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“�is is no longer than ��een seconds from where
we’re standing all the way to the bottom.

In between those ��een seconds you just got to
be on it, feel it, and let her buck”

Tanner Hall — Believe
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A B S T R AC T

This thesis focuses on e�cient implementations of level-set methods and geodesic
distance functions in the context of computer graphics (cg). �e level-set method

(lsm) is a grid based design that inherits many favorable traits from implicit geometry.
It is connected to distance functions through its special way of representing geometry:
in 3d each point in space stores the closest distance to the surface. A signed distance
is used to di�erentiate between the inside and outside of a closed object. In the
discrete form the representation can be thought of as a box around the surface that
keeps regularly positioned samples of the distance function. �e samples on this grid
implicitly encode the surface as the zeroth level-set of the signed distance function;
hence the name level-set methods. With this representation of geometry follows a
toolbox of operations based on partial di�erential equations (pde). �e solution to
these pdes allows for arbitrary motion and deformation of the surface.
It might seem wasteful to classify the full embedding space (i.e. grid domain) just

to encode a surface. However, this also gives the possibility to query regions far away
from the surface. For applications that deal with space partitioning this is a huge
bene�t. �e existence of a regularly sampled function also makes much of the discrete
mathematics relatively uncomplicated.
Today lsm has become widespread in both academia and industry. For some

applications, such as the capturing of the air/water interface in free surface �uid
simulations lsm is the only realistic choice. In academia highly accurate methods
and numerical schemes have been proposed that allow many other areas, like medical
imaging, to bene�t from lsm and its strengths when it comes to handling topological
changes of dynamic curves and surfaces.
Is this level-set method then a silver bullet? As it stands today, not yet. One of its

greatest bene�ts also incurs the major drawback. As a grid based method that samples
the distance function over the embedding, rather than over the surface itself, the
method is not space e�cient and because of this not fast. �is has, to some extent, been
amended for by previous work that restricted level-set computations to a thin band
around the surface. However, the sheer size of large grids still make lsm impractical
for detailed simulations and has rendered the reputation that lsm is memory hungry
and slow.
In this thesis we mainly work on e�ciency aspects of lsm. We address both grid

storage concerns and speed by introducing novel data structures and algorithms that
allow for simulations at unprecedented grid resolutions. We also describe a fastmethod
for computing the distance function, which is central to lsm. �e thesis also aims at
popularizing lsm by showing applications that utilize the new data structures and
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algorithms to perform common cg tasks such as parameterization, texturing and
rendering.
We �rst introduce an e�cient data structure for representing and dynamically

deforming lsm models. �e design is called the hierarchical run length encoded grid
(h-rle). It utilizes a space e�cient compression of the topology of the geometrymodel
reminiscent of techniques used for storing sparse matrices. �e h-rle features, apart
from being compact, fast access to individual grid points: optimal (when amortized)
sequential access, and logarithmic random access. Around this versatile data structure
applications such as e�cient morphing and rendering are built.
Compression and memory e�ciency for grid based implicit geometry is further

explored in a sequel paper where both geometry and topology is compressed in an
e�cient manner. �is paper also thoroughly investigates out-of-core techniques for
grid storage and introduces near optimal page replacement and prefetching strategies.
Benchmarks show that our work delivers sustainable performance at over 50% of the
peak-throughput of a state-of-the-art data structure. At virtually unlimited grid sizes.
To further illustrate the versatility of the level-set method a reconstructionmethod

is presented that �nds a physically plausible surface from sparse contour input data.
We demonstrate the robustness of the method on a variety of medical, topographic
and synthetic data sets.
In lsm the surface is de�ned by a distance function. Muchwork has been dedicated

to �nding such distance functions on di�erent classes of geometry representations
using discretizations based on pdes. In general there is no di�erentiable solution to this
type of problem and unique weak solutions are selected using the vanishing viscosity
condition. In this work we adopt and generalize a method that computes distances
over curved manifolds (surfaces and volumes) without relying on di�erentiability.
�e discretization is based on the dynamic programming principle and an integral
de�nition of geodesic distance. �e input assumes a sampled metric tensor �eld and a
tessellation of triangles or tetrahedra. Our method is simple to implement and has an
intuitive geometric construction. Benchmarks show our method to be more exact and
have better convergence properties than competing work without sacri�cing speed. In
addition the method works for arbitrary Riemannian manifolds while retaining both
simplicity and e�ciency.
An obvious drawback of implicit surfaces when used for cg is the lack of a natural

parameterization. In this setting it is natural to leverage the properties of geodesic paths
on surfaces because of their minimizing qualities. Previously published work in this
area �nd parameterizations of the surface using geodesic distance in an ad-hocmanner.
Either by dividing the surface into patches that are iteratively optimized, or by using
distances to approximate the (in di�erential geometry) well known exponential map.
We present a novel method for parameterizing surfaces that computes the logarithmic
map (the inverse of the exponential map) over triangle meshes. �e method, however,
easily translates to any setting in which distances can be computed. Our results show
less distortion and the proposed method is faster than competing work.

ii
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P R E FAC E

Over the last �ve years I have had the opportunity to work intensely and whole-
heartedly with computer graphics. I started my Ph.D. at Linköping University

(liu) in the spring of 2004 and have since then been privileged to research, study,
present, learn, be inspired, and teach, in various positions, in various locations, around
the world.
When I �rst started I was confronted with an american professor of danish origin

who said: “Here’s the ball. Runwith it!”�is turned out to be a very accurate description
of what was to come. My supervisor – professor Ken Museth – was, at the time, head
of the graphics group at Linköping University and also held an adjunct position at
Aarhus University where part of the group was located.

�e ball that was pitched was an idea about doing segmentation by contour meta-
morphosis with level-set methods. It was a challenging project, and I was working hard
to make the ieee Visualization conference deadline for 2005. When the paper [62]
was accepted I was happy as a clam. Moreover, our project concerning e�cient data
structures for level-set methods headed by Ph.D. student Michael B. Nielsen at Aarhus
University led to a publication [40] at the prestigious acm siggraph conference the
same fall. �e work was a joint project together with Canadian visual e�ects company
Frantic Films and was presented as a sketch, or abstract presentation, by Michael B.
Nielsen and Ben Houston. �e full paper [41] was later published in acm Transactions
on graphics (tog).
Later that year, during the summer, my supervisor Ken Museth and I, with appre-

ciated support from Reiner Lenz at liu, got the opportunity to travel to Tokyo, Japan,
and visit the Miyaki Laboratory at Chiba University. �e trip was both interesting and
inspiring. �e very �rst thing that met us in Japan was an experimental study on com-
puter graphics in medical environments. In this case several surgical operations were
conducted on a sedated pig in one of the class rooms at the campus. �e experience
was surreal.
During the stay in Japan I started the research leading to the proposed method

for computing simulations on manifolds (see [61]) and especially reaction-di�usion
equations.

�e year of 2005 was concluded with a conference presentation in Minneapolis,
usa, in front of an interested audience at vis 2005. A busy year indeed, and a great
start for my Ph.D. degree.
In the spring of 2006 I got a position as visiting researcher at cma at the University

of Oslo. During this time I took an excellent course on splines theory and simulta-
neously worked on the compression/out-of-core project that led to publication [61].
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�e project included a rather involved coordination of logistics. At the time project
members were stationed in Oslo, Aarhus, and Los Angeles.
During the spring of 2007 my fellow Ph.D. students Gunnar Johansson, Andreas

Söderström and I took over the course “Modeling and animation” a�er Ken Museth
who was on a leave of absence. �is involved a large amount of work. We had a
good foundation from previous years lecture notes but decided to completely rework
the practical parts. �is worked out very well, and in the end the course was voted
outstanding by the students awarding us with an acknowledgment from the Dean.
At the same time, I started to collaborate with Anders Brun, then at Linköping

University. He had made some progress in parameterizations using distance functions
but was in need ofmore accurate distance estimates. I had a large range of implemented
distance computation methods available and we teamed up. Parameterization is a
challenging �eld and the needs in computer graphics additionally throw in special
constraints; the project was put on ice for the most of 2007. Eventually, this project led
to publication [16], with Anders and I as mutual �rst authors.
For an exciting and intense period during the fall of 2007 I was interning at visual

e�ects company Digital Domain (dd) in Venice, Los Angeles. Initially, I was working
on fast methods for conditioning the level-set scalar �elds, but the main project for my
stay in Venice focused on aspects on vector �eld data in �uid simulations. Due to the
limited amount of time the project was not �nished, however, so�ware I developed at
dd has since been used in production.
Over the year of 2008, my situation changed dramatically both professionally and

personally. I became a father to a wonderful daughter – the joy of my life. But sadly,
Ken Museth decided to leave Linköping University. To my relief, Ken agreed to stay on
as adjunct professor and committed to keep supervising me. Another surprising event
was that our paper [61] was especially invited for presentation at the acm siggraph
conference.

�e parameterization project with Anders Brun involved a lot of work on distance
computations. We quickly realized that commonly used methods, despite their rep-
utation, were not good enough. Together with Martin Reimers at Oslo University
we developed a method for computing accurate distance functions in �at and curved
spaces. �is led to publications [63] and [64], see also Chapter 6.

iv
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A P P L I C AT I ON S GA L L E RY

I have produced a signi�cant amount of images using the methods and so�ware
that I have developed for this thesis. In this teaser gallery a small sub-set is shown

to illustrate some of the more visual applications of this work. All the models are
represented as level-set data except when speci�ed otherwise.

Figure 1: Visualization of a distance map on the “Stanford Bunny”. See article [64] and
Chapter 6.

Figure 2: Growing 2d textures on curved surfaces. Top row: Turing’s reaction di�usion
equations in the plane. Bottom row: textures grown directly on the curved surfaces using
the technique presented in [61].
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Figure 3: Direct rendering of implicit geometry represented by the level-set method as
described in [41]. Winged horse model constructed with smooth csg operations, courtesy
of Henrik Wrangel.

Figure 4: �e wave equation (∂2 f /∂t2 = c2∇2 f ) describes the propagation of waves in
the plane. Here solved over a curved surface, also using the technique in [61]. �e color
coding shows the propagation of the waves at three di�erent time steps.

viii
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applications gallery

Figure 5: Local texture mapping on the Stanford Bunny (triangle mesh) using the technique
from article [16].

ix
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CHA P T E R 1

I N T RODUC T I ON

In computer graphics (cg), triangle meshes have been the prevalent choice of surface
representation for a long time. Triangles have several bene�ts: rendering is very

well supported in hardware, typical graphics math is well studied and implementable,
and storage and computational complexity is relatively small. In this thesis we promote
an alternative geometry representation for use in cg, namely implicit geometry. More
speci�cally a special variant thereof: the level-set method (lsm).
Triangle meshes can be seen as an approximation of an underlying smooth surface.

But, then one may ask: What is a surface? And how does one formalize the subject? It
appears that this is a well studied topic in mathematics. In the discipline of di�erential
geometry a surface is called a manifold, and is characterized by certain properties.
Usually some sort of smoothness, or existence of derivatives, is required. A matter in
question is that these derivatives are cumbersome to de�ne on an irregular triangle
mesh1. It is even not generally agreed on how to do this in some cases. Another
problem is that splitting and merging triangle meshes is di�cult, especially when the
surface moves.
On the other hand, an implicit geometry speci�cation does not su�er from these

problems. Derivatives are readily available, and topological changes are resolved almost
automatically. Implicit geometry works by categorizing all space into inside and outside
making partitioning problems straightforward. It is, in fact, impossible to arrive at
ambiguities when using implicit geometry. �ese bene�ts makes an implicit setting
attractive for many applications.
Implicit geometry is well known through the study of implicit functions in mathe-

matics. However, in computer graphics implicit geometry has not been very popular,
except for special cases, and the applications have been more proof of concept than
practical tools. With the invention of the level-set method (lsm) in 1988 [66] this
started to change, and recently lsm has gained a large amount of attention in the com-
puter graphics community [31, 53, 57]. �e level-set method is a discretized version of
implicit geometry that additionally provides a full toolbox for dealing with moving
surfaces, or generally, manifolds. �rough its special representation, lsm also gives a
way of trivially measuring the closest distance between objects in space.
Unfortunately, there is no such thing as a free lunch and the level-set method also

has downsides. In this thesis we address some of the concerns with the method. Our
work exploits the positive traits of implicit geometry and lsm in an e�cient manner

1. �is is an active and promising area of research but still not as mature as implicit geometry.
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and we display advanced and original results. We also try to popularize the method by
showing how to do standard computer graphics operations in the level-set formalism.
We do stress, however, that the level-set method is not a “silver bullet”. In some cases
lsm is the only realistic choice but in many situations the decision of representation
needs careful consideration.
We start the thesis with some inspiring examples from the visual e�ects industry

showing lsm in use. �en, we isolate some disadvantages with themethod and indicate
our solutions – justifying this work. �is is followedby a list of the includedpublications
and their respective contributions. We also point out some of the potential impacts of
this work. �e introduction chapter is �nally concluded with an overview of the thesis.

1.1 motivation

�emotion of water is a most fascinating scenery. �e rich behavior of the �uid �ow
with waves, wakes, and eddies as well as the complex merging and pinching of droplets
and surface can be truly mesmerizing. Today the arti�cial simulation and rendering
of water has reached incredible realism; it is very di�cult to discern simulation and
visual e�ects from live-action in contemporary motion pictures. Figure 1.1 show shots
from several motion pictures illustrating the progressive trend. �e simulation of �uid
�ow – or computational �uid dynamics (cfd) – is a well studied discipline that dates
back a long time in the �elds of physics and applied mathematics. Highly accurate
numerical schemes that handle turbulent �ows as well as the presence of shocks and
discontinuities exist, cf. [4].
For computer graphics, the e�orts in cfd have been focused more on realism and

e�ciency than on accuracy. A typical example is �uid simulations for visual e�ects in
motion pictures. In this scenario, the director is more interested in the behavior of the
�uid surface than the accuracy of the actual �uid �ow, as long as the �ow is realistic
enough. And the producer is even more interested in how fast the simulation runs to
keep costs down. When simulation is used as a modeling tool fast turnaround times
are also necessary for a more creative reason; artists generally do not like to wait.
A major hurdle in the simulation of free surface �ows is the tracking of the �uid

surface. For this complex and di�cult task lsm is an ideal candidate and its introduc-
tion has proved to be a key advancement in the �eld. One of the �rst major motion
pictures featuring �uid �ows captured with the level-set method was Lord of �e Rings:
�e Fellowship of the Ring. �e scene where the “ringwraiths” are trying to cross the
river and the water rises is shown in �gure 1.1(a). A couple of years later, in the motion
picture�e Day a�er Tomorrow, �uid simulation in visual e�ects had something of a
breakthrough. Figure 1.1(b) shows one of the key scenes where a giant wave crashes
on New York. �ese two early examples contain, in addition to raw simulation data,
heavy post-processing. �e horses in (a) are not simulated for example, nor is the
foam in neither of (a) nor (b).

2
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(a) (b)

(c) (d)

Figure 1.1: Some examples of �uid simulations in visual e�ects for motion pictures and
commercials. All water surfaces are captured with the level-set method. (a) Lord of the
Rings: �e Fellowship of the Ring, 2001. ©New Line Cinema (b)�e Day a�er Tomorrow,
2004. ©Twentieth Century Fox (c) Pirates of the Caribbean: At World’s End, 2007. ©Walt
Disney Pictures (d) Sundance – a Bacardi commercial, 2008. Images courtesy of Digital
Domain.

�e quality of the simulations for these early movies was restricted due to space
and e�ciency constraints. In more recent movies larger simulation domains, i.e. larger
grids, are deployed leading tomore detailed simulations. See for example sub �gures (c)
and (d), where special data structures [52, 55, 56, 59] make high resolution simulations
possible.

1.1.1 Other uses

�e level-set method is used in many other contexts apart from the high pro�le applica-
tions in visual e�ects presented above. In medical imaging, for example, the capturing
of interfaces translates directly to a segmentation problem. �e act of di�erentiating
between cancer tumor and healthy tissue can be formulated as a space partitioning
problem, which is ideal to solve with lsm. Another kind of segmentation is shown in
Figure 1.2 where the location of blood vessels are extracted in an image of a retina.
Other areas using lsm include, but are not limited to, geometric modeling [13, 54],

shape morphing [8], and volume segmentation [18]. �e books [65, 75] provide ample
examples and areas of use for the method.

3
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Figure 1.2: Implicit geometry in a medical imaging, lsm segmentation of blood vessels in
the retina by iterative evolution of an initial guess. �e number of performed iterations is
listed below each �gure. Images courtesy of Gunnar Läthén.

1.2 key issues

We have already indicated that there exists some disadvantages with the level-set
method. �e work in this thesis was initiated as a response to these limitations and
provides solutions to some of the problems with lsm, as it stands today.

�e �delity of a simulation is, if well constructed, restricted by the size of the
simulation domain, i.e. the size of the grid, and the quality of the numerical schemes
used. �is relation provides a direct connection between grid sizes and simulation
quality. Traditionally, the representation of a surface with lsm has been ine�cient
in terms of both storage and e�ciency and this bottleneck has restricted simulation
quality. �us the �rst identi�ed issue is:

1. the need to represent larger simulation domains, i.e. high resolution grids.

�is should not come at the prize of a slower representation, which leads us to the
following sub-problem

(a) the representation must carefully weigh storage requirements against e�-
ciency.

Ideally, the representation should be con�gurable with respect to these requirements.
Our solution introduces loss-less compression of the topology of a model. In addi-
tion, lossy compression of the geometry, coupled with out-of-core techniques provide
e�cient ways of representing lsm geometry in a versatile and con�gurable way.
In the context of computer graphics one of the major downsides to the level-set

method is that

2. being an implicit geometry speci�cation lsm lacks a natural parameterization.

�is might not be evident when looking at the examples shown so far. Water, for
example, is readily shaded using a glass material. However, there is no simple way of

4
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performing texture mapping on the (implicit) geometry. �is makes the representation
inadequate in many cg applications unless �rst converted into a form that can be easily
parameterized. Because of this one of the main e�orts of this work has been develop a
robust and e�cient parameterization method applicable to implicit geometry.

�e level-set method, and our proposed way of parameterization, are tightly cou-
pled to the notion of geodesic (closest) distance. Several schemes for computing
distance in the context of lsm exist. But, none of these methods provide su�cient
accuracy (coupled with speed) to suit our needs. We show that

3. a linearization of the distance function is not accurate enough for some applica-
tions.

Instead, we adopt a method originally designed for triangle meshes into a grid based
setting. �is method is then extended to handle anisotropic domains, 3d, and di�erent
types of boundary conditions.

�e interest in level-set methods, distances and parameterizations was introduced
through the opening project of the PhD. Motivated by actual medicine work-�ow we
presented a robust and simple reconstruction method based on distances and contours
with the aim to reconstruct a three-dimensional volume from a set of sparsely sampled
contour curves using the level-set method.

�e identi�ed issues above and their proposed solutions form the basis for the work
in this thesis and correspond more or less directly to the di�erent included articles.

1.3 publications

�e publications that are included in this thesis are

Article 1 – [62]O. Nilsson, D. Breen, and K. Museth. Surface reconstruction via contour meta-
morphosis, an Eulerian approach with Lagrangian particle tracking. Visualiza-
tion, 2005. VIS 05. IEEE, pages 407–414, 2005

Article 2 – [41]B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth. Hierarchical
RLE level set: A compact and versatile deformable surface representation. ACM
Trans. Graph., 25(1):151–175, 2006

Article 3 – [61]M. B. Nielsen, O. Nilsson, A. Söderström, and K. Museth. Out-of-core and
compressed level set methods. ACM Trans. Graph., 26(4):16, 2007

Article 4 – [16]A. Brun, O. Nilsson, M. Reimers, K. Museth, and H. Knutsson. Computing
Riemannian normal coordinates on triangle meshes. In submission, 2009

Article 5 – [64]O. Nilsson, M. Reimers, K. Museth, and A. Brun. E�cient computations of
geodesic distance. In submission, 2009

�e following publications are related to this work but not included: [40, 45, 60, 63].

5
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1.4 contributions

I have done a substantial amount of work for all of the publications included in this
thesis. I am the primary author of the work in Article 1, and 5 [62, 64], and for these
articles I have developed the majority of both ideas and code. �is is also true for the
preliminary results presented In Chapter 6 and 7.
In article 4 [16] Anders Brun and I have mutually shared the workload and are

both considered �rst authors.
When it comes to the lsm data structure projects, that is paper 2 and 3 [41, 61], I

worked as a team member developing both code and ideas.
A brief summary of the contributions in the included papers is given below.

Article 1 – [62] introduces a generic and intuitive method for reconstructing 3d vol-
umes from 2d input contours. �e procedure uses metamorphosis between
consecutive contours to �nd a physically plausible 3d shape.

Article 2 and 3 – [41, 61] present e�cient ways of representing geometry using lsm.
�e representations are con�gurable in that several levels of compression can
be applied depending on the requirements on speed. At the highest level both
topology and geometry is compressed resulting in an extremely light memory
footprint. On the other end of the range only topology is compressed while fast
memory access is retained.

Article 4 – [16] shows how to perform a mathematically sound and e�cient approx-
imation of the logarithmic map over triangle meshes. However, the method
translates to any setting in which distances can be measured. �e resulting maps
are proposed for usage in local texture mapping and decal compositing.

Article 5 – [64] gives an way of computing distances over anisotropic domains. �e
method is e�cient and straightforward to implement. In addition, it has an
intuitive geometric construction.

Chapter 6 Extends the work on article 5 ([64]) and shows accurate distance computa-
tions in anisotropic 3d domains.

Chapter 7 Proposes a fasterway of computing the parameterization discussed in article
4 ([16]).

1.5 potential impact

1.5.1 High resolution lsm simulations

�e ever increasing resolution in measuring equipment in medical science (e.g. better
mri- and ct-scanners) gives larger and larger data sets to work with. As do the
escalation of digital sensor quality in �lm and photography. �e novel television
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introduction

broadcast standards additionally in�ate the number of pixels. Consequently, increasing
resolution for virtual imagery is needed as well.

�e introduction of data structures and algorithms developed in this thesis has
e�ectively li�ed some of the previous constraints on grid sizes when using lsm. Taking
advantage of larger grids means access to more detailed simulation domains. �is
naturally opens up for better results whether the application is medical segmentation
or �uid simulation.

�e impact of the new data structures is already notable. So�ware developed
for this thesis has already been used in major motion pictures and the level-set data
structures are in use in visual e�ects production. Our work is also acknowledged by
academia and used in di�erent contexts where high resolution level-set simulations
are of importance.

1.5.2 Vector space algorithms

Our proposed parameterization method produces Riemannian normal coordinates
(rnc) – a canonical coordinate system with many applications in di�erential geometry.
One of its uses in computer graphics is to translate algorithms from vector spaces to
surfaces. �us, for instance, accurate estimation of rnc over a surface mesh enables
users to implement classical vector space algorithms on triangulated surfaces. �is
includes important methods such as k-means clustering and mean shi� clustering.
�e future use of our method as a building block for algorithms and interactive tools
is also helped by the fact that it is straightforward to implement.

�e rnc parameterization is, as mentioned, tightly coupled to the notion of
geodesic distance. Our proposed distance solver for Riemannian manifolds also en-
ables many known algorithms to be generalized to a non-linear geodesic setting with
little e�ort. �is includes classical tools such as skeletonization, dilation/erosion and
watershed segmentation.

1.5.3 Popularizing lsm

�e level-set method provides an e�cient and natural way to handle dynamic surfaces
and general interface problems. Its status in cg has been somewhat subdued by a
reputation of the method as being slow, impractical for cg usage, and cumbersome
to implement. �is thesis shows several examples where lsm is used in computer
graphics instead of the traditional triangle mesh. �is includes rendering, pde’s on
surfaces, texturing, and more. �e impact of this work, and others like it, is a positive
change in attitude regarding implicit surfaces and lsm in computer graphics. �e
e�ect is noticeable in the last years’ increasing interest in the level-set method.

1.6 dissertation overview

�e thesis can be divided into several parts. �e �rst three chapters are introductory
but also de�ne the notation used throughout the text. �e intended reader is not

7
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acquainted with di�erential geometry, surfaces or lsm. Knowledgeable readers can
safely skip these chapters.

Chapter 2 introduces some of the concepts needed when discussing surfaces and
geometry from a mathematical point of view.

Chapter 3 presents the two main geometry representations used in this thesis: implicit
and explicit geometry.

Chapter 4 continues to describe the theory of level-set methods as a special branch of
implicit geometry.

A�er this, the focus of the text changes towards computer science and hardware related
issues. Readers curious of the di�erent types of data structures presented in the thesis
should be interested in the following chapter.

Chapter 5 describes implementation speci�c issues for lsm and tries to summarize
how to arrive at the di�erent sparse data structures described in papers [41, 61].

�en, the next two chapters report preliminary results in the area of distance computa-
tions and parameterization. �e reader is encouraged, but not obliged, to �rst read the
corresponding included article.

Chapter 6 extends some of the ideas explored in article [64]. In particular, a method
for computing geodesic distance in 3d is presented.

Chapter 7 is a continuation of the ideas from paper [16]. �e chapter presents an
alternative, faster, way of computing the parameterization.

Finally, an appendix contains the articles included in the dissertation.

8



i
i

“thesis” — 2009/10/20 — 21:08 — page 9 — #25 i
i

i
i

i
i

CHA P T E R 2

SU R FAC E S AND MAN I F O L D S

o
(a) (b) (c)

Figure 2.1: A curve, a surface and a volume.

Above, three di�erent types of geometry are shown. To the le� is a curve, in the
middle is a surface, and to the right a volume is shown. �is thesis shows how

the level-set method can represent and manipulate these and other kinds of geometry
in a versatile and e�cient manner. But before we start looking into how to do this, we
need to specify what exactly do we mean by geometry? What properties are important,
and how is the subject formalized? �is introductory chapter is dedicated to answering
some of these questions and prepare the reader for the upcoming discussions.

2.1 introduction

To begin with let us distinguish between geometric shape and connectivity. Shape
is a property that describes the appearance of an object or more formally how the
object is curved (or not curved). Connectivity on the other hand concerns the way an
object is put together. Already in the 18:th century Leonhard Euler realized that there
are problems that deal not with the distance between objects but rely solely on their
connectivity. �e famous “Seven bridges of Königsberg” problem asks if it’s possible
to walk the city of Königsberg and cross each of its seven bridges once and only once.
Euler separated the riddle into two disjoint problem classes: 1) the exact positions of
the bridges, and 2) how the bridges connect the mainland with the islands. He then
realized that the solution to the original question is only depending on the second
class, that is the connectivity.
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�e riddle would today be categorized as an example from the �eld of topology
and Euler’s particular way of solving it would use graph theory. Topology is a vast
mathematical discipline that deals with connectivity of space on both large and small
scales. Sometimes this is referred to as the �ne and global structure of space. A
thorough introduction to topology is beyond the scope of this thesis, we merely present
important terms and concepts on a need to know basis.
Geometric shape falls in the category of di�erential calculus, or more generally

di�erential geometrywhich is generalized to curved spaces. In this chapter we introduce
some of the basic usage for curves, surfaces and volumes. �e derivative is a key concept,
and will be used to describe the shape and smoothness of an object. Di�erential
geometry and topology are closely related and sometimes di�cult to tell apart. For
that reason we will try to use the simpler and more descriptive words geometric shape
and connectivity where appropriate.

2.2 topology

A curve is a one dimensional geometric object in two dimensions or more. In Figure
2.1(a) the closed plane curve is actually the lowercase letter ’o’ in the typeface Helvetica
Neue Ultralight. An important categorization from topology states that this ’o’-curve is
equal to a ’0’-curve (the number zero). It is in fact equal to any closed non-intersecting
curve in the sense that they all separate the plane into an inside and an outside. �is
we realize intuitively, and it is formally stated in the Jordan curve separation theorem[3]:
any simple closed curve separates space into exactly three regions: an inside (which
is �nite if the curve is bounded), an outside, and the curve itself. �ese letter curves
share the same connectivity and are homeomorphic. �e letter ’Q’ however is not equal,
since it has a tail. In the same reasoning the surface in Figure 2.1(b) is equal to a �at
plane and the cube in (c) equal to a sphere.
A surface is an example of two dimensional geometry. Normally, a surface is

thought of as living in a three dimensional space. �is is most natural for us as it
resembles “reality” as we perceive it. �is is also called an extrinsic view point, since
the geometry is “observed” in a higher dimension. Consider instead an ant living on
the surface of Figure 2.1(b). �e ant has (supposedly) no idea of the third dimension –
it thinks it lives in a two dimensional world. �e ant has what is called the intrinsic
view. Both viewpoints have bene�ts and drawbacks.
If a surface is closed it encloses a volume, like the volume in Figure 2.1(c) is bounded

by its six faces.

2.2.1 Categorizing topology

Since we will be working with dynamic geometry we also need to address what happens
when pieces of geometry merge as shown in Figure 2.2, or conversely break apart. �e

10
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surfaces and manifolds

Figure 2.2: A single object breaking up into two disjoint ones.

Euler-Poincaré characteristic χ is an invariant used to describe the connectivity of an
object irrespective of how it is deformed (homeomorphically).

χ = V − E + F (2.1)

HereV is the number of vertices, E is the number of edges and F is the number of faces.
To determine the characteristic of a general object it is o�en most straightforward
to �nd a polygonization of the object and then apply the above formula. Otherwise
the Gauss-Bonnet theorem [24] connects the geometric shape of a two-dimensional
manifold with its topology. �is is done by coupling the curvature of the surface to the
Euler-Poincaré characteristic through the following integral over the manifold

∫
M
Kg dA = 2πχ. (2.2)

Here, Kg is the Gaussian curvature as explained in 2.4.2. To exemplify, Equation (2.2)
�nds the Euler-Poincaré characteristic of a sphere to be 2, since the sphere has constant
Gaussian curvature Kg = 1/r2. �is is the same as the characteristic for an ellipse, a
box, or any homeomorphic closed surface.
Another invariant is the genus of an object, which translates to the number of

“handles”, or more formally how many closed curves can be cut through the object
without disconnecting any parts. It is related to the Euler characteristic by the following
equation

χ = 2 − 2g − b, (2.3)

where b is the number of boundary components and g is the genus. �e sphere (and
any closed non-intersecting surface) consequently has genus zero. �is agrees with
having no handles.

2.3 manifolds

We have so far described geometry in terms of graphical concepts. To formalize the
subject we introduce a fundamental term frommathematical topology – themanifold –
which is used to characterize space. A somewhat loose de�nition says that:

11
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Amanifold M is a mathematical space that is locally homeomorphic to Euclidean
space.

�is means that the two constructs are topologically equivalent in the sense that in a
small neighborhood the manifold resembles Euclidean (�at) space. A manifold can be
thought of as a curved version of conventional space. �at is the line generalizes to a
curve and the plane to a (curved) surface. �e dimensionality of the manifold is equal
to the corresponding Euclidean space; a line or curve is a one dimensional manifold, a
plane or surface is two dimensional, and so forth.
A familiar example of a two dimensional manifold is the sphere, which is a curved

closed surface in 3d. Locally a neighborhood of the sphere can be mapped to a plane,
as is done in an atlas of the world. On a global scale, on the other hand, the sphere and
plane are not topologically equivalent.

2.3.1 Classi�cation

An important consequence of the de�nition is that a manifold cannot contain holes,
it must be “watertight”, apart from at a boundary. A manifold can neither contain
“junctions”. Both these concepts are illustrated in Figure 2.3. Any closednon intersecting
curve (a) is a one dimensional manifold since it resembles a straight line locally. �e
homeomorphism can be generically veri�edwith the aid of a su�ciently small n-sphere.
From the de�nition above we know that the manifold must resemble Euclidean space
locally. We formalize this criteria by considering the neighborhood N of any point in
the manifold and require this to resemble an open Euclidean n-sphere,

N n = {x ∈ Rn ∣ ∑ x2i < 1}. (2.4)

For a one-dimensional manifold this simply means local likeness to a line. We can use
a su�ciently small circle for the check; it must be possible to place the circle anywhere
over the curve with exactly two intersections.

�e boundary, or edge, of an n-dimensional manifold is an (n − 1)-dimensional
manifold, we denote it with ∂M. �erefore the boundary must be homeomorphic to
a “half ” n-sphere, or Equation (2.4) with the additional constraint: x1 ≥ 0. �us an
open curve is a one dimensional manifold with a boundary (b). Using the circle test
we now also require a strict single intersection at the boundary. Counter example to
the 1d manifolds is (d) – the closed zero-set of the cone function. At the origin it is
impossible to place even an in�nitesimal circle without more than two intersections.

�e torus, or donut, (c) is a two dimensional manifold because at any place a disk
placed on the surface crosses no edge. Similar to previous reasoningmakes the level-set
(iso-value = 0.1) of the clipped cone function in (e) a two dimensional manifold with a
border; a disk crosses no edge except at the boundary where it crosses exactly one edge
(two intersections). A 2d counter example is the ball-plane compound in (f) where a
disk can be placed such that the edge is intersected only once.
A manifold can furthermore be categorized as being bounded meaning that it has

�nite size, or unbounded. �e circle is an example of a closed bounded geometry

12
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: Manifold examples and counter examples. (a) 1d manifold (b) 1d manifold with
boundary. (c) a 2d manifold. (d) a 1d non-manifold. (e) a 2d manifold with boundary.
(f) a 2d non-manifold.

whereas a plane is unbounded. A manifold that is closed and bounded is said to be
compact.

2.3.2 Manifolds and atlases

Following the analogy of an atlas of the earth we introduce the terms charts and atlases
as used inmathematics. Let themanifoldM be de�ned by a set of open subsetsU i ⊂ Rn .
For each of the subsets an invertible map called a chart exists. We denote the chart
with Φ and require it to be a homeomorphism onto an open subset of Euclidean space

Φ i ∶ U i Ð→ Rn . (2.5)

�is is illustrated in Figure 2.4. From the de�nition we know that the manifold is
encompassed by the subsets and hence we also require the charts to cover themanifold1.
Such a collection of charts is called an atlas. �e charts may overlap. Using the atlas
which holds the connectivity of the charts it is possible to transition from chart to
chart and thus “navigate” around the manifold.
An atlas can be charged with additional structure such as di�erentiability which

we will address in section 2.4.

1. Normally this calls for more than one chart, but not necessarily.

13



i
i

“thesis” — 2009/10/20 — 21:08 — page 14 — #30 i
i

i
i

i
i

R3

R2

Φ2

U2

R2

Φ1

U1

Figure 2.4: Two charts from an atlas of a manifold overlap and allow us to transition
between subsets.

(a) (b)

Figure 2.5: �e Möbius strip (a) is an non orientable surface whereas the torus (b) is
orientable or two sided.

2.3.3 Oriented surfaces

�e special case of two dimensional manifolds can, in addition, be classi�ed as ori-
entable. �is means that they are two sided, in contrast to non-orientable (one sided)
surfaces. Typical examples of non-orientable surfaces are theMöbius strip (see Figure
2.5) and the Klein bottle. A surface is non-orientable if it is possible to trace an arbitrary
curve from a point p along the surface and back in such a way that the surface normal
changes direction. All other surfaces are orientable. From this we can directly deduce
that all closed non-intersecting surfaces are orientable.
Non-orientable surfaces are important in topology and theoretical geometry. In

this work we focus mainly on geometry that is orientable, which also means that it is
physically realizable, such as the torus (Figure 2.5).
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oTpM
p

n

(a)

TpM
p

n

(b)

Figure 2.6: �e normal vector n⃗ at point p is perpendicular to the tangent space TpM.
�is is illustrated for curves (a) and surfaces (b).

2.4 differentiable manifolds

A di�erentiablemanifold is amanifold forwhich the atlas is chargedwith a di�erentiable
structure. �is means that the local neighborhoods are compatible enough to do
calculus and, for example, �nd derivatives in the manifold. Derivatives can then be
used to classify the shape of a manifold, and consequently its smoothness.
A di�erentiable manifold also guarantees the existence of tangent spaces for all

points p, denoted by TpM. �e tangent space at p is spanned by the directional
derivatives along all curves passing through the point, ∂/∂x i . Some tangent spaces are
shown in Figure 2.6.

2.4.1 �e normal vector

For two- and three-dimensional manifolds the existence of the tangent space can be
used to de�ne the tangent and normal vectors, as shown in Figure 2.6. �e tangent
space for a curve is one-dimensional and de�nes the direction of the tangent and
normal vector uniquely (a). For a surface the tangent space is a plane TpM which
uniquely de�nes the normal vector. �e tangent vectors are any two arbitrary unit
vectors that span TpM (b).
Since the tangent space is spanned by the �rst order derivatives the normal and

tangent vectors de�ne the local shape of an object at each point. As a whole this gives
a linear approximation of the objects shape. In order to get more information, we need
to evaluate higher order derivatives.
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c

p1

p2

r1

r2

Figure 2.7: A planar curve c with points p1 and p2 and their respective osculating circles.
�e curvature at p i is the reciprocal of the radius of the osculating circle, κ = 1/r.

2.4.2 Curvature

�e degree to which something is curved is called curvature. It is straightforward to
de�ne for a curve in the plane. It can be interpreted as any of the following equal
concepts:

inverse of degree of �atness, reciprocal of the radius of the osculating circle, or
rate of change of the tangent direction.

In Figure 2.7 the notion of the osculating circle is depicted. It is the largest possible
touching circle with equal tangent vector at the point of contact.
Curvature is furthermore a second order e�ect, so we must assume the curve to be

twice di�erentiable.

Curvature for surfaces

For surfaces – and in higher dimensions – it gets more complicated. Measuring the
degree of �atness or deviation from the tangent plane can be done in several ways.
When extending the curvature de�nition for planar curves into 3d it is evident that
the curvature at a point no longer is unique. For any surface point there exists many
planar curves all with potentially di�erent curvatures. Without loss of generality we let
each of these curves be con�ned to a plane containing the surface normal at the point.
�ese planar subsets are called normal planes, and the curves are the corresponding
plane curves. Some sample planar curves for a “monkey saddle” surface are shown
in Figure 2.8. Now each of these curves, c i , has a corresponding curvature, κ i , as
previously de�ned. From all these curvatures two κ i can be used to characterize a
surface in an e�cient way and play an important role in many geometry applications.
Let the principal curvatures be the maximum and minimum curvatures of the plane
curves at p and call them κ1 and κ2. �en, the Gaussian curvature is the product of the
principal curvatures

KG = κ1κ2 . (2.6)
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p

Figure 2.8: A parametric surface, z = x3 − 3xy2 , with a selection of curves going through
point (0, 0, 0). Each curve is con�ned to a normal plane and thus has an associated
curvature as de�ned for the two dimensional case.

Gaussian curvature is an intrinsic measure in that it only depends on how distances
are measured on the surface, not on how the surface is embedded. Gaussian curvature
indicates whether a surface is developable or not. Developable surfaces are �at in one
or more directions, i.e. one or both of κ1 or κ2 are zero. �ese kinds of surfaces are
important inmany applications because they can be parameterizedwith zero distortion.
Developable surfaces include the plane, the cone and the tube.

Mean curvature on the other hand is an extrinsic measure and de�ned as the
average of the principal curvatures

KM = κ1 + κ2
2

. (2.7)

It can also be interpreted as the rate of change of surface area under small deformations
in the normal direction. Mean curvature has certain properties that make it interesting
in geometric modeling. A minimal surface is a surface which has mean curvature
equal to zero everywhere. As a result minimizing mean curvature is equivalent to
minimizing surface area and can be used as a smoothing operation.
Now, knowing formulas for computing mean and Gaussian curvature from princi-

pal curvatures might be enlightening, but from a practical viewpoint it is o�en di�cult
to �nd κ1 and κ2 for surfaces that have no inherent parameterization. However, if a
parameterization is known the principle curvatures – and more – can be found using
the fundamental forms of di�erential geometry. �is will be discussed in Chapters 3
and 7.
We will also come back to non parameterized curves and surfaces in the next

chapter (3) and derive curvature expressions for both implicit and explicit settings.

2.5 riemannian manifolds

A Riemannian manifold is a di�erentiable manifold that has the additional structure of
ametric tensor2, or an inner product, de�ned for all tangent spaces. �e metric tensor

2. Sometimes referred to as only metric.
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a

b

(a)

a b

(b)

Figure 2.9: Geodesic distance in a manifold is the minimum of the length of all curves
connecting the two points of interest. (a) Some of the curves connecting two points on a
surface. Geodesic distance is not necessarily unique, in (b) there are two shortest paths.

g is smoothly varying function on the form ⟨⋅, ⋅⟩ ∶ TpM × TpM Ð→ R that generalizes
the scalar product in Euclidean space to manifolds.

⟨u, v⟩ = uT g i j v (2.8)

�e metric tensor is a positive de�nite quadratic form and in this text we let the
coe�cients of g i j be represented by the matrix G,

G =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

g11 g12 . . . g1d
g21 g22⋮ ⋱
gd1 gdd

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.9)

giving ⟨u, v⟩ = uTG v . (2.10)

Above, the position dependence of the metric tensor, G = G(x), is implicit but should
not be forgotten. Any space with an inner product has a naturally de�ned norm on
the form ∥x∥ = √⟨x , x⟩. (2.11)

In fact Euclidean space does have a metric which is the identity matrix. �is is
most o�en ignored since uT I v = uTv.
Having an inner product and a norm de�ned on the tangent space of the manifold

in a smoothly varying manner makes it possible to measure distances, angles, area,
and more in the manifold.
Again foregoing matters slightly, we note that if a parameterization f is known,

the Jacobian of the mapping (J f ) de�nes the metric of this parameterization domain.

J f = ⟨∇ f ,∇ f ⟩ . (2.12)

JTf J f = G (2.13)
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�emetric is sometimes also called the �rst fundamental form. We can also write it
directly, in terms of the partial derivatives of the mapping:

G =
⎡⎢⎢⎢⎢⎢⎣
g11 g12 . . .
g21 ⋱⋮

⎤⎥⎥⎥⎥⎥⎦
, g i j = ∂ f

∂x i
⋅ ∂ f
∂x j
. (2.14)

In this thesis we discuss geodesic distance in manifolds with applications in pa-
rameterization, interpolation, and path �nding.

2.5.1 Geodesic distance

Distance is an important property of geometry. Knowing the pairwise distances be-
tween all points in manifold makes it possible to deduce much of its shape. Let us
�rst study the length of an arbitrary parameterized curve connecting two points in
a manifold, see Figure 2.9(a). �e length l of a curve c ∶ [a, b] Ð→ M with c(a) = a,
and c(b) = b is

lc = ∫
c
ds = ∫ b

a
∥ċ (t)∥ dt = ∫ b

a

√
ċ (t)T G(c(t)) ċ (t) dt. (2.15)

for any C1 path in the manifold going from a to b, independent of parameterization.
Geodesic, or shortest, distance is then de�ned as the minimum length over all these
curves

d(a, b) = min lc . (2.16)

�e geodesic distance measure is not necessarily unique, in Figure 2.9(b) we illustrate
this with antipodal points on a circle. �e set of points B for which there are more than
one equal shortest path in d(x , S) de�ne the cut locus ormedial axis of S. It is worth
noting that the distance function of S, d(x , S), is smooth except on the cut locus, see
Figure 2.10.
Wewill come back to some of the properties of the Riemannianmanifold in Chapter

6, for now we conclude that almost all of the geometry in this thesis is modeled as
being di�erentiable, and sometimes also Riemannian.

2.6 summary

In this chapter we have formalized the concept of surfaces (and n-dimensional geome-
try) into manifolds, and also discussed topological issues and orientability. General
criteria for when geometry can be classi�ed as a manifold were found and several
examples inspected. �e introduction of manifolds and di�erential geometry was
rather brief, for a complete reference to manifolds, and the di�erential aspects thereof,
we refer the reader to [24, 42].
Some geometric properties of interest were derived for two- and three dimensional

geometry. More speci�cally, we looked into the notion of curvature for higher dimen-

19



i
i

“thesis” — 2009/10/20 — 21:08 — page 20 — #36 i
i

i
i

i
i

(a) (b) (c)

Figure 2.10: (a) �e letter ‘L’ from the typeface Minion Pro. �e curve de�nes the point
set S for which d(x , S) = 0. (b) �e distance function, d(x , S), visualized with black to
white. (c) Discontinuities in d are located at the object outline, but also at its medial axis.
�is is indicated here through the norm of the gradient of the distance function, i.e. black
regions have vanishing gradient.

sions than two and found measures useful for both parameterization and geometric
smoothing.
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CHA P T E R 3

I M P L I C I T AND E X P L I C I T G EOME T RY

In this chapter we give a brief introduction to implicit and explicit geometry. Our
main focus is surfaces – that is two dimensional geometry in a three dimensional

space. �e concept, nevertheless, generalizes to any dimension and curves and volumes
are also mentioned. More emphasis is placed on the implicit representation as it
pertains to the majority of thesis.
In order to help the reader main ideas are exempli�ed and illustrated throughout

the text. We also rely on some of the necessary mathematical concepts that were
introduced in the previous chapter. In particular we model geometry asmanifolds – a
generalization of normal space to a “curved” counterpart.

3.1 introduction

Implicit geometry is, as the name suggests, an indirect speci�cation. With an explicit
representation a relationship between the spatial variables is established. A canonical
explicit example is the equation for a line

y (x) = kx +m,

where the pair x , y (x) generates points on the line. Given a general smooth function
y (x) it is obvious that the connectivity of the line is completely governed by the
independent variable x.
For implicit geometry, on the other hand, both the location of the surface and its

connectivity are de�ned by points in space that satisfy some requirement. �is is o�en
speci�ed as a mathematical function f (x). �e geometry is then de�ned as the points
for which the function evaluates to zero. In this manner the function f through the
equation

f (x) = 0 (3.1)

implies the existence of the geometry rather than explicitly point out its location. We
now examine explicit geometry and see how it is inherently parameterized before we
move on to the de�nition of implicit geometry.
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Γ

Ω+

Ω−

(a) (b)

Figure 3.1: (a) �e unit circle, f (x , y) = x2 + y2 − 1 = 0, partitions the plane into an inside,
Ω−, and an outside, Ω+. �e separating layer (Γ) is the level-curve for f (x , y) = 0. (b)
Some of the level-curves for f (x , y) = c.

3.2 parametric geometry

Let us start by looking at a typical example, the equation for the unit circle, see Figure
3.1(a):

x2 + y2 = 1. (3.2)

An explicit version of the equation couples x and y(x) like so
y (x) = ±√1 − x2 , x ∈ [−1, 1], (3.3)

and thus maps two values for each valid x onto y. �is gives a collection of x and y
for which the pair is always a position on the circle, and as such the equation is explicit.
However, having two y-values for each x is not optimal from a mathematical point
of view. Better yet is to use trigonometric functions to de�ne the circle. �is gives a
one-to-one (injective) mapping:

f (t) = {x (t), y (t)} = {cos (t), sin (t)}, t ∈ [0, 2π). (3.4)

�is expression introduces the independent variable t, a parameter, which made it
possible to decouple the spatial variables x , y from each other. We can see this as a
one-dimensional vector-valued parametrization on the form

f ∶ Ω ⊂ RÐ→ R2 , (3.5)

with the requirement that f = ( f1 , f2) is continuous and injective. Explicit geometry
is o�en called parametric due to its inherent parametrization. In mathematical jargon
we say that Equation (3.4) de�nes a parametric curve C as the image of Ω under the
parametrization:

C = f (Ω) = { f (t) ∣ t ∈ Ω}. (3.6)

22



i
i

“thesis” — 2009/10/20 — 21:08 — page 23 — #39 i
i

i
i

i
i
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Figure 3.2: (a) �e function f (x , y) = x2 + y2 − 1 color coded, with iso-contours overlayed.
�e graph of the same function f (x , y) = z.

We note that the curve C is completely characterized by the parameterization function
f . Consider, for example, the parameterization in Equation (3.4) de�ning the circle. It
is an analytic function and it follows that changing the variable t smoothly over the
parameter domain Ω automatically gives a smooth curve in R2 as well. �is powerful
and important feature extends to all dimensions.
It is clear that a parameterization is not necessarily unique. Both Equation (3.3)

and (3.4) give positions on the unit circle but only Equation (3.4) has a de�ned inverse
f −1. Its parameterization is bijective.

3.3 implicit geometry

We just showed how explicit geometry is generated as pairs or tuples from a vector-
valued function describing coordinates in space. �e tuples always lie on the geometry.
Consider, on the other hand, the implicit equation for the unit circle

f (x , y) = x2 + y2 − 1. (3.7)

�is form, except for being real valued, is without restrictions on any of the variables,(x , y) ∈ Ω ⊆ R2. �e function may be evaluated wherever in the plane, assigning a
scalar to each query point. �e values of these scalars encode the circle by giving points
outside a positive sign, and inversely points inside a negative sign. �ese partitions are
referred to as Ω+, and Ω−, as seen in Figure 3.1. Furthermore, by choosing the points
where f (x , y) = 0, a subset of the plane is selected which is equivalent to the circle.
Such a subset is called a level-curve, or more generally level-set, of the implicit function.
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Alternate names are iso-surface1, level-surface, locus of zeros, and the dimensionless
interface. We denote the level-set with Γ.

�e level-set is an object of co-dimension one, meaning that it has the same di-
mensionality as the scalar function minus one. �us, in the case of the circle above,
the geometry is a one-dimensional curve and the scalar function is evaluated in the
plane. Subsequently a surface can be de�ned by a three-dimensional scalar function, a
volume by a four-dimensional scalar function, and so forth. �e function space is also
referred to as the embedding — the circle is embedded in the plane.
If an n-dimensional level-set is closed and bounded, the inside is an (n + 1)-

dimensional “�at” geometry. �at is, the inside of a closed curve in the plane de�nes a
�at surface bounded by the curve. For surfaces this is particularly convenient since
volumes can be represented by closed surfaces embedded in R3, instead of as volumes
embedded in (costly) R4.

De�nition

Let x denote positions in an n dimensional space, which for most of this thesis will be
2d or 3d, but for the sake of generality we de�ne a general scalar function to be

f ∶ Ω ⊂ Rn Ð→ R. (3.8)

Now the implicit geometry Γ can be formally de�ned as the preimage (inverse image)
of the iso-value under f

Γ ≡ f −1 (c) = {x ∈ Ω ∣ f (x) = c} , (3.9)

which is the set of points x for which f (x) evaluates to c. Changing the constant c,
called the iso-value, allows for the selection of di�erent level-sets, see Figure 3.1 for a
2d example. Most o�en the iso-value is set to zero, which is convenient since the sign
of f then can be used for inside/outside queries. In this thesis, if not stated otherwise,
we will assume that the scalar function is transformed such that the iso-value becomes
zero.
A closed implicit manifold is a co-dimension one object that separates the embed-

ding into an inside and outside region and hence the name interface. �e de�nition
of whether f < 0 should denote inside or outside is, of course, optional. We choose
f < 0 ≡ inside because then the gradient will point in the same direction as the surface
normal.
Storing geometry using a higher dimension than necessary can seem wasteful at

�rst. But, using the scalar function, we can categorize the full domain Ω because the
interface is embedded in a higher dimensional space. �is gives the opportunity to
query points that are not on the interface, which is not possible without considerable
e�ort, using explicit representations.

1. �e pre�x iso is a Greek word meaning equal.
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(a) (b)

Figure 3.3: (a) Two cones plotted as the zero level-set of f (x , y, z) = −x2 + y2 + z2. �e
apex of the cones is a singular point since ∇ f = ∅. (b) Some level curves of f (x , y, 0).
�e curves reveal that f is smooth and continuous for iso-values other than 0.

3.3.1 �e implicit function theorem and smoothness

So far no restrictions have been placed on the implicit function. We have seen though,
that some implicit functions can generate non-manifolds, e.g. the zero-set of the cone
function. Much of the di�erential geometry toolbox developed in the last chapter
applies only to manifolds. �erefore, we want a way of determine whether an implicit
function generates manifolds or not.

�e classi�cation can be done by examining the smoothness of f , and in this
section we will see that it is required to be continuous and di�erentiable to produce
manifolds.

�e surface gradient is only de�ned for points for which the partial derivatives
∂ f /∂x i are continuous and not all zero. We let the existence of the gradient embody
our requirements. �is is then used to classify points as regular (existing gradient) or
singular (vanishing gradient). If an iso-value exclusively generates regular points it is
said to be a regular value, that is

c is a regular value if ∇ f (x) ≠ ∅, ∀x ∈ f −1 (c) . (3.10)

�e implicit function theorem[14] states that if c is a regular value of f , then f −1 (c) is
a manifold. More speci�cally, the theorem says that each regular point de�nes a local
manifold geometry [6]:

Given an implicit function, f ∶ Rn Ð→ R, there exists a local neighborhood N of
p ∈ Rn such that f −1 (c) ∩ N is a parameterized (n − 1)-manifold if p ∈ f −1 (c)
is a regular point.

For surfaces this asserts that any two-dimensional geometry described by an implicit
function in R3 is a two-dimensional2 manifold for regular iso-values. In the same

2. 3 − 1
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fashion manifold curves and volumes (in their respective embeddings) are guaranteed
by regular iso-values.
We now use the classi�cation to investigate some of the earlier examples. �e

cones in Figure 3.3 and 2.3(d), for example, have a vanishing gradient and are therefore
not regular. �us the geometry is not a manifold. At other iso-values the gradient is
continuous and the geometry is therefore a manifold. �is agrees with the Euclidean
space homeomorphy conditions that we reviewed in the previous chapter.
We conclude by re-stating the most important fact of this section. If the gradient of

the implicit function is continuous (and not zero) over the level-set we are interested
in, then the implicit theorem guarantees that this level-set is a manifold.

3.4 differential properties

�e true strength of the implicit representation comes into light when one tries to
derive di�erential quantities for a manifold. Depending on the order of the di�erential
of interest, the requirements on continuity (the partial derivatives) vary. From the
de�nition of a di�erentiable manifold we know that our surfaces are at least C1. �is
was also con�rmed for implicit geometry through the implicit function theorem.

�e �rst (and sometimes forgotten) di�erential quantity is the zeroth partial deriva-
tive, which for implicit geometry is the scalar function itself. In this case the zeroth
di�erential o�en describes proximity to the surface. �is distance measure is seldom
Euclidean though. Equation (3.7), for example, measures the squared distance to the
closest point on the circle. For explicit geometry it is not meaningful to talk about
distance since the parameterization only samples the surface, not the embedding.

3.4.1 Normal and tangent vectors

�e foremost di�erential quantity in computer graphics is surely the surface normal, n⃗ .
It was introduced using the existence of tangent spaces in the last chapter, see Figure
2.6. For a parametric surface that is di�erentiable, the partial derivatives,

f u = ∂ f
∂u

and f v = ∂ f
∂v

are tangential to the surface by construction. Assuming a regular parametrization, that
is f u × f v ≠ 0 the vectors span the local tangent plane TpM. �erefore we �nd the
surface normal vector as

n⃗ = f u × f v∥ f u × f v∥ . (3.11)

�e surface normal for an implicit surface can be derived using the gradient (∇), an
operator that gives the direction and magnitude of the steepest ascent of the function
operated on. Because it is orthogonal to the level-sets of any function by construction
it de�nes the surface normal:

n⃗ = ∇ f∥∇ f ∥ . (3.12)
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implicit and explicit geometry

In this work we chose the scalar function such that the inside of our implicit geometry
has negative sign. �en the normal and the gradient point in the same direction
(outwards). Otherwise the direction of the normal as computed above in Equation
(3.12) should be reversed.

3.4.2 Curvature

Mathematically, curvature κ is de�ned as the norm of the second order derivative for
a curve with respect to its arc-length, or natural, parametrization

κ (s) = ∥c̈ (s) ∥. (3.13)

�e natural parametrization can be di�cult to �nd though. �en the following formula

κ (t) = ∣ẋ (t) ÿ (t) − ẏ (t) ẍ (t) ∣
(ẋ (t)2 + ẏ (t)2 )3/2 (3.14)

provides a way of computing the curvature from an arbitrarily parameterized curve
c (t) = {x (t) , y (t)}.
Implicit curvature formulas

For implicit geometry there is no inherent parametrization and the above formulas
are not applicable. O�en in the literature, curvature for implicit geometry is de�ned as
the divergence of the normal [24, 54]

f ∶ R2 Ð→ R

κ = ∇ ⋅ ( ∇ f∥∇ f ∥) . (3.15)

Due to the exhaustive expansion of this expression alternate formulas are sometimes
more practical [34].

Curvature in higher dimensions

For a parametric surface the �rst fundamental form I f of the parametrization f is

I f = ⎛⎝ f u ⋅ f u f u ⋅ f v
f v ⋅ f u f v ⋅ f v

⎞⎠ = ⎛⎝ E F
F G

⎞⎠ . (3.16)

It is, like the metric, a positive de�nite quadratic form that de�nes an inner product
on TpM. We have already explained that curvature is a second order e�ect and the
existence of second order derivatives is therefore assumed. �e second fundamental
form is

II f = ⎛⎝ f uu ⋅ n⃗ f uv ⋅ n⃗
f vu ⋅ n⃗ f vv ⋅ n⃗

⎞⎠ = ⎛⎝ L M
M N

⎞⎠ . (3.17)
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�e product I −1f II f de�nes the shape operator[24], also called the Weingarten map or
second fundamental tensor

S = I −1f II f = 1(EG − F2) ⎛⎝ FM −GL FN −GM
FL − EM FM − EN

⎞⎠ . (3.18)

�e shape operator is a measure of the directional derivative of the normal such that
S t⃗ = ∂n⃗

∂ t⃗ . �e shape operator can also be de�ned in terms of its eigenvalues (the
principal curvatures) and eigenvectors (the principal directions) as

S = ( t⃗1 t⃗2 )⎛⎝ κ1 0
0 κ2

⎞⎠( t⃗1 t⃗2 )−1 . (3.19)

Due to the invariance of the determinant and trace operator under similarity trans-
forms3 we can measure Gaussian and mean curvature directly as

KG = det(S) = det(I −1f II f ) = det(II f )det(I f ) = LN −M2

EG − F2
, (3.20)

and
KM = 1

2
trace (S) = 1

2
trace (I −1f II f ) = LG − 2MF + NE

2(EG − F2) . (3.21)

�e relationship between these curvature formulas and the principal curvatures
(Equations (2.6 and 2.7)) also give the opportunity to �nd κ1 and κ2 without computing
eigenvalues.

Implicit surfaces

For implicit surfaces we must �nd formulas that do not rely on a parameterization.
Resorting to [24, 34, 54] we calculate Gaussian and mean curvature directly in an
implicit setting. �e divergence formula in Equation (3.15) is immediately applicable
for surfaces, except for a dimension coe�cient of 1/2, and here it measures mean
curvature.

f ∶ R3 Ð→ R

KM = 1
2
∇ ⋅ ( ∇ f∥∇ f ∥) . (3.22)

See [34] for more formulas, including methods to compute the Gaussian curvature.
It turns out that the shape operator in has a parameterization independent analogy,

the shape tensor T . It is de�ned as the three by three matrix

T = ( t⃗1 t⃗2 n⃗ )⎛⎜⎜⎝
κ1 0 0
0 κ2 0
0 0 0

⎞⎟⎟⎠( t⃗1 t⃗2 n⃗ )−1 . (3.23)

3. Both the determinant and trace operator obeys op(A) = op(BAB−1).
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�e eigenvalues and eigenvectors of T give, like for the shape operator, the principal
curvatures and directions. From the de�nition in Equation (3.23) we learn that in
addition T has the third eigenvalue 0 and the third eigenvector n⃗ . In [54] a method
to �nd the shape tensor for an implicit surface was described. �e procedure �rst
computes the directional derivative of the normal in the embedding space and then
projects the result down on the tangent plane TpM.

3.5 summary and further reading

In this chapter we introduced the implicit and explicit geometry representations and
pointed out some of their bene�ts and drawbacks. A speci�c case using the implicit
function theorem was also given that simpli�es classi�cation based on the existence of
the gradient.
Di�erential aspects such as gradients, normals, and curvature were derived for

two- and three dimensional implicit and parametric geometry.
For the interested reader, a good introduction to implicit surfaces is given in [6].

Most general text books on computer graphics contain sections on implicit geometry,
e.g. [30], which also has plenty of information on explicit geometry. Some of the
di�erential equations are taken from [34], which is an exhaustive source of curvature
formulas for implicit geometry.
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CHA P T E R 4

L EV E L - S E T M E THOD S

This chapter introduces one of the core concepts of this thesis — the use of a grid
based dynamic implicit geometry. We begin by giving some background and

motivation. �en, we dive straight into the theory and show how to “drive” these
dynamic surfaces. �e level-set method is a numerical method; this has many practical
implications. We discuss some of the more important ones in this chapter and show
how they relate to the implicit setting. �e chapter is �nally concluded with a hands-on
example.

4.1 introduction

�e level-set method, or lsm for short, is a grid based version of implicit geometry
equipped with an associated toolbox of dynamic operations. lsm was introduced in
1988 by Osher and Sethian [66] as a tool for the tracking of propagating interfaces in
time dependent physics problems. Since then, the level-set method has been applied
to an abundance of problems in physics, chemistry, �uid mechanics, image processing,
computer vision, computer graphics, and more.
As the method has developed, the toolbox has been re�ned and extended. Much

of the e�ort has been devoted to creating numerical methods that are accurate and
robust. Some of the relevant research will be reviewed in this chapter.
Because lsm uses an implicit representation the geometry is embedded in a higher

dimensional space. For detailed geometry this can be a serious impediment when
using lsm on a computer with limited resources. �is has put a strong focus on
the computer science aspects of lsm, such as algorithm and implementation details.
Several approaches have been proposed to deal with e�ciency issues, including work
that forms part of this thesis. �is chapter introduces some of the theoretical aspects,
such as discretizations in time and space. In the following chapter (5) we will focus on
the practical issues of lsm.

4.1.1 Motivation

�e level-set method simpli�es topology issues gracefully due to its implicit representa-
tion as discussed in the previous chapter. Topological ambiguities and self-intersections
are impossible, a point in space can only be inside or outside, as it is completely classi-
�ed by the single value of a scalar function. �is, and other bene�ts, have made lsm
the preferred alternative for the tracking of free surfaces in �uid simulations. Figure 4.1
illustrates the di�culties that can arise when two stylized waves collide in an explicit
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(a)

(b)

Ω+

Ω-

(c)

Figure 4.1: (a) An illustration of topology issues for “colliding” water. (b) With an explicit
representation it can be di�cult to determine topology due to self intersections. (c) An
implicit representation resolves this automatically – there is only one interpretation of
inside/outside and hence no self intersections.

and implicit setting. �e extreme behaviour, from a topological point of view, makes
explicit geometry an unattractive alternative. Furthermore an explicit, or Lagrangian,
sampling is susceptible to aliasing artifacts and instabilities due to distortion already at
“well behaved” deformations of the interface. Proposed solutions to both aliasing and
topological problems in front-tracking exist: re-meshing, �ltering, smoothing (see
e.g. [11, 65, 75, 87]), but these remedies are quite complex and introduce non-physical
behaviour. For other alternatives to lsm, one should also mention closed form implicit
geometry, but �nding analytic expressions for complex shapes is very di�cult, and
will not be considered here.

4.2 the level-set method

4.2.1 De�nitions

As previously stated the level-set method is a sampled implicit geometry representation.
In this text the symbol ϕ denotes the implicit function when used in lsm. As before,
the interface is denoted by Γ and given by the preimage of the iso-value c under ϕ.
Equation (3.9) is restated here for convenience:

Γ ≡ ϕ−1 (c) = {x ∈ Rn ∣ ϕ (x) = c} . (4.1)

In order to introduce dynamics for an interface described by Equation (4.1) we
need to be able to de�ne the motion of any point in the embedding. �e “engine” of
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the level-set method can be given in two principal forms. �e �rst one is achieved by
letting the motion of each point in the embedding be represented by an external vector
�eld V⃗ , that is

dx
dt

= V⃗(x). (4.2)

�is can be seen as passive advection. Each point on the interface just moves along
with the vector �eld. �e other form for driving the motion of the interface is based
on the surface normal. In the previous chapter it was shown that the normal of any
level-set of ϕ is

n⃗ = ± ∇ϕ∥∇ϕ∥ . (4.3)

We choose the positive solution based on the assumption that Ω− has negative sign.
�is convention makes the gradient and the normal point in the same direction. Equa-
tion (4.3) can then be used to de�ne the scalar valued level-set speed function, which
is

F (x , n⃗ , ϕ, . . . ) = n⃗ ⋅ dx
dt

= ∇ϕ∥∇ϕ∥ ⋅ dxdt . (4.4)

It is the speed of a point, dx/dt, projected on the normal vector n⃗ of the level-set
function at x. �e speed function e�ectively describes the motion of the interface in
the normal direction and can be used to evolve the level-set over time. Arguments to
F include the level-set function itself. �is is to signify that the speed at a point x can
depend on inherent properties of the interface, such as the normal, or the curvature.
We also see that Equation (4.4) can be transformed into a pure vector form (4.2) by
considering the normal vector as a direction with the speed function as magnitude.
To arrive at a dynamic interface we derive equations of motion by introducing

time dependence into Equation (4.1). �is can be done in two di�erent fashions. �e
�rst version varies the iso-value over time, such that

Γ (t) = {x (t) ∈ Rn ∣ ϕ (x (t)) = c (t)}. (4.5)

�is describes the evolution of the interface of an implicit function as the iso-value
changes and is called the static level-set formulation. In Figure 3.1 some level-curves of a
unit circle are drawn; the static formulation allows the interface to smoothly transition
between these level-curves as a function of time. But, because the level-sets cannot
intersect by de�nition, the range of motion becomes quite limited. �is formulation
is fast and straightforward to compute with lsm, and the ability to produce o�-set
surfaces is valuable.

�e second dynamic formulation instead introduces time-dependence for the
level-set function itself:

Γ (t) = {x (t) ∈ Rn ∣ ϕ (x (t) , t) = c}. (4.6)
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�is is accomplished by di�erentiating Equation (4.6) with respect to time

d
dt

[ϕ (x (t) , t)] = ∇ϕ ⋅ dx
dt

+ ∂ϕ
∂t
,

which results in an advection equation. We then rearrange and substitute the de�nition
for the speed function in Equation (4.4)

∂ϕ
∂t

= −∇ϕ ⋅ V⃗ (4.7)

= −∥∇ϕ∥ F (x , n⃗ , ϕ, . . . ) . (4.8)

�ese partial di�erential equations (pdes) give rise to the dynamic level-set formulation
and are referred to as the fundamental level-set equations. Equation (4.7) is also known
as the G-equation in combustion theory [50].
How are Equations (4.7 and 4.8) to be interpreted? �e equations are clearly

algebraically equal. �ey describe the same connection, namely how the interface
moves over time. From a physical point of view, however, they are quite di�erent, as
we will see in this chapter.
Equation (4.7) describes the transportation of the interface in an external vector

�eld. �is is called advection. One example is free surface simulation where an
interface is advected in a �ow �eld given by, for example, the Navier-Stokes equations.
Equation (4.8), on the other hand, can be interpreted as the motion of the interface in
its normal direction by a magnitude determined by the speed function. �is follows
from the fact that the projection of the gradient on the vector �eld (∇ϕ ⋅ V⃗ ) discards the
vector components that are orthogonal to the surface normal. �e level-set equation
on form (4.8) lends itself naturally to propagation where the motion depends on the
geometry itself. Surface smoothing, for example, moves the interface such that its area
is minimized. �is e�ectively removes sharp features while keeping low frequency
information. �e smoothing can be achieved by employing a speed function depending
on local mean curvature F = −ακ, with α > 0 [19].
From the form of the fundamental level-set equations we see that the range of

motion is completely unrestricted at the cost of having the solutions exist in a higher
dimensional space. �e dynamic level-set equations are the preferred choices for most
applications in complex interface capturing.

4.2.2 Sampled geometry

So far the implicit geometry description has been continuous. Now we introduce
the grid. It is presented in two dimensions for clarity. �e extension to higher (or
lower) dimensions is straightforward. Let the level-set function ϕ be sampled on a
�xed rectilinear grid as shown in Figure 4.2, and 4.3.
We start with some preliminaries and notation. Let ∆x and ∆y denote the grid

spacing on the rectilinear grid. Most o�en the spacing is uniform, so that ∆x = ∆y= h. We use this to form a terse subscript notation that labels the sampled value at
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(b) (c)

Figure 4.2:With lsm, the implicit function is discretely sampled on a grid. (a) �e zero
level-curve for the function x2 + y2 = 4. (b) �e discrete (truncated) samples on the grid.
(c) �e reconstructed zero level-curve overlayed on the grid. For practical reasons we use
a color coding (red-blue) when the individual numbers are of less importance.

integer position i , j in the grid with ϕ i j . Equivalently, the more descriptive expression
ϕ(i∆x , j∆y) can be used. For clarity the sub- and superscripts are sometimes dropped
when obvious or irrelevant.

�e interface is de�ned as the zero-set of the level-set function. Generally, the
interface, or any arbitrary point of interest, will not lie exactly on the lattice nodes.
In order to �nd the level-set function at any point in space we need to reconstruct a
continuous function from the sampled values. As seen in Figure 4.2(c) this issue needs
to be handled carefully in order to accurately capture the interface, or any level-set, on
the grid.

�e fundamental level-set equations introduce time dependence in order to repre-
sent dynamic geometry. Let the time samples be denoted ϕn , where n is identifying
the time n∆t. �e complete notation for the level-set function now reads

ϕn
i j = ϕ (i∆x , j∆y, n∆t) . (4.9)

Sometimes, when the spatial position is beside the point, we will only use the time
index, ϕ0 = ϕ (t0).
It is important to understand how the time dependence a�ects the implicit grid-

based geometry. In Figure 4.3(a) it is illustrated how the grid remains �xed even though
the geometry is shi�ing. �e movement is achieved by changing the level-set function
over time, i.e. changing the values of the grid instead of moving the grid itself. �is
is possible because the level-set function is de�ned over the embedding space. �is
stands in contrast to an explicit representation, see Figure 4.3(b), where the samples
themselves move over time. In this form only the actual geometry is sampled, not
its embedding. �e explicit view is sometimes called Lagrangian since the sampling
follows the geometry. In physics, a Lagrangian frame is following individual particles
as they move through space. To exemplify we make an analogy with a river as a �ow of
some quantity that we are interested in measuring. �e Lagrangian view is an observer
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(a) (b)

Figure 4.3: Capturing geometry as it moves over time. Light blue is time step t0 , dark blue
is t1 . (a) �e implicit setting: Even though the circle is moving, the grid remains �xed. (b)
An explicit grid moves with the geometry.

dri�ing down the river in a boat. �e implicit view, on the other hand, is referred to as
Eularian and the sampling is �xed in space. In the river analogy this is a stationary
observer on the river bank inspecting the water as it runs by.

4.2.3 �e level-set function

For implicit geometry it is insigni�cant what type of function ϕ is as long as it de�nes
the interface in a consistent manner and retains adequate continuity as dictated by the
implicit function theorem [14]. In the previous chapter we saw examples of circles and
cones, as well as more complicated geometry, with many di�erent types of implicit
functions. In the discrete case one special function has shown be to a good choice.
�e signed distance functionmeasures the Euclidean distance from a point in space to
the closest point on the interface. It additionally discerns between interior (Ω−) and
exterior points (Ω+) by assigning them di�erent signs. We want ϕ to be a functions
such that

ϕ(x) = { d(x , Γ), for x ∈ Ω+−d(x , Γ), for x ∈ Ω− , (4.10)

where d(x , S) measures the geodesic (closest) distance between x and the general
shape S, which in this case is the interface.

�e implicit function theorem [14] tells us that the level-set function is required
to have continuous and well de�ned gradients everywhere, in order to guarantee a
manifold geometry. For the discretely sampled level-set function this transforms into
another requirement, namely that of Lipschitz continuity:

∣ϕ (x1) − ϕ (x2)∣ ≤ C ∣x1 − x2∣ . (4.11)

�is constraint puts a bound on the magnitude of the rate-of-change of the sampled
level-set function. In this way the continuity requirement on the gradients of ϕ is
relaxed but instead the rate-of-change must be bounded by a �nite constant. In fact,
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the signed distance function, from Equation (4.10), can be de�ned by a constraint on
the level-set function’s gradients:

∥∇ϕ (x)∥ = 1. (4.12)

�is formula is called the eikonal equation, and it is well known that its viscosity
solution, see for example [5, 26], produces bounded Euclidean distance functions that
have unit length gradient in smooth regions. Hence the signed distance function is a
Lipschitz function. We will get back to the concept of viscosity solutions in Section
4.4.3.
A lower bound on the Lipschitz constant in Equation (4.11) relates to a well con-

ditioned function, meaning that it is suitable for digital computation. �is is also
supported by the fact that subtracting numbers that di�er greatly in magnitude on
a computer is sensitive to round-o� errors, see for example [33]. A bound on the
gradients limits the e�ects of this when computing, for example, derivatives by �nite
di�erences. �is reveals the signed distance function to be a prime candidate for the
level-set implicit function from a digital point of view.
One of the advantages with any type of distance function is that proximity informa-

tion is available all over the embedding. �e properties of the signed distance function
de�ned in Equation (4.10) also make it possible to �nd not only the closest distance to
the interface but also its position. �is is called the closest point transform. In Euclidean
space, using the positive outside sign convention, the closest point transform is given
by

xΓ = x − ϕ (x)∇ϕ (x) . (4.13)
A signed distance function facilitates many important operations in computer graphics.
Proximity, position, and topology information is directly available when querying the
embedding space. �is is most useful for problem that deals with space partitioning,
see [9] for a recent example of collision detection.

4.3 a discrete toolbox

�e dynamic level-set formulation and the fundamental level-set equations can be
used to move the interface by solving either of the pdes over time [66]. In order
to do this there are quite a few things to consider. First, we need to address the
spatial and temporal discretization, that is �nd out how to compute ∇ϕ and ∂ϕ/∂t.
�en, there is the mathematical classi�cation of the actual pdes. It turns out that
the proper discretizations are depending on the pde-class, which introduces further
complications. Finally, we need to look at under what circumstances the resulting
discretizations are numerically stable.

4.3.1 Discrete derivatives with �nite di�erences

In lsm most of the numerics is based on �nite di�erences for the approximations to
the di�erential operators in the pdes. We begin by giving a brief introduction on how
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to form the most basic �nite di�erences in both space and time. �is is done from
�rst principles using Taylor’s theorem on a rectilinear grid in order to give the reader
some intuition for the subject. �en, we brie�y describe some of the more advanced
schemes created speci�cally for the level-set method and give references for further
reading.
Taylors theorem gives a polynomial approximation to a di�erentiable function

around a given point. As the number of polynomials in the series increases and/or
the distance to the given point decreases the approximation error, R(x), tends to zero.
Taylor’s theorem states that

f (x) = f (a)+ f ′(a)
1!

(x−a)+ f (2)(a)
2!

(x−a)2+⋯+ f (n)(a)
n!

(x−a)n+Rn(x). (4.14)
Additionally, if the function approximated is (n + 1) times di�erentiable and has
bounded derivatives, then the error term is Rn(x) = O((x − a)n+1) using big O
notation.1
We now use Taylor’s theorem to attain approximations to the derivatives for the

level-set implicit function ϕ. �e �rst order one dimensional Taylor expansion to the
point x + h about x can be found by omitting all terms of second order and above from
Equation (4.14):

ϕ(x + h) = ϕ(x) + ϕ′(x)h + O(h2). (4.15)

By rearranging the terms an expression for the �rst derivative of ϕ at x can be singled
out

ϕ′(x) = ϕ(x + h) − ϕ(x)
h

+ O(h), h ≠ 0. (4.16)

Because the error term is linear in hwe say that the approximation is �rst order accurate,
or O(h). In practice we omit the error term and only work with the approximation. A
two-dimensional level-set function, ϕ(x , y), depends on both x, and y, so in order
to compute derivatives we use partial derivatives (∂ϕ/∂x i). �is is done by �xing the
index not under consideration. A discrete partial derivative in x is

∂ϕ
∂x

≈ ϕ+x = ϕ i+1, j − ϕ i , j

h
. (4.17)

�e plus sign denotes a forward di�erence and the subscript single x shows it to be a
�rst derivative in the x direction.
By substituting the expansion point, (x + h), with (x − h) in Equation (4.15) we,

instead, arrive at a �rst order accurate backward di�erence formula

∂ϕ
∂x

≈ ϕ−x = ϕ i , j − ϕ i−1, j

h
. (4.18)

1. See [46] for more information on the big O notation.
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(a) (b)

Figure 4.4: Some �nite di�erence stencils. �e green sample points are used for (a) a �rst
order forward/ backward and second order central di�erences, (b) an accurate curvature
measure, see [65].

A second order Taylor expansion producing a second order accurate central di�erence
approximation can, similarly, be derived to be

∂ϕ
∂x

≈ ϕ0x = ϕ i+1, j − ϕ i−1, j

2h
. (4.19)

�e higher the order of the derivative is, and the higher the desired accuracy is,
the more terms are needed in the �nite di�erence approximation. We call the set of
terms {ϕ i , j} used to compute the approximation a stencil, see Figure 4.4. As seen in
(b), a stencil can contain a large amount of grid points, some which are far away from
the center point. �is has implications for the implementation on a computer where
memory architecture and access times can have large a�ects on the e�ciency of the
method.

Accurate spatial discretizations

First or second order discretizations are su�cient in some cases. But o�en, more
accurate simulation results are required resulting in the need for higher order �nite
di�erence approximations. It is possible to derive such approximations using the Taylor
expansion as shown above, by simply including more terms in the expansion. For
smooth regions this is an attractive and straightforward solution. However, the nature
of the distance �eld representing the interface o�en has, or develops, discontinuous
regions (see for example Figure 4.7). �erefore, a numberof tailormade �nite di�erence
schemes have been published that are developed especially for lsm.
In the presence of discontinuities the essentially non-oscillatory (eno) [67] or

weighted eno (weno) [48, 76, 77] polynomial interpolation techniques are well suited.
�ey allow for an accurate representation of geometry with sharp features. �e eno
scheme chooses the derivative that corresponds to the smoothest Newton polynomial
approximation to ϕ on the interval found using divided di�erences. In this way oscilla-
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tions from discontinuities are minimized. �e accuracy of the scheme depends on the
size of the interval under consideration. �e third to ��h order accurate weno scheme
constructs an approximation to ϕx by a convex combination of the three di�erent third
order eno approximations at each point. For smooth regions this results in a ��h
order accurate approximation. In the vicinity of discontinuities the smoothest third
order approximation is used depending on the characteristics of ϕ. Implementation
details and more information is given in the books on lsm [65, 75] or the original
papers cited above.

4.3.2 Temporal discretization

To evolve the fundamental level-set pdes, Equations (4.7 and 4.8), in time on a com-
puter we need a way to modify the values on the grid over time. �is process is called
time integration and can be done in many di�erent ways. �e simplest involves a Taylor
expansion of ϕ (x , t) about time t for the partial time variable. We start by de�ning
an initial value problem for a general pde

∂ϕ
∂t

= L(t, ϕ(t)), ϕ(t0) = ϕ0 , (4.20)

�at is, the partial time derivative equals an (arbitrary) function, L, that is depending
on time and the level-set function itself. �e goal is to �nd the successive values ϕ (t1),
ϕ (t2), . . . , ϕ (tn) given an initial value ϕ (t0). A Taylor expansion about (t + ∆t)
gives a �rst order approximation of the time derivative

∂ϕ
∂t

≈ ϕ(t + ∆t) − ϕ(t)
∆t

. (4.21)

We combine this with Equation (4.20) and single out the next time step

ϕ(t + ∆t) ≈ ϕ(t) + ∆tL(t, ϕ(t)). (4.22)

�is scheme is known as forward Euler time integration because the Taylor expansion
is done for x + ∆t. �e method only depends on known (previous in time) values of ϕ
and is thus called explicit. Substituting the unknown function L(ϕ(t), t) with one of
the fundamental level-set equations we can �nd a discrete expression to solve.
Had we instead used a backwards di�erence method, that is (expanded about

t − ∆t), we would have found the backward Euler time integration
ϕ(t + ∆t) ≈ ϕ(t) + ∆tL(t + ∆t, ϕ(t + ∆t)). (4.23)

�is is not an explicit method since there is a dependence on future values on both
sides of the equation. �e relationship between this and the next time step is instead an
equation system, which implies that there is a solution. �erefore, this type of method
is called an implicit time integration scheme. It involves the solution of an equation
system to �nd ϕ(t + ∆t). �is o�en involves more work than an explicit method, but
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has, in general, a larger stability region allowing larger time-steps as we will get back
to.
Both the forward and backward Euler methods have �rst order accuracy in time.

For some applications thismay be enough, especially if speed is of the essence. However,
higher order methods are readily derived using the same approach as shown above for
spatial derivatives. We mention some of the more popular here and refer to [65, 75]
and relevant references therein for more information.

�e most common time integration schemes belong to the Runge-Kutta (rk)
family. �e �rst rk scheme is identical to the forward Euler method. Several second
order rk methods exists. One of the most commonly used is Heun’s method

ϕ(1) = ϕn + ∆tL(ϕn)
ϕ(2) = ϕ(1) + ∆tL(ϕ(1))
ϕn+1 = ϕn + ∆t 12 (ϕ(1) + ϕ(2)). (4.24)

A third order version is readily constructed, but the fourth order method (rk-4) is
so popular that it is sometimes called the rk method. rk-4 is reasonably simple to
implement and yields a good trade o� between complexity and accuracy. However, for
lsm the high order spatial di�erential (weno) tends to lose its accuracy in di�cult
regions, dropping from ��h to third order. In this case there is little to gain from using
a fourth order time integration method [65].

TVD Runge-Kutta schemes

One group of time intergrators that have proven especially useful in physics and
engineering problems are the total variation diminishing (tvd) methods. �e total
variation of a quantity u is measured as

TV(u) = ∫ ∣∂u
∂x

∣ dx , or in the discrete case TV(u) = ∑
j
∣u j+1 − u j ∣ ,

and a method is said to be tvd if it is bounded in the following sense

TV (un+1) ≤ TV (un) , (4.25)

when �rst order forward Euler time integration is used. �e boundedness ensures that
no spurious oscillations can occur and the solution becomes physically realizable by
construction. �e tvd concept was disovered by Harten in 1982 [37]. Osher and Shu
[78] then introduced a family of time integrators based on the popular Runge-Kutta
methodology that retain the tvd property at higher orders. �ese integrators are based
on the fact that a convex combination operation is tvd for non negative coe�cients.
�erefore, the convex combination of consecutive Euler steps is tvd by construction.
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Heun’s method in Equation (4.24), is a tvd-rk method since it has positive
coe�cients. A third order method, tvd-rk3 [78], reads

ϕ(1) = ϕn + ∆tL(ϕn)
ϕ(2) = 3

4ϕ
n + 1

4ϕ
(1) + 1

4∆tL(ϕ(1))
ϕn+1 = 1

3ϕ
n + 2

3ϕ
(2) + 2

3∆tL(ϕ(2)).
(4.26)

A fourth ordermethodhas been proposed aswell [36], but the implementation becomes
quite involved, and as discussed earlier the increased accuracy might be wasteful if the
spatial discretization has a lower e�ective order.

4.4 numerical stability

We have now gathered enough information to compute the evolution of a level-set
by the iterative solution of a discretized pde. �e approximations involved converge
to their continuous counterparts as the step size goes to zero. However, we must
also consider properties apart from accuracy. Numerical stability is a general term
in discrete mathematics that describes how errors propagate through an algorithm.
Although a speci�c time, or spatial discretization, has a given accuracy (as its step
size tends to zero) it is not guaranteed that the overall computations are convergent
[80]. �is is the same as to say that the resulting error (exact solution − approximated
solution) does not go to zero as the step-sizes in space and time go to zero. To ensure a
convergent method we need, according to the Lax-Richtmeyer theorem [80], stability
and consistency.
Consistency is, in this case, related to the local truncation error of the �nite dif-

ference scheme. A numerical method is said to be consistent if the �nite di�erence
approximation of the discrete operator converges towards the continuous operator
as the step size in time and space goes to zero [80]. A method that has order greater
than 0 is therefore consistent. All the time integration schemes introduced above are
consistent.
Stability, on the other hand, is a measure of how noise grows in the algorithm.

�is can be from round-o� errors or initial conditions. A stable algorithm does not
amplify noise. Mathematically, this means that the norm of the numerical solution
is bounded by the sum of the norm of a �xed number of earlier time steps. For the
tvd-rk methods above, we see that this constraint is heavily enforced (provided that
the sub steps are stable).

4.4.1 Hyperbolic equations

Equations (4.7 and 4.8) are hyperbolic pdes when the speed function and the velocity
�eld do not depend on derivatives of order greater than one. In this case they are
examples of so-called Hamilton-Jacobi equations [5]. �ese pdes have the property
that information is propagated along certain directions; the characteristics. Because
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of this limited domain of dependence, special treatment is needed when a numerical
approximation to the spatial derivative is sought.
As stated above, Equations (4.7 and 4.8) are algebraically identical, but physically

they describe di�erent phenomena and we use di�erent numerical techniques to solve
them. We start with the motion described by the advection in an externally generated
vector �eld; Equation (4.7). A basic �rst order discretization in time gives the function
value at the next time step as

ϕn+1 = ϕn − ∆t ϕn
x ⋅ V⃗ n . (4.27)

�e information needed to form an accurate spatial derivative ϕx can be found by
looking in the reverse direction of the vector �eld �ow. �is is corroborated by the
fact that information is propagated solely along characteristics. �e direction of the
information �ow can, in this case, trivially be found from the vector �eld V⃗ , and is
then used to pick the correct domain of dependence

ϕn
x = ⎧⎪⎪⎨⎪⎪⎩

ϕ+x , V n < 0
ϕ−x , V n > 0
0, V n = 0. (4.28)

Here we let ϕ±x denote a general derivative which favours points on the positive or
negative direction along the axis in question. In practice this amounts to the inclusion
ofmore points on either side of the current ϕ, as demonstrated earlier with forward and
backward di�erences. �is method for choosing the spatial derivative is for obvious
reasons called up-winding. In 2d and 3d (and above) it is applied in a dimension
by dimension manner. Figure 4.5 shows the hazards of not considering the correct
domain of dependence and using information from “wrong” directions. In (a), the
central di�erence scheme has a higher order truncation error than the �rst order one
sided version used in (b), but the numerical solution is not stable, and even develops
catastrophic behaviour over time.
From the introduction of consistency earlier in this section we note that the above

approximations of spatial and time derivatives are consistent. But because forward
Euler as well as rk-schemes introduced earlier are explicit methods their stability
regions are limited. �is means that to ensure that errors do not grow over time, the
time step size must be restricted by the grid step size. A necessary but not su�cient
requirement for stability is formulated by the cfl condition [20, 80], which states that

V ⋅ ∆ t
∆ x

< c (4.29)

where c is the cfl-number and depends on the speci�c method. For the �rst order
Euler in Equation (4.28) the cfl-number is 1 and we get the relation V ⋅ ∆t < ∆x.
Numerical information is not allowed to travel more than one grid point per time
step. For higher order methods this constraint can be signi�cantly harsher and implicit
methods are favourable in some cases.
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Figure 4.5: Advecting a sharp shape in the vector �eld V⃗(x) = 1 using a �rst order forward
Eulermethodwith a restrictive time step, ∆t = 0.5∆x. �e spatial derivatives are computed
with: (a) second order central di�erences, and (b) �rst order one sided di�erences together
with up-winding.
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Figure 4.6: Advection in the vector �eld V⃗(x) = 1 using a �rst order forward Euler method
with an excessive time step ∆t > ∆x. (a) Catastrophic behavior quickly develops for sharp
shapes, (b) but also in perfectly smooth regions.

Due to the non-linearity of Equation (4.8) explicit time integration schemes are
typically used to evolve the interface in time. With forward Euler we get

ϕn+1 = ϕn − ∆t ∥∇ϕn∥ Fn . (4.30)

A conservative numerical scheme for solving pdes was derived by Godunov in [32].
For a general Hamilton-Jacobi problem, such as the advection formulation in Equation
(4.7), this scheme can be shown to produce the same results as the up-wind procedure
in (4.28). Later, in [72], a formula for computing the square of the spatial derivative
was derived from Godunov’s method

ϕ2x =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
max(max(ϕ−x , 0)2 , min(ϕ+x , 0)2), if F > 0
max(min(ϕ−x , 0)2 , max(ϕ+x , 0)2), if F < 0
0 otherwise.

(4.31)

It is applicable whenever the direction of the gradient vector is irrelevant. When solving
Equation (4.8), for example, only the norm of the gradient vector is sought and its
direction is inconsequential.
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Because ∥∇ϕ∥2 = √
ϕ2x + ϕ2y + . . . this can be used to compute the norm of the

gradient as needed in the pdes. As pointed out in [54] the computation can be further
simpli�ed by considering the sign of the speed function. We let the sign function be
de�ned as follows

sgn (x) = ⎧⎪⎪⎨⎪⎪⎩
1, x > 0
0, x = 0−1, x < 0 (4.32)

and get an expression for the squared spatial derivative that is given with even fewer
evaluations

ϕ2x = max(sgn (F) ϕ−x ,−sgn (F) ϕ+x )2 . (4.33)

4.4.2 Parabolic equations

A parabolic pde, such as Equations (4.7 and 4.8) when the speed function or velocity
�eld depends on derivatives of order greater than one, has no characteristics. Instead
the domain of dependence is in�nite. Information �ows into a point in space from
all other points. Moreover the speed of information is, physically speaking, in�nite.
�is means that a perturbation at one point in space immediately a�ects all other
points. Numerically this is accommodated by putting equal emphasis on all directions
when evaluating the spatial derivatives. For example consider Equation (4.8) used
for geometric smoothing ∂ϕ/∂t = −ακ ∥∇ϕ∥. We can approximate the all-directions
principle by using a central di�erence scheme, ϕx = ϕ0x . Here, we let the expression ϕ0x
denote a general central di�erence of which Equation (4.19) is one example.

4.4.3 Vanishing viscosity solutions

Consider the following one dimensional version of the eikonal equation

⎧⎪⎪⎨⎪⎪⎩
∥∇u(x)∥ = 1, x ∈ (−1, 1)
u(−1) = u(1) = 1. (4.34)

Is there a unique solution u to this problem? It is easy to see that there is no continu-
ously di�erentiable solution that ful�lls both constraints in a classical sense. At some
point there must be one, or more, discontinuities in the function’s derivative.
One possibility would be to only consider smooth functions, but in the case of the

dynamic level-set formalism, we note that even if the implicit function ϕ is initially
di�erentiable and describes a smooth interface this may change over time. As the
interface evolves it is possible, and likely, that sharp features will emerge and make
ϕ non-di�erentiable over the interface. An example of this is shown in Figure 4.7(a).
Also note that away from a smooth interface the level-set function may contain dis-
continuities. In fact, any distance function describing a closed curve contains at least
one point for which the function’s gradient is discontinuous. Examples hereof are
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(a) (b) (c)

Figure 4.7: (a) An initial smooth interface (thick) can still develop sharp corners (dis-
continuities) as the interface evolves; in this case inwards in the normal direction. (b)
�e distance �eld of the initial shape. (c) �e distance �eld of any closed curve contains
discontinuous gradients by construction, indicated with red.

the center point of the circle, the tip of the cone, and in general points which lie on a
medial axis, see Figure 4.7(b) and (c).
To circumvent the problem with di�erentiability we introduce a tentative solution

u(x) = ⎧⎪⎪⎨⎪⎪⎩
−x , x ∈ [−1, 0]
x , x ∈ [0, 1]. (4.35)

which ful�lls Equation (4.34) almost everywhere: this is called a weak solution. �e
function is depicted in Figure 4.8(a). �e term weak solution describes a generalized
solution to an ode or a pde where the constraint on di�erentiability is weakened by a
transformation of the problem into a derivative free form[26]. A weak solution has
the desirable property that for smooth regions it equals the “real” solution. On the
downside a weak solution is not unique so additional constraints are needed in order
to single out a distinct solution. �is leads us to the concept of the viscosity solution
as introduced in [21]. An brief outline of the method follows, for more information
consult [5, 26], the textbooks on level-set methods [65, 75], or the original papers
[21, 22]. We �rst recast the eikonal equation above as a time dependent initial value
problem and insert a smoothing term

∂u
∂t

= 1 − ∥∇u(x)∥ + є∆ϕ±
smoothing

. (4.36)

�is arti�cial viscosity term e�ectively regularizes the eikonal equation and thus pro-
duces smooth solutions. Now the reasoning about the viscosity solution is that we let
the arti�cial viscosity tend to zero, є → 0, and hence pick out a unique weak solution.
�is solution is shown in Figure 4.8(b).
It is common in �uid dynamics to add the smoothing term explicitly to better

handle the presence of shocks anddiscontinuities. For the numerical schemes usedwith
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Figure 4.8:�e function (blue) in Equation (4.34) and its derivative (dashed red) illustrating
the vanishing viscosity solution. (a) �e sharp version has a jump in its derivatives and is
not di�erentiable at 0. (b) A regularized version of the same function has a continuous
derivative and is di�erentiable everywhere.

lsm this is normally not done as there is already a large degree of numerical dissipation
built in. Adding extra smoothing would typically cause excessive dissipation.
To better understand the dissipative e�ect we can study the numerical schemes

from a di�erent point of view. For example, instead of seeing the �rst order forward
Euler as producing a solution with an error term that is O(∆t) it is possible to see this
as an exact solution, but to a slightly di�erent pde. For a �rst order one-dimensional
Euler scheme this other pde contains a term which implicitly functions as viscosity,
see for example [4].
We �nallymention that the dissipative e�ects come from the even derivatives in the

truncation error of the discrete di�erential operator. �e odd derivatives introduces a
di�erent numerical e�ect that shows up as “wiggles” in front and behind waves. �is
is called dispersion. Together dissipation and dispersion are called numerical di�usion
and we note that this e�ect is less pronounced for higher order schemes. Figure 4.5
shows, albeit in a di�erent setting, dissipative and dispersive behaviour, respectively.

Finding the viscosity solution

Although interesting, this theory is of little use if it is di�cult to implement on a
computer or renders computations prohibitively slow. Fortunately, the upwindmethod
in section 4.4.1 as well as Godunov’s method are constructed to pick out the physically
plausible vanishing viscosity solution. More information on level-set methods, pdes
and viscosity solutions is available, in varying detail, in [4, 26, 65, 75].

4.5 maintaining a signed distance function

�e level-set function ϕ is best kept as a signed distance function (Equation 4.10).
Unfortunately the iterative solution to the initial value problem in Equation (4.20)
does not ensure this. �us the discrete distance �eld must regularly be re-initialized
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to guarantee that Equation (4.12) is ful�lled. �e �rst attempts to do so [82], used the
initial value formulation of the eikonal equation [72]

∂ϕ
∂t

= sgn (ϕ0) ⋅ (1 − ∥∇ϕ∥), (4.37)

which they solved to steady state. Here, the sign function e�ectively chooses the
correct solution for both Ω+ and Ω− by looking at the values of ϕ (before they change).
Numerical tests have shown [68] that the discretization of the sign function bene�ts
from smoothing such that ∂ϕ/∂t = S(ϕ) ⋅ (1 − ∥∇ϕ∥), with

S(ϕ) = ϕ√
ϕ2 + ∥∇ϕ∥2 (∆x)2 . (4.38)

�e re-initialization of ϕ is done by iteratively solving the initial value problem until a
steady state is reached. From the method of characteristics we have that the correct
updates are given in an increasing (per iteration) radius out from Γ. �e cfl condition
furthermore tells us that the solution moves at most c∆x per iteration. �us we can
guarantee a correct solution over an m ×m grid a�er

√
2 ⋅m/c iterations, making the

method scale quadratically in the number of grid points, O(n2), since n = m × m.
�e major advantage of the initial value approach is the ability to apply higher order
di�erentials (e.g. eno/weno), see [65] for implementation details.

�e eikonal equation can also be solved as a boundary value problem, and this has
been done with great success through a number of papers. Tsitsiklis [84] and Sethian
[74] independently came up with the same method to solve the eikonal equation using
only n operations for n grid points. At each step, the optimal node must be updated
for this complexity to hold. Both methods use sorting to quickly �nd the correct node
making the overall complexity O(n log n) in time. Sethian called his algorithm the fast
marching method (fmm), which is the name we will use. If the sorting of the update
in fmm is omitted, an asymptotically sub-optimal method is given. In [44] such an
algorithm is proposed and shown to be very fast in practice even if its complexity
cannot be bounded.
Several versions of sweeping algorithms have also been proposed that are signif-

icantly faster in some cases, especially for simpler solution fronts. In [23], an early
method was proposed, but in the level-set community, a more recent approach [88] is
o�en used. �ese methods are fast and particularly simple to implement. Additionally,
all sweeping methods can easily be parallelized, which has not yet been done for fmm
due to the sorting involved. But, due to their nature, the sweeping methods are best
suited for regular domains.
In paper [64] we propose a method that accurately computes a distance function.

Our approach is not derived from the viscosity solution to the eikonal equation (4.12).
Instead, our work is based on [35, 71] that use an integral formulation of distance. We
further discuss distance functions in Chapter 6, and for now conclude that our method
is readily used to re-initialize a distance �eld.
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4.6 bringing it all together

We end this chapter with a simple example showing the method in use. But �rst, we
introduce some notation. When discussing general storage concepts we do not �x
dimension unless necessary, as level-set methods are not limited to speci�c dimensions.
We use a loose c++ style for the pseudo code listings. With this in mind a minimal
example of a level-set data structure is given.

class LevelSet {1
Grid<�oat> phi; // �e sampled implicit function2
�oat h; // �e grid step size3
�oat t; // �e current time4

Propagate(Grid<�oat> F, �oat dt); // Eqns. (4.8) + (4.20)5
Advect(Grid<Vector> V, �oat dt); // Eqns. (4.7) + (4.20)6
Reinitialize(); // Equation (4.12)7

};8
Listing 1: A level-set data structure

�e statementGrid<�oat> phi; on line 2 in the listing above declares the variable phi to
be of the class Grid. �e type names are meant to be self explanatory. �e grid, in this
case, gives the possibility to retrieve data at indexed positions, i.e. in two dimensions
phi(i , j) gives the value stored at the coordinate (i , j). Furthermore, as indicated by
the ending < ⋅ >, the Grid is thought of as a multipurpose type which can hold di�erent
types of data2. In this case, phi holds �oating point values that encode the distance
function.

�e grid step size h is used when evaluating �nite di�erence approximations to
the spatial derivatives in the level-set equations. In a similar way the variable t is
keeping track of the current time. Because the motion is an initial value problem the
corresponding speed function F and vector �eld V are also time dependent and t is
used to �nd the correct instance in time.

�e Propagate function solves the fundamental level-set equation (4.8) in the initial
value setting (4.20) such that the current time is advanced to t + dt. If the requested
time step is larger than permitted by time step restrictions such as dictated by the cfl
condition the propagate method is responsible for internally dividing it into smaller
sub steps. �e Advect function similarly moves the interface but uses the vector form
in Equation (4.7). Finally, the function Reinitialize resets the distance grid phi so that
it obeys Equation (4.12).
To use the level-set methodology we can now employ the following cycle

↷ Solve Equation (4.20) over the sampled domain for one of the level-set equations
(4.7 and 4.8); function Propagate or Advectº Re-initialize the distance values, function Reinitialize

2. As in the C++ concept of templates
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Figure 4.9: Shrinking a circle with unit speed function with �rst order approximations.
(a) �e radius as a function of time. Blue – simulated, red – exact solution. (b) �e curve
itself at successive time steps.

4.6.1 Eroding a circle in the normal direction

In Figure 4.9 we apply the level-set simulation cycle to a simple example using the
�rst order approximations introduced in this chapter. �e �gure shows the result of
shrinking a circle with unit speed function, F = 1. Because of the, in this case, trivial
analytic solution we can compare the simulation to exact data in (a), the graph shows
the radius of the circle over time. Some of the corresponding level-sets are shown in
(b), the thick curve indicate the initial condition.
As is expected, the simulated radius deviates from the exact solution. �is is an

e�ect of the approximations introduced in both space (�rst order up-winding), and
time (forward Euler). �e linear estimation of the di�erential operators also manifests
itself clearly in the last (innermost) contour in Figure 4.9(b). �e correct solution
should be a perfect circle, but the simulated version is starting to look more like a
diamond.

4.7 summary

In this chapter the level-set theory was introduced. We showed �rst how to sample
the geometry in space and found that a signed distance function was a good choice.
We then continued to describe how drive these dynamic surfaces, and arrived at the
fundamental level-set equations. �ese continuous pdes require delicate handling due
to certain speci�c physical properties. �is also carried over to the discrete operators
used to numerically solve the pdes.
Many factors a�ect the numerical stability of a level-set computation. In particular

it was exempli�ed that when not adhering to the correct discretizations, catastrophic
behavior can, and is likely to, develop over time.
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CHA P T E R 5

I M P L EM EN T I NG L EV E L - S E T M E THOD S

From a practical point of view the speci�c lsm implementation can be of tremen-
dous importance. Running times for large simulations can di�er in hours and

even be impossible because of the sheer amount of data. A simulation domain that is
500 × 500 × 500 grid points large requires, using the most basic time integration and
single precision, two bu�ers of roughly 475 mb each. If the interface is advected in a
velocity �eld, then 3 × 475 mb more is needed just to hold this data. Add simulation
of the vector �eld and/or a high order time integration scheme and the number of
bu�ers needed increase dramatically. �e problem is twofold – there is both a need to
store large simulation domains, and at the same time all the data must be e�ciently
processed.

5.1 introduction

Part of the work in this thesis has been focused on implementing data structures with a
light memory footprint without sacri�cing versatility or speed. �is has been a delicate
line to balance. If one focuses too much on memory e�ciency chances are that this
comes at the price of speed, and the other way around.

�is chapter is an introduction to data structures used in lsm and especially the
data structures used in papers [41, 61]. We begin this chapter with the introduction
of a localized level-set method and a minimal data structure that goes with it. From
this starting point we develop more sophisticated grids. �is is done in 2d to keep
concepts clear and minimize the notation. However, all the data structures described
in this chapter generalize to any dimension, but not all of them do so gracefully due to
excessive memory constraints.

5.1.1 Computational aspects

When implementing lsm on a computer many factors on di�erent levels a�ect the
e�ciency of the result. First one needs to identify a problem statement. Is the main
interest to represent static geometry with the level-set method? For simulations or
collision detectionwith rigid geometry the level-setmethod is ideal. �e keyword static
indicates that the geometry is not deforming. In this case signi�cant pre-processing
can be justi�ed. In an “opposite” scenario the e�ciency of a continuous simulation is
most important. Segmentation and water simulation are examples from this class.
Every situation needs di�erent considerations. We start by listing some e�ciency

related factors.
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○ Algorithmic complexity in the number of grid points for the problem at hand
Algorithmic complexity dictates the asymptotic running times and is always the �rst
place to look for improvements, especially for continuous problems. Special care should
also be taken with respect to side e�ects (e.g. re-initialization). For static problems
speci�c implementation details can also be of signi�cant importance.

○ Sampling and resolution topics
�e question to ask is accordingly: Is it possible to use less sample points and yet
obtain the desired accuracy? Sampling and resolution have inspired much work in the
level-set community. It is the source of the narrow band methods as introduced by
[2, 19, 86], and has also led to adaptive grid methods such as [49, 79].

○ Access times for data retrieval from main memory to the processor.
Access times and cache coherence of a data structure are crucial factors when dealing
with large lsm geometry. Especially cache performance has become increasingly im-
portant in later years because of the relatively limited bandwidth between the processor
and (much larger) main memory. �e cache holds on to pieces of memory with the
hope that the processor will need them soon again. Because it is considerably faster to
access memory that resides in the cache than fetching it from main memory this is a
favourable strategy. However, the size of the cache is limited (as it is very expensive),
and the few slots of the cache regularly gets over-written with newer data. �us, the
boost that the cache can deliver requires the processor to use the same piece of data
multiple times over a su�ciently short time span. In short, locality of computations
(with respect to positions in main memory) increases cache performance.

○ Is the problem parallelizable?
�e current development in computer hardware suggest that computers will become
more andmore parallel. �is is partly because the performance of traditional cpus have
reached a level where signi�cant amounts of energy are needed to increase performance.
On the other hand, low cost but high-performance accelerator units (gpus) are readily
available. A good data structure should be designed with this in mind.

5.2 a localized level-set method

We begin this hands-on chapter with the introduction of one of the major e�ciency
improvements to the level-setmethod as seen from a practical point of view: a localized
level-set using the narrow band method [2, 19]. �e idea is based on the fact that the
information given over the embedding, Ω, for some purposes is more than actually
needed. In many applications the interest lies only in the position of the interface, Γ.
�e shape of Ω is arbitrary as long as it is possible to recover Γ.
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(a) (b) (c)

Figure 5.1: A “dense” grid with sample values (a). To reduce the computational cost a mask
(b) over the dense grid can be used to indicate “active” grid points. (c) To reduce both
time and space complexity a fully sparse grid is needed.

With lsm, the geometry is represented by a function sampled on a grid. We prefer
ϕ to be a signed distance function for di�erent reasons as discussed in Chapter 4. Since
lsm is an implicit representation ϕ will be de�ned over the full domain. For a curve
this is normally a �nite rectangle-shaped part of R2, represented by a (dense) grid. An
example is shown in Figure 5.1(a).
From an e�ciency point of view the information far away from Γ is o�en a burden

because for all these grid points the implementation needs to 1) provide storage, and
sometimes also 2) perform computations according to some numerical scheme. �e
fact that the original lsm approach [66] scaled with the size of the embedding domain
made early implementations memory consuming and slow. �is is a reputation that,
somewhat undeservedly, has stuck with the method.
One solution to the scaling-problem is to discard all sample points that are not

needed. For a signed distance function this can be done by considering the magnitude
(distance) of the sample points, and only keep those that are closer than some constant.
See Figure 5.1(b) for a depiction where active grid points in a dense grid are chosen
based on their distance to the interface. Su�ciently many sample points around the
interface need to be kept in order to be able to perform an accurate reconstruction of Γ.
When using �nite di�erences to compute approximations to the di�erential operators
this means that the computational domain must be wide enough to support the stencil
of the approximation, see Figure 4.4.

5.3 the narrow band method of peng et. al

�e narrow band approach was, to the best of our knowledge, �rst described in [2, 19]
and is further re�ned in many consecutive papers some of which are included in this
thesis [41, 61].
In its simplest form the narrow band method performs its computations only on

the grid points for which the magnitude of ϕ is smaller than a constant δ. We write
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this band as the set in n-dimensional space {x ∣ abs(ϕ(x)) < δ}, or discretely in 2d
as the grid points {(i , j) ∣ abs(ϕ i , j) < δ}. (5.1)

Di�erent ways of storing these narrow band grid points exist; a few examples of this
are illustrated in Figure 5.1. In the �rst papers [2, 19] a dense grid was utilized together
with a mask on the form of equation (5.1). �is means that the storage complexity is
O(m2) where m is the grid length size. �e computational complexity though, drops
to O(S), where S is the number of grid points in the narrow band. For δ signi�cantly
smaller than m this means that computations now scale with the size of the interface
instead of its embedding. �is can give a major speed-up, but care must be taken when
maintaining the mask data structure. �e rebuild of the mask will, if implemented
naively have O(m2) time complexity. In Figure 5.1(b) a dense grid with a subset of
“active” grid points is illustrated.
In [68] Peng et al. introduced a narrow band scheme intended for level-set simu-

lations that has since become widespread. �eir method divides the computational
domain into several bands. �en, based on this classi�cation a clamped time integra-
tion scheme is applied that reduces numerical oscillations at the boundaries of the
truncated embedding. First, let a clamped version of the initial value problem from
the last chapter (Equation 4.20) be

∂ϕ
∂t

= c(ϕ) ⋅ L(t, ϕ(t)), with ϕ(t0) = ϕ0 , and c(ϕ) ∈ [0, 1]. (5.2)

If c(ϕ) = 0 then ϕ does not change over time (nomotion) and if c(ϕ) = 1 then Equation
(5.2) becomes identical to Equation (4.20). Peng et al. suggested the following smooth
transition between 0 and 1

c(ϕ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if ∣ϕ∣ ≤ β
(∣ϕ∣−γ)2(2∣ϕ∣−3β+γ)

(γ−β)3 if β < ∣ϕ∣ ≤ γ
0 otherwise.

(5.3)

�is function is plotted in Figure 5.2. It makes use of the constants (β, γ, δ) to de�ne
the three concentric computational bands:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β-band for ∣ϕ∣ ≤ β
γ-band for ∣ϕ∣ ≤ γ
entire-, expansion- or δ-band for ∣ϕ∣ ≤ δ.

(5.4)

�e purpose of the β- and γ-bands or tubes is to e�ciently provide the domain in
which the time integration in Equation (5.2) is carried out. �e δ-band, next, allocates
enough space around the γ-tube so that the computational domain can move during
advection. In Figure 5.3(a) we show the di�erent tubes overlaid on a continuous
function, and in (b) the discrete counterpart. According to Peng et al. the values inside
the β- and γ-tube are signed distances, and values outside this band are clamped to
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!Γ !Β Β Γ

1

Β!tube
Γ!tube

Entire tube

Figure 5.2: A cut-o� function around the computational tube can reduce oscillations at the
boundaries. �e width of the entire tube is usually 1 grid point (∆x) larger than the γ-tube
to facilitate the inclusion of new grid points as the interface moves.

(a) (b)

Figure 5.3: �e di�erent tubes around the interface. (a) Shows the continuous tubes: red
– γ-tube, blue – β-tube, and black – interface. (b) �e discrete tubes: i.e. (i , j) such that
ϕ i , j < c i where c i is one of β, γ. �e gray coordinates indicate that the entire tube is wider
than the γ-tube so that the interface has room to move during advection.

±γ. Even though this means that some of the special properties of the signed distance
function are lost, the clamping ensures a consistent approximation of ϕ outside of the
computational band.

5.3.1 A simulation step which is linear in time

With the clamped time integration in Equation (5.2) only values inside the narrow
band are updated during simulation. A naive implementation loops over the full
grid and checks the magnitude of the level-set function to see which grid points that
are active, and updates only those. �is is faster than updating all grid points, but
still asymptotically O(n2); the method scales with the size of the grid instead of the
interface. In order for a simulation step to be e�cient, extra data structures are required
[68]. First keep a coordinate list holding the grid points included in any of the bands.
Additionally, amask on the same size as the underlying grid is used to label all grid
points according to what band they belong to, or inside/outside. A simulation step now
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loops over the coordinate list and only updates grid points inside the computational
band. �is method scales with the size of the interface.

�e narrow band method of Peng et al. has the following solving cycle

↷ Solve Equation (5.2) inside the γ-tube for one of the fundamental level-set equa-
tions↓ Re-initialize the distance values over the entire narrow bandº Rebuild the narrow band by updating the coordinate list and mask.

In order to support the new functionality some additions to the initial data structure
in Listing 1 are needed. A minimal narrow band data structure is

class NarrowBandLevelSet {1
Grid<�oat> ϕ // �e sampled implicit function2
Grid<Type> M // �e mask3
List<Coord> C // �e coordinates in the band4

⋮

void Rebuild()5

};6
Listing 2: A narrow band level set data structure

�edots ( ⋮ ) implies that the relevant functionality in Listing 1 is preserved. Additionally,
the new “rebuild”-method is responsible for moving the computational domain when
needed.

�e level-set equations can now be solved inside the computational band e�ciently
by looping over the coordinate list. �is gives rise to a level-set simulation method that
is linear in time (with respect to the size of the interface). �e rebuild-method in the
original paper [68], however, scales with the size of the full grid, i.e. it has complexity
O(m2) for a two dimensional grid. �is term becomes dominant for large grids and
can severely hamper performance, see for example [59]. A method which is linear in
the number grid points in the narrow band is preferable. In paper [62] we proposed
one such method which is described below.

Rebuilding the narrow band data structure

A�er each step of solving Equation (5.2) and subsequent re-initialization, the narrow
band data structure must be rebuilt. �is is due to the fact that the interface and
hence the tubes move during advection. �e gray grid points in Figure 5.3(b) show the
extra space allocated around the γ-tube that enables the band to move. A width of a
single grid point around the band is reasonable given the constraints on explicit time
integration methods. 1
In Listing 3 a fully linear rebuild algorithm is outlined; it is taken from [62] but

slightly revised. �e algorithm works by �rst tagging all grid points inside the com-

1. Remember that the cfl-condition restricts explicit time integration to move less than one grid point
per time step.
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putational tube, that is all the grid points in the coordinate list, according to their
signed distance value. �en all neighbors are inspected: if necessary, they are added
to the expansion band, else, they are ignored. All neighbors are inspected and not
just neighbors to values in the gamma band. �is is to ensure a correct expansion
band. If the gamma band is wide enough (γ > β +√

2∆x) and the level-set function is
reinitialized to exact values then the expansion band classi�cation (line number 11-17)
can safely be moved to the end of the else statement on line number 8. �is improves
performance slightly. But, since the reinitialization o�en is only approximately solved
the safe guard is sensible for thin tubes. Furthermore the penalty for doing so retains
the same linear asymptotic complexity.

Input: Coordinate list C, mask gridM, and distance grid ϕ
Output: Coordinate list C′, modi�ed maskM and clamped distances ϕ
foreach (i , j) ∈ C do1

if ∣ϕ i , j ∣ < γ then2
/* classify the computational bands */
if ∣ϕ i , j ∣ < β then3

M i , j ← β4
else5

M i , j ← γ6

C′ ← (i , j)7

else8
M i , j ← outside9
ϕ i , j ← sgn (ϕ i , j) ⋅ γ10

/* classify the expansion band */
foreach (p, q) ∈ Neighbor(i , j) do11

if ∣ϕp ,q ∣ < γ and M i , j = outside then12
M i , j ← δ13
C′ ← (i , j)14

if ∣ϕ i , j ∣ < γ and Mp ,q = outside then15
/* �is is the only way to enter the band */
Mp ,q ← δ16
C′ ← (p, q)17

Listing 3: A linear rebuild of the narrow band data structure.

Figure 5.4 shows a complexity plot indicating the behaviour of the method in [68]
compared to ours. We also compare to the more complex rebuild method in [58, 59],
applied to the narrow band data structure in Listing 2.

5.3.2 Dilation

To more succinctly describe the rebuild procedure we split it into two distinct parts.
First, a classi�cation/pruning step is performed, which updates the mask values and
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Figure 5.4: Rebuild complexity for successively larger grids. �e plot shows the time to
rebuild the data structure vs the total number of grid points in the narrow band.

removes coordinates that should no longer be kept in the list. �en, comes a dilation
step, which expands the width of the computational band to allow for interface move-
ment. In Listing 3 the classi�cation/pruning corresponds to lines 2-10 and the dilation
to lines 11-17.
In [59] a dilation algorithm for fully sparse grid structures was proposed. �e

method can also be applied to a narrow band grid such as the one in Listing 2. We
describe it here to di�erentiate between to our version in Listing 3.

�e method performs the dilation in a column by column manner. In two dimen-
sions it �rst dilates in the x-direction (between columns), and then in the y-direction
(along each column) . Let a column be denoted c i = { j1 , j2 , . . . }where i is the column’s
x-index and { j1 , j2 , . . . } is the set of sorted y-indices of the column. Also, denote the
sorted set of all columns in the grid with C. A conservative dilation of width h∆x can
then be performed as follows.
First, let column c′i be the union of c i with its h preceding and succeeding columns:

c′i = ⋃i+h
k=i−h ck . �e inter-columndilation is then contained in the setC′ = {c′k}, for k =

imin − h, . . . , imax + h. Here imin and imax are the indices of the �rst and last columns
of C respectively. For columns c′i that have no corresponding column c i ∈ C, that is c′i
with i < imin, or i > imax, the column indices can still be determined, and the set of
y-indices is the empty set. Finally, dilate each new column, c′i , in the y-direction by
h grid points (c′′i = c′i ⊕ h), the �nal dilation is then given as C′′ = {c′′i }. In Listing 4
we show the pseudo code for a one grid point dilation of a 2d grid using this method.
Figure 5.4 shows how this dilation method compares to the one in [62] (Listing 3) and
the original method proposed by Peng et al. [68].

foreach c i ∈ {cmin−1 ,C , cmax+1} do1
c′i ← (c i−1 ∪ c i ∪ c i+1) // dilate between columns2

return C′′ ← {c′i ⊕ 1} // dilate along columns3

Listing 4: Dilation by one grid point.
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Figure 5.5: Grid points color coded by x-index value to indicate redundancy in grid storage.

5.4 fully sparse data structures

Inspired by the sparse data structures used in linear algebra [25] we turn our attention
to possible improvements to the data structure used in the narrow band method of
Peng et al., see Listing 2. Many of the popular sparse matrix data structures are possible
candidates when storing sampled level-set data. We will consider coordinate storage,
compressed column storage and blocked storage. Each of these storage types have
their positive sides and drawbacks.

5.4.1 �e coordinate grid

A natural starting point is the fact that the mask in Listing 2 is actually only interpreting
the values in the grid and as such the mask is redundant. �e narrow band concept
only needs the coordinate and a value for each grid point in the band. Figure 5.1(c)
shows such a grid. We trivially make the transition to a fully sparse grid by considering
the following pseudo code

class CoordinateLevelSet {1
List<Coordinates> C2
List<Values> ϕ3

⋮

};4
Listing 5: A data structure storing coordinates coupled to values

�is type of storage is called the coordinate grid because it explicitly stores coordinates
and values. Sometimes the need arises to store auxiliary, or subordinate, values at each
grid point; for example uv-coordinates, mass, or velocity. With a coordinate grid any
number of subordinate value lists can be used together with the coordinates of the
grid.
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In two dimensions the coordinate grid is equivalent to the coordinate matrix
storage as described in [25]. To exemplify we show how to store the following sparse
matrix

M = ⎛⎜⎜⎜⎝
5 2 0 0
0 1 0 0
0 0 2 8
7 0 0 3

⎞⎟⎟⎟⎠ . (5.5)

As a coordinate matrix the data can be represented by two lists:

values: {5, 7, 2, 1, 2, 8, 3} (5.6a)
coordinates: {(0, 0), (3, 0), (0, 1), (1, 1), (2, 2), (2, 3), (3, 3)} (5.6b)

if we use the convention that row indices increase downwards. In this example we
have sorted the coordinates such that values in the same column are consecutive. In
principle this is not required, but many operations, searches, neighborhood queries,
etc., are simpli�ed or can be performed more e�ciently when the data is kept sorted.
In the coordinate grid each grid point value is explicitly connected to a coordinate.

�is is bene�cial when the gridmoves, as there is no “box” limiting the range ofmotion.
�e simulations can be truly out-of-the-box as demonstrated in [41, 58]. Any grid
structure that explicitly stores coordinates shares this feature.

5.4.2 �e compressed sparse column storage

�e compressed row matrix storage (csc), see [25], stores data along columns of a
matrix and compresses the indices in the process. In a level-set grid (or any matrix) the
values of each column share the same x-index. Figure 5.5(a) illustrates this redundancy.
In the csc-format the matrix in Equation (5.5) is represented by three lists:

values: {5, 7, 2, 1, 2, 8, 3} (5.7a)
row indices: {0, 3, 0, 1, 2, 2, 3} (5.7b)

column pointers: {0, 2, 4, 5} (5.7c)

As for the coordinate storage, the value array holds all the non-zero elements of the
matrix. �e row indices of the non-zero values are also explicitly stored. �en, the
column pointer list encodes two things. It explicitly encodes pointers into the other
two arrays for the start- and end-positions of each column. Additionally, with its size
m, it implicitly identi�es each column-index and numbers it from [0, . . . ,m − 1]. In
this way the row and column indices are coupled to produce a coordinate together
with a value.

5.5 hierarchical compression techniques

In the speci�c case of narrow band level-set grids there is actually more redundancy
in the data than the csc format can handle. Figure 5.6 shows how values along each
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(a) (b)

Figure 5.6: Hierarchical compression of indices. (a) A two dimensional grid �rst compresses
indices along columns, then along rows. (b) A three dimensional grid also compresses
indices along the third dimension.

column not only share x-index, because of the form of the narrow band, they also have
consecutive y-indices. �is property applies for grid points inside the narrow band along
any dimension and has been exploited through the recursive application of hierarchical
index-compression [41, 58].
Figure 5.6(a) shows the strategy in two dimensions. �e column-indices can be

compressed by noting the start- and end-points, and then, the very same compression
can be applied for the (single) resulting row as well. In (b) a three dimensional grid is
compressed, in this case the recursive compression starts along the third axis.
We now continue to describe two di�erent grid storage formats that use hierarchical

compression. Although di�erent in practice, in this text we focus on their similarities
in order to increase readability.

5.5.1 �e dt-grid and h-rle data structures

�e dynamic tubular grid (dt-grid) is one data structure that recursively compresses
indices hierarchically [58, 59]. We brie�y describe the 2d version of the data structure
here. For more information see the original paper.
In a dt-grid segments inside the narrow band that have consecutive indices are

called connected components; these are encoded with start and end values, see Figure
5.6(a). �e connected components along a speci�c dimensions de�ne a projection col-
umn. An n-dimensional dt-grid is formed by the recursive application of projections.
In two dimensions this amounts to a set of projection columns formed along the y-axis,
and a single projection row along the x-axis.
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�e dt-grid for our test matrix (5.5) is

values: {5, 7, 2, 1, 2, 8, 3} (5.8a)
projection col. in x: {[0, 4]} (5.8b)
projection cols. in y: {{[0, 0], [3, 3]} , {[1, 2]} , {[2, 2]} , {[2, 3]}} (5.8c)

A projection column, indicated by the double curly braces, is a list of lists. �e actual
memory storagemust, in addition to the components themselves, also store the number
of connected component inside each projection column.

�e Hierarchical run-length encoded grid (h-rle) was proposed in [41] as a
versatile design for level-sets when used in computer graphics. It bears resemblance to
the dt-grid data structure above, but it also has some quite di�erent characteristics,
as discussed in [41]. �e h-rle is based on the compression of consecutive index
segments, called runs. A run is composed of a start index and a count value encoding
the number of consecutive grid points along the segment.2 Let a run be encoded by a
start index x and a count number n giving a set of indices with start position x and in
total n consecutive elements, i.e. [x , x + n) = {x , x + 1, . . . , x + (n − 1)}.
A run in itself is dimensionless, the run [1, 4) stores the indices {1, 2, 3}, but does

not reveal their dimension. In an h-rle-grid the run-length encoding is applied
recursively to all dimensions in order to achieve the most e�cient compression, see
Figure 5.6. �us, in 2d, each column is compressed as a set of runs, and their reduction
on the x-axis is stored as the resulting single set of runs.
In two dimensions the h-rle grid for the example matrix in Equation (5.5) is

stored as a list of values together with two lists of runs:

values: {5, 7, 2, 1, 2, 8, 3} (5.9a)
x-runs: {[0, 5)} (5.9b)
y-runs: {{[0, 1), [3, 4)} , {[1, 3)} , {[2, 3)} , {[2, 4)}} (5.9c)

In this presentation the di�erence between these two grids is very small, and
in the implementations used for this chapter their performance is similar. �is is
also supported by the small test case in Figure 5.7. When it comes to random access
both h-rle and the dt-grid provide additional acceleration structures that allow for
logarithmic access.

5.6 blocked storage

In sparse linear algebra blocked matrices are well known. In the level-set community
their use was �rst suggested in [10] but no actual results were shown. Recently, a
blocked storage for lsm, dubbed the db-grid, has successfully been used in visual
e�ects production [52, 55, 56] but no benchmarks are yet reported.

2. We here only consider the compression of indices which is a slightly simpli�ed view.
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Using the example matrix from Equation 5.5 and re-writing M in 2-by-2 blocks
with zero blocks denoted with ∗ we get:

Mb =
⎛⎜⎜⎜⎜⎝
(5 2
0 1) ∗

(0 0
7 0) (2 8

0 3)
⎞⎟⎟⎟⎟⎠
. (5.10)

We can now treat the blocks as a coordinate grid, an h-rle-grid, or any of the other
grid types above. To exemplify we store the block coordinates together with the values
in the non-zero blocks as a blocked coordinate storage matrix

values: {5, 0, 2, 1, 0, 7, 0, 0, 2, 0, 8, 3} (5.11a)
coordinates: {(0, 0), (0, 1), (1, 1)} (5.11b)

Here we let the sub-blocks be implicitly de�ned as every four entries in the value array.
�e block storage explicitly stores a relatively large number of super�uous zeros for
this test matrix. �is is called the �ll-in of the matrix. For a �xed block size and large
matrices, however, this number becomes small when compared to the total number of
blocks.
Block storage has many favourable traits. Indices are e�ciently compressed by the

implicit storage order inside each block. �e scheme is relatively simple to implement
because of its regularity. Additionally, random access can be readily accelerated. For
our test matrix, a single matrix with size 2× 2 (full matrix side length divided by block
size) holding pointers into the block storage provides constant time random access to
the data.
However, if such an acceleration structure is used on top of the blocks the fully

sparse traits are lost and the memory no longer scales linearly with the size of the
interface.

5.7 efficient usage of sparse data structure

Above, we described the storage schemes for some sparse data structures. To use
these data structures in level-set simulations more aspects need to be considered. For
example, during a simulation step all grid points in the band need to be visited and
updated. �e best way of doing so adheres to the underlying 1d storage in memory
and sequentially visits all grid points. Given a constant time memory access, O(1),
the optimal complexity for doing so is linear, n ⋅ O(1) = O(n). Generally, we cannot
expect fast random access to points in a fully sparse grid. �erefore, more elaborate
designs are needed.
Additionally, the sparse grid needs to move to keep up with the shi�ing simulation

domain. �is must be done carefully in order not to have a negative impact on the
overall e�ciency.
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Figure 5.7: Relative plots of time versus the total number of grid points for successively
larger grids (a) Sequentially visiting all grid points. (b) Performing 10 steps of dilation by 1
grid point each.

Fast grid point access in simulations

An iterator encodes a position in the grid, i.e. its indices and its value, and provides
methods that move the iterator over the grid. A sequential forward iterator, limits
movement and can only increment the position one grid point forward at a time. If
the data structure supports this construct well, visiting and updating the grid can be
done e�ciently without relying on fast random access.
For all the grids above an iterator can be constructed which has a constant time

increment operation, O(1). When visiting all the n grid points with such an iterator
the total cost becomes linear, n ⋅ O(1) = O(n). Still, the cost for iterating over a more
complex grid is considerable. Figure 5.7(a) show some plots where the time for iteration
over successively larger grids is related to the total number of grid points in the band.
In this case the trivial iteration over a coordinate grid is signi�cantly faster than both
the dt-grid and h-rle, at the cost of a larger memory footprint.
In addition to sequential iteration, access to grid point neighbors is ubiquitous in

simulation. See for example the computational stencils of the di�erential operators in
Figure 4.4. If random access is slow, this will have large impact on the overall times and
even computational time complexity. To e�ciently access grid point neighbors during
sequential access a synchronized stencil of iterators can be used. If the synchronization
operation for the dependent iterators with respect to the base iterator is constant then
linear time sequential stencil access can be achieved. �is is a delicate subject; more
information is available in [41, 58, 59].

5.7.1 Maintaining a sparse data structure

Two important features of the dense grid storage in the original narrow band data
structure are 1) the ability to query points outside of the narrow band, and 2) the ability
to perform fast, constant time, random access. With a fully sparse grid this is no longer
possible. �e existence of the mask additionally simpli�ed the rebuild process. A
sparse data structure is more di�cult to maintain, and especially the rebuild procedure
(Listing 3) becomes complicated.
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Even though the grid points outside of the band has been discarded some of the
“lost” information can be recovered. When moving the tubes and inserting new points
the magnitude of a point is known to be ±γ since the level-set values are clamped. Also,
the sign can be deduced from the neighbors, sgn(ϕp ,q) = sgn(ϕ i , j). �is is correct for
all grid points su�ciently far from the interface.
It is inherently more di�cult to perform the dilation step for fully sparse grids

because the process needs access to grid points outside of the band. �e method
in Listing 4 was proposed with this in mind. For a hierarchically compressed grid
it is more e�cient because it can consider the dilation to take place on the level of
segments only. Additionally, the dilation is applied recursively, that is �rst, the set
of row-segments (1d) are dilated, and then the set of column-segments (2d). See
[58, 59] for more information. We compare this method, using both the dt-grid and
the h-rle data structure, to the optimized rebuild method in Listing 3. �e results are
shown in Figure 5.7(b). It might be surprising that the optimized rebuild is the slowest,
and in addition seem to scale worse than the complex, sparse method in Listing 4.
However, this is a result of bad cache coherence in the optimized method. Because the
grid points in the coordinate list are not sorted, data access is bound to get more and
more scattered. �is e�ect is more pronounced for large grids.

5.8 conclusion and future work

�is was a short introduction to some of the data structures used in this thesis. We
hope that the reader has been given some intuition for how they perform with respect
to memory footprint and speed.

�e main message in this chapter is that it is clear that there is always a trade
o� between memory and speed. �e reduction in memory footprint comes at the
cost of slower access to grid points. For more information, and considerably more
benchmarks, we direct the interested reader to the papers [41, 58, 59, 61].

5.8.1 A special note on blocked grids

�e point being made about the trade-o� between memory size and speed is asymp-
totically well motivated. However, for some size ranges the blocked grids seem to be
an exception to the rule. If the acceleration grid holding pointers to the individual
blocks �ts well in memory, then the blocked grid retains fast random access without
a severely large memory footprint. No benchmarks are yet published using blocked
grids in lsm, but at least the db-grid [52, 55] is under active development, and we
expect data to be reported shortly.
Moreover, when random access is less important, the blocked grid can be combined

with any of the other topology compressing schemes presented above producing new
and interesting data-structures.
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CHA P T E R 6

G EOD E S I C D I S TANC E

Geodesic distance measures the length of closest paths in space. A geodesic is
a generalization of a straight line to curved spaces (manifolds) and describes

the shortest path between two points. Distances and geodesics can be used for many
things: path planning, image analysis, the description of geometrical properties to
name a few.
In this chapter we extend some of the ideas from article [64], which presented

an e�cient way to compute approximate distance functions, or distance maps. �e
preliminary results presented here are expository and references may not be complete.
Still, we consider these �ndings interesting enough to be included.
We �rst show how to compute distance in a three dimensional Euclidean space

and outline an approach applicable for n dimensions. �en a method for computing
intrinsic distances in a manifold is proposed, which complements our work in [16].
We end the chapter by showing how to let information �ow out from an interface
along the characteristics of the implicit function using only minor modi�cations of
the algorithm in [64].

6.1 introduction

Geodesic distance in a manifold Ω is de�ned as the metric d ∶ Ω × Ω Ð→ R that
measures the length of the minimal continuous path γ connecting two points a and b
in Ω, i.e.

d(a, b) = min
γ⊂Ω ∫γ

ds. (6.1)

Di�erent metrics on Ω can be considered by the choice of distance element ds. In
article [64] we focus on the computation of distance maps ϕ(x)with respect to a source
set S ⊂ Ω, such that

ϕ(x) def= d(x , S), x ∈ Ω. (6.2)

�ese maps, or distance transforms, holds distances from all points x in the domain Ω
to the source S. See [23] or [7] for some early work in this area. Today, distance maps
are o�en found as the viscosity solution to the eikonal equation

∥∇ϕ(x)∥ = 1. (6.3)

�is is a well known approach and several methods for e�ciently computing ϕ(x) in
di�erent settings exist, see [44, 65, 75] and references therein.
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Figure 6.1: (a) �e distance value at a vertex i is updated from all triangles Ti jk in the
one-ring of i. �e update value is given by the geometry of Ti jk and the distance values at
vertices j and k. (b) In 3d a grid can be split into tileable tetrahedra. �e grid points are
located at the cube corners.

6.1.1 Outline of the method

Ourmethod is not based on the commonHamilton-Jacobi discretization of the eikonal
equation, instead we rely on the integral formulation in Equation (6.1). �e method
works by iteratively updating distance values for the vertices in a triangle mesh and
striving for local optimality. More formally, the distance map is given as the solution
to a dynamic programming problem (dpp), where each update is performed inside
a triangle Ti jk = [v i , v j , vk]. We let the distance value at each vertex v i with distance
ϕ(v i) = ϕ i be updated based on the two other vertices (v j , vk) and their distance values
(ϕ j , ϕk), see Figure 6.1(a). �e method �rst initializes vertices close to the zero-set of
the distance function called S. �en, an e�cient algorithm propagates the solution
outwards. For more information see [64].

6.2 geodesic distance in three dimensions

As suggested in paper [64], it is straightforward to extend our method to higher dimen-
sions. We brie�y outline the process here. In 3d we start by assuming a tetrahedral
mesh, which can be implicitly constructed from an underlying grid if needed. One
such tessellation strategy is shown in Figure 6.1(b).
Following the notation in [64], we denote the local boundary for vertex i with Γi . It

is shaded green in Figures 6.1(a) and 6.2. �e boundary in 3d is the set of all triangles
Ti jk in the generalized one-ring of v i . A particular update, given inside tetrahedra
Ti jk l , has the face Tjk l as its corresponding part of Γi . In 3d the dpp from [64] reads

ϕ i = min
T jk l⊂Γi

Φ i jk l , for i = 1, . . . , n. (6.4a)

Φ i jk l = minv∗∈T jk l
∥v i − v∗∥2 + f (v∗ , ϕ) (6.4b)

ϕ i = 0, for i with v i ∈ S . (6.4c)
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Figure 6.2: �eminimizer is the closest distance from v i to the source (dashed blue). (a)
Using linear interpolation, i.e. approximating a planar source. (b) Using a point source
interpolant and the sphere intersection solution. In 3d the boundary Γ of the tetrahedron
T ′i jk l is the triangle T ′jk l (shaded green). A valid update is required to cross Γ.

We begin by expressing the interpolants proposed in [35, 71] in three dimensions.
First, write a point on a triangular face of Γi in barycentric coordinates, as v∗ =
uv j + vvk +wv l with u, v ,w ≥ 0 and u + v +w = 1. �e three dimensional counterpart
of the linear interpolant from [35] then becomes

flinear(u, v ,w , ϕ) = uϕ j + vϕk +wϕ l , (6.5)

where ϕ i , ϕ j , and ϕk are the current distance values at node i , j, and k. Similarly, a 3d
equivalent of the point source interpolant from [71] can be derived to be

fpoint(u, v ,w , ϕ) = ∥(uv j + vvk +wv l) − s∥2⋮
= √

ϕ2ju + ϕ2kv + ϕ2lw − ϕ2jkuv − ϕ2k lvw − ϕ2j luw , (6.6)

for u, v ,w ∈ [0, 1], and u + v +w = 1.
�is expression also makes use of the known inter vertex distances, ϕ i j = ∥v i − v j∥2.

�e dpp in Equation (6.4) �nds the position v∗ that gives the shortest path from
v i to s by means of minimization. �e length of this geodesic, d(v i , s), is the update
value. For this to be a valid update, we require the geodesic to be contained in the
set formed by the two touching tetrahedra Ti jk l and Ts jk l . In Euclidean space this is
equivalent to ensuring that the geodesic crosses the face Tjk l – the associated subset of
the boundary Γi .
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6.2.1 �e geometric construction

Analogous to the two dimensional case presented in [64], the update value, Equation
(6.4b), can also be found in a geometric setting. �is is done by projecting the vertex
in question on the source set S giving a position s and then measuring d(v i , s). We
do this in an isometric space. Let the tetrahedra Ti jk l be embedded as T ′i jk l ∈ R3.
�is can be achieved by �rst placing v′i in (0, 0) and letting v′j = (d(v i , v j), 0). �en
place v′k such that ∥v′i − v′k∥2 = d(v i , vk) and ∥v′j − v′k∥2 = d(v j , vk). If T ′i jk is a valid
triangle, then place v′l such that ∥v′i − v′l∥2 = d(v i , vk), ∥v′j − v′l∥2 = d(v j , v l), and∥v′k − v′l∥2 = d(vk , v l). If the construction of any of the constituting triangles fail1 or
T ′i jk l does not form a valid tetrahedron, a Dijkstra update,

Φ i jk l = min{d(v i , v j) + ϕ j , d(v i , vk) + ϕk , d(v i , v l) + ϕ l} , (6.7)

is used. Otherwise we can proceed and place s′.
We consider two types of boundary conditions, or shapes of S. When using the

linear interpolant (Equation 6.5) the corresponding source is a plane S′. �e projection
of v′i on S′ is shown in Figure 6.2(a). �is gives the position s′ which subsequently is
used to measure d(v i , s′). As previously mentioned it is required that v∗ lies inside
the triangular face T ′jk l .
For the point source interpolant (Equation 6.6), the boundary is a single point

S′ = s′. Its position is given by a three-sphere intersection, as illustrated in Figure
6.2(b).

6.2.2 Preliminary results

To verify the behavior of the 3d version of the algorithm we have performed a small
convergence study using a proof of concept implementation. We partition the positive
quadrant of the unit sphere into a regular grid and equip it with a metric tensor �eld,
storing a metric tensor, G i , at each grid point. Distances are then computed with
our method to a single point using the point source interpolant. We compare the
results with a state of the art implementation [43] of the classical Hamilton-Jacobi
discretization as originally proposed in [83]. We also compare to the fast marching
type of method in [47].

�e results, shown in Figure 6.3 together with the results from [64], indicate that
our method behaves similarly in 2d and 3d. For Euclidean space our method is exact
to numerical precision. Because of this the results are dominated by round-o� errors
and the l1/n-norm actually grows under grid re�nement, as demonstrated in 6.3(c).
In anisotropic spaces our method consistently has a smaller error than competing
work and seems to perform predictably. However, more tests are needed in order to
fully characterize the three dimensional version of our method. �e proof of concept

1. �e edge lengths must pass the triangle inequality.
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Figure 6.3: We compute distances over part of the unit sphere and plot the mean of absolute
error, l1/n, against the grid step size h for di�erent metrics.

implementation is furthermore relying on a complete tetrahedral tessellation. �e
extra burden of this explicit connectivity information in 3d makes the method less
e�cient, especially since the test is run on a regular grid. For the examples shown
here our method is slower than competing work. We believe this can be helped by an
implicit tessellation strategy that would signi�cantly lower the memory footprint of
the method and thus streamline processing.

Metrics and distances

For completeness, we list the test metrics and their corresponding distance functions
here, the formulas appear courtesy of Anders Brun. �e Poincaré metric:

G = I/(1 − x2 − y2 − z2)2 , (6.8)

with distance function

d(a, b) = 1
2 cosh

−1 (1 + 2∥a−b∥22
(1−∥a∥22)(1−∥b∥

2
2)
) . (6.9)

�e sphere metric:

G = JT J (6.10)

J =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

τ x τ y τ z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.11)

τ = −1/√1 − x2 − y2 − z2 , (6.12)
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with distance function

d(a, b) = cos−1 (aTb +√(1 − aTa)(1 − bTb)) . (6.13)

6.3 an n-dimensional update

We further formalize the geometric update by writing it as a general equation system
in n dimensions, see [64] for the corresponding 2d situation. Assuming that the
tessellation is given in terms of d-dimensional tetrahedra we have d + 1 nodes in each
simplex. For a vertex v i we compute all tentative update values Φ i jk . . . and let ϕ i be
the minimum of these.
We do this by considering the boundary around vertex i (Γi) as the generalized

one-ring of v i ; this is a set of edges in 2d and a set of triangular faces in 3d. First, split
Γi into simplices connected to v i (triangles in 2d, tetrahedra in 3d) and consider each
simplex in turn. Let the nodes of the simplex in question be labeled vk with k from 1 to
d + 1, and let v1 be the node that we want to update. Each simplex that connects to v i
gives a single possible update Φ i jk . . . and the correct update value ϕ i is the minimum
of these.
To make the notation slightly easier to read we let the (single) tentative update

Φ i jk . . . be written as simply Φ. �e dependence of the vertices {v i , v j , vk , . . . } of the
simplex is implicitly assumed. A linear tentative update value, Φ, is then computed as
follows. �e source S′ is a hyper-plane determined by the expression n1x1 + n2x2 +⋅ ⋅ ⋅ + ndxd + p = 0. From projection we get the following equation system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n̂ ⋅ v1 + p = Φ,
n̂ ⋅ vk + p = ϕk , k = 2, 3, . . . , d + 1∥n̂∥2 = 1,

(6.14)

where n1 , n2 , . . . , nd , p, and Φ are d + 2 unknown variables in d + 2 equations. �is
allows to solve for the tentative update value Φ.
For the point source interpolant the system becomes nonlinear. Let the position of

the point source be denoted by s = (x1 , x2 , . . . , xd). Using the equation of the circle
(or n-sphere) we get the next system of d coupled equations

(vk − s)2 = ϕ2k , for k = 2, 3, . . . , d + 1. (6.15)

�is equation system has two real solutions if the tetrahedron connecting the boundary
T23.. . with the point s can be constructed. �en, the correct position of s can be
determined as the solution of (6.15) giving the largest length in d(v i , s) – the update
value. If Equation (6.15) has no real solution a Dijkstra update is used.
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Figure 6.4: Intrinsic distance between two points in a manifold embedded in R2 . (a) �e
interface (blue) in its narrow embedding. (b) �e correct geodesics (green) follow the
interface. (c) �e approximate geodesics from [51] (red) are allowed to move freely over
the narrow embedding, i.e. cut corners.

6.4 measuring intrinsic distance

�emethod we propose in article [64] can be used to measure distance on triangle
meshes. When employing the implicit tessellation the method is equally applicable
to lsm data on grids. In this case it can be used to, for example, re-initialize a signed
distance function.
However, our method can also be used to measure intrinsic distance in manifold,

that is distances along the interface, as we explain here. In [51] distances were computed
over implicit surfaces by considering the intrinsic Hamilton-Jacobi equation

∥∇Sψ(x)∥ = 1, (6.16)

where ∇S measures the intrinsic, or projected, gradient. We let ψ be the distance
function in the manifold to di�erentiate it from the distance function over the em-
bedding (normally denoted ϕ). �e method in [51] does, in fact, not use Equation
(6.16) but rather employ the standard extrinsic gradient (Equation 6.3) and instead
constrain distance computations in a small band around the interface. �ey show,
under assumptions on the smoothness of the interface, that the extrinsic distances
converge to the intrinsic ones under grid re�nement. See Figure 6.4 for a depiction of
the situation.
We can easily apply their technique with our algorithm and compute intrinsic

distances. However, we can also see the embedding space as an anisotropic medium in
which geodesics travel along level-sets only, i.e. the gradient of the level-set function ϕ
should be orthogonal to the gradient of ψ. �is is the same as to say

∇ϕ(x) ⋅ ∇ψ(x) = 0. (6.17)

�is relation alone is not su�cient, in order to get the correct length of each geodesic
we also need the relation in Equation (6.16). �e following matrix de�nes a metric
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(a) (b)

Figure 6.5: Level-curves of approximate geodesic distance functions de�ned over a narrow
embedding. (a) �e distance function is constrained to not change in the direction of the
gradient using the metric from Equation (6.18). (b) Using the technique from [51] together
with our distance method for point sources.

tensor which is approximately satis�es Equation (6.17) and also has unit cost along the
interface:

G = ⎛⎜⎝
⎡⎢⎢⎢⎢⎣
( ∂ϕ∂x )2 ∂ϕ

∂x
∂ϕ
∂y

∂ϕ
∂y

∂ϕ
∂x ( ∂ϕ∂y )2

⎤⎥⎥⎥⎥⎦ + є I
⎞⎟⎠
−1

. (6.18)

�e addition of a small fraction of the identity matrix I ensures that the expression is
invertible. In Figure 6.5 we show some examples illustrating the intended use. From a
visual inspection our constrained approach gives geodesics that better adheres to the
intrinsic distance function. Numerically, the data also suggest that our novel approach
is valid. However, more work is needed before conclusive remarks can be made.

6.5 extrapolation

If a quantity is only de�ned on the interface it can be “extended” outwards over the
embedding by transporting it along the characteristics. �e following Hamilton-Jacobi
equation

∂e
∂t

+∇e ⋅ n̂ = 0, (6.19)

can be used to extrapolate the scalar quantity e along n⃗ . When run to steady state
the quantity e does not change in the normal direction and the goal is thus achieved
[27]. See Figure 6.6 for a visual illustration of the technique. In the static boundary
formulation in [1], Adalsteinsson and Sethian instead rely on the static orthogonality
property ∇e ⋅ n̂ = 0, (6.20)

to e�ciently extrapolate quantities within their fmm algorithm.
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Figure 6.6: An illustration of how the extrapolation technique transports a quantity de�ned
over the interface (black) outwards along the geodesics.

S
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e1
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v∗

vi
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vk

Figure 6.7: Extending a quantity out from a piecewise linear source S (blue). We seek the
extension value e i . From the relation ∇e ⋅ n̂ = 0 we see that e i = e(v∗). With a linear
scheme it is reasonable to assume that extension values vary linearly between [v j , vk] and
e i = f (t, e) = (1 − t)e j + t ek .

6.5.1 Extrapolation based on interpolation

In our proposed algorithm [64], each distance value is computed from two neighboring
vertices in 2d, see Figure 6.1(a). An extension quantity can be transported within
the algorithm by letting the nodes also carry an extra value. We let each vertex v i
be associated with an extension value e i and assume that the nodes that lie on S are
initiated. From the relation in Equation (6.20) we see that e i = e(s) = e(v∗). We
extend the dpp in Equation system (6.4) with the following line

e i = e(v∗) = f (v∗ , e), (6.21)

in order for the algorithm to also consider an extrapolated quantity.
When a linear interpolant is used, the distance at position v∗ on the edge [v j , vk]

is given by the expression

f (v∗ , ϕ) = f ((1 − t)v j + t vk , ϕ) = (1 − t)ϕ j + t ϕk . (6.22)
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�e corresponding extension value becomes

e i = f (v∗ , e) = f ((1 − t)v j + t vk , e) = (1 − t)e j + t ek . (6.23)

For a geometric depiction see Figure 6.7 and 6.9(a).
�e examples and discussion so far have assumed a linearly shaped source. With a

point source on the other hand, multiple choices for how to interpret the situation are
given.
First, there is the possibility to consider e to be angularly independent, that is

e i = e(s). �is is maybe most relevant in the case where we have several point sources.
�en, the extension quantity can be used to, for example, di�erentiate betweenVoronoi
regions.

�e second possibility is to let the extension value be dependent on angle. To
achieve this we assume that a small set of extension values around s are known, or
can somehow be initialized2. We then extend these outwards, see Figure 6.8. In this
scenario, we are also faced with the choice of interpolant. �e original point source
interpolant from [71] is not applicable. �e linear interpolant is a possible prospect,
but, when there is a dependence on angle a spherical linear interpolation seems more
appropriate, see Figure 6.9(b). �is interpolant also has the advantage of interpolating
angles with numerical precision in the plane.

A modi�ed algorithm

Every call to the update sub-routine in our algorithm identi�es v∗ as the intersection
of the line segments [v i , s] and [v j , vk], see Figure 6.7 and 6.8. �is also implicitly
gives the corresponding parameter t. If we let the causality of the extension values
exactly follow that of the vertex distances it is straightforward to modify our algorithm

2. �e exponential map around vertex i can be used to initialize the one-ring of i, see [28].
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Figure 6.8: If the source is a point we consider two options. Either the point in question
gets the extension value at s, that is, e i = e(s). Or, we interpolate a set of known extension
values around s outwards. �en, we get e i = f (v∗ , e). What type of interpolant f should
be depends.

for extrapolation. With only minor changes of the original update algorithm in [64],
we get

Input: v i , ϕ, e, f
foreach [v j , vk] ∈ Γi do1

Place T ′i jk in R2 using inter-vertex distances2

Use ϕ j , ϕk , and f to also place s’3
if s′ can be placed and [v′i , s′] crosses [v′j , v′k] then4

Φ i jk ← d(v′i , s′)5
E i jk ← f (v∗ , e)6

else7
if d(v i , v j) + ϕ j < d(v i , vk) + ϕk then8

Φ i jk ← d(v i , v j) + ϕ j9
E i jk ← e j10

else11
Φ i jk ← d(v i , vk) + ϕk12
E i jk ← ek13

if Φ i jk < ϕ i then14
ϕ i ← Φ i jk15
e i ← E i jk16

return {ϕ i , e i}17
Listing 6: A modi�ed update sub-routine that also propagates extension values.

As in the original paper we let d(x , y) be the geodesic (shortest) distance between
the two points x and y. In Euclidean space d(x , y) = ∥x − y∥2.
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Figure 6.9: Interpolating extended values f (v∗ , e) along the edge [v′j , v′k]. (a) When
distance values are approximated with a linear interpolant it is reasonable to assume that
the extended quantity also should be linearly interpolated. �at is, t = l j∗/l jk and f (t, e) =
(1− t) e j + t ek . (b)When the point source interpolant is used a spherical linear interpolant
is o�en more appropriate. �en t = a j∗/a jk = α j∗/α jk and f (t, e) = (1 − t) e j + t ek .

78



i
i

“thesis” — 2009/10/20 — 21:08 — page 79 — #95 i
i

i
i

i
i

CHA P T E R 7

PA R AME T E R I Z AT I ON

Texturing of surfaces is an important technique in computer graphics. It works
by mapping images onto geometry as shown in Figure 7.1(a). �is allows ge-

ometry to appear more detailed than it actually is. In some cases it is impossible to
model geometry at the same “apparent” resolution that a photograph mapped on a
coarse geometry gives. At other times, geometry with too much detail makes practical
operations painfully slow or impossible altogether. �us, the texturing of surfaces in
computer graphics has become an indispensable tool to compress data and increase
realism.
Volumetric texturing is an extension of the texturemapping idea. Lately, interesting

work in this �eld has been proposed, see for example [13, 70]. In these cases the idea is
make a base surface seem more detailed by adding geometric textures. An example of
this is shown in Figure 7.1(b).

7.1 introduction

Much of the previous work, see for example the survey in [29] or the thorough intro-
duction in [39], focus on creating a mapping which minimizes some speci�c error
metric. Another well known, but “�xed”, mapping is the exponential map, which
uses geodesics as its coordinates. Because of the minimizing nature of geodesics the
exponential map is well suited for parameterization. It can been used to parameterize

(a) (b)

Figure 7.1: Di�erent forms of texture mapping. (a) An image of a coordinate system is
mapped onto the bunny. (b) Volumetric, also called geometric, texturing. Sea star geometry
is mapped onto the surface of the bunny, image courtesy of Anders Brodersen.
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the one-ring around a vertex in a mesh [28, 38]. In [73] a method for computing the
exponential map over a local surface neighborhood was proposed. In article [16] we
propose a di�erent numerical technique for approximating the exponential map, or
rather, its inverse the logarithmic map. Our work displays similarity to [17] but has
been signi�cantly adapted to produce accurate mappings usable in computer graphics.

7.2 the logmap framework

�e log map assigns coordinates to each point in space with respect to a base point
p through geodesics. If an orthonormal basis is used these coordinates are called
Riemannian normal coordinates (rnc).
In [17], see also the paper [16], it is shown that the logarithmic map, logp(x) can

be computed from the gradient of a geodesic distance function

logp(x) = − 1
2
∇yd2(x , y)∣

y=p
. (7.1)

when x ≠ p. �is is a well known expression, see e.g. [81]. Since ∥∇d(y, x)∥ = 1 and
thus bounded, according to the eikonal equation (4.12), Equation 7.1 is well de�ned
also in the limit when x = p. However, on the cut locus of p geodesics are not unique
and the gradient of the distance function is unde�ned [69].
In order to obtain a discrete log map for a set of points in a mesh, the di�erentiation

and distance calculation must be evaluated numerically. Some more intuition for the
formula can be found by dividing the expression slightly

logp(x) = − 1
2
∇yd2(y, x)∣

y=p
= − d(x , y)´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

distance

∇yd(x , y)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
direction

∣
y=p
. (7.2)

From this we see how the log map is built from geodesics. �e coordinates are con-
structed from a direction, which in Euclidean space identi�es a geodesic, and a distance
along the geodesic in question. An analogy, the polar coordinate system, is depicted in
Figure 7.2. Here, the geodesics are given by an angle (or direction) (a) and a distance
(b).
To get some hands-on experience with the log map coordinates, we can test the for-

mula analytically in the Euclidean plane. �e distance function is d(x , y) = ∥x − y∥2
and we set p = 0. �is yields

logp(x) = − 1
2
∇y(∥x − y∥2)2∣

y=p

= − 1
2
(2y − 2x)∣

y=p= x − p= x .
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parameterization

(a) (b) (c)

Figure 7.2: (a) Iso-lines for angles with respect to the origin (blue). (b) Iso-lines of the
distance to the origin. (c) Together these two “coordinates” comprise a polar coordinate
system.

We see that the rnc given by the log map are unique (up to the choice of coordinate
frame). �e parameterization of the plane is moreover isometric, i.e. distortion free.

7.3 efficient computations of the logarithmic map

Paper [16] describes a generic approach to �nding the logarithmic map in a manifold
where distances can be computed. It is based on the averaging and di�erentiation
of several distance functions and is shown to converge under su�ciently accurate
distance estimates. We have used the method by Reimers [71] to compute distances.
�is method is superior when computing distances between points, see our discussion
in [16], and also [64]. Reimers’ method does not have a hard bound on its asymptotic
run time complexity; but, in practice it scales with O(m ⋅ log n) where n is the number
of nodes and m ≈ n.
In ourmethod, the numberof estimates to the distance function is constant and thus

asymptotically optimal. However, the overall time is predominantly spent computing
distance maps. Hence, there is still room for improvements, with a potentially big
speed-up. In the examples in [16] we have used three, six, or more distance maps.

7.3.1 Parameterization by extrapolation

In Chapter 6 we show some preliminary results regarding distance computations in
Euclidean and anisotropic spaces in two and three dimensions. Among other things
we note how to use the proposed method in [64] to extrapolate values away from an
interface by letting each geodesic transport a subordinate value along its path. �at
approach is now used as a parameterization technique, and we consider two di�erent
scenarios.
First we parameterize a surface with respect to a base point, p. �is is the classical

setting and can be used to �nd local parameterizations used for decal compositing,
etc.. When using an orthonormal basis the parameterization is given as a coordinate
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(a) (b)

Figure 7.3: Using scalar extrapolation to parameterize the plane with respect to a base point
(lower le�). (a) Iso-lines of the coordinates (r, θ), where the angle is initialized from a
small set of nodes (blue) close to the base point. (b) Color coding of the mips error metric.
Blue – low distortion, to red – high distortion. In this example the accuracy of the distance
component is on the order of 1e−16, for the angular component it is on the order of 1e−10.

system called Riemannian normal coordinates. �e second scenario concerns the
parameterization of the embedding of an interface. �is coordinate system is, if or-
thonormal, called Gaussian normal coordinates (gnc). For this class uses such as the
shell mapping in [70], or the geometric texturing in [12, 13], are applicable. Another
interesting application was proposed in [15] where skeletons were extracted using a
clever algorithm for computing gnc.
Both the coordinates systems above exist in arbitrary dimension and our examples

readily translates as well. For more information on the, in di�erential geometry, well
known Riemannian and Gaussian coordinate systems, see for example [85].

Parameterization around a point

Only minor alteration of the original method are needed in order to use the extrapola-
tion technique introduced in Chapter 6 as a means to parameterize a surface around a
point. We �nd an approximate log map in a polar coordinate system, (r, θ) centered in
p, by computing distances and setting r(x) = d(x , p). �e angles are simultaneously
extrapolated from a small set of initiated vertices around p. When using the spherical
interpolant in the extrapolation of angles the accuracy is dominated by round-o� errors,
as seen in Figure 7.3. �e rnc coordinates are given a�er a change to orthonormal
basis.

Parameterization around an object

�e gnc parameterizes the embedding around an interface Γ. Similarly to the point
parameterization technique we approximate the gnc with a coordinate system, (s, t),
where the �rst coordinate s is taken from the closest distance function s(x) = d(x , Γ).
�e second parameter t is extrapolated within the distance computation. For each
node the value is given by t(x) = t(Γ∗)meaning that the parameter value equals the
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(a) (b)

Figure 7.4: Using scalar extrapolation to parameterize the embedding of a line. (a) Iso-lines
of the coordinates (r, s). (b) Color coding of the mips error metric. Blue – low distortion,
to red – high distortion.

Step size h 0.08 0.04 0.02 0.01
Angular error l1/n 1.70e−03 5.83e−04 3.48e−04 1.42e−04

Table 7.1: �e angular error under grid re�nement.

parameter value on the closest point on the interface (Γ∗) as seen from x. �is requires
t to be initialized on, or around, Γ. See Figure 7.4 for an example where the arc length
is used to parameterize the curve Γ and then being extended over the embedding
together with the distance function.
Since we consider Γ to describe an object, and not a point, the linear interpolant is

used both for the distance component and for the transport of the extrapolation value
(e.g. arc length).

7.4 examples

In order to show some of the traits of the proposed parameterization method we now
demonstrate some preliminary results. We begin by presenting a small convergence
test. �e rnc are approximated over the mesh of a partial sphere under re�nement, for
the initial setup see Figure 7.5(a). Tomeasure accuracy we note themean of the absolute
error (l1/n) of the angular component only in Table 7.1 1. �e numbers presented in the
table support the claim that the extrapolation method has the same linear convergence
as the distance computations. For planar regions the angular component, like the
distance, has numerical precision [71], see also Figure 7.3.
To illustrate properties of the parameterization we also plot the singular values of

the mapping (see [16] or [39] for details) in Figure 7.6. �e rnc give a mapping that
is close to isometric in the vicinity of p and the distortion smoothly increases with

1. �e distance coordinate is computed exactly as in [71], where it is shown to converge linearly.
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Figure 7.5: (a) A subset of the unit sphere such that x , y ∈ [0, .7] × [0, .7] and z =√
1 − x2 − y2. �e base point is set to be p = (0, 0, 1). (a,b) �e approximated rnc

is color coded with the mips metric, blue – low distortion, to red – high distortion. Note
how the error grows with distance.

0 0.5 1 1.5
0.6

0.7

0.8

0.9

1

1.1

(a) h = 0.08

0 0.5 1 1.5
0.6

0.7

0.8

0.9

1

1.1

(b) h = 0.04
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0 0.5 1 1.5
0.6

0.7

0.8

0.9

1

1.1

(d) h = 0.02 , exact

Figure 7.6: (a-c) �e singular values (σ1 – red, σ2 – blue) of the approximated rnc on a
partial sphere under mesh re�nement. (d) �e corresponding exact rnc sigmas at the
resolution in (c).

distance, see also the color coding in Figure 7.5. �is behavior is to be expected, and
veri�ed by the exact rnc in Figure 7.6(d). For more characteristics of the rnc see [16].
Figure 7.7 and 7.8 show the gnc of some realistic curves. In areas where the

curve is smooth, the approximated gnc show little distortion, revealing our method
to be a fast and attractive alternative to parameterize embeddings. As expected the
parameterization is highly dependent on curvature. Areas where the level-curves are
convex exhibit rarefaction, and conversely concave regions show compression.

7.5 conclusions and future work

�e parameterization technique introduced in this method seems to have great po-
tential. It is extremely fast to compute, and yet retains the favourable traits of the
rnc and gnc. In fact, real-time parameterizations are possible even for quite large
neighborhoods.
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parameterization

(a) (b)

Figure 7.7: Parameterization of the embedding space for the curve ’G’. (a) For smooth
areas the distortion is low, but for some areas the gnc exhibit strong compression and
rarefaction (b) In those regions the distortion is large in the mips metric.

(a) (b)

(c) (d)

Figure 7.8: Parameterization of the embedding space for a smooth closed curve. (a) �e
curve. (b)�e gnc show low distortion except for at the medial axis according to the mips
error metric. (c) Text is mapped onto the embedding space. (d) A mushroom texture is
mapped repeatedly around the curve.
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On the downside, the strong dependence on the curvature limits the method’s
usefulness too su�ciently smooth regions. However, �ltering and averaging of distance
maps produce better parameterizations in some situations, as indicated in [16]. We
believe that these types of mappings can be used wherever fast local parameterizations
are important. For example, in decal compositing [73], and geometric texturing [13, 70].
An important issue of the linear approximation method proposed here is seen, for

example, in the bottom right region of the letter ’G’ in Figure 7.7. �is region has its
closest point in a sharp convex corner of the letter, which is a point. �is means that
the dependent part of the distance function exhibits nonlinear behavior, and a linear
interpolant is less suitable. A signi�cant advance would be to combine the linear and
point interpolant (together with extrapolation) to better handle such cases.
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