not indicative of the struc-
ture of the dendrite. Furthermore, fluctuations in the tissue density
both within and outside of the dendrite create a large number of dis-
tortions which prevent the isosurface from accurately representing
the underlying shape of that structure.

Note that the image shonw in Figure 1(b) is produced in two
stages: First, we compute the isosurface with the Marching Cubes
algorithm [19] for a given isovalue. Next, the polygonal mesh
is displayed using conventional graphics hardware. Alternatively
we could visualize structures within the volume data using a one-
stage direct method such as volume-rendering (e.g. ray casting with
transfer functions or maximum intensity projection). Our choice of
Marching Cubes for rendering isosurfaces of this and other datasets
in this paper is not essential to the proposed method. The problems
of noise and aliasing, present in the examples in this paper, would
exist even if we used a direct volume rendering technique.

A second example, shown in Figure 2(a), is a magnetic reso-
nance (MR) scan of a human head. Here the problem is not so
much the quality of the data—isosurfaces can be used to visual-

(a) (b)

Figure 3: a) One slice of a 130� 128� 128 magnetic resonance
(MR) volume of a human head shows high-contrast, relatively
noise-free data with numerous internal structures. b) An isosurface
rendering, with a small wedge removed for visualization, shows
aliasing and internal structures that are not appropriate for the ap-
plication.

(a) (b)

Figure 4: a) One slice of a 44�45�43 MR scan of a frog embryo.
b) A Marching Cubes isosurface from the frog embryo volume. Iso-
value = 60.

(a) (b)

Figure 5: a) Level set models represent curves and surfaces implic-
itly using greyscale images. For example an ellipse is represented
as the level set of an image shown here. b) To change the shape of
the ellipse we modify the greyscale values of the image by solving
a certain PDE.



ize the skin or skull. In this case the particular application [20]
requires a relatively smooth, simple, closed surface, and will not
tolerate significant aliasing. The application also requires that the
fairly complicated structure of the inner head (usually unseen) be
removed. Figure 2(b) shows a isosurface rendering, at a greyscale
value of 30, which demonstrates the aliasing in the data. A small
wedge has been removed to show the complex internal structures in
this volume.

The third example, shown in Figure 3(a), is a 256� 128� 128
MR scan of a 12-day-old mouse embryo. Colleagues in the Caltech
Biological Imaging Center (BIC) are using such images to develop
a detailed atlas for the gestational development of these organisms.
For this paper we will consider the specific task of isolating the
liver, which is the dark, kidney-shaped area on the right. The liver,
however, is not a single grey-scale value, and it is bordered by both
more dense and less dense regions. Furthermore, the data contains
noise. Therefore, the liver is not easily isolated by simple greyscale
classification or isovalue schemes. Figure 3(b) shows an isosurface
rendering which accommodates high and low thresholds associated
with the liver, i.e., the zero crossings of I0 = min(I � tlo;thi � I),
where I is the input volume, and thi=lo are the thresholds. The
model constructed from the isosurface shows significant artifacts
from noise and low-frequency fluctuations in the tissue. It also
shows artifacts from the greyscale classification, which captures a
large number of voxels in the transition between the skin and the
surrounding regions. Smoothing further aggravates this problem.

The final example, shown in Figure 4(a), is a 44�45�43 in vivo
MR scan of a frog embryo. This is one slice from one scan of a
sequence of 22 volumes taken over a 24-hour period. Colleagues at
the Caltech BIC are acquiring time-lapsed MR volume sequences in
order to generate the first 3D staging sequence of a developing frog
embryo. They require models of the dynamic structures that appear,
move, change shape, merge and/or disappear over time within the
embryo, as well as the outside shell. The individual structures do
not necessarily have distinct signals in the MR scans, thus making
it difficult to computationally isolate them. Figure 4(b) presents a
polygonal isosurface (isovalue = 60) generated with the Marching
Cubes algorithm [19]. At this isovalue two internal structures are
produced, as well as a significant part of the outer shell.

3 Level Set Surface Models

When considering deformable models for segmenting 3D volume
data, one is faced with a choice from a variety of surface rep-
resentations, including triangle meshes [20, 21], superquadrics
[22, 23, 24], and many others [18, 25, 26, 27, 28, 29, 30]. Another
option is an implicit level set model, i.e., specifying the surface as a
level set of a scalar volumetric function, φ : U 7! IR, where U � IR3

is the range of the surface model. Thus, a surface S is

S = fsjφ(s) = kg ; (1)

and the choice of the isovalue, k, is arbitrary. In other words, S is
the set of points s in IR3 that composes the k isosurface of φ . The
embedding φ can be specified as a regular sampling on a rectilinear
grid.

Our overall scheme for segmentation is largely based on the
ideas of Osher and Sethian [31] that model propagating surfaces
with (time-varying) curvature-dependent speeds. The surfaces are
viewed as a specific level set of a higher-dimensional function φ –
hence the name level set methods. These methods provide the math-
ematical and numerical mechanisms for computing surface defor-
mations as isovalues of φ by solving a partial differential equation
on the 3D grid. That is, the level set formulation provides a set of
numerical methods that describes how to manipulate the greyscale
values in a volume, so that the isosurfaces of φ move in a prescribed

manner (shown in Figure 5). This paper does not present a compre-
hensive review of level set methods, but merely introduces the basic
concepts and the notation used in successive sections. See [7] for
more details.

There are two different approaches to defining deformable sur-
face from a level set of a volumetric function as described in Equa-
tion 1. Either one can think of φ(s) as a static function and change
the isovalue k(t) or alternatively fix k and let the volumetric func-
tion dynamically change in time, i.e. φ(s;t). Thus, we can mathe-
matically express the static and dynamic model respectively as

φ(s) = k(t) (2a)

φ(s;t) = k: (2b)

To transform these definitions into partial differential equations
which can easily be solved by standard numerical techniques, we
differentiate both sides of Equation 2 with respect to time t, and
apply the chain rule:

∇φ(s)
ds
dt

=
dk(t)

dt
(3a)

∂φ(s;t)
∂ t

+∇φ(s;t) � ds
dt

= 0 (3b)

The static Equation 3a is often referred to as the “Eikonal” equa-
tion and defines a boundary value problem for the time-independent
volumetric function φ . This static level set approach has been
solved [32, 33] using a “Fast Marching Method”. However, it has
some inherent limitations following the simple definition in Equa-
tion 2a. Because φ is a function (i.e. single-valued), isosurfaces
cannot self intersect over time, i.e. shapes defined in the static
model are strictly expanding or contracting over time. The dynamic
level set approach of Equation 3b is much more flexible and shall
serve as the basis of the segmentation scheme in this paper. Equa-
tion 3b is sometimes referred to as a “Hamilton-Jacobi-type” equa-
tion and defines an initial-value problem for the time-dependent φ .
Throughout the remainder of this paper we shall for simplicity refer
to this dynamical approach as the level set method – and completely
ignore the static alternative.

Thus, to summarize the essence of the (dynamic) level set ap-
proach; let ds=dt be the movement of a point on a surface as it
deforms, such that it can be expressed in terms of the position of
s 2 U and the geometry of the surface at that point, which is, in
turn, a differential expression of the implicit function, φ . This gives
a partial differential equation on φ : s � s(t)

∂φ
∂ t

=�∇φ � ds
dt
��∇φ �F(s;Dφ ;D2φ ; : : :); (4)

where F is a user-defined “speed” term which depends on a set of
order-n derivatives of φ , Dnφ , evaluated at s, as well as other func-
tions of s. Because this relationship applies to every level set of φ ,
i.e. all values of k, this equation can be applied to all of U , and
therefore the movements of all the level set surfaces embedded in
φ can be calculated from Equation 4. Such level set methods are
well documented in the literature for applications such as compu-
tational physics [34], image processing [35, 36], computer vision
[6, 37], medical image analysis [6, 38], shape morphing[39], and
3D reconstruction [40].

The level set representation has a number of practical and theo-
retical advantages over conventional surface models, especially in
the context of deformation and segmentation. First, level set models
are topologically flexible, they easily represent complicated surface
shapes that can, form holes, split to form multiple objects, or merge
with other objects to form a single structure. These models can in-
corporate many (millions) of degrees of freedom, and therefore they
can accommodate complex shapes such as the dendrite in Figure 1.
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Figure 6: Level set segmentation stages – initialization and surface
deformation.

Indeed, the shapes formed by the level sets of φ are restricted only
by the resolution of the sampling. Thus, there is no need to repa-
rameterize the model as it undergoes significant changes in shape.

Level set methods have been shown to be effective in extracting
surface structures from biological and medical data. For instance
Malladi et al. [6] propose a method in which the level sets form an
expanding or contracting contour which tends to “cling” to inter-
esting features in 2D angiograms. At the same time the contour is
also influenced by its own curvature, and therefore remains smooth.
Whitaker has shown [38, 41, 42] that level sets can be used to simu-
late conventional deformable surface models, and demonstrated this
by extracting skin and tumors from thick-sliced (e.g. clinical) MR
data, and by reconstructing a fetal face from 3D ultrasound. A vari-
ety of authors [36, 43, 44] have presented variations on the method
with results for 2D and 3D data. Sethian [7] gives several examples
of level set curves and surface for segmenting CT and MR data.

The purpose of this paper is to present a collection of initializa-
tion and level set mechanisms which form a “toolbox” for volume
dataset segmentation. We also show how these methods can be
combined to solve the problems presented in Figures 1–4. These
tools provide a set of techniques that are not as direct as simple
thresholding or volume rendering but are more powerful than the
“hand-contouring” that is currently the state-of-the-art in many ap-
plications, such as the dendrite example in Figure 1.

4 Segmentation Stages

Our level set segmentation process has two major stages, initializa-
tion and level set surface deformation, as seen in Figure 6. Each
stage is equally important for generating a correct segmentation.
Within our framework a variety of operations are available in each
stage. A user must “mix-and-match” these operations in order to
produce the desired result.

4.1 Initialization

Because the deformable models move using gradient descent, they
seek local solutions, and therefore the results are strongly depen-
dent on the initialization, i.e., the starting position of the surface.
Thus, one controls the nature of the solution by specifying an ini-
tial model from which the surface deformation process proceeds.
We have implemented both computational (i.e. “semi-automated”)
and manual/interactive initialization schemes; each offers distinct
advantages in different situations.

4.1.1 Computational Initialization

Because the level set modeling technology is based on the isosur-
faces of volumes, we can, for many different types of problems,
computationally construct reasonable initial estimates directly from
the input data. We do this by combining a variety of techniques.

Linear filtering: We can filter the input data with a low-pass
filter (e.g. Gaussian kernel) to blur the data and thereby reduce

(a) (b) (c)

Figure 7: a) [color] Interactively positioning a CSG model relative
to a Marching Cubes mesh. b) Isosurface of a binary scan con-
version of the initialization CSG model. c) Final internal embryo
structures.

noise. This tends to distort shapes, but the initialization need
only be approximate.

Voxel classification: We can classify pixels based on the filtered
values of the input data. For greyscale images, such as those
used in this paper, the classification is equivalent to high and
low thresholding operations. These operations are usually ac-
curate to only voxel resolution (see [12] for alternatives), but
the deformation process will achieve sub-voxel results.

Topological/logical operations: This is the set of basic voxel
operations that takes into account position and connectivity.
It includes unions or intersections of voxel sets to create bet-
ter initializations. These logical operations can also incorpo-
rate user-defined primitives. Topological operations consist
of connected-component analyses (e.g. flood fill) to remove
small pieces or holes from objects.

Morphological filtering: This includes binary and greyscale
morphological operators on the initial voxel set. For the re-
sults in the paper we implement openings and closings using
morphological propagators [45, 46] implemented with level
set surface models. This involves defining offset surfaces of φ
by expanding/contracting a surface according to the following
PDE,

∂φ
∂ t

=�j∇φ j; (5)

up to a certain time t. The value of t controls the offset dis-
tance from the original surface of φ(t = 0). A dilation of size
α , Dα , corresponds to the solution of Equation 5 at t = α us-
ing the positive sign, and likewise erosion, Eα , uses the neg-
ative sign. One can now define a morphological opening op-
erator Oα by first applying an erosion followed by a dilation
of φ , i.e. Oα φ = Dα Æ Eα φ , which removes small pieces or
thin appendages. A closing is defined as Cα φ = Eα ÆDα φ ,
and closes small gaps or holes within objects. Both opera-
tions have the qualitative effect of low-pass filtering the iso-
surfaces in φ—an opening by removing material and a closing
by adding material. Both operations tend to distort the shapes
of the surfaces on which they operate, which is acceptable for
the initialization because it will be followed by a surface de-
formation.

4.1.2 Interactive Initialization

Computational initialization may not always produce a reasonable
starting model that deforms into an acceptable final result. Such is
the case with the frog-embryo data shown in Figure 4. For volumes
that do not allow one to automatically generate an initial model, it



is desirable and easier for the user to interactively specify the initial
model which is then deformed to fit to the input data. The interac-
tive initialization process has four steps and is presented in Figures
4(b), and 7(a-c). First, the user generates a Marching Cubes mesh
from the input volume. This gives some indication of the structures
present in the data (Figure 4(b)). The user then creates a Construc-
tive Solid Geometry (CSG) model which defines the shape of the
initial surface. The CSG model in blue is interactively positioned
relative to the Marching Cubes mesh (Figure 7(a)). The CSG model
is scan-converted into a binary volume, with voxels simply marked
as inside (1) or outside (0), using standard CSG evaluation tech-
niques [47] within our modeling system [48]. An isosurface of the
initialization volume dataset generated from the torus and sphere in
Figure 7(a) is presented in Figure 7(b), isovalue = 0.5. This volume
dataset is then used as the starting model for the level set deforma-
tion stage, which produces the final result seen in Figure 7(c).

4.2 Level Set Surface Deformation

The initialization should position the model near the desired so-
lution while retaining certain properties such as smoothness, con-
nectivity, etc. Given a rough initial estimate, the surface deforma-
tion process moves the surface model toward specific features in the
data. One must choose those properties of the input data to which
the model will be attracted and what role the shape of the model
will have in the deformation process. Typically, the deformation
process combines a data term with a smoothing term, which pre-
vents the solution from fitting too closely to noise-corrupted data.
There are a variety of surface-motion terms that can be used in suc-
cession or simultaneously, in a linear combination to form F(x) in
Equation 4.

Curvature: This is the smoothing term. For the work presented
here we use the mean curvature of the isosurface H to form a
vector in the direction of the surface normal n given by

F(x) = Hn =

�
∇ � ∇φ

j∇φ j
�

∇φ
j∇φ j : (6)

The mean curvature is also the normal variation of the sur-
face area (i.e., minimal surface area). There are a variety of
options for second-order smoothing terms [41], and the ques-
tion of efficient, effective higher-order smoothing terms is the
subject of on-going research [7]. For the work in this paper,
we combine mean curvature with one of the following three
terms, weighting it by a factor β , which is tuned to each spe-
cific application.

Edges: Conventional edge detectors from the image process-
ing literature produce sets of “edge” voxels that are associ-
ated with areas of high contrast. For this work we use a gra-
dient magnitude threshold combined with non-maximal sup-
pression, which is a 3D generalization of the method of Canny
[16]. The edge operator typically requires a scale parameter
and a gradient threshold. For the scale, we use small, Gaus-
sian kernels with standard deviation σ = [0:5��1:0] voxel
units. The threshold depends on the contrast of the volume.
The distance transform on this edge map produces a volume
that has minima at those edges. The gradient of this volume
produces a field that attracts the model to these edges. The
edges are limited to voxel resolution because of the mecha-
nism by which they are detected. Although this fitting is not
sub-voxel accurate, it has the advantage that it can pull mod-
els toward edges from significant distances, and thus inaccu-
rate initial estimates can be brought into close alignment with
high-contrast regions, i.e. edges, in the input data. If E is

the set of edges, and D
E
(x) is the distance transform to those

edges, then the movement of the surface model is given by

F(x) = ∇D
E
(x): (7)

Greyscale features—gradient magnitude: Surface models can
also be attracted to certain greyscale features in the input
data. For instance, the gradient magnitude indicates areas of
high contrast in volumes. By following the gradient of such
greyscale features, surface models are drawn to minimum or
maximum values of that feature. Typically greyscale features,
such as the gradient magnitude are computed with a scale op-
erator, e.g., a derivative-of-Gaussian kernel. If models are
properly initialized, they can move according to the gradi-
ent of the gradient magnitude and settle onto the edges of an
object at a resolution that is finer than the original volume.

If G(x) is some greyscale feature, for instance G(x) = j∇I(x)j,
where I(x) is the input data (appropriately filtered—we use
Gaussian kernels with σ � 0:5), then

F(x) =�∇G(x); (8)

where a positive sign moves surfaces towards maxima and the
negative sign towards minima.

Isosurface: Surface models can also expand or contract to con-
form to isosurfaces in the input data. To a first order approxi-
mation, the distance from a point x 2U to the k-level surface
of I is given by (I(x)� k)=j∇Ij. If we let g(α) be a fuzzy
threshold, e.g., g(α) = α=

p
1+α2, then

F(x) =
∇φ
j∇φ jg

�
I(x)� k
j∇Ij

�
(9)

causes the surfaces of φ to expand or contract to match the
k isosurface of I. This term combined with curvature or one
of the other fitting terms can create “quasi-isosurfaces” that
also include other considerations, such as smoothness or edge
strength.

5 Results

This section describes how our approach may be used to extract
structures from the data described in Section 2. We present surface
renderings of the resulting models and detail the specific methods
needed to construct each model.

Figure 10 shows 3D renderings of the sequence of steps per-
formed on the ET dendrite data from Figure 1. The first two are
the initialization steps, generating a smoothed isosurface and filling
gaps with topological and morphological operations. The second
two are surface deformation steps, first fitting to discrete edges and
then to the gradient magnitude. Figure 8 shows a slice with the
boundary of the solution drawn in red, that confirms the accuracy
of the results—the red boundary is only an indicator of the solution
because it is limited to voxel resolution while the level set model
has sub-voxel resolution. This figure also shows the same result
for a smoothed isosurface—which is significantly affected by den-
sity fluctuations in the data. Figures 9 and 11 show the results of
the proposed method compared to the results of a manual segmen-
tation, which took approximately 10 hours of slice-by-slice hand
contouring. The manual method suffers from slice-wise artifacts,
and, because of the size and complexity of the dataset, the manual
segmentation is unable to capture the level of detail that we obtain
with the surface-fitting results. Manual segmentation can, however,
form connections that are not well supported by the data in order
to complete the “spines” that cover this dendrite. These types of



(a) (b)

Figure 8: [color] a) Voxel-resolution contours of a dendrite using
our level set approach. b) Voxel-resolution contours of the isosur-
face of the smoothed sampling of the same dendrite.

“judgments” that humans make when they perform such tasks by
hand are a mixed blessing. Humans can use high-level knowledge
about the problem to fill in where the data is weak, but the expec-
tations of a trained operator can interfere with seeing unexpected
or unusual features in the data. Our future work will attempt to in-
corporate user input to guide the surface-fitting results to obtain a
better blend of user expectations and data-driven modeling.

Figure 12 shows the results of fitting a surface model to the MR
head data shown in Figure 2. Figure 12(a) is a rendering of the
initial model which is the result of smoothing the data, using a flood
fill on the exterior to remove isolated holes or bubbles within the
head, and treating the model with a closing, C5:0. Figure 12(b)
shows the results of fitting to the isosurface with a curvature term
to ensure smoothness. Some detail is lost around the lips and ears,
but overall the fidelity is good and the smoother, simpler surface
model suites our application quite well [20].

Figure 13 presents 3D renderings of the sequence of steps per-
formed on the mouse MR data from Figure 3. The first step is the
initialization, and the second two are the surface deformation, first
fitting to discrete edges and then to the gradient magnitude. This is
a significant improvement over the result in Figure 3(b) which suf-
fers from noise and misclassifications. Figure 13(d) presents sev-
eral other structures that were segmented from the mouse embryo
dataset. The skin (grey) and the liver (blue) were isolated using
computational initialization. The brain ventricles (red) and the eyes
(green) were segmented with interactive initialization.

Figure 14 presents models from four samples of the MR series
of the developing frog embryo. The top left image (Hour 9) shows
the first evident structure, the blastocoel, in blue, surrounded by the
outside casing of the embryo in grey. The top right image (Hour 16)
demonstrates the expansion of the blastocoel and the development
of the blastoporal lip in red. In the bottom left image (Hour 20)
the blastoporal lip has collapsed, the blastocoel has contracted, and
the archenteron in green has developed. In the bottom right image
(Hour 30) the blastocoel has collapsed and only the archenteron is
present. As can been seen from Figure 4(b) that it may be difficult to
isolate structures using only their voxel values. We therefore used
our interactive techniques to isolate (during initialization) most of
the structures in the frog embryo samples.

Table 1 describes for each dataset the specific techniques and
parameters we used for the results in this paper. These parameters
were obtained by first making a sensible guess based on the con-
trasts and sizes of features in the data and then using trial and error
to obtain acceptable results. Each dataset was processed between
4 and 8 times to achieve these results. More tuning could improve
things further, and once these parameters are set, they work moder-
ately well for similar modalities with similar subjects. The method
is iterative, but the update times are proportional to the surface area.
On an SGI 180MHz MIPS 10000 machine, the smaller mouse MR
dataset required approximately 10 minutes of CPU time, and the
dendrite dataset ran for approximately 45 minutes. Most of this
time was spent in the initialization (which requires several com-
plete passes through the data) and in the edge detection. The frog

(a) (b)

Figure 9: [color] a) Rendering of a dendrite segmented using our
the proposed method. b) Rendering of the same dendrite, but this
time segmented manually.



(a) (b)

(c) (d)

Figure 10: a) The steps in the surface fitting process: An isosurface
of smoothed data. b) Morphological operators fill in gaps and re-
move smaller, disconnected pieces. c) Fitting to edges brings the
model closer to high-contrast regions in the data. d) Fitting to max-
imal gradient magnitude gives more detail.

(a) (b)

Figure 11: [color] a) Close-up view of the final result of the dendrite
rendering using our scheme – note the level of details. b) Close-up
view of the manual segmentation – note the lack of detail compared
to the proposed method.

(a) (b)

Figure 12: a) This image shows the rough initialization surface used
for a level set segmentation of an MR scanned head. A small section
of the surface has been removed to show that it does not contain in-
ternal structures. b) The final result is smoothed (almost no aliasing
from the scanning slices), but with good fidelity.

embryo datasets needed only a few minutes of processing time, be-
cause they did not require computational initialization and are sig-
nificantly smaller than the other example datatsets.

6 Conclusions

This paper describes a system that uses level set surface models
in conjunction with a suite of initialization techniques to segment
structures in volume data. Level set surface modeling is a tech-
nology that allows one to manipulate or deform the isosurfaces of
a volume toward interesting features in the input data. Because
the technology is volumetric, it provides opportunities to combine
voxel-based techniques, such as filtering, classification, and mor-
phology with surface-fitting methods based on deformable models.
We have shown that combining level set methods with a variety of
initialization techniques produces a powerful framework capable of
segmenting many different types of volume datasets. In the case
of the ET dendrite data, our approach offers significant advantages
in both time and quality over hand-contoured segmentations, which
are currently the state-of-the-art.

Currently there are two significant drawbacks of the proposed
method. First is the choice of parameters. There are a number of
parameters that must be tuned, and their settings affect the final
solution. The second drawback is the computation time, which is
quite long for large datasets. The second problem aggravates the
first, because exploring the parameter space by trial and error is a
potentially lengthy process. Future work will focus on increasing
the update rates by parallelizing the computation. This is feasible
because the numerical methods lend themselves to a spatial decom-
position of the model domain. If the updates were sufficiently fast,
users can explore the parameter space interactively by turning var-
ious knobs and evaluating the quality of the results. This would
greatly increase the effectiveness of the method.
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Dataset Initialization Surface Fitting

Dendrite

1. Gaussian blur σ = 0:5
2. Threshold: I < 127
3. Fill isolated holes
4. Morphology: O0:5 ÆC1:5

1. Edge fitting: σ = 0:75, threshold = 6, β =
0:1

2. Gradient magnitude fitting: σ = 0:5, β = 1:0

Head

1. Gaussian blur σ = 1:0
2. Threshold: I > 30
3. Fill isolated holes
4. Morphology: C5:0

1. Isosurface fitting: β = 5:0, k = 30.

Mouse

1. Gaussian blur σ = 0:5
2. Threshold: I > 3, I < 60
3. Fill isolated holes
4. Morphology: O2:0 ÆC3:0

1. Edge fitting: σ = 0:75, threshold = 20, β = 2
2. Gradient magnitude fitting: σ = 0:5, β =

16:0

Frog 1. Interactive
1. Gradient magnitude fitting: σ = 1:25, β =

1:0

Table 1: Parameters for processing example datasets.

(a) (b)

(c) (d)

Figure 13: a) The initialization of a mouse liver dataset using mor-
pholog to remove small pieces and holes. b) Surface fitting to dis-
crete edges. c) The final fit to maxima of gradient magnitude. d)
[color] Final mouse embryo model with skin (grey), liver (blue),
brain ventricles (red), and eyes (green).

Figure 14: [color] Geometric structures extracted from MRI scans
of a developing frog embryo, with blastocoel (blue), blastoporal lip
(red), and archenteron (green). Hour 9 (top left). Hour 16 (top
right). Hour 20 (bottom left). Hour 30 (bottom right).
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