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Abstract

Level sets are dynamic implicit surfaces originally proposed for front propagation in computa-
tional physics by Osher and Sethian [113]. Due to the many advantages offered, including the
ability to describe arbitrary topological changes, level sets have been applied not only in physics,
but also in computer graphics and computer vision. In computer graphics level sets have been
employed as the underlying surface representation in simulations of water, geometric modeling,
shape metamorphosis and many other applications. Among the most resource-demanding effects
in today’s feature films is the simulation of water. Due in part to its advantages in representing
this phenomenon, the level set method has already found wide spread use in the visual effects
industry. As a result, existing level set technology is constantly being pushed to its limits as
the demand for larger and more detailed simulations becomes ubiquitous. In particular three
disadvantages hamper the level set method as originally proposed: Computational inefficiency,
storage inefficiency and the confinement of deformations to a static predefined computational
domain. Previous works have improved on these issues, but storage efficient algorithms tend to
lower the computational efficiency and computationally efficient algorithms tend to increase the
storage requirements. The research presented in this dissertation addresses these limitations. In
particular the contributions fall into three categories: Level Set Representations and Algorithms,
Conversion and enabled Level Set Applications.

Level Set Representations and Algorithms: This dissertation presents the Dynamic
Tubular Grid (DT-Grid), a data structure for high resolution level set simulations not confined
to a static predefined domain (i.e. level set deformations are out-of-the-box ). The time- and
storage-complexities of the DT-Grid scale with the number of grid points in the narrow band
as opposed to the embedding volume, and performance evaluations show that DT-Grid is in
general faster and requires less memory than previous approaches, including octrees, narrow
band methods and a concurrently developed RLE data structure. Additionally the DT-Grid can
take advantage of existing numerical schemes and generalizes to any number of dimensions. This
dissertation also presents the Hierarchical Run-Length Encoded (H-RLE) grid which allows for
greater versatility in the encoding of a level set than the DT-Grid. The H-RLE remains faster
than and comparable to previous methods, but there is a slight degradation in performance
when compared to the DT-Grid, due to the H-RLE’s additional flexibility. Motivated by the
fact that disk space in general offers much higher storage capacity and is two to three orders
of magnitude cheaper than memory, an out-of-core and compression framework for level set
simulations is finally proposed. The framework can be implemented as an extension to the
DT-Grid and H-RLE and out-performs the original DT-Grid, when the DT-Grid must rely on
virtual memory. Furthermore the framework can sustain a throughput of upto 65% on desktop
computers with limited memory resources for simulations requiring several gigabytes of storage
and can also be applied as an offline compressor. The out-of-core and compression framework
allows for level sets of very high resolution and is to the best of our knowledge the first work
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that applies out-of-core and compression methods to online level set simulation.
Conversion: As the data structures presented allow for very high resolution level sets, two

algorithms are proposed for converting the most widely used surface exchange format, polygonal
meshes, into level sets. The first method works in-core and allows for higher resolutions than
previous conversion methods since both its storage and time complexity are linear in the number
of faces of the polygonal mesh and the grid points in the level set. The second conversion
algorithm retains the time- and storage-complexities of the in-core method, but in addition
works out-of-core. In particular this method poses only the restriction that the size of the input
mesh and the size of the output level set must be smaller than the available disk space.

Level Set Applications: The data structures and algorithms presented in this dissertation
enable many applications of high resolution level sets. This dissertation contributes with several
applications including high resolution and out-of-the-box shape deformations as well as out-
of-core shape metamorphosis. In addition several applications using the data structure and
algorithm implementations developed as part of this dissertation are briefly reviewed. This
includes fluid simulation where the DT-Grid and H-RLE can be utilized for representing the fluid
surface, obstacles, particles, fluid pressure, velocities and so on. In doing so the computational
and storage requirements of fluid simulation become proportional to the volume of the fluid as
opposed to the volume of the enclosing bounding box. Several other applications are reviewed,
including volume segmentation, the solution of PDEs on surfaces, geometric texturing, modeling
and animation of snow as well as ray tracing.

The research presented in this dissertation has been adopted in visual effects production,
where some of the data structures are in experimental use in two major companies, and in
academia where other researchers have employed and leveraged on the techniques proposed
here.
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Preface

This dissertation describes most of the research in which I have been involved in the three year
period from August 2003 to July 2006 while being employed as a PhD student at the Department
of Computer Science, University of Aarhus, Denmark. Most of the time I have conducted my
research at the University of Aarhus, but I have had two long-term and inspiring stays abroad.
From September 2004 to March 2005 I visited my advisor Ken Museth at Linköping University,
and from April 2005 to June 2005 I visited the academy award winning visual effects company
Digital Domain in Venice, California. I have also enjoyed teaching at University of Aarhus. In
particular I benefited from teaching with Ken Museth in the course on “Modeling and Animation
with Level Sets” as well as in the course on “Simulating Smoke and Water in Computer Graphics”
where I was the main lecturer.

During the first six months I was involved in writing two papers on work that I had con-
tributed to prior to my PhD studies. The first paper on inverse rendering under uncontrolled
illumination [101] was co-authored by Anders Brodersen and accepted for publication at the
WSCG 2004 conference, where we jointly presented the paper. This paper described results
from our master’s thesis from December 2002 on inverse rendering [100]. The second paper
on mobile augmented reality based on feature tracking techniques [102], was co-authored by
Gunnar Kramp and Kaj Grønbæk, and accepted at ICCS 2004, where I presented the paper.

My PhD application and initial PhD plan outlined several possible projects for computer
graphics, primarily with emphasis on inverse rendering and level set methods. While inverse
rendering remains an interesting field, my recent research has focused only on level set methods.
By choosing this direction of research I have also been fortunate to become more involved in the
interesting work done in the graphics group led by my advisor Ken Museth.

From August 2003 to July 2004 most of my time was dedicated to implementing a state-
of-the-art level set software suite, and designing and implementing the Dynamic Tubular Grid
(DT-Grid). My implementations now form part of the Graphics Group software Library, GGL.
The DT-Grid research was published both as a technical sketch at SIGRAD 2004 [104], where I
presented it, as a technical report at Linköping University [103] and as a paper in the Journal of
Scientific Computing [105]. These publications were all co-authored by my advisor Ken Museth.
My work on the DT-Grid was based on the ubiquitous need for a storage and computationally
efficient data structure for level sets initially recognized by Ken Museth. Ken Museth was a
major contributor in the problem-definition phase of this project and his great overview of the
level set field to some extent guided my research. We had several inspiring discussions along the
way in which Ken Museth provided advice and ideas. During the writing phase from April 2004
to early November 2004, Ken Museth’s expertise played a key role in forming the final shape of
our joint papers.

From November 2004 to January 2005 I worked together with Ola Nilsson and Ken Museth
from Linköping University and Ben Houston and Christopher Batty from the R&D group at
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the visual effects company Frantic Films. The R&D group at Frantic Films had worked on a
level set data structure for computer graphics concurrently with our work on the DT-Grid and
presented their method in a technical sketch at SIGGRAPH 2004 [50]. At SIGGRAPH 2004
Ken Museth also summarized the main features of our DT-Grid in the course on level sets and
PDE methods for computer graphics [12]. In our collaboration we combined the DT-Grid with
part of the work done by the R&D group at Frantic Films to create the Hierarchical RLE Grid
(H-RLE). The work was accepted with major revisions by the SIGGRAPH 2005 committee and
published in the ACM Transactions on Graphics [48] . It also appeared as a technical sketch
at SIGGRAPH 2005 [49] which was presented by Ben Houston and I. My work focused on
developing the actual data structure and algorithms on which I worked in close collaboration
with Ben Houston. I also developed a fast polygon to level set conversion method, was the main
responsible for the benchmarks and was involved in running some of the shape deformations.
My co-authors Ben Houston, Christopher Batty, Ola Nilsson and Ken Museth contributed with
the remaining parts of the work including ray tracing, fluid simulation, robust mesh to level set
conversion and collision detection. The final state of our joint paper benefited from the large
number of authors and we all provided critical perusals and exchanged ideas along the way. Ken
Museth played a key role in the problem-definition, idea-generation and writing phases. His
overview of and expertise in the field to a large extent guided us and significantly improved the
paper.

From May 2005 to early August 2005 I worked on a robust conversion method from polygonal
meshes with holes and self-intersections to high resolution level sets. This project was shelved
due to the start-up of another project, and I did not find time to complete it prior to the
conclusion of my PhD studies. Hence this is still on-going work and I plan to report on this in
a future paper. Both my advisor Ken Museth as well as Doug Roble and Nafees Bin Zafar at
Digital Domain provided helpful discussions in the initial phases of this project.

From September 2005 to June 2006 I worked together with Ola Nilsson, Andreas Söderström
and Ken Museth from Linköping University on compressed and out-of-core (external memory)
level set methods. This research was submitted to ACM Transactions on Graphics in July
2006 [106] and also appeared as a technical sketch at SIGGRAPH 2006 [107] jointly presented
by Ola Nilsson, Andreas Söderström and I. My work focused on designing, implementing and
benchmarking the compression and out-of-core level set framework as well as the out-of-core
mesh to level set conversion algorithm and the out-of-core shape metamorphosis application.
During the course of this project I had many inspiring discussions with my advisor Ken Museth
as well as with my co-authors Ola Nilsson and Andreas Söderström. In particular Ken Museth
and Ola Nilsson provided ideas and performed initial tests that served as an inspiration for the
final compression methods. Whereas I focused on the main framework, Ola Nilsson, Andreas
Söderström and Ken Museth contributed with most of the challenging applications and exten-
sions including fluid simulation, PDEs on manifolds, out-of-core linear algebra and an out-of-core
particle level set method. The problem-definition phase and final state of the paper largely bene-
fited from Ken Museth’s overview and expertise in the level set field, and all co-authors provided
critical comments and corrections throughout the paper.

The papers mentioned above as well as additional videos are available on the CD-ROM
accompanying this dissertation.

First and foremost I would like to acknowledge my advisor Ken Museth. He introduced me
to the exciting research field of level set methods and his enthusiasm, support and hard work
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has been a constant source of motivation for me. Many hours of his time have been devoted
to answering my questions and I have truly enjoyed the privilege of expert advice. I would
also like to emphasize that without his ideas, guidance and expertise the research presented in
this dissertation would not have been possible. Furthermore I am grateful to him for initiating
the contact to Digital Domain and for helping with all the formalities. Secondly I acknowledge
my advisor Kaj Grønbæk at University of Aarhus, Denmark. I am truly grateful to him for
encouraging me to pursue a PhD study in computer graphics and for always being supportive
and showing great interest in my work. Additionally I thank him for providing advice on
research and scientific writing in general. I am also grateful to my collaborators in the graphics
group, Ola Nilsson and Andreas Söderström, for many helpful discussions, for being a source of
inspiration and for allowing me to include images in this dissertation from their work using my
data structure and algorithm implementations. I also thank my collaborators Ben Houston and
Christopher Batty for many discussions, and furthermore I thank Anders Brodersen, Tommy
Hinks and Gunnar Johansson for allowing me to include images from their applications of DT-
Grid in this dissertation. During my two-month stay at Digital Domain I had the privilege of
working with Doug Roble and Nafees Bin Zafar. This stay gave me some insight into the exciting
world of visual effects and knowledge of how computer graphics is applied in practice. What I
learned will always play a role in motivating the applicability of my research. I am particularly
grateful to Doug Roble and Nafees Bin Zafar for always taking the time to answer my many
questions on computer graphics and film-making in general. I also wish to thank Tony Chan,
Stanley Osher and Luminita Vese for giving me the opportunity to speak at a UCLA Image
Processing Seminar in August 2005 and I am grateful to Doug Roble for initiating the contact.
Finally I wish to thank Ole Østerby at University of Aarhus who has provided answers to my
many questions on numerical analysis and partial differential equations.

More concretely I would like to thank Ola Nilsson for help with the renderings in figures 1.4,
1.5, 5.3, 5.8, 5.9, 14.1, 16.1, for providing figures 1.6, 16.2, 16.6, 16.7 and for help with figures 6.1,
10.1, 10.3. I also thank him for allowing me to use his ray tracing plugin for PBRT. Additionally
I thank Andreas Söderström for providing figures 1.6, 16.4, 16.5, Anders Brodersen for providing
figure 16.8, Tommy Hinks for providing figure 16.9, Gunnar Johansson for providing figure 16.10
and Ben Houston for help with figures 6.1 and 6.2. I also thank Ken Museth for help with figure
6.1 and for allowing me to use his Marching Cubes implementation. Finally I would like to thank
Ken Museth, Ola Nilsson, Andreas Söderström, Kaj Grønbæk, Anders Brodersen and Lars Bo
Kristensen for commenting on drafts of this dissertation.

The research presented in this dissertation was funded in part by Aarhus University and
Center for Interactive Spaces under ISIS Katrinebjerg, Aarhus.

Michael Bang Nielsen,
Århus, August 2006.
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Chapter 1

Introduction

The main topic of this dissertation is the development of novel data structures and algorithms
that decrease the storage requirements and increase the computational efficiency of the widely
used level set method. As this research enables level set surfaces of high resolution and detail
to be represented and simulated, methods are also proposed for converting polygonal meshes,
the prevalent surface representation, into high resolution level sets.

The degree of realism achievable in today’s feature films is astonishing. The techniques in
computer graphics and visual effects are now at a point in evolution where practically everything
that can be imagined can be put to life on the big screen. This has in recent years resulted
in a large number of great epic tales such as “Lord of the Rings” and “Chronicles of Narnia”
as well as catastrophe-movies like “The Day after Tomorrow”. Even though the images of our
imagination can now to a large extent be visualized it does require the skills of very talented
and hard working artists exploiting existing technology to its maximum. Hence, researchers in
computer graphics still face a fair amount of challenges. The basic research areas within the
field are well established, and each area holds unique problems. Some techniques are too time-
and/or memory-demanding to be compatible with the ever decreasing post production time and
limited resources available. Some techniques only work in laboratory settings and others still are
too hard to control in order to achieve the desired artistic expression. This means that graphics
researchers in many cases must now focus on improving the efficiency and lowering the resource
requirements of existing methods, thereby increasing the scale and detail achievable. In many
cases this entails taking advanced and entirely new mathematical and algorithmic approaches
to the problems posed.

The request for more efficiency also arises frequently in the rapidly evolving gaming industry
that continues to challenge contemporary techniques as the demand for more realistic games
becomes ubiquitous. Even though the gap between real time and offline graphics techniques is
decreasing, efficient and less resource demanding effects are more likely to become feasible for
game-console implementation in the near future.

Part of the success of computer graphics in recent challenging feature films can be attributed
to the use of physically based rendering and simulation. The level set method [113], originally
developed for front propagation in computational physics, is an example of this. Technically
speaking, level sets are dynamic implicit surfaces controlled by a set of partial differential equa-
tions that describe the motion or dynamics mathematically. These partial differential equations,
or PDEs, are in general referred to as the level set equations. As opposed to many traditional
surface representations level sets pose no restrictions on the degree and complexity of topologi-
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2 Chapter 1. Introduction

Figure 1.1: Screen shots showing level set based fluid simulations in recent feature films: Top
left: A robot tips over and clashes with the sea. From The Incredibles. c©Pixar. Top right: The
New York Public Library being flooded in The Day after Tomorrow. c©Twentieth Century Fox.
Bottom: The melting terminatrix in Terminator 3. c©Warner Bros. Pictures.

cal change and can by construction not self-intersect. Hence, being ideally suited for physically
based simulation of dynamic surfaces such as free surface fluids [35, 37] the level set represen-
tation has achieved wide spread use not only in the area of computational fluid dynamics, but
also in computer graphics and entertainment such as movie visual effects. Computational fluid
dynamics and engineering applications of level set and fluid simulations rely on the numerical
accuracy and explicit error control offered by these methods. The visual effects industry on the
other hand is more concerned with the visual expression. In fact, visually convincing simulation
of water is one of the most demanding effects of today’s feature films. The success of computer
based simulations of water for visual effects is attributable in part to its flexibility: A director
can choose the appropriate view points and camera paths after the simulation has been per-
formed in order to obtain the most suitable look. This is not possible with the alternatives that
also break down in other cases: Miniature water often looks fake due to surface tension, and
owing to the scope of the desired effects, large scale physical water is in many cases simply not
an option.

Since a major utilization of the level set method in computer graphics has so far been water
and other types of fluid simulations it is used as an example throughout this chapter. However, it
is stressed that level sets have been applied successfully in many different and equally important
areas such as for example geometric modeling [96], including shape metamorphosis [14]. Related
fields like computer vision and visualization have also benefited from the level set method which
for example has given rise to new methods in the area of volume segmentation [160] that e.g.
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segments internal structures such as organs from scannings of animals and humans.
Figure 1.1 illustrates the use of level sets for simulating fluids in three recent feature films,

“The Incredibles”, “The Day after Tomorrow” and “Terminator 3”. Other films that have
exploited the advantages of level set methods include, but are not limited to, “Pirates of the
Caribbean”, “Peter Pan”, “Shrek” and “Scooby Doo 2”.

(a) (b)

Figure 1.2: This figure shows two stages in the creation of a shot from “The Day after Tomor-
row”. c©Twentieth Century Fox. (a) The raw low resolution output from the level set based
fluid simulation. (b) The final composite with particle and texturing effects applied.

The ubiquitous use of the level set method clearly manifests its importance not only in
computational fluid dynamics but also in computer graphics and visual effects. However, the
unique advantages of level sets come at a price. In particular the original level set method
[113] is inefficient in terms of memory consumption and is computationally expensive as well.
Additionally, the simulation of fluid pressure and velocity needed when utilizing the level set
method for fluid surfaces is hampered by the same limitations. Looking at the screen shots
from “The Day after Tomorrow” present in figure 1.1, the foam, the ripples, the debris and the
splashes as the waves collide with the buildings are all at a very high level of detail. Most of
these details are however added as a post-process by artists utilizing sophisticated texturing and
particle effects. The underlying level set simulation is in fact very coarse and provides only a
basis for the artists to work with. Figure 1.2 shows a side-by-side comparison of another shot
from “The Day after Tomorrow”. The image on the left shows the raw level set based fluid
geometry as output by the simulation, and the image on the right shows the same geometry
after post-production. The output from the simulation exhibits only a low degree of detail and
exposes one of the limiting factors of level set simulations in production and research: Their low
resolution. This property which results in lack of detail in contemporary level set simulations is
to a large extent ascribable to the storage inefficiencies of existing techniques in use today.

The inefficiencies of the original level set method [113] arise in part because a level set surface,
or interface, is in fact embedded in a volume and sampled on a dense uniform lattice known as a
grid. Both storage and computational requirements of this grid scale as L3 in three dimensions,
where L is the side-length, or equivalently the number of grid points along each axial direction, of
the grid. L3 will generally be referred to as the resolution or dimensions of the grid. Obviously,
the requirements should rather scale with the area of the surface itself. Similarly, when utilizing
level sets for fluid simulation, the fluid velocity and pressure are typically represented on a grid.
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While these quantities are inherently volumetric they are typically only required in the fluid
interior. Hence ideally the storage and computational requirements imposed by these quantities
should scale with the volume of the fluid as opposed to the volume of the enclosing grid.

Another inherent problem of the original level set method is that deformations are confined
to stay within the boundaries of a static predefined grid. In practice it means that the extents
of the grid in which the deformation is taking place must be determined prior to the execution
of the simulation. Not only may these extents be difficult to estimate but they may also lead to
an even higher memory usage if the deformation is taking part in a large region of space, since
the entire grid must be allocated at once.

Based on the observation that only grid points in the vicinity of the level set surface are
significant for computing its movement, a number of researchers have proposed so-called nar-
row band methods [1, 108, 120, 161] that successfully address the computational overhead of the
original level set method. In particular these methods in general make the computational re-
quirements scale with surface area by restricting the solution of the level set equations to a
narrow band of grid points centered about the surface. Even though the narrow band methods
do indeed increase the computational efficiency, they all incur additional storage overhead due
to the introduction of auxiliary data structures that track the narrow band.

Even at relatively low resolutions, the storage requirements of a dense uniform grid are
limiting. This has the consequence that simulation on higher resolution grids is rendered impos-
sible. As an example, a grid of dimension 5123 storing single precision floats in itself requires
half a gigabyte of storage. Additionally, multiple grids, including scalar and velocity fields,
are often needed in memory during simulation. This usually makes it practically infeasible to
run a level set simulation on a grid of these dimensions even when given a computer with one
gigabyte of physical memory. As a result, previous research has only employed level sets at rela-
tively low resolutions. In [96] from 2002, for example, the largest model has effective resolution
356×251×161. In comparison the largest model demonstrated in this dissertation has effective
resolution 35000× 20000× 11500 and more than 7 billion grid points in the narrow band.

The storage requirement overhead inherent in the original as well as the narrow band level
set methods has been addressed by several authors suggesting the use of octree grids [31, 83,
84, 94, 139–142] instead of dense uniform grids. Although the idea of octree grids is attractive
because this representation decreases the amount of storage necessary, a state-of-the-art octree
implementation tends to perform worse than a state-of-the-art narrow band method in terms of
computational efficiency [48].

The infeasibility of octree structures is also elaborated on by Bridson [15] who as an al-
ternative introduces the notion of sparse block grids. The method of sparse blocks restricts
computations to a narrow band, but the memory consumption may not scale with the size of
the interface.

A more recent approach to decreasing the storage requirements of level sets is based on a
Run-Length Encoding (RLE) of the grid regions outside the narrow band [50]. This method -
developed concurrently with the work presented in this dissertation - does however not perform
as well as techniques presented in this dissertation, both in terms of memory consumption and
computational efficiency [48].

Altogether the issues identified above impose limitations on the scale and amount of detail
achievable with existing methods. This is a problem since engineers, graphics researchers and
artists in fact all desire to run simulations at higher resolutions: The engineers for improved
numerical accuracy and the graphics researchers and artists for improved visual accuracy. Hence
we have arrived at a predominant problem in the level set arena: Less storage intensive and more
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computationally efficient data structures and algorithms are required in order to fully utilize the
potential of the level set method. Due to the prevalence of level sets, methods of solution to this
problem will be of immediate interest in a diversity of research areas.

The contributions presented in this dissertation address the limitations of existing level set
methods revealed above. In particular this work takes a computer scientific approach to over-
come the inefficiencies of contemporary level set methods: Instead of attempting to devise new
level set methods incompatible with the existing numerical schemes building on years of exten-
sive research efforts, this dissertation proposes novel data structures and algorithms for level sets
that can take advantage of existing schemes. This allows us to employ techniques such as finite
differences1 known for their robustness, explicit error control and, if desired, high numerical
accuracy. Another benefit of the computer scientific approach taken is that the new techniques
proposed can be integrated into existing level set pipelines with minimal efforts since no changes
are required to existing numerical level set schemes. All the new algorithms and data structures
in this dissertation are evaluated extensively, both qualitatively and quantitatively, and com-
pared to custom implementations of state-of-the-art alternatives, hence forming a strong basis
for the conclusions drawn from our work. Although the details of these evaluations are nuanced,
this dissertation does in particular present data structures and algorithms for narrow band level
set simulations that outperform both octree grids, previous RLE grid and narrow band methods
in terms of storage and computational efficiency. In addition all the data structures proposed
in this dissertation can be used to also represent the volumetric fluid velocities and pressure
hence making the storage requirements of these quantities scale with the volume of the fluid
interior as opposed to the enclosing grid. Since the data structures presented allow for level set
simulations at high resolution, this dissertation also considers and proposes new methods for
converting polygonal mesh representations, which is the most common interchange format for
3D models today, into these high resolution level set representations.

1.1 The Level Set Pipeline

To view the contributions of this dissertation in the appropriate context, an overview of the
work flow associated with a typical level set pipeline is provided in figure 1.3. The contributions
of this dissertation fall into three distinct categories highlighted in color in figure 1.3: Level set
representations and algorithms, repair and conversion and finally enabled level set applications.

Referring to figure 1.3, the terms level set representation and algorithms covers the data
structure storing the level set surface as well as the algorithms used to access the data structure
and deform the data stored. Typical examples of level set data structures are dense uniform
grids, octree grids as well as the data structures proposed in this dissertation. The most widely
employed volumetric embedding of a level set surface is a signed distance field since it offers
numerical robustness and enables optimizations elaborated in chapter 3. Briefly explained the
signed distance field represents a surface by storing at each point in the grid the distance to the
surface multiplied by ±1 depending on whether the grid point is inside or outside of the surface.

On the other hand, the prevalent representation of surfaces in computer graphics is the
boundary surface representation, also called an explicit surface representation, which comes in
the form of polygonal meshes, NURBS, subdivision surfaces and others. The repair and conver-
sion convert boundary surface representations to level sets.Due to the nature of the repair and

1A finite difference is an approximation to a derivative. An elaborate explanation follows in chapter 2.
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Figure 1.3: The level set pipeline. The areas into which the contributions of this dissertation
fall are highlighted in orange.

conversion algorithms they are often referred to as Scan conversion algorithms. The Volumetric
surface representation typically arises when 3D models are generated from CT or MRI scans.
To be amenable for level set simulation a volumetric representation must first be converted into
a signed distance field. Many techniques exist for this task, some of which will be covered in
chapter 3. Applications such as fluid simulation and shape metamorphosis take as input one
or several level sets and utilize an underlying level set method which deforms the surface in
question. The level set method consists of two modules: An advection module that advects or
propagates the surface, and a reinitialization module that reinitializes the level set representa-
tion to a signed distance field after a number of advection steps. Depending on what kind of
level set method is employed, other steps may be performed as well. For visualization, the level
set can be subject to rendering directly by ray tracing, or to conversion into a boundary surface
representation using a reconstruction technique such as for example marching cubes [82]. Finally
the boundary surface representation can be rendered with conventional scan line rasterization or
ray tracing techniques. Note that the level set representations proposed in this dissertation are
directly amenable for ray tracing at speeds comparable to existing methods using conventional
ray leaping techniques [35,48,85], see chapter 15.

1.2 Contributions

I have been the major contributor to the design of all data structures and algorithms proposed
in this dissertation, except for the H-RLE data structure (see below) where I was a major con-
tributor together with Ben Houston. Furthermore all implementations of these data structures
and algorithms evaluated and utilized in this dissertation have been implemented by me. My
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advisor Ken Museth has been a major contributor in the problem-definition phases of all the
contributions in this dissertation, and throughout the process he has provided advice, guidance
and ideas. In the paper-writing phases his expertise and insight into the field have to a large
extent formed the final state of our joint papers. I have also had fruitful discussions with my
co-authors, in particular Ola Nilsson and Andreas Söderström. Consequently I will consistently
be using the pronouns we and our when referring to the origins of the work presented here.

The novel data structures and algorithms presented in this dissertation have enabled several
different applications of high resolution level sets. In particular I have been fortunate that
other members of the graphics group have used my implementations of the data structures and
algorithms in their applications, hence now allowing me to demonstrate the applicability of my
work. Thus when presenting applications of my work I will in many cases be referring to and
showing images from the work of other people.

The work presented in this dissertation is predominantly taken from the following papers on
which I am a co-author:

[105] Michael B. Nielsen and Ken Museth 2006. Dynamic Tubular Grid: An Efficient Data
Structure and Algorithms for High Resolution Level Sets. Journal of Scientific Computing
26, 3, 261-299. (submitted November 2004; accepted January 2005).

[48] Ben Houston, Michael B. Nielsen, Christopher Batty, Ola Nilsson and Ken Museth 2006.
Hierarchical RLE Level Set: A Compact and Versatile Deformable Surface Representation.
ACM Transactions on Graphics 25, 1, 1-24. (submitted January 2005, accepted with major
revisions by the SIGGRAPH paper committee April, 2005, accepted October, 2005).

[106] Michael B. Nielsen, Ola Nilsson, Andreas Söderström and Ken Museth 2006. Out-Of-Core
and Compressed Level Set Methods. (submitted July 2006 and accepted November 2006
to ACM Transactions on Graphics).

This work has also appeared in slightly different form in the following technical reports and
technical sketches:

[104] Michael B. Nielsen and Ken Museth 2004. An Optimized, Grid Independent, Narrow
Band Data Structure for High Resolution Level Sets. Proceedings of SIGRAD 2004.

[103] Michael B. Nielsen and Ken Museth 2004. Dynamic Tubular Grid: An Efficient Data
Structure and Algorithms for High Resolution Level Sets. Linköping Electronic Articles
in Computer and Information Science, 9, 1. (ISSN 1401-9841).

[49] Ben Houston, Michael B. Nielsen, Christopher Batty, Ola Nilsson and Ken Museth 2005.
Gigantic Deformable Surfaces. Proceedings of the SIGGRAPH 2005 Conference on Sketches
& Applications.

[107] Michael B. Nielsen, Ola Nilsson, Andreas Söderström and Ken Museth 2006. Virtually
Infinite Resolution Deformable Surfaces. Proceedings of the SIGGRAPH 2006 Conference
on Sketches & Applications.
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Each chapter in this dissertation explicitly states a detailed description of its contributions.
Below follows an overview of the contributions of the entire dissertation, divided into three
distinct categories: Level set representations and algorithms, repair and conversion and enabled
level set applications:

Level set representation and algorithms

• The Dynamic Tubular Grid (DT-Grid): A data structure and algorithms for high
resolution narrow band level set simulations. Both storage and computational requirements
of the DT-Grid scale with the size of the surface as opposed to the volume of the embedding.
Similar to the level set method, the DT-Grid generalizes to any number of dimensions.
Existing numerical methods can be used with the DT-Grid, and a novel feature is that in
contrast to all previous work the DT-Grid does not have a predetermined bounding box.
In other words, a DT-Grid based level set can expand and contract freely. We name this
feature out-of-the-box. Extensive tests have shown that in general the DT-Grid is faster and
requires less memory than state-of-the-art implementations of octree grids, previous RLE
methods and narrow band methods. Due to the features above, the DT-Grid allows for
level set simulations at high resolutions. Figure 1.5 shows an example of a high resolution
simulation (10243) using our data structure.

• The Hierarchical Run Length Encoded Grid (H-RLE): A flexible data structure
and algorithms for high resolution narrow band level set simulations. This work combines
the DT-Grid with the run-length encoding of the Sparse RLE level set of Houston et
al. [50]. Additionally the H-RLE adapts the DT-Grid algorithms to this storage format.
Whereas the DT-Grid does not store any information on regions outside the narrow band,
the H-RLE employs a Run-Length Encoding (RLE) of these regions. Due to its close
relation to the DT-Grid data structure and algorithms, the H-RLE inherits many of the
properties of the DT-Grid: Its memory and computational requirements scale with the size
of the surface, it generalizes to any number of dimensions, it is compatible with existing
numerical methods and it is out-of-the-box. In addition, the H-RLE offers versatility over
the DT-Grid: Flexible encoding of regions outside the narrow band, adaptive encoding
of the regions inside the narrow band and a decoupling of the numerical values from the
data structure itself. However, for standard narrow band level set simulations, the DT-
Grid remains more memory and computationally efficient than H-RLE but the H-RLE
still performs relatively fast compared to other existing methods. Therefore we stress that
the H-RLE and DT-Grid complement each other. For standard level set simulations the
DT-Grid is preferable, whereas for versatile narrow band encodings, the H-RLE offers
advantages.

• Out-Of-Core and Compression Level Set Framework: A generic framework that
allows level set simulations based on the DT-Grid and H-RLE data structures to take
advantage of statistical compression methods and external memory in the form of disk
space2. In particular the contributions related to external memory are a near optimal
page-replacement algorithm and a prefetching strategy that optimize sequential access with
finite differences to out-of-core level sets. An out-of-core DT-Grid relying on the new page-
replacement and prefetching algorithms out-performs the original DT-Grid relying solely

2Algorithms that utilize external memory (such as disks) as a means to overcome the limited physical memory
during execution are usually referred to as external memory or out-of-core algorithms.
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on OS paging and prefetching when level sets do not fit in memory. The contributions of
the framework also include compression schemes for the DT-Grid that reduce both memory
consumption online during simulation and offline as a tool for reducing disk storage and
transmission bandwidth. The framework proposed is flexible in that the compression
and out-of-core components can be arbitrarily combined or left out. Furthermore the
only limitation in practice being the amount of available disk space. We stress that this
framework complements the in-core versions of the DT-Grid and H-RLE: When the level
sets and auxiliary data structures fit in memory, the DT-Grid and H-RLE are preferable,
but for gigabyte sized level set simulations that do not fit in memory, this framework is
faster. Figure 1.6 shows a fluid simulation run partially out-of-core using the proposed
out-of-core framework.

Conversion:

• Conversion of Consistent Meshes into High Resolution Level Sets: A conversion
method from consistent polygonal meshes3 into high resolution DT-Grid/H-RLE repre-
sentations. The method leverages on and performs comparable to [89] for low resolutions,
but allows for much higher resolution level sets to be generated. In particular both time-
and memory-consumption of our method are proportional to the number of faces of the
polygonal mesh and the grid points in the generated level set. Figure 1.4 shows a high
resolution level set generated with this method.

• Conversion of Consistent Meshes into High Resolution Out-Of-Core Level Sets:
The in-core conversion method above extended to take advantage of external memory. The
only limitation imposed is the amount of available disk space. For scan conversions that fit
in memory this method is slower than the in-core algorithm, but when the in-core method
must rely on OS virtual memory, the out-of-core conversion approach performs several
times faster. Using this method we have created out-of-core DT-Grids with up to seven
billion grid points in the narrow band and an effective resolution of 35000×20000×11500.

Level Set Applications:

• The data structures and algorithms proposed in this dissertation enable a wide range
of applications in computer graphics. In particular high resolution shape deformations,
out-of-the-box simulations and out-of-core shape metamorphosis are demonstrated. Fur-
thermore applications contributed by other members of the graphics group that use my
data structure and algorithm implementations are briefly reviewed. This includes ray
tracing, the solution of PDEs on manifolds, volume segmentation, geometric texturing,
modeling and simulation of snow as well as fluid simulation. In particular all the data
structures proposed in this dissertation can be used to represent volumetric fluid veloc-
ity and pressure hence also addressing and improving on the storage and computational
requirements of fluid simulations.

The key implication of the contributions presented in this dissertation is that level set sim-
ulations can now be run at high resolutions without compromising computational efficiency
compared to previous methods. Owing in large extent to the prevalence of the level set method,

3A consistent polygonal mesh is a closed manifold i.e. has no holes or self-intersections.
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the new methods developed are useful in a wide range of fields including computational physics,
computer vision and computer graphics. We concentrate on computer graphics and document
several applications.

1.3 Outline

This dissertation consists of six parts: Part I: Level Set Methods, Part II: Data Structures and
Algorithms for High Resolution Level Set Simulations, Part III: Algorithms for Compression and
Out-Of-Core Level Set Methods, Part IV: Methods for Converting Polygonal Meshes into Level
Set Surfaces, Part V: Applications and finally Part VI: Conclusions and Future Work. Each of
these parts commences with an introduction (not included in the outline below). The content
of the individual chapters is as follows.

Part I: Chapter 2 introduces implicit surfaces as well as the basic level set theory, numerical
schemes and the narrow band level set methods. Chapter 3 provides an overview of
previous and concurrent level set methods and grid representations relevant for the work
in this dissertation.

Part II: Chapter 5 describes the DT-Grid and shows two examples illustrating its ability to
represent high resolution and out-of-the-box level set simulations. Chapter 6 subsequently
introduces the H-RLE grid and describes the differences between this and the DT-Grid
representation. Chapter 7 evaluates the performance of the DT-Grid and the H-RLE and
compares to existing octree, narrow band and RLE methods as well as provides a discussion
of our methods.

Part III: Chapter 9 first reviews related work in the area of compression and out-of-core meth-
ods. Next chapter 10 introduces the compression components and the out-of-core tech-
niques of our generic level set framework. Subsequently chapter 11 evaluates the com-
pression and out-of-core framework as well as compares its performance to peak DT-Grid
performance for level set simulations that fit in memory. A detailed discussion on the
feasibility and limitations of the framework is also provided in this chapter.

Part IV: Chapter 13 describes previous work on converting polygonal meshes to level sets,
and following that chapter 14 describes both the in-core and out-of-core converters for
consistent meshes as well as evaluates their performance and discusses their pros and cons.

Part V: Having described the main contributions of this dissertation we switch to a presen-
tation of some of the applications enabled by our research in chapter 15. This includes
shape deformations, ray tracing, geometric texturing, segmentation, snow modeling, solv-
ing PDEs on manifolds and fluid simulations.

Part VI: Finally chapters 16 and 17 respectively describe future work and concludes this
dissertation.



Figure 1.4: The Lucy statue represented as a level set in effective resolution 3000× 1726× 5144.
DT-Grid memory usage is 700 MB and H-RLE memory usage is 738 MB. The narrow band
method of Peng [120] would require 128 GB (computed analytically). Rendering by Ola Nilsson
based on my DT-Grid implementation and scan conversion. Lucy statue model courtesy of the
Stanford Scanning Repository.



Figure 1.5: Level set based advection of the Stanford Bunny in a periodically symmetric and
divergence free velocity field. After one period the Stanford Bunny returns to its original shape
due to the properties of the velocity field as shown in the bottom-right picture. The deformation
results in very thin walls requiring high resolution in order to be properly resolved. If the
resolution was too low the Stanford Bunny would not return to its original shape. Effective
resolution is 10243. Rendering by Ola Nilsson based on my simulation data and data structure
implementation. Stanford Bunny courtesy of the Stanford Scanning Repository.



Figure 1.6: Partially out-of-core level set based fluid simulation of a splashing fountain with
thin high resolution sheets of water. Both water surface, interior, velocities and boundaries are
represented on a DT-Grid. Effective resolution is 931× 1567× 931. The scene contains a total
of 61.7M grid points and 332M particles. Rendering by Ola Nilsson and fluid simulation by
Andreas Söderström. Andreas Söderström’s fluid simulation code uses my implementations of
the DT-Grid and out-of-core framework. Model courtesy of the Stanford Scanning Repository.
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Chapter 2

Introduction to Level Set Methods

Practically every day of our lives we interact with and observe the behavior of complex surface
deformations. Interacting with water for example seems so natural to us that we often fail to
notice and appreciate the beautiful and complex ways in which it forms and splits apart. The
techniques of computer graphics to a large extent strive to simulate or reproduce the visual
and dynamic appearance of the world around us. This is particularly useful in cases where a
visual expression is not easily obtained by an artist or animator attempting to portray a certain
effect. Computer graphics unites several different scientific disciplines. For example, in order
to arrive at techniques capable of reproducing more realistic behavior of water, we need to
resolve to theory and practice from the disciplines of mathematics and physics. A level set is a
mathematical description of a dynamic implicit surface possessing the properties necessary to
represent complex surface deformations such as water. In the simple characterization of a level
set as a dynamic implicit surface, dynamic refers to the ability of the surface to change over time,
and implicit refers to the way the surface, or interface, is represented. The level set method
was introduced in 1988 by Osher and Sethian [113] for interface tracking in computational
physics. Since then significant efforts have been put into developing more accurate and robust
numerical methods for solving the equations that govern the dynamic behavior of level sets. In
addition, level sets have been applied as the fundamental surface representation in a wide range
of problems spanning over a wide range of fields. In computer graphics and vision these include,
but are not limited to, fluid simulations of water and fire [35, 37, 98], geometric modeling [96],
shape metamorphosis [14], segmentation of volumetric datasets [160], the solution of partial
differential equations on manifolds [10], collision detection in cloth simulation [16] and surface
reconstruction [163]. Figures 2.1 and 2.2 show images from samples of the applications mentioned
above. The interested reader should consult the book edited by Osher and Paragios [112] which
contains descriptions of applications of level sets in imaging, vision and computer graphics.

Level sets offer significant and unique advantages over many other surface representations.
By definition a level set cannot self-intersect (i.e. the situation where a surface crosses over
itself) and complex changes in topology are handled automatically by the underlying mathe-
matics. These advantages are not offered by explicit representations such as for example triangle
meshes in wide use in computer graphics today. Furthermore, the numerical schemes for level
set dynamics are in many cases simple to apply and offer explicit error control and general-
ity. The applications of the level set method mentioned above all utilize its unique features.
Fluid surfaces such as water for example behave in topologically complex ways by merging and
pinching off in intricate and rich manners. By utilizing the level set as the underlying sur-
face representation these properties are handled automatically [37], see figure 2.1. In geometric
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(a) (b)

Figure 2.1: (a) Even the simplest interaction with water gives rise to topologically complex
behavior. Here the pouring of water into a glass. The water surface is represented using level
sets. Reprinted from [35]. (b) Level sets have been applied to physically based simulation of
fire. Here a level set is used to represent the blue core of the flames. Reprinted from [98].

modeling the common work flows inherently lead to self-intersecting geometry when using tra-
ditional surface representations such as triangle meshes. This is undesirable if the models are
to be used in for example physically based simulation or physical prototyping. By using level
sets, self-intersecting geometry can be avoided and various surface editing operators that were
previously very difficult can be utilized [96], see figure 2.2. Such surface editing operators are
also useful for repairing 3D models scanned from real world geometry. Using scanned geometry
is very common, an example of this is the Gollum character in the “Lord of the Rings” feature.
Gollum was first modeled physically and later scanned into digital form and animated. While
the fundamental idea of a level set as an implicit surface is relatively simple, its dynamic na-
ture rests on a rather advanced mathematical and numerical framework that generalizes to any
dimension. However, as we are primarily concerned with computer graphics we will mostly be
working in three dimensions. Hence in this chapter we will restrict our attention accordingly to
descriptions in three and - when simplifying the exposition - one or two dimensions. The present
chapter is mostly devoted to describing the basics of the level set method. The next chapter
presents an overview of extensions and improvements, the limitations of which to a large ex-
tent provide the motivation for our work presented in this dissertation. Briefly outlined we will
first describe the ideas behind the implicit surface representation and contrast it to the explicit
surface representation. Next we will describe the theory behind the dynamics of the level set
method, or more precisely the equations that govern the movement. We end this chapter by
describing how the level set theory is implemented numerically on a computer.

2.1 Implicit Surfaces

The properties of implicit surfaces in general are well understood mathematically. In computer
graphics implicit surfaces come in many distinct forms, each associated with its own theory and
unique properties. For an introduction see [11]. An explicit surface representation explicitly
specifies the points on the surface. Mathematically speaking an explicit surface representation
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Figure 2.2: An example in geometric modeling benefiting from the underlying level set represen-
tation. A winged two-headed dragon is created by reusing parts of existing models. The wings
and heads of the dragon are smoothly blended with the base geometry without introducing
self-intersections. Reprinted from [96].

provides a map between a parameter space and the surface. In computer graphics, explicit
surface representations are typically sampled representations explicitly specifying a finite set
of points lying on the surface as well as possibly the connectivity of these points and how to
interpolate between them. Point-based surface representations, triangle meshes, subdivision
surfaces and NURBS are all examples of such explicit surface representations.

An implicit surface representation on the other hand defines a surface as the isocontour of
some scalar function. More specifically, given a scalar function, also called surface embedding,
φ : <3 → <, an implicit surface is represented as the preimage, φ−1(k), of some scalar, k. This
means that it consists of the set of points in <3 described by {x|φ(x) = k}. In this dissertation
we will without loss of generality restrict our attention to zero-isocontours where k = 0 and
hence surfaces given by the set {x|φ(x) = 0}. Since a two-dimensional surface is defined by a
three dimensional embedding function, the implicit surface is said to have co-dimension one.

The sphere and circle are shapes described very easily in implicit analytical form. A circle
of radius r, for example, is given by the expression φ(x, y) = x2 + y2 − r2 = 0 and is shown in
figure 2.3.a. An explicit representation of the same circle is depicted in figure 2.3.b. In contrast
to explicit surface representations, an implicit surface does not explicitly specify which points
lie on the surface. Instead it allows you to evaluate, given some point, whether that particular
point actually lies on the surface or not. At first glance, this property may seem to make implicit
surfaces inferior to explicit representations, in particular in the context of computer graphics.
With respect to some applications this is true, however, the implicit representation also turns
out to be powerful as will become evident in what follows.

The level set method assumes that implicit surfaces are closed. This means that the surface
partitions <3 into clearly defined interior and exterior regions. Note that the interior and exterior
may consist of several disconnected components. Here we will assume that the implicit surface
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(a) (b)

Figure 2.3: (a) A circle represented in implicit form as the zero isocontour of the 2D embedding
function φ(x, y) =

√
x2 + y2−r. In order to get a noticeable color gradient close to the interface,

the color is clamped away from it. (b) A circle represented explicitly as (cos(θ), sin(θ)) where
θ ∈ [0; 2π).

is being described by the zero-isocontour and that the surface embedding has the additional
property that it maps points in interior and exterior regions to values of different sign. Looking
again at the circle in figure 2.3.a, the color blue is associated with the interior region of negative
sign, and the color grey/white is associated with the exterior region of positive sign. This is the
sign convention that we will use throughout this dissertation. In particular we will denote the
interior region by Ω− and the exterior region by Ω+.

The above properties immediately give rise to two important advantages of level sets. The
first advantage is that given some location in space, estimating whether it is inside or outside
of the surface simply amounts to evaluating the embedding function at the corresponding point
and determining its sign. For explicit representations such as meshes this operation is more
involved [5] and ambiguous in the case of meshes with holes and self-intersections. The second
advantage is that a level set, and in general an implicit surface, cannot cross over itself and
self-intersect. This property arises from the fact that an implicit surface is represented by a
single-valued embedding function, i.e. a point in <3 cannot at the same time have both negative
and positive sign. This is very important in for example water simulations that require the
specification of distinct physically realizable regions of space. Explicit representations on the
other hand can easily form self-intersecting geometry when deformed.

In computer graphics and numerical simulation, level set surfaces are usually not represented
analytically. Instead the embedding function is sampled on a grid with sample locations placed
at the nodes of a lattice as shown in figure 2.4.a. A sampling of an explicit function is shown
in figure 2.4.b. An implicit representation sampled on a grid is often referred to as an Eulerian
representation, since it captures the interface instead of tracking it like the explicit representation
which is referred to as a Lagrangian representation. Note that during interface deformations,



2.1. Implicit Surfaces 21

the grid points in an Eulerian representation remain fixed; it is the modification of the scalar
values of the embedding function that causes the interface to move. In contrast it is the sample
locations that move when a Lagrangian representation is subject to deformation 1. There are
various kinds of grids, but for level set simulations, dense uniform grids such as the one in figure
2.4.a are so far the most common. We will deal more with the issue of grid representations in
chapter 3 and again in chapters 4 to 11. The reason that analytical representations are not used
is that for the surfaces we are dealing with, no analytical expressions are immediately available
or known. A sampled representation on the other hand can be computed to any closed and
non-self-intersecting boundary representation as long as the surface is sufficiently band-limited,
see part IV.

(a) (b)

Figure 2.4: (a) A circle represented in implicit form as the zero-isocontour of the 2D embedding
function φ(x, y) =

√
x2 + y2 − r sampled on a dense uniform grid. Note that a relatively

coarse grid is used in order to illustrate the principle of an Eulerian representation. (b) A circle
represented explicitly by marker points connected by line-segments. Relatively few markers are
used in order to properly illustrate the principle of the Lagrangian representation.

Many differential properties of implicit surfaces are easy to compute directly from the surface
embedding. The outwards pointing surface normal is given by the normalized gradient:

~N =
∇φ

|∇φ|
(2.1)

and the mean curvature is in three dimensions given by the divergence of the normal multiplied
by one half (for a recent elaborate proof see [97])

κ =
1
2
∇ · ~N =

1
2
∇ · ∇φ

|∇φ|
(2.2)

where ∇ =
(

∂
∂x , ∂

∂y , ∂
∂z

)
is a differential operator. In 2D the curvature is simply the divergence

of the normal and hence the factor of one half should be omitted.
1Note that also hybrid Eulerian and Lagrangian representations exist. See for example [147] in which the grid

dynamically adapts to the interface in order to capture it more accurately using fewer grid points.
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Similarly, the expressions for evaluating integrals over the surface or its interior region are
easily computed. This includes the computation of area and volume. For an overview the reader
should consult the book by Osher and Fedkiw [111].

From a theoretical point of view, the embedding function is irrelevant as long as it is Lipschitz
continuous. However, one particular implicit surface representation that has proven itself useful
for both computer graphics and level set simulation is the signed distance field. In the signed
distance field representation the embedding function φ assigns to each point in <3 the shortest
distance to the surface multiplied by a sign which is +1 in the exterior and −1 in the interior. In
fact, the equation for a circle in implicit form given above and shown in figure 2.3.a is a signed
distance function. Many operations and formulas simplify as the result of the unique properties
of the signed distance field representation. In particular, not only the interior/exterior status
of a given grid point can be evaluated by a single lookup, the same now goes for the minimum
distance to the surface. This is useful in ray tracing where a certain technique known as ray
leaping can be employed [35,48,85]. We will return to this in chapter 15. An additional property
is that the length of the gradient in a signed distance field is identically one, i.e. |∇φ| = 1, except
at corners or kinks (jumps/discontinuities in the derivatives)2 where the gradient is not defined.
Since |∇φ| = 1, the formula for the normal simplifies to the gradient and the formula for the
mean curvature simplifies to the laplacian, i.e. ~N = ∇φ and κ = 1

2∆φ.
Another important fact that arises from utilizing that |∇φ| = 1 and that the value in a point

is the minimum (signed) distance, is that the closest point on the surface, xs, from any point, x,
in <3 can be found by the formula xs = x−φ(x)∇φ(x). See [89] for a list of applications of this.
Finally note that for explicit representations, computing differential properties [28] or locating
the closest point on or the minimal distance to an explicit representation such as a triangle mesh
is not as simple [5].

A level set will throughout this dissertation be represented in implicit form by means of a
signed distance field. Next we turn our attention to the theory and practice of the level set
method which adds dynamics to implicit surfaces. In chapters 13 to 14 we will deal with the
issue of initializing signed distance fields and hence level set surfaces from polygonal meshes,
which is the most widely used interchange format between today’s commercial modeling tools.

2.2 The Theory of the Level Set Method

In the previous section we considered how a level set was represented. In particular it was stated
that a level set is given in implicit form by an embedding scalar function, φ, which for our
purposes will be the signed distance field. The level set theory assumes that φ is a Lipschitz
function3 which allows for sharp corners and edges on a surface and at the same time ensures that
approximations to derivatives are bounded. In particular the signed distance field representation
is a Lipschitz function, and in addition it is smooth except at kinks, making it well suited for
numerical simulation. We now turn our attention to the theory behind the level set method [113]
which adds dynamics to the implicit surface. In the next section we consider how the equations
introduced in the present section can be discretized on a computer and summarize the basic
numerical methods developed for solving them.

2For example points equidistant to several distinct points on the surface e.g. the center of a circle or sphere.
3A Lipschitz function, f , satisfies that f(x)−f(x′)

x−x′ < C for some constant C and arbitrary x and x′.
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The dynamics of a level set is manifested in a level set equation that must be solved in order
to make the surface move. Several different level set equations exist and the one to use depends
on the form most convenient for the problem at hand. We will start by considering the situation
where we are given a time-dependent velocity field V (x, t) : <3 → <3 that assigns to each point
in space a vector describing the velocity of the surface (or surface embedding) at that point. This
form is for example the most convenient in fluid simulations, where the Navier Stokes equations
are solved to produce a velocity field at each time step. Consider a point, x, resting on an
implicit surface moving over time. The movement of x traces out a path which can be given
by an expression of the form x(t) = (x(t), y(t), z(t)). Coupling this expression together with
the surface embedding, φ, hence adding dynamics to φ, results in the following time-dependent
equation for the surface given by the zero-crossing: φ(x(t), t) = 0. By applying differentiation
using the chain rule to the time-dependent surface embedding, we obtain the equation:

∂φ

∂t
+

dx
dt
· ∇φ = 0 (2.3)

Since dx
dt is tangent to the curve traced out by x we notice that V (x, t) can be used in place

of dx
dt . Hence, given a time dependent velocity field, V (x, t), the above equation can be used to

evolve or advect the surface forward in time.
Equation 2.3 is a Partial Differential Equation (PDE) since it involves derivatives with

respect to several variables. For an introduction to PDEs and their numerics consult the book
by Strikwerda [143]. In addition equation 2.3 is an initial value problem: Starting from an
initial surface embedding, the above equation is solved at each time step in order to obtain the
deformed surface.

Another level set equation can be derived directly from equation 2.3 by using the relationship
between the gradient and the normal of the surface embedding, i.e. use that ~N = ∇φ

|∇φ| . De-

composing the velocity field V into its normal, VN
~N , and tangential, VT

~T , vector components,
where VN and VT are scalar fields specifying the speed in the normal and tangential directions
respectively, we get V · ∇φ = (VN

~N + VT
~T ) · ∇φ = VN |∇φ|. Hence the level set equation 2.3

becomes

∂φ

∂t
+ VN |∇φ| = 0 (2.4)

As can be seen from equation 2.4 the tangential component vanishes and in fact only the
normal component of the velocity is significant for the motion of the surface. This does not mean
however that equation 2.3 is rendered redundant. As explained above, when a velocity field V
is available, the form of equation 2.3 is the most convenient. Many other problems though are
more easily described by their speed in the normal direction, VN , and hence by equation 2.4.
This goes for shape metamorphosis, smoothing as well as erosion, dilation and others.

In some contexts, the speed in the normal direction is dubbed the speed function and in
general it may depend on spatial position, time, geometrical and differential properties of φ and
so on. Take surface smoothing for example. In that case the speed function is simply given by
the negated mean curvature, i.e. VN = −κ.

The two equations above are the most commonly occurring level set equations in graphics.
However, more terms can be added, and in particular equations 2.3 and 2.4 can be combined
into a single equation. For more examples, see [111].

Although there are situations where it is not the case [111,130], in general a signed distance
field representation subjected to movement by any of equations 2.3 and 2.4 will cease to remain
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a signed distance field. This is due to the fact that not all isocontours move at identical speeds.
Hence in some areas the isocontours will cluster and in others they will spread apart, in this
way departing from the signed distance field representation. Since the signed distance function
comes with many advantages, the common solution to this is to reset the surface embedding to
a signed distance field4 after each advection step. There are several ways to do this, and in this
dissertation we will focus on two of these.

The first approach is to solve what is known as the reinitialization equation [120, 124, 145]
which has the form

∂φ

∂t
+ S(φ)(|∇φ| − 1) = 0 (2.5)

where S(φ) is a sign function. The simplest possible sign function is given by S(φ) = sign(φ) ∈
{−1,+1} which just takes on the sign of φ in the grid point evaluated. To obtain a signed
distance field, equation 2.5 must be solved to steady state, meaning that ∂φ

∂t = 0 and hence
that |∇φ| = 1, a unique characterization of the signed distance field. Notice the similarity
of equations 2.5 and 2.4. In fact equation 2.5 propagates distance information in the normal
direction with speed S(φ).

When applied numerically, the sign function proposed above does not work sufficiently well
as it tends to move the zero-crossing which must remain fixed [111]. Instead we typically apply
the smeared out sign function proposed in [120]

S(φ) =
φ√

φ2 + |∇φ|2(∆x)2
(2.6)

where ∆x is the distance between two axially adjacent points in the grid (we return to this issue
in the next section). Even though this smeared out sign function still has an undesired tendency
to move or smooth the surface slightly, it works quite well in practice. See [111] for a recent
overview of reinitialization methods and sign functions.

An alternative to the construction of a signed distance field comes from considering the
Eikonal equation:

|∇φ| = 1 (2.7)

This Eikonal equation is again a PDE, but in contrast to the other PDEs presented in this
chapter it has no time-dependence. In particular it is not an initial value problem but rather
a boundary value problem: Given the values of the signed distance field on the boundary of
the zero-isocontour, the above equation can be solved to determine the signed distance values
away from the zero crossing. Even though equation 2.7 is not time dependent, it can be viewed
as propagating the boundary outwards in the normal direction with unit speed. The value
computed at each grid point is then just the time of arrival of the boundary, which due to the
unit speed propagation, equals the distance. As we will see in the next section, fast methods
exist for solving this equation.

The theory of level sets is a vast area in itself. Above we have elaborated on the most basic
theory comprising the material needed to comprehend the methods presented in this dissertation.
For a more thorough overview consult the book by Osher and Fedkiw [111]. Having described

4Resetting the surface embedding to a signed field without moving the location of the zero crossing
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the necessary theory of level set methods we now turn to their discretization and solution on a
computer.

2.3 The Numerics of the Level Set Method

In this section we consider how the theory developed in the previous section can be discretized
and solved on a computer. We will also consider how discretized versions of the differential
operators such as normal and mean curvature can be computed. However, before proceeding
with these tasks let us first consider why explicit surface representations are not always well
suited for general surface deformations based on numerical simulation. Surface deformations of
explicit surface representations, such as meshes, occur frequently in computer graphics. While
these representations work very well for e.g. character animations, rigid body simulations and
minor surface deformations, they usually break down when surfaces are undergoing large and/or
topologically complex deformations. When an explicit surface representation is subject to a large
deformation, the distribution of points on the surface can change dramatically no matter how
good it is initially. If the points come too far apart, aliasing occurs, and if they come too close,
singularities in differential properties may arise. The latter in particular is disastrous from
a numerical simulation point of view, see [130] for an example. Although there are remedies
for this such as re-meshing, smoothing and filtering, these corrections are non-trivial and non-
physical. Hence they may affect the simulations in unpredictable and undesirable ways. Yet
another important fact which has already been mentioned is that nothing prevents explicit
representations from self-intersecting. Front tracking methods that detect self-intersections and
merge and break up the geometry have been proposed (consult [111] for a recent overview), but
are usually quite complex. Numerical level set methods on the other hand do not suffer from
increased aliasing and numerical instability. This is because the surface embedding is sampled
on a grid where the sample points are fixed, recall figure 2.4.a. Furthermore topological changes
are automatically handled by the surface embedding. As with many other Eulerian schemes in
computational fluid mechanics, level set methods do however implicitly introduce a smoothing
of the solution known as numerical dissipation or artificial viscosity. We will return to this and
explain its origin and consequences later in this chapter. In chapter 3 we will furthermore review
a method known as the particle level set method [33] which reduces the numerical dissipation
for certain types of deformations.

2.3.1 Approximation of Derivatives with Finite Differences

Having motivated the implicit surface approach to deforming surfaces we now turn to the dis-
cretization of differential operators on an Eulerian grid. Let us first introduce some notation.
Assume that the spacing between adjacent grid points in the grid is given by ∆x, ∆y and ∆z
in each dimension respectively, and that the time step in the simulation is ∆t. The notation
φn

ijk, where i, j, k and n are integers, is shorthand for φ(i∆x, j∆y, k∆z, n∆t). The time and/or
spatial dependence may be omitted for clarity when not relevant.

A finite difference (FD) [143] is a discrete approximation to a derivative and can be derived
directly from a Taylor expansion. For example, a one-sided forward FD approximation to
∂φ
∂x can be derived from the Taylor series approximation to the point x + ∆x about x given
by φ(x + ∆x, y, z) = φ(x, y, z) + ∆x∂φ

∂x + O(∆x2). Rearranging terms this becomes ∂φ
∂x =

φ(x+∆x,y,z)−φ(x,y,z)
∆x + O(∆x). Omitting the O(∆x) term and hence introducing a truncation
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(a) (b)

Figure 2.5: (a) The FD stencil for first order one-sided (backwards and forwards) differencing
and second order central differencing. (b) The FD stencil for third order HJ ENO differencing
and fifth order HJ WENO differencing. These finite difference methods are described in detail
in the text.

error we obtain the one-sided forward FD, φ+
x = φi+1jk−φijk

∆x , which is first order accurate since
the order of the truncation is O(∆x). In general a FD approximation with a truncation error of
O(∆xm) is said to be m’th order accurate. The point in which the finite difference is evaluated
is only specified if not clear from context or if of relevance to the exposition. Derived similarly,
first order one-sided backwards and second order central approximations to ∂φ

∂x are respectively
φ−x = φijk−φi−1jk

∆x ≈ ∂φ
∂x and φ0

x = φi+1jk−φi−1jk

2∆x ≈ ∂φ
∂x . In general an n′th order accurate FD

approximation to an m′th order derivative requires the contribution from m + n adjacent grid
points 5.

The set of grid points needed for the computation of a finite difference is generally referred
to as the stencil. Figure 2.5 shows two different FD stencils.

Differential properties such as normal and curvature can easily be approximated with the
above finite differences. The actual approximation chosen depends on the desired accuracy as
well as the properties of the numerical method involved.

In practice spatial and temporal discretizations are treated somewhat differently. We elab-
orate on the spatial derivatives first.

Spatial Discretizations

A number of higher order finite difference methods have been developed specifically for level
sets. In addition to representing the surface with higher accuracy we wish to maintain sharp
corners and edges on the surface i.e. places where the derivatives are discontinous.

The Hamilton-Jacobi Essentially Non Oscillatory (HJ ENO) [46] FD scheme uses Newton
polynomial interpolation [68] to reconstruct φ and then differentiates this polynomial to obtain
approximations to the derivatives. In each step of the construction of the interpolating Newton
polynomial, the minimal possible divided difference [68] is chosen since this usually corresponds

5Fewer grid points may be needed due to symmetries in the Taylor expansions. For example it is possible to
construct a second order accurate approximation to the second order derivative using only three grid points.
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to the smoothest polynomial. In this way HJ ENO attempts to minimize the oscillations that
can arise from interpolating across a discontinuity in the derivative and thus to obtain better
approximations near corners and edges [111]. Although third order accurate HJ ENO schemes
are the most common in level set computations, it is possible to construct them to any order of
accuracy.

The variable three to fifth order accurate Hamilton-Jacobi Weighted ENO (HJ WENO)
[58,59,80] FD scheme employs a convex combination of the three different third order accurate
HJ ENO approximations possible in each grid point. By choosing a certain weighting of the HJ
ENO approximations, a fifth order accurate scheme is obtained in smooth regions. Away from
smooth regions, the HJ WENO adapts to the local neighborhood and uses a weighting that
favors the third order accurate HJ ENO approximations not interpolating across discontinuities.

Although the expressions get more involved and the computations more time-consuming,
the higher order schemes can in many cases dramatically improve both the numerical accuracy
and visual quality of the surface deformation. Due to complexity of the formulations, we refer
the reader to the original papers or [111] for the implementation details of the HJ ENO and HJ
WENO schemes.

Temporal Discretizations

For level set equations a forward Euler time step is employed when first order temporal accuracy
is sufficient. Basically a forward Euler time step is just a one-sided forward difference in time:
φn+1−φn

∆t . To obtain higher order accuracy in time, Total Variation Diminishing Runge-Kutta
(TVD RK) [133] methods that diminish oscillations can be employed.

A second order accurate TVD RK method proceeds as follows. First the solution, φn, is
advanced two steps forward in time using a forward Euler time step to obtain φn+2. Finally the
average is formed:

φn+1 =
1
2
φn +

1
2
φn+2 (2.8)

A third order accurate TVD RK method proceeds in a similar fashion. Consult the original
papers or [111] for the implementation details.

2.3.2 Numerical Stability

In order to be useful, any numerical scheme for solving a PDE must be convergent [143]. In brief
this means that the approximate solution computed by the numerical scheme must converge to
the exact solution as ∆x,∆t → 0. In general convergence is hard to prove, but according to
the Lax-Richtmyer theorem [143], convergence is equivalent to stability and consistency, two
properties that are easier to prove [143]. In particular the concept of stability has implications
in practical implementations. In brief stability means that the norm of the numerical solution
at any point in time must be bounded by the sum of the norm of the numerical solution at a
fixed number of earlier time steps. Hence without the requirement of stability, the approximate
solution of a numerical scheme could potentially blow up and grow unempidedly. In the level set
community, explicit numerical schemes are typically used to solve the level set equations. This
can in part be attributed to the non-linearity of equation 2.4. In an explicit numerical scheme,
the approximation in a single grid point to time t + ∆t depends only on values at grid points to
time t and/or earlier. This type of scheme usually has a limited stability region, meaning that
there are restrictions on the size of ∆t given ∆x. One exception though is the semi-Lagrangian
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scheme widely used for fluid simulations [137] and to some extent also level set simulations [141].
The degree of numerical dissipation introduced by the semi-Lagrangian methods however limit
their utilization for level sets unless used in combination with the particle level set method [33]
for improved interface capture or higher order accurate monotonic interpolation [36]. A review
of the particle level set method and semi-Lagrangian techniques will be provided in the next
chapter.

Below we state the time step restrictions required for each type of level set equation in order
to enforce stability of the numerical solution.

2.3.3 Numerical Solution of the Level Set Equations

Next we concentrate on the numerical solution methods for level set equations. The numerical
schemes are given here in one dimension only. The extension to higher dimensions can be done
in a straightforward coordinate-wise manner.

Recall that equations 2.3 and 2.4 defined in section 2.2 are mathematically equivalent. How-
ever, seen from a numerical perspective, different methods have to be applied, since equation
2.3 is linear in the partial derivatives, whereas equation 2.4 is non-linear due to its |∇φ| term.

Hyperbolic Level Set Equations

When the speed function and velocity field does not depend on derivatives of higher than first
order, equations 2.3 and 2.4 are known as Hamilton-Jacobi Equations, a special type of hyperbolic
PDEs [111]. In fact their solutions are constant along curves, x(t) = (x(t), y(t), z(t)), known as
characteristics 6. The characteristic curves constitute the domain of dependence. This mathe-
matical property immediately suggests a method of solution to equation 2.3 known as upwinding,
where the direction of movement of a point on the surface is denoted the downwind direction.
The upwind method includes more grid points in the upwind direction than in the downwind
direction when computing the finite difference approximations to the spatial derivatives and is
required for numerical stability. For first order FD approximations this corresponds to one-sided
forward or backward differences respectively. The main physical intuition is that the upwind
direction is the direction from which known information is flowing or emanating.

Let us write up a solution method for equation 2.3 based on our observations. If discretizing
the temporal derivative in equation 2.3 by a forward Euler time step, we get the following method
of solution

φn+1
ijk = φn

ijk + ∆tmax(V, 0)φ−x + min(V, 0)φ+
x (2.9)

where the max and min operators are evaluated in a single grid point. Note how the upwind
scheme above computes the derivatives: If V (x) < 0 we use φ+

x , i.e. a forward difference, and if
V (x) > 0 we use φ−x , i.e. a backward difference. In any case we estimate the derivatives upwind
by favoring grid points in the direction from which information is flowing. The derivatives φ−x
and φ+

x can be computed either using first order one-sided differences or using the HJ ENO or
HJ WENO finite difference schemes.

The above method of solution has a limited stability region, meaning that the time steps
are restricted by the grid spacing. A necessary (but not sufficient) requirement for numerical
stability is to abide to the Courant-Friedreichs-Lewy (CFL) [143] condition. In the case of

6In general the solution along a characteristic needs not be constant. Rather it should satisfy an Ordinary
Differential Equation (ODE), involving derivatives of a single variable only.
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the equation above it leads to a time step restriction of ∆t < ∆x
max{|V |} [111]. Note that this

restricts interface movements to maximally one grid point per time step as the above implies
max{|V |}∆t < ∆x.

As mentioned above, equation 2.4 is nonlinear due to the |∇φ| term. A widely used numerical
scheme for computing this term is the scheme due to Gudonov [44,124]:

φ2
x =


max(max(φ−x , 0)2,min(φ+

x , 0)2) if VN > 0
max(min(φ−x , 0)2,max(φ+

x , 0)2) if VN < 0
0 otherwise

(2.10)

For higher dimensions, e.g. three, φ2
y and φ2

z are computed similarly, and the norm of the gradient

subsequently calculated as |∇φ| =
√

φ2
x + φ2

y + φ2
z. Combined with for example a forward Euler

time step the Godunov scheme provides a solution method for level set equation 2.4. For a good
explanation of the Godunov scheme the reader should consult the original references or see [111].

For the equation above, the CFL condition is a bit more involved, but a conservative estimate
leads to a time step restriction of ∆t < ∆x

max{|VN |}d , where d is the dimension [111].

Due to the similarities between level set equation 2.4 and the reinitialization equation 2.6, the
Godunov scheme can immediately be applied to the solution of the reinitialization equation as
well. Note that the reinitialization equation must be solved to steady state. However in practice
a fixed number of iterations is usually used as opposed to checking for steady state [120]. This
fixed number of iterations can be chosen based on the width of the band (see below for the narrow
band level set method) of grid points around the zero isocontour that needs to be reinitialized.
One just has to keep in mind that distance information propagates in the normal direction with
approximately unit speed.

Above we used a first order forward Euler time step for discretizing the temporal derivatives.
In practice, higher order methods may be needed to improve accuracy and visual quality. Second
and third order TVD Runge Kutta methods [133] are typically used.

Parabolic Level Set Equations

When the speed function or velocity field depends on mean curvature, the level set equations
typically become parabolic. The parabolic equations have different mathematical, numerical and
physical properties than the hyperbolic equations and hence we must solve them differently.
Mathematically, the solution to a parabolic equation at a point in space does not flow along
characteristic curves. Rather information flows into this single point from all other positions in
space, and physically speaking information travels through the domain with infinite speed, i.e.
a perturbation in one part of the domain will have immediate influence at all other positions.
One could also say that infinitely many characteristics intersect in each grid point or that the
parabolic equation has an infinite domain of dependence. Consider level set equation 2.4 with
VN = −bκ, where κ is the mean curvature and b is a positive scalar. This equation is parabolic
and for b = 1 describes a smoothing of the surface. The parabolic equations have the more strict
time step requirement of ∆t < ∆x2

2max{b}d , where d is the dimension of the level set embedding.
In practice the velocity field in level set equation 2.3 is typically an externally generated

velocity field, meaning that it does not depend directly on any differential properties of the
surface. Hence we do not consider it here as it is usually a hyperbolic equation which was
treated above.
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The Eikonal Equation

A prevalent method for computing a first or second order accurate solution to the Eikonal
equation 2.7, which is an elliptic PDE, is known as the Fast Marching Method (FMM) [131,154,
155]. In particular FMM has time complexity O(M logM) where M is the number of grid points
in the grid.

Very briefly described, FMM resets the level set function to a signed distance function as
follows: First, the grid points on the zero crossing (grid points with at least one neighbor of
different sign) are located. Second, all grid points for which the signed distance should be
computed are tagged Alive, Close or Far depending on whether the grid point in question is
contained in the zero crossing, is adjacent to the zero crossing or is further away from the zero-
crossing respectively. Third, a tentative distance for all grid points tagged Close is computed
and the grid points are inserted into a heap sorted in ascending order of distance (minimal
element on top). Fourth, iteratively the smallest grid point is removed from the heap and its tag
changed to Alive. Next its final (signed) distance is set equal to its tentative distance and the
distances of its neighboring grid points are updated. Any neighbors tagged Far change status
to Close and are inserted into the heap along with their tentative distance. This procedure
continues as long as the heap is non-empty and at termination the (signed) distance at all grid
points has been computed. In the computations above it is important that tentative distances
are estimated based on neighbors tagged Alive only.

The order of distance calculations in FMM ensures that only grid points closer to the surface
contribute to the computation of the distance at a given grid point. This important property
guarantees that characteristics flow away from the surface which is inherent to PDE-based
solutions to the signed distance function.

2.3.4 Vanishing Viscosity Solutions and Numerical Dissipation

(a) (b)

Figure 2.6: (a) An initial C1 box with rounded corners propagating inwards with unit normal
speed. (b) A non-differentiable box with sharp corners resulting from the propagation in (a).
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The theory underlying level set methods was studied by Osher and Sethian [111, 113, 130].
One of the main challenges is that when considering interface deformations, the desired physically
plausible and non-self-intersecting solution is not necessarily differentiable. This is true even
when the interface is initially differentiable. As an example, consider the box with rounded
corners shown in figure 2.6.a. Clearly this interface is C1. However, if propagated inwards with
unit speed in the normal direction, it will eventually turn into the box with sharp corners shown
in figure 2.6.b. These corners, at which the interface is not differentiable, will continue to exist
until the box collapses into a single point. This behaviour is desirable from a physical and visual
point of view. However, it is not trivial to construct a scheme that behaves in exactly this way.

So how does one mathematically define the desired physically plausible solution to the level
set equations and how does one construct numerical schemes that automatically select this
desired solution?

Since the solution we are interested in is not necessarily differentiable it is known as a weak
solution 7. Weak solutions are not unique however, so to single out a solution, the notion of
an entropy condition, which defines the physically desirable and unique solution, is introduced.
The solution dictated by the entropy condition in turn equals the vanishing viscosity solution.
In brief the vanishing viscosity solution is obtained by adding a smoothing term, −εκ, to the
right hand side of the level set equation and letting the artificial viscosity, ε, tend to zero.
In computational fluid mechanics this term is often added explicitly to obtain stability in the
presence of shock waves (discontinuities). The numerical methods for level set equations do not
add the smoothing term explicitly as this typically results in excessive smoothing. However,
the schemes implicitly cause a smoothing effect known as numerical dissipation. Numerical
dissipation can be understood by looking at the discretized schemes from a different point of
view. Instead of thinking of the discretizations as producing a truncated solution to the level
equation, one can instead view them as producing an exact (when disregarding floating point
roundoff error) solution to a slightly different equation. This slightly different equation can be
derived and in fact contains a smoothing term which for a first order one-dimensional method
has the form O(∆x∂2φ

∂x2 ) [3] where ∆x implicitly functions as artificial viscosity. This explains
why the first order numerical schemes in practice introduce smoothing even though no artificial
viscosity is explicitly introduced on the right hand side of the equations. Note however that
the numerical dissipation tends to zero as the resolution of the grid is increased and ∆x → 0.
Finally we note that both the upwind and the Godunov schemes described in the previous
section automatically pick out the physically plausible vanishing viscosity solution. If the reader
is further interested in entropy conditions and vanishing viscosity solutions, we refer to the books
by Sethian [130] and Osher and Fedkiw [111] as well as the references therein.

2.4 The Narrow Band Level Set Method

The narrow band, or localized, level set methods [1,22,108,120,161] exploit the property that only
grid points in close vicinity of the zero crossing are required in order to compute the movement
of the surface. More specifically, a narrow band level set method maintains only the grid points
inside a tube, or narrow band, of width δ. A tube of width δ is defined as the set of grid points
{x||φ(x)| < δ}. The actual width of the narrow band depends on the number of grid points in
the stencil of the FD schemes applied as well as the maximum distance the surface can travel

7In general a weak solution satisfies an integral formulation of the PDE, where no derivatives of the solution
are involved. The weak solution agrees with the solution of the PDE at all differentiable points.
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between time steps. Recall that due to stability issues the explicit methods are restricted with
respect to the time step they are allowed to take. In case of the CFL condition, this implies that
the surface moves less than one grid point in each time step. For example, from the time step
restriction for equation 2.3 it immediately follows that max{|V |}∆t < ∆x, where max{|V |}∆t is
the maximum distance traveled by the surface in one time step, and ∆x is the distance between
grid points. Even though unconditionally stable schemes, such as the semi-Lagrangian scheme,
are not hampered by time step restrictions, a maximum travel distance between time steps is
usually enforced. This is done in order to ensure a desired numerical accuracy (which depends
on the size of the time step) and to make sure the surface does not move beyond the narrow
band in one time step.

In the description to follow we concentrate on the narrow band method of Peng et al. [120]
as well as a recent extension that increases its computational efficiency [108]. In addition we
assume that the surface moves at most one grid point (a distance of ∆x) in each time step.

Figure 2.7: (a) A narrow band level set with values outside the narrow band clamped to ±γ.
(b) The outline of the tubes constituting the narrow band. In particular the β tube is shown in
orange, the γ tube shown in green and the entire narrow band tube shown in brown. (c) The
specifications of the absolute distance range covered by each tube.

The method of Peng et al. represents the narrow band as three concentric overlapping tubes.
Figure 2.7 depicts this situation. In particular the narrow band equals the largest tube of width
γ + ∆x and contained therein are two smaller tubes, the γ and β tubes respectively (γ > β).
Values inside the γ tube are signed distances, whereas the values outside are explicitly clamped
to ±γ with negative values assigned to the interior and positive values assigned to the exterior
8. The reason that the narrow band is one grid point wider than the γ tube will become evident
below. For the first order upwind schemes typically β = 2∆x and γ = 3∆x whereas for a fifth
order WENO scheme β = 3∆x and γ = 6∆x [120].

A few additional data structures are required to support the narrow band method in order
to obtain a computational complexity linear in the number of grid points in the narrow band.

8Note that this means that the unique properties of the signed distance function are only satisfied in the narrow
band. For example, outside the narrow band only the clamped signed distance is available. This is however still
useful for e.g. ray tracing.
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The first data structure is a coordinate array storing the coordinates of the grid points in the
narrow band. This enables iteration over the narrow band in time proportional to the number
of grid points it contains. The second data structure called the mask array is a dense uniform
grid of the same dimensions as the computational grid which for each grid point indicates which
tubes it lies in, if any.

The computational cycle of the narrow band level set method consists of three steps:

1. Advect the level set in the γ tube by solving the level set equations.

2. Reinitialize the level set in the narrow band by solving the reinitialization equation.

3. Rebuild the narrow band to account for surface movement.

Each of these steps is described in detail below.

Advection

For grid points inside the β tube, the numerical solution to the level set equations 2.3 and 2.4
is computed exactly as outlined in section 2.3.3. However, for grid points inside the γ tube
with β ≤ |φ(x)| < γ, the solution is modified by a cut-off function in order to avoid numerical
oscillations at the boundary of the narrow band. Thus, equation 2.4 for example is modified to

∂φ

∂t
+ c(φ)VN |∇φ| = 0 (2.11)

where c(φ) is defined as

c(φ) =


1 if |φ| ≤ β
(|φ|−γ)2(2φ|+γ−3β)

(γ−β)3
if β < |φ| ≤ γ

0 otherwise

Note that the c(φ) function transitions smoothly from one to zero as the distance inside the γ
tube increases. For grid points outside the γ tube the solution to the level set equation is not
computed.

Reinitialization

After advection, the reinitialization equation 2.5 is solved to steady state. Contrary to the level
set equations, the reinitialization equation is solved exactly as described in section 2.3.3 in the
entire narrow band. The reason that the computations in this case encompass all grid points
in the narrow band is that after reinitialization, the γ tube of the propagated surface will be
contained within the narrow band. This is due to the fact that the surface will at most move
one grid point between time steps and that the narrow band is exactly one grid point wider than
the γ tube, see figure 2.7.

Rebuilding The Narrow Band

After reinitialization, the narrow band must be rebuilt to accommodate the surface movement.
In particular, the new β, γ and γ + ∆x tubes must be determined. In its original formulation,
the method of Peng et al. [120] proposed a method for rebuilding the narrow band having a com-
putational complexity of O(L3), where L is the side-length of the grid. Their argument was that
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the rebuild procedure was at most carried out once per computational cycle whereas iteration
over the narrow band was performed several times during both advection and reinitialization.
However, as we will see in chapter 7, this O(L3) time complexity can become quite dominant in
the case of larger grids and hence a method with time complexity linear in the number of grid
points in the narrow band is preferable. One such solution was recently proposed in [108]. In
practice this can for a grid of size 2563 give rise to a speedup of two [48]. The optimized rebuild
algorithm works by iterating over the grid points in the old narrow band and in a single pass
determines the grid points in the new narrow band. In particular, the following procedure is
executed for each grid point, (x, y, z), visited: If |φ(x, y, z)| < γ, (x, y, z) is included in the new
narrow band. Additionally, if (x, y, z) was not inside the old γ tube, all neighbors of (x, y, z)
not inside the old narrow band are inserted into the new narrow band as well9. If on the other
hand |φ(x, y, z)| > γ, all neighbors of (x, y, z) are examined, and if any of them has an absolute
value below γ, the grid point (x, y, z) is included in the new narrow band.

2.5 Advantages and Disadvantages of Level Sets

We now proceed to summarize and outline the advantages and disadvantages of the level set
method. Due to our main application area, we focus on the properties most significant to com-
puter graphics. We stress that so far no silver bullet surface representation has been proposed.
Triangle meshes, NURBS, subdivision surfaces, point based representations and level sets each
have their unique set of advantages. However, as elaborated above, level sets are particularly
powerful in the context of physically based animation. A field which in recent years has experi-
enced a significant increase in attention and practical use.

The main advantages of level sets are that they:

• Avoid self-intersecting geometry.

• Allow for arbitrary change in topology and are free of mesh connectivity issues.

• Allow for easy computation of local differential properties such as gradient, normal and
curvature, even with higher order of accuracy.

• Rely on vanishing viscosity solution to get physically and visually plausible behavior.

• Offer explicit error control and high order of accuracy.

• Generalize to any dimension.

• Enable global properties such as area and volume to be easily computed.

• Make geometric queries such as inside, outside and closest point tests trivial.

• Avoid aliasing when the surface undergoes large deformations.

• Allow for easy computation of Constructive Solid Geometry (CSG) operations such as the
union, intersection and difference of solids.

• Make surface off-setting simple and very fast.

• Can be rendering directly using ray tracing, hence conversion to a mesh representation
may not be necessary.

9Note that this is the only way grid points can enter the narrow band.
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Our work addresses three disadvantages of the original level set method:

• Computational inefficiency: Computational requirements are proportional to the volume
of the embedding.

• Storage inefficiency: Storage requirements are proportional to the volume of the embed-
ding.

• Predefined static computational domain: Level set deformations are confined to stay within
the boundaries of a predefined computational grid.

As we will see in the next chapter these disadvantages have to some extent also been ad-
dressed by previous and concurrent work, however no single previous method has eliminated all
disadvantages. The remaining significant disadvantages of level sets include:

• Even though the solution of the level set equations can now be restricted to a narrow band
and hence scales with the size of the interface, accurate level set methods (e.g. HJ WENO
combined with TVD Runge Kutta) are still very time consuming compared to mesh based
deformations. This is the case as the relatively heavy PDE computations must be applied
at every grid point. In most cases, reinitialization is by far the most time-consuming part
of a level set deformation. Note however that not all graphics applications require highly
accurate schemes in order to provide visually plausible results. For morphing, first order
upwind methods are usually sufficient. Still, simulations do not run interactively except
at relatively small resolutions or when implemented on the GPU [74,125].

• Lagrangian marker particles (see next chapter) and/or high resolution combined with high
order accurate FD schemes are usually required for maintaining sharp edges. This fact
makes level sets computationally intensive.

• In computer graphics, meshes and sub-division surfaces are adaptive along the interface,
whereas level sets are still represented uniformly.

• Frequent conversions to and from triangle meshes are often required, as triangle-based
boundary representations are still the most common and widely supported. However, such
conversions are not invertible with current methods.

• Level sets do not currently allow for interactive direct manipulations e.g. via the use of
control vertices, edges and so on. On the contrary, explicit representations have this feature
which makes them very well suited for interactive modeling.

• In contrast to explicit representations, level sets have no inherent dynamic parameteriza-
tion. Parameterizations are useful for many different applications in computer graphics
e.g. texturing.

2.6 Summary

This chapter briefly motivated the level set method for representing dynamic implicit surfaces in
computer graphics. We also described the basic theory as well as numerical methods employed to
solve the level set equations. In particular implicit surfaces were presented and their advantages
argued to contrast explicit representations. Next the most fundamental level set equations were
described followed by the introduction of finite difference methods and the concepts of numerical
stability and numerical dissipation. Subsequently an exposition of the upwind and Godunov
schemes for solving the most commonly occurring level set equations were given. The chapter
concluded with an outline of the advantages and disadvantages of the level set method. The
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three primary disadvantages, memory inefficiency, computational inefficiency and the restriction
of simulations to a predefined static computational domain, largely set the stage for the next
chapter which provides an overview of previous and concurrent work addressing some of these
limitations.



Chapter 3

Overview of Level Set Methods, Algorithms and

Grid Representations

Since its conception, the level set method [113] has attained widespread use due to its advantages
such as ease of topological change and avoidance of self-intersections. However, mainly three
issues limit the practical feasibility of the method as originally proposed:

• Computational inefficiency : The time complexity of the original level set method is O(L3)
where L is the side-length of the grid. Ideally, when we are working in co-dimension one,
the time complexity should instead be O(A) where A is the area of the surface.

• Storage inefficiency : The storage requirements of the original level set method are O(L3)
as opposed to the desired O(A).

• Predefined static computational domain: Level set deformations are confined to stay within
the boundaries of a predefined computational grid. Rather, a level set surface should
be free of any boundaries and be able to move and expand anywhere in a semi-infinite
computational domain.

These disadvantages were identified in chapter 1 and are targeted by the data structures
and algorithms presented in this dissertation. However, other researchers have addressed the
same problems either previous to or concurrently with our work. Below we briefly review all
such relevant existing work. We will consistently refer to the area of the surface as A and to the
side-length of the grid as L.

3.1 Narrow Band Level Set Methods

The limitation of computational inefficiency was addressed by the introduction of the narrow
band methods that made the observation that it is only necessary to solve the level set PDE in
close vicinity of the zero level set, i.e. the interface. The first narrow band method was proposed
by Chopp [22] and later analyzed extensively by Adalsteinsson and Sethian [1]. In particular
Adalsteinsson and Sethian [1] introduced a narrow band method which restricts most computa-
tions to a band of active grid points immediately surrounding the interface, thus reducing the
time complexity to O(A). In their examples the band radius is 12 grid points in order to sustain
the same band for several iterations. The reason for this is that their narrow band rebuild
procedure requires an O(L3) operation in which grid points over the entire volume are accessed

37
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to rebuild the list of active grid points in the narrow band. Similarly the storage complexity for
this narrow band method is still O(L3). Interestingly, Adalsteinsson and Sethian also proposed
a grid resizing strategy as part of their narrow band rebuilding procedure.

The O(L3) time complexity was eliminated by the sparse field level set method of Whitaker
[161]. In addition to storing the dense uniform grid, the sparse field level set method employs
a set of linked lists to track a minimal set of active grid points around the interface. In a
sense the sparse field method takes the narrow band concept to its extreme by identifying the
minimal set of grid points required to resolve the position of the interface. The level set PDEs
are subsequently only solved on this minimal set of grid points. In the original paper [161],
distance is propagated to grid points neighboring the minimal set of grid points by means
of an approximate city-block distance metric. The resulting narrow band is only as wide as
the size of the finite difference stencils used on the interface grid points. Additionally, costly
reinitializations are avoided by employing speed function extension [1] as well as division by
the length of the gradient which preserves the approximate signed distance to the interface.
Other more accurate first order redistancing approaches may be employed with the sparse field
method as well, however it remains to investigated how the sparse field method can be extended
to higher order accurate schemes. While consistently efficient in time, O(L3) storage space is
required by the sparse field level set method.

Peng et al. [120] next introduced a narrow band method tailored for more accurate finite
difference schemes. This method solves the level set PDE in a narrow band around the interface,
with a band radius of typically three to five grid points depending on the accuracy of the
numerical scheme employed. Subsequently, this solution is propagated out in a tube of grid
points by means of an Euclidean distance metric. Their method employs data structures based
on simple arrays as opposed to the linked lists used in [161]. However their method does not
overcome the O(L3) storage requirements and the O(L3) periodic rebuild of the narrow band,
although the possibility of using an O(A) time rebuild is mentioned.

Recently an extension to the method of Peng et al. [120] was proposed by Nilsson et al. [108].
The extension is an O(A) method for rebuilding the narrow band in a single pass.

All of these narrow band methods effectively address the problem of computational inefficiency
present in the original level set formulation [113]. However, they all explicitly store a dense
uniform grid and additional data structures to identify the narrow band grid points. Hence,
the associated memory requirements remain O(L3) . This can be a limiting factor for level
set simulations that require large high resolution grids to resolve details of complex deforming
interfaces.

3.2 Octree-Based Level Set Methods

Quadtrees (2D) and Octrees (3D) [27] have in recent years been applied to level sets [31,34,45,
83, 84, 94, 139–142] and adaptively sampled distance fields [39, 121] to reduce the storage and
computational requirements compared to the original level set method.

While these tree data structures do indeed allow for multi-resolution representations, all cur-
rent tree-based level set methods use uniform resolution near the interface. This is partly due to
numerical accuracy but also because it can be hard to design reliable refinement strategies which
guarantee that no fine features are missed due to under-sampling as the interface propagates in
time. Refining uniformly near the interface and storing only the grid points inside the narrow
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band in the octree enables the use of higher order finite difference schemes like ENO [114] and
WENO [79] in space and the TVD Runge-Kutta methods [133] in time. On the other hand
a non-uniform discretization makes it non-trivial to accurately employ these finite difference
schemes. Tree based methods that solve the level set equation over the entire computational
domain need to account for grid cells of varying sizes and are hence prevented from using these
standard higher order finite difference schemes as is [94, 139–142]. Instead the semi-Lagrangian
scheme [141] is typically employed.

The pointer-based quadtree and octree data structures reduce the storage requirements of
level sets to O((d + 1)A), but also introduce an O(d) access time, where d is the depth of the
quadtree or octree. Note that it may be the case that d >> log A. The octree data structure
can be modified to reduce storage requirements to O(A) and access time to O(log A) (see [27]).
This access time is nevertheless still penalizing in the context of the level set method, and
state-of-the-art octree-traversal and search methods [38, 138] utilize bit-arithmetic that cannot
immediately be used in conjunction with these modifications.

The method of Losasso et al. [83,84] proposed concurrently with the work presented in this
thesis addresses some of the performance issues associated with octrees. Instead of using a
traditional octree they propose to use a coarse uniform grid in which each grid cell stores an
octree of its own. This decouples the depth of the octree from the size of the computational
domain and hereby lowers the depth d. In addition they introduce an iterator construct that
speeds up access locally during interpolation for semi-Lagrangian advection. Unfortunately
a comparative study of the practical performance of this method has not been documented.
Furthermore, no method has been published on how to ensure cache coherency in the octree
storage format as the narrow band changes due to the temporal evolution of the level set.

In general a state-of-the-art octree based level set method storing and processing only grid
points in a narrow band tends to perform worse than a narrow band level set method [48, 105]
(see also chapter 7). This is to some degree due to the large number of accesses required in the
finite difference computations.

Additionally, level set deformations on octrees, including the modification suggested by
Losasso et al. are still restricted by the boundaries of the underlying grid, although the de-
crease in memory consumption due to the octree structure does allow for larger computational
domains. It is possible to combine an octree approach with a moving and resizing grid strategy
(reviewed below), but one should note that an octree approach will incur storage and/or compu-
tational overhead for large computational domains. A traditional octree will incur both storage
and computational overhead since the number of levels in the tree increases as the computational
domain grows. As the modification proposed by Losasso et al. decouples the number of octree
levels from the overall size of the computational domain, the search depth is not increased as
the computational domain is expanded. However, the coarse uniform grid in itself will eventu-
ally incur a storage overhead, in particular in situations where large computational domains are
required.

3.3 Sparse Non-Tree-Based Level Set Representations

The Sparse Block Grid method of Bridson [15] divides the entire bounding volume of size L3 into
cubic blocks of P 3 grid points each. A coarse grid of size ( L

P )3 then stores pointers only to those
blocks that intersect the narrow band of the level set. Block allocation and de-allocation occurs
as the surface propagates, and a custom reinitialization procedure is required when blocks are
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allocated. Due to its two level hierarchy this method retains the constant access time inherent
to dense grids. Bridson’s approach allows for higher resolutions with O(1) random access times,
but has a storage complexity of O(( L

P )3 + A). As long as the storage requirements of the
coarse grid, L

P )3, are O(A), the overall storage requirements are O(A) as desired. However for
very high resolutions or simulations where interfaces with small area are spread out in a large
domain, the storate-requirements may be dominated by L

P )3. While the method of sparse blocks
restricts computations to a blocked narrow band, it employs a rather conservative estimate of the
grid points actually needed1 and will hence result in more computations than required unless
grid points inside the narrow band are explicitly identified. No comparisons or performance
evaluations of this method has been published.

An approach similar to Bridson’s was taken for simulating water drops on surfaces in the
recent [159].

Concurrently with and independently of our work, Houston et al. [50] presented the RLE
Sparse Level Set in a technical sketch (one-page abstract). Their work is specifically tailored for
computer graphics and primarily focuses on fluid simulations. They propose a data structure
based on run-length encoding (RLE) which decouples the storage of the elements from the actual
encoding.

In the past, run-length encoding has been successfully applied to volumes, e.g. Curless et
al. [26]. While Bridson [15] mentions the potential value of applying RLE to level set volumes,
Houston et al. [50] were the first to design and implement an RLE compressed level set data
structure.

While their technical sketch is rather sparse on detail, we list the following characteristics
based on the sketch and personal correspondence with the authors. In 3D, their approach
requires O(L2 + A) storage. Hence their memory usage is not proportional to the interface,
however random access may be relatively fast because a logarithmic search is only required on
one level of the data structure. Sequential access time is O(L2

A +1) per element whereas random
and stencil access times are logarithmic in the number of runs, r, i.e. O(log r) in a single scan-line
(see chapter 6). Consequently, advection and PDE based reinitialization time on the RLE Sparse
Level Set is O(A log r) in contrast to the desired O(A), since random access is employed for all
grid points in the stencil. Their method maintains a dynamically resizing bounding box which
allows the level set to grow dynamically. If the L2 dependency in their storage requirements
becomes dominant (large sparsely populated computational domains), their method does not
allow for truly out-of-the-box level set simulations.

While their data structure has several resemblances with our initial work presented in chapter
5, our data structure requires O(A) storage, is out-of-the-box and out-performs the Sparse RLE
Level Set [48]. In chapter 6 we propose a combination of our initial work with the run-length
encoding of the RLE Sparse Level Set for versatile representations of narrow bands useful in
graphics.

3.4 Adaptive Level Set Methods

The idea of an adaptive level set method allowing for variable resolution along the surface is
intriguing. Despite this fact, adaptive level set methods are yet to be explored in the context

1Only the grid points in the γ tube are required, and the blocked narrow band is clearly a conservative estimate
of the γ tube.
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of computer graphics. Since the methods presented in this dissertation enable level set simula-
tions at very high resolutions, the main argument in favor of an adaptive level set method is its
potential ability to decrease simulation time. To the best of our knowledge, two adaptive level
set methods have been proposed [93, 144], both in the context of computational physics. The
two methods rely on Adaptive Mesh Refinement techniques [7–9] that refine the grid in areas of
interest by superimposing a number of dense uniform grids at increasing resolution. Spatially
adaptive techniques add complexity because the adaptive grid must adjust to the character-
istics of the evolving surface. In particular error analysis and refinement strategies must be
implemented. Unfortunately, none of the papers on adaptive methods seem to demonstrate
simulations at high resolutions that are infeasible with dense uniform grids.

Representing the surface adaptively also has implications for the speed functions and velocity
fields defining the surface dynamics. In order to profit from the benefits of a fully adaptive
method, these quantities will also have to be represented and simulated adaptively.

More recent work [147] explores the use of transformed uniform grids that cluster grid points
close to the surface. Hence computational effort is concentrated where it is most needed and
higher accuracy is obtainable with fewer grid points. However, again no high resolution simula-
tions are reported.

3.5 The Particle Level Set Method

The particle level set method [33] combines a Lagrangian marker particle approach with the
Eulerian level set method to obtain the advantages of both. The particle level set method
reduces the amount of numerical dissipation particularly present at coarse resolutions. The
marker particles ensure greater accuracy, especially in high-curvature and under-resolved regions
of the surface2 where the level set method alone would incorrectly merge characteristic curves
in order to obtain the correct weak solution dictated by the entropy condition. On the other
hand, the level set method ensures that the dynamic topology of the surface is correctly resolved.
The above properties have made the particle level set method widespread when implementing
fluid simulations for computer graphics. While perfectly suited for this kind of passive surface
advection in an external velocity field free of shocks (as is the case with water simulations), its
use beyond this application area however is limited. First of all, the particle level set method
does not work if shocks are present in the velocity field. As illustrated in [33], the existence of a
shock will cause particles to move inconsistently with the surface in the vicinity of the shock and
hence ruin the desired weak solution. Similarly, the particle level set method is not suited, as
is, to surface deformations described as motion in the normal direction. This makes the method
infeasible in many graphics applications such as shape metamorphosis and geometric modeling
that employ motion in the normal direction and cause shocks in the underlying velocity field
when the models have corners and edges.

The particle level set method increases the memory requirements as up to 64 marker par-
ticles3 are placed in each grid cell in a band three cells wide on each side of the interface.
Particularly at lot of memory is required in cases where a fluid surface has a large area [106].
Unfortunately, the storage requirements of the particle level set method have not been docu-
mented in any published work.

Unlike the particle level set method, our data structures and algorithms are applicable to all

2Consequently it preserves volume.
3For each such particle, both position and radius needs to be stored.
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level set equations and can hence be utilized for limiting numerical dissipation in a brute force
way as they allow for an increase in resolution. The particle level set method does however have
the advantage that for fluid simulation it does not require the fluid interior to be represented
at higher resolution. For our methods, the resolution of the fluid interior needs to be increased
when the resolution of the level set is increased. Fortunately our methods can be combined with
the particle level set method which was actually done in figure 1.6 in chapter 1.

.

3.6 Moving and Resizing Grids

The level set data structures presented in this dissertation are out-of-the-box. As previously
indicated this means that the level set deformation is not limited by the boundaries of an under-
lying grid and the memory consumption will be O(A) no matter how large the computational
domain is.

Related work, developed concurrently with ours, has also addressed the issue of an expanding
computational domain, although in fundamentally different ways. To the best of our knowledge,
Adalsteinsson and Sethian [1] were the first to describe a grid-resizing strategy as mentioned
above. Later, Bridson [15] posed the idea of a dynamically expanding domain, but he did not
demonstrate nor devise a concrete algorithm for it, although a combination of a hash table and
his sparse block grid was indicated as a possible approach. Rasmussen et al. [122] proposed the
concept of dynamically moving and resizing uniform grids. This method can handle the situation
where the deforming surface in question to a large degree remains confined within a small volume
but is free to resize within the storage limits and move anywhere in space. To alleviate the
problems of the above strategy, a grid sourcing strategy was proposed in the same paper. The
grid sourcing strategy splits the simulation domain into a number of uniform grids and arranges
them into an acyclic graph whenever the size of a single uniform grid becomes infeasible. Each
grid can then be simulated separately, either in parallel or in turn, by maintaining the appropriate
boundary conditions between grids adjacent in the acyclic graph. However, the method assumes
a down flow i.e. the surface deformation taking place in one grid can only be affected by the
deformation in adjacent grids closer to the root of the graph. Hence this method is not applicable
in general, but works well for the type of flow at which it was aimed. In particular the melting
terminatrix shown in figure 1.1 in chapter 1 was simulated using this approach.

Similar approaches have been proposed in [132] and more recently [117]. [132] is particularly
aimed at buoyancy driven flows such as smoke and [117] is an extension of [122] allowing for
both splitting and merging of grids.

A limitation of the methods above is that the memory consumption of the individual dense
uniform grids may be prohibitive even though the actual narrow band may only occupy a small
portion of the total volume.

Finally, the Sparse RLE Level Set [50] also allows for a dynamically resizing bounding box.
However, since the memory consumption of this grid is not proportional to the surface area, the
method’s out-of-the-box capabilities may be limited. In particular excessive memory may be
required in the case of deforming objects sparsely populating a large volume.

In comparison our method is out-of-the-box as storage requirements scale with the area of
the surface, and it does not require the simulation domain to be split.
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3.7 GPU Based Level Sets

In [74] Lefohn et al. demonstrated a narrow band level set method implemented on graphics
hardware. In particular the volume is partitioned into blocks (similarly to the Sparse Block
Grid of Bridson [15]) intersecting the level set surface. Each of these non-empty blocks is then
processed on the GPU. Using their method they obtain speedups of ten to fifteen times over the
fast Sparse Field Method of Whitaker [161] which brings the updates of the level set method
closer to interactive rates. On the CPU side, the method requires the storage of the dense
uniform as well as the blocked grid and additional data structures. On the GPU side, only the
blocked representation is stored.

3.8 Summary

In this chapter we covered the previous and concurrent work relevant to the novel techniques
proposed in this dissertation. In particular three issues limited the practical feasibility of the
original level set method: Storage inefficiency, computational inefficiency and the restriction
that simulations must take place within the boundaries of a fixed computational domain. We
discussed the narrow band level set methods that reduce the computational efficiency of the level
set method, the octree, sparse block grid and RLE methods that address the storage inefficiencies
and the moving and resizing grid strategies that target the restriction of a static computational
domain. Additionally the particle level set method, adaptive level set methods and GPU based
level sets were covered.
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Chapter 4

Introduction

Part I of this dissertation motivated and introduced the level set method in the context of
computer graphics. In particular the importance of level set surfaces for fluid representations,
geometric modeling and shape metamorphosis were emphasized. However, as also identified in
part I, a number of issues limit the practical applicability of level sets. Our work presented in
part II targets the storage inefficiency, computational inefficiency as well as the restriction that
deformations must take place within a static rectangular computational domain. In particular we
propose new data structures and algorithms for representing and manipulating high resolution
level sets. The first of two data structures proposed in part II is entitled the Dynamic Tubu-
lar Grid, or DT-Grid [105]. The DT-Grid allows for high resolution level set simulations with
lower memory footprints and in general higher computational efficiency than previous narrow
band, octree and RLE methods. We demonstrate the properties of the DT-Grid by performance
evaluations and by showing a high resolution level set simulation at effective resolution 10243.
Additionally we illustrate an example of an out-of-the-box simulation not suitable for represen-
tation on traditional octrees and dense uniform grids. The second data structure we propose
is named the Hierarchical Run Length Encoded, or H-RLE, grid [48]. The H-RLE is derived
from a combination of the DT-Grid and the Sparse RLE Level Set of Houston et al. [50]. It
allows for a more flexible encoding of the level set, but results in a slight degradation in perfor-
mance for level set computations when compared to the DT-Grid. We stress that the H-RLE
and DT-Grid complement each other. In particular the DT-Grid is preferable for standard high
resolution level set simulations, whereas the H-RLE offers advantages over the DT-Grid when
flexible encodings of the narrow band are required. Finally we note that chapter 15 in part V
presents several applications of the DT-Grid and H-RLE data structures in computer graphics.
This includes fluid simulation, geometric texturing and surface reconstruction.

Briefly outlined, the structure of part II is as follows. Chapter 5 presents the DT-Grid and
its associated algorithms for representing, manipulating and tracking high resolution level sets.
Next chapter 6 introduces the H-RLE data structure and discusses its versatility. Following that
chapter 7 provides a detailed performance analysis that includes comparisons with previous and
concurrent work. In addition we discuss the known advantages and disadvantages of our new
data structures.
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Chapter 5

The DT-Grid - High Resolution Level Set

Simulations

Level set methods [113] have proven very successful for interface tracking in many different ar-
eas of computational science. However, current level set methods are limited by a poor balance
between computational efficiency and storage requirements. Tree-based methods decrease the
storage requirements but have relatively slow access times when utilized for level set computa-
tions. Narrow band schemes on the other hand are relatively fast, but lead to increased memory
requirements that become prohibitive for very high resolution interfaces.

Our general approach to addressing these limitations is to introduce a dynamic uniform grid
that is only defined in a tubular region around the propagating interface. We dub this time-
dependent and interface adapting grid the “Dynamic Tubular Grid” or DT-Grid [12,103–105].
In contrast to existing narrow band methods we do not store any information outside of this
dynamic tube. As a result, the computational complexity and storage requirements scale with the
size of the interface. Our novel level set data structure and algorithms are relatively fast, cache
coherent and allow for a relatively low memory footprint when representing high resolution level
sets. Our studies show that our 3D DT-Grid is in most cases faster and more memory efficient
than both state-of-the-art narrow band [108,120], octree [38,138] and RLE implementations [50].
Additionally our data structure can readily be used with the finite difference schemes already
developed for dense uniform grids. Finally, our data structure is free of any boundary restrictions
on the interface expansion which leads to what we call “out-of-the-box” level set simulations.

In this chapter we show two examples illustrating features of the DT-Grid. One is a high
resolution surface deformation and the other illustrates DT-Grid’s capability of handling out-
of-the-box simulations. The high resolution simulation presented in this chapter is the Enright
Test at effective resolution 10243. The original paper introducing the Enright Test ran it at an
effective resolution of 1003 [33]. More recently, it was presented in effective resolution 5123 on
an octree structure by Enright et al. [34].

5.1 Contributions

DT-Grid stands apart from previously published work in several ways. We do not use tree
structures or dense uniform grids with additional data structures to represent the narrow band.
DT-Grid takes a different approach by storing the narrow band in a compact non-tree-based
data structure that uses less memory than previous methods without compromising the com-
putational efficiency. The DT-Grid data structure is inspired by sparse matrix formats such as
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the compressed column-storage format [41], and leverages on the fundamental assumption made
by the narrow band methods that it is only necessary to solve the level set equation in close
vicinity of the interface. Since narrow bands generally exhibit a higher degree of connectivity
than sparse matrices and support for relatively fast random access is required, our approach
for storing the topology of the narrow band deviates from compressed column-storage. Also
fundamentally different from sparse matrices, the DT-Grid is defined recursively by DT-Grids
of lower dimensionality. This is an essential property which, as we will see, makes DT-Grid free
of any boundaries and makes it generalize to any number of dimensions.

Below we summarize our contributions:

• The memory usage of DT-Grid is proportional to the size of the interface. More specifically
the storage requirements are O(MN ) (in 3D O(M3)) where MN is the number of grid points
in the N-dimensional narrow band. In fact our evaluations show DT-Grid to be more
compact than other grid or tree-based level set schemes that employ a uniform sampling
of the interface. As a result, our data structure allows for higher resolutions of level sets
before hardware memory restrictions are potentially violated.

• Our evaluations have shown that the computational efficiency of accurate level set de-
formations based on DT-Grid is in most cases better than both narrow band, tree- and
RLE-based approaches. As we demonstrate in chapter 7 this is partly due to the combined
effect of a relatively low memory footprint and the cache coherency of the storage format
and associated algorithms. More specifically we have developed algorithms that guarantee
the following properties of DT-Grid:

1. Access to grid points has time complexity O(1), when the grid is accessed sequentially.

2. Access to neighboring grid points within finite difference stencils has time complexity
O(1).

3. The time complexity of random and neighbor access to grid points outside the finite
difference stencil is logarithmic in the number of connected components within p-
columns (as opposed to the number of elements within p-columns) (see section 5.2.1
for the definition of p-column). This time complexity is in many cases asymptotically
better than random and neighbor access time in octrees.

4. The time complexity of constructing and rebuilding the DT-Grid is linear in the
number of grid points in the narrow band.

• Our data structure allows level set interfaces to freely deform without boundary restrictions
imposed by underlying grids or trees employed in other methods. This effectively implies
that interfaces can expand arbitrarily. We demonstrate this with out-of-the-box level set
deformations.

• Our data structure generalizes to any number of dimensions.

• Unlike approaches employing non-uniform grids our flexible data structure can transpar-
ently be integrated with all existing finite difference schemes typically used to numerically
solve both hyperbolic and parabolic level set equations on dense uniform grids.

• The DT-Grid can be used to store the usually non-convex volume of fluid velocity and
pressure used in fluid simulations. This makes the memory usage scale with the volume
of the fluid as opposed to the volume of an enclosing bounding box.
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• The DT-Grid algorithms are relatively straightforward to parallelize [52].

This chapter is organized as follows. Section 5.2 introduces the DT-Grid data structure.
A general N-dimensional definition is given and a detailed explanation is presented in 2D. In
section 5.3 we describe algorithms that are fundamental to level set simulations on the DT-grid.
Next in section 5.6 we demonstrate the relatively low memory footprint of a 10243 resolution
level set simulation, and then show how level set simulations on a DT-Grid can go out-of-the-
box, a feature not shared with any existing narrow band or tree-based level set method except
the H-RLE data structure presented in chapter 6. Finally, section 5.7 summarizes this chapter.

5.2 DT-Grid Data Structure

Throughout this chapter by tubular grid we mean a subset of grid points, defined on an infinite
grid, within a fixed distance from an interface. As the interface propagates this subset changes,
thus giving rise to the term dynamic tubular grid. In this section we define the DT-Grid, a data
structure for high resolution N-dimensional dynamic tubular grids.

A straightforward non-hierarchical approach to representing a tubular grid is to explicitly
store float values and indices of all its grid points. To obtain constant access times to neighboring
grid points, one could also store additional pointers. However, this approach does not scale well
as the number of grid points in the tubular grid increases. The DT-Grid employs another
approach by combining a compressed index storage scheme with knowledge of the connectivity
properties of the tubular grid to obtain a relatively memory- and time-efficient data structure.
This is achievable by means of a lexicographic storage order of the grid points.

5.2.1 Definition of the DT-Grid

The main concept behind the definition of the DT-Grid is to store a minimal amount of infor-
mation in order to describe the topology and values of a dynamic tubular grid. Exactly how this
information can be utilized for constructing algorithms will become evident in section 5.3. The
DT-Grid is defined recursively in terms of DT-Grids of lower dimensionality, and as such our
approach readily generalizes to any dimension. However, for simplicity we shall limit a detailed
description of the data structure to 2D and illustrate with the example depicted in Figure 5.1.
As a prelude to this description it is convenient to introduce the following general terminology

N The Dimension.
XN Grid point or p-column number (x1, x2, ..., xN )
φ(XN ) Scalar level set function evaluated at grid point XN .
Ω− Interior region.
Ω+ Exterior region.
dx The uniform grid spacing.
Tα The tubular grid {XN ∈ <N |

∣∣ |φ(XN )| < α}.
MN , QN Number of grid points in ND tubular grid.
γ Width of the tubular grid.
CXN

Number of connected components in p-column XN .
CN Total number of connected components in ND DT-Grid.

Table 5.1: Nomenclature used throughout the chapter.

based on the nomenclature given in table 5.1.

• In N-dimensions, p-column (short for projection column) number XN−1 = (x1, x2, ..., xN−1)
is defined as the set of grid points in the tubular grid that project to (x1, x2, ..., xN−1, 0) by
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orthogonal projection onto the subspace spanned by the first N − 1 coordinate directions.
Thus a p-column is always 1D.

• A connected component in N dimensions is defined as a maximal set of adjacent grid points
within a p-column.

For example, in 2D, p-column number x is defined as the set of grid points in the tubular grid
that project to (x, 0) by orthogonal projection onto the X axis. In figure 5.1.a, p-column number
3 is defined as the set of grid points {(3, 1), (3, 2), (3, 4), (3, 5)}, and it contains two connected
components, {(3, 1), (3, 2)} and {(3, 4), (3, 5)}. Note that the lower leftmost grid point in figure
5.1.a is (0, 0).

A N-dimensional DT-Grid can be defined recursively in terms of a (N-1)-dimensional DT-
Grid using pseudo C++ syntax as follows

template<typename Type> class DTGridND<Type>

{

Array1D<Type> value;

Array1D<Index> nCoord;

Array1D<unsigned int> acc;

DTGrid(N-1)D<IndexPair> proj(N-1)D;

}

Below we define the 2D DT-Grid in pseudo C++ syntax and explain its constituents in
detail. In particular it is defined as

template<typename Type> class DTGrid2D<Type>

{

Array1D<Type> value;

Array1D<Index> yCoord;

Array1D<unsigned int> acc;

DTGrid1D<IndexPair> proj1D;

}

template<typename Type> class DTGrid1D<Type>

{

Array1D<Type> value;

Array1D<Index> xCoord;

Array1D<unsigned int> acc;

}

where the individual constituents are:
value: The value array (in DTGrid2D) stores the numerical values of all grid points in the

two-dimensional tubular grid in (x, y) lexicographic order. Typically the associated Type will be
float or double. In figure 5.1.{a,b} the grid points contained in the tubular grid are colored
yellow and blue. In this illustrative example the numerical values of the grid points in the tubular
grid are simply chosen to be the corresponding lexicographic storage order in the DT-Grid.

yCoord: The yCoord array stores the min and max y-coordinate of each connected compo-
nent. In figure 5.1.{a,b} these grid points are shown in yellow. Thus, rather than simply storing
y-coordinates of all grid points, we exploit the connectivity in the tubular grid.

acc: The acc array (in DTGrid2D) stores pointers into the value array which identifies the
first tubular grid point in each connected component. As will be explained later this information
is essential in obtaining a random access operation with good asymptotic time complexity.

proj1D: The proj1D constituent holds pairs of indices into the value and yCoord arrays for
the first grid point in each p-column in the tubular grid. This is illustrated with arrows in figure
5.1.{b,c}. Also note that proj1D is defined recursively as a DTGrid1D with Type=IndexPair, see
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Figure 5.1: (a) A uniform 2D grid with the grid points in the narrow band depicted in yellow
and blue. (b) 2D DT-Grid corresponding to (a). Note the lexicographic storage order. (c) A
uniform 1D grid, corresponding to the projection of the 2D uniform grid onto the X axis. (d)
1D DT-Grid corresponding to (c). This 1D DT-Grid forms part of the 2D DT-Grid as depicted
in (b) and explained in detail in the text.

figure 5.1.{c,d}. By defining proj1D recursively as a DT-Grid we obtain the property that the
grid becomes free of any boundaries, since grid points are stored explicitly albeit compressed.
This definition also leads to the property that memory requirements are proportional to the size
of the interface as we will prove later.

The constituents of the 1D DT-Grid are defined similarly to those of the 2D DT-Grid, except
for the fact that it does not have a proj0D constituent. proj1D introduces additional structure
into the 2D DT-Grid and allows for fast access to each p-column independently. As will become
clear in the next section, this structure is used extensively in most of the algorithms of the data
structure.

Figure 5.1 shows the definition of the DT-Grid in its most general and comprehensive form.
However, a number of space optimizing variations, valid at each recursive level of the DT-
Grid, can be constructed, and we briefly review these next. Note that these variations require
either none or at most trivial modifications to the algorithms of the DT-Grid described in the
subsequent sections. In particular the space optimizing variations are:

1. Due to the presence of the acc array an optimization is possible. This optimization comes
at the trade off of a single extra array lookup. By looking at figure 5.1 the reader should
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Figure 5.2: Color coded representation of the tubular grid of a 643 sphere in a 3D DT-Grid. a)
Entire sphere. b) Middle slice of sphere. c) P-column consisting of two connected components.

notice the redundancy apparent between the acc array and proj1D structure regarding
indices that point into the value array. In fact proj1D needs only store the index into
the yCoord (in general nCoord) array. The corresponding index into the value array can
then be obtained by looking it up in the acc array using the index into the yCoord array
divided by two 1.

2. Another optimization is possible when storing the acc array. In fact storing the max
coordinates of connected components becomes redundant. This is because the difference
between two subsequent entries in the acc array equals the number of grid points in
the corresponding connected component. Thus, the max coordinate of a given connected
component can be found as the min coordinate plus the difference between the two corre-
sponding entries in the acc array minus one.

3. The acc array is only required for the above optimizations and when random access based
on binary search is used. However, for many typical models, the number of connected
components in a DT-Grid is very small. This means that linear search time is often
comparable to or faster than binary search in practice, despite its asymptotically inferior
time complexity. Hence if either random access is not required or linear search performs
better or comparable in the given situation, the acc array does not need to be stored at
all.

4. It is only necessary to represent coordinates stored in e.g. the yCoord array with the
number of bits required by the simulation. If for example the coordinates of narrow band
grid points for a particular simulation are confined to stay within the range [−2048; 2047]3,
only 12 bits are required to store each coordinate.

1The reason for the division by two is that the nCoord array stores exactly twice as many elements as the
acc array.
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Depending on the particular application of the data structure, it can either be implemented
in its most general form or using one or several of the space optimizations above.

As clarified above, the DT-Grid generalizes to any number of dimensions. In particular, figure
5.2 shows an example of a 643 sphere represented in a 3D DT-Grid. The 2D and 1D DT-Grid
constituents are also included in the illustrations. The red and green grid points are the grid
points in the 3D tubular grid. The red grid points are the start and end grid points of connected
components in the z-direction. Figure 5.2.c shows p-column number (25, 25) consisting of two
connected components. The white pixel in Figure 5.2.c illustrates the IndexPair that points to
p-column number (25, 25).

The storage requirements of a N-dimensional DT-Grid are O(MN ) (see table 5.1) which can be
justified as follows: Clearly, the storage requirements of a 1D DT-Grid are O(M1) since it does
not contain a proj0D constituent, and since the number of xCoord indices stored in the worst
case equals twice the number of grid points in the 1D DT-Grid. The storage requirements of a N-
dimensional DT-Grid are O(MN−1 +MN ) which by induction equals O(MN ) since MN−1 ≤ MN

by the properties of orthogonal projection.
One additional and important property of the DT-Grid can be deduced from the definition

given above. Since the DT-Grid is defined recursively, the coordinate vectors of all grid points
are explicitly stored, albeit in a compressed format. This means that the grid points of the
DT-Grid are not restricted to a particular range of indices as is the case with the traditional
dense uniform grid or tree-based methods. Hence, the DT-Grid is capable of representing semi-
unbounded, dynamically expanding and non-convex grids. This allows for out-of-the-box level
set simulations which we demonstrate in section 5.6.1.
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Figure 5.3: The DT-Grid dynamically adjusts the tube of grid points as the level set deforms.
Hence the DT-Grid does not in any way limit or put restrictions on the type of surface de-
formation possible. Here an extruded spiral evolving under volume conserving mean curvature
flow [120] and exhibiting complex changes in topology during the simulation. The evolution of
the interface is depicted from top-left to bottom-right. Renderings by Ola Nilsson based on my
simulation data.
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5.3 DT-Grid Algorithms

Algorithm Time Complexity
Push O(1)
Access to Stencil Grid Points O(1)
Sequential Access O(1)
Random Access to XN O(1 +

∑N−1
n=0 log CXn)

Neighbor Access to XN in m’th O(1 +
∑N−1

n=m log CXn)
Coordinate Direction
(m = 1: x-direction, m = 2: y-direction,...)
Rebuilding the tubular grid O(MN )
Dilating the tubular grid O(MN )
CSG operation O(MN + QN )

Table 5.2: Key algorithms of a N-dimensional DT-Grid.

In this section we describe in detail the key algorithms of our DT-Grid data structure. The
DT-Grid has the exact same algorithmic/implementation interface as a dense uniform grid.
Furthermore, even though our data structure only stores the values of a tubular grid, methods
that provide access to any grid point are supported. In our case these methods simply return
a signed value, positive in Ω+ and negative in Ω−, with absolute value equal to the width of
the tubular grid, γ. This design approach hides the added complexity of our data structure and
makes it almost trivial to integrate DT-Grid with existing level set simulation code.

The key feature of the DT-Grid algorithms is that they allow us to solve the level set and
reinitialization PDEs in time O(MN ) due to the fact that constant time access to all grid points
within the stencil is provided. This is the same asymptotic time complexity that narrow band
level set methods have. Note that in comparison level set propagation on a state-of-the-art octree
implementation relying on random and neighbor access has an asymptotic time complexity of
O(MN log MN ). The fast marching method can be implemented on the DT-Grid with asymptotic
time complexity O(MN log MN ) which again is the same as for a narrow band level set method
on a dense uniform grid. Finally, rebuilding the narrow band has asymptotic time complexity
O(MN ) on the DT-Grid similar to the narrow band level set method.

Generally, narrow band level set methods are considered to be fast, and the above means that
using the DT-Grid we can obtain asymptotic time complexities that match those of the narrow
band level set methods and are better than those of the octree. Furthermore, the DT-Grid data
structure is very compact and the associated algorithms to a large degree work cache coherently.
The DT-Grid was initially designed to be more memory-efficient than previous approaches, but
the last fact has the consequence that it is in most cases also faster. Measurements of L1 and
L2 cache-hits and -misses presented in chapter 7 have shown that other approaches introduce
more cache-misses than the DT-Grid. A memory access that results in a cache-hit can be orders
of magnitude faster than a memory access that introduces a cache-miss. This explains why the
DT-Grid can be faster than previous approaches even though its operations are more complex.

For a detailed evaluation of the DT-Grid against previous approaches the reader is referred
to chapter 7.

Due to the recursive nature of the storage format of the DT-Grid, many of the operations
presented here are also recursive in nature. The rest of this section is structured as follows.
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Section 5.3.1 describes a constant time operation for inserting grid points into the DT-Grid.
Section 5.3.2 describes a logarithmic time algorithm for random access to grid points based
on binary search. This algorithm is used if grid points are accessed non-sequentially or lie
outside of the stencil. Next, section 5.3.3 describes how constant and logarithmic time neighbor
access operations can be constructed. In sections 5.3.4 and 5.3.5 we describe how constant
time sequential access to all grid points within a finite difference stencil can be obtained when
iterating over the grid. This is essential in obtaining a fast data structure. Finally, section
5.3.6 describes how the tubular grid is rebuilt. In particular, we describe a generic algorithm
for rebuilding the tubular grid, which can be used independently of the method employed for
reinitializing the level set function to a signed distance function.

Many of the essential details of the DT-Grid algorithms as well as more elaborate proofs of the
time complexities are given in independent subsections following the more intuitive descriptions.
We realize that not all readers are interested in these details, and as such effort has been made
to make the main part of this chapter self-contained even if the detailed subsections are skipped
on a first reading.

Table 5.2 gives an overview of the DT-Grid operations and their associated time complexities.

5.3.1 Push - Inserting Grid Points in Constant Time

The DT-Grid supports a low-level constant time push operation to add new grid points to the
data structure. Since the grid points are stored in memory lexicographically as (x1, x2, ..., xN ),
new grid points must be pushed in this order2. If, on the other hand, grid points were inserted in
an order different from their lexicographic order, each insertion would take worst case linear time
in the number of grid points stored 3. However, random insertions can be avoided altogether in
level set computations.

A pop operation could be implemented similarly to the push operation, but is not needed for
level set simulations. This is due to the fact that the structure of the tubular grid only changes
when the tubular grid is rebuilt. In that case the new tubular grid is constructed from scratch
using a fast dilation algorithm (see section 5.3.6).

The push method updates the array constituents of the DT-Grid (defined in section 5.2.1)
and has to deal with the following three cases:

1. The new grid point is the first in a p-column. (As an example see grid points {0,3,8,12,17}
in figure 5.1.a.)

2. The new grid point is the first grid point in a connected component (and not the first in
a p-column). (See grid point 10 in figure 5.1.a.)

3. The new grid point is the last in an existing connected component at insertion time. (See
the remaining colored grid points in figure 5.1.a: {2,7,9,11,16,19}.)

Below we give the full detail of the push operation.

Details of the Push Algorithm

Here we present a C++ pseudo code representation of the push operation for a 3D DT-Grid.
The general N dimensional version is similar.

2e.g. in 3D, push(2,2,6) should be issued before push(2,5,1).
3Sorting all grid points can be done in worst case time O(MN log MN ) and in linear O(MN ) time if bucket

sorting is applicable.
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void push(Index x, Index y, Index z, Real val)

{

if ( proj2D.last() != (x,y) ) // (x,y,z) lies in new p-column

{

IndexPair p(value.size(), zCoord.size());

proj2D.push(x, y, p);

zCoord.push(z);

zCoord.push(z);

acc.push(value.size());

}

else if ( zCoord.last() != z-1 ) // (x,y,z) first in connected component

{

zCoord.push(z);

zCoord.push(z);

acc.push(value.size());

}

else // (x,y,z) last in connected component

{

zCoord.last() = z;

}

value.push(val);

}

Remarks: In case 1, (x,y,z) is the first grid point in the (x,y)’th p-column and the
proj2D data structure must be set to point to this grid point. The z coordinate is pushed twice
onto the zCoord array since it denotes both the start and end of a new connected component.
This is also reflected in case 2. In case 3 the end of the connected component is set to z since
(x,y,z) was adjacent to the previous, zCoord.last(), grid point pushed. All operations above
are O(1), hence the push operation is O(1), when considering N to be a constant.

5.3.2 Logarithmic Time Random Access

As described in the introduction, the DT-Grid supports constant time access to grid points within
a stencil when accessing the grid sequentially (see section 5.3.4). This is used in most level set
algorithms that we have considered, except for the fast marching method [131, 154, 155] and
ray tracing, which instead uses random and neighbor access (neighbor access is described in the
next section). The DT-Grid supports operations for random access, which is the mapping from
an arbitrary N-dimensional grid point to its corresponding numerical value. A dense uniform
grid provides constant time random access to all its grid points since this simply amounts to an
array access. Constant time random access to grid points is not possible in a DT-Grid. However,
logarithmic time, in the number of connected components within p-columns, can be obtained.
Note that this is optimal with respect to the storage format since searching in a sorted range
has a logarithmic lower bound.

Random access to the grid point XN in a N-dimensional DT-Grid is defined recursively in
dimensionality as follows.

1. The random access algorithm of the N-1-dimensional DT-Grid constituent is used to de-
termine if p-column number XN−1 is contained in the projection of the N-dimensional
tubular grid.

2. If this is the case, it is determined if the grid point’s N’th coordinate, xN , lies between the
min and max N’th coordinates in p-column number XN−1.

3. If this is the case, binary search for xN in p-column number XN−1 in the nCoord array
is employed to find the nearest start coordinate of a connected component in the N’th
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coordinate direction.

4. Finally it is determined whether the grid point actually exists in the p-column (ie. is inside
a connected component in this p-column) and if this is the case its value is returned.

Access to grid points outside the tubular grid simply return −γ if the grid point lies in Ω− and
γ if the grid point lies in Ω+. The time complexity of random access to a grid point, XN =
(x1, x2, ..., xN ), is O(1 +

∑N−1
n=0 log CXn), where CXn is the number of connected components in

p-column Xn. We finally note that in cases where the number of connected components within
p-columns is small it may actually be advantageous to employ a linear search instead of the
asymptotically optimal binary search, see chapter 7.

Employing the random access operation it is easy to implement the following fundamental
operations: 1) An operation that determines if a grid point is inside or outside of the interface,
2) An operation that determines if a grid point is in the tubular grid (or equivalently inside the
narrow band), 3) An operation that determines the closest point on the interface to a grid point
inside the tubular grid.

In cases where a large range of random accesses into a DT-Grid fall outside of the narrow
band it may be an advantage to add an explicit bounding box to the DT-Grid data structure.
This will enable fast, O(1), lookups away from the narrow band by just checking coordinates
against this bounding box. A dynamic bounding box tracking the narrow band can be computed
trivially and with almost no additional cost during the DT-Grid’s dilation algorithm described
in section 5.3.6.

Details of the Random Access Algorithm

Let γ be the width of the tubular grid and XN = (XN−1, xN ) an N dimensional grid point with
N−1 and 1 dimensional sub-components XN−1 and xN respectively. The method randomAccess
returns a triple (inside, i, v). inside is a boolean telling whether XN is inside the tubular
grid, i is the index of XN into the value array of DTGridND (which is valid only if inside==true)
and v is the value at XN . Below we assume that the IndexPair described in section 5.2.1 has
two members, iv that points into the value array and ic that points into the nCoord array.
Note that the numbering of the individual steps in the detailed algorithm description below
follows the numbering of the more intuitive description above, and that clarifying remarks are
given immediately below the algorithmic description. The algorithm proceeds as follows:

1. If N == 1 set kmin = 0 and kmax = xCoord.size()-1. Otherwise

(a) Set (inside,i,v) = proj(N-1)D.randomAccess(XN−1).

(b) If inside==false return (false,0,γ).

(c) Set kmin = proj(N-1)D.value[i].ic and
kmax = proj(N-1)D.value[i+1].ic-1.

2. If xN < nCoord[kmin] || xN > nCoord[kmax] return (false,0,γ).

3. Perform a binary search for xN at even positions (indices that point to the start of a
connected component) in the nCoord array. The search is delimited by the indices kmin

and kmax − 1 (both inclusive), and the index determined is denoted k. We assume the
binary search is constructed such that nCoord[k] ≤ xN < nCoord[k+2].
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4. There are now two cases:

(a) If xN <= nCoord[k+1], set i=acc[(k>>1)]+xN-nCoord[k] and return (true,i,value[i]).

(b) Else return (false,0,sign(value[acc[(k+2)>>1]])·γ).

Remarks: Step 1 determines kmin and kmax which are the indices into the nCoord array
of the minimum and maximum N’th coordinate in p-column number (x1, x2, ..., xN−1). In step
4, the >> is the right-shift operator. k is right-shifted by one since k is an index into the nCoord
array which has exactly twice as many elements as the acc array. Note that for simplifying the
presentation of the algorithm, a value was returned at all recursive levels of the data structure.
In practice however this is only done at level N .

Steps 2 and 4 above have time complexity O(1). Step 3 has time complexity O(log CXN−1
),

where CXN−1
is the number of connected components in the XN−1’th column. Hence by applying

this argument recursively in step 1 it can be seen that random access in a N-dimensional DT-
Grid has time complexity O(1+

∑N−1
n=0 log CXn). Note also that this complexity is optimal with

respect to the storage format, e.g. O(1) random access time is not possible.
As noted previously it may sometimes be advantageous to apply a linear search in place of

a binary search. Despite its asymptotically inferior time complexity of O(
∑N−1

n=0 CXn) it will
in practice often perform comparable to or even better than binary search. This is due to the
relatively low number of connected components in typical models as well as the greater overhead
associated with binary search. The only algorithmic change is in step 3 above where a linear
search is employed instead of a binary search.

The time complexity of random access depends only on the number of connected components
within a total of N p-columns in the DT-Grid - one p-column at each level of the encoding.
Hence the time complexity of the random access operation is not affected if a model projects
to a large lower-dimensional area. In the worst case, the number of connected components will
be equal to the number of grid points in the grid and in that case, the random access operation
will be logarithmic in the total number of grid points stored in the grid.

5.3.3 Logarithmic and Constant Time Neighbor Access

This section describes how the DT-Grid implements fast neighbor access to grid points by
utilizing structural information about the grid. Constant access time to a grid point is possible
if its index into the value array constituent is known. However, this index does not provide
any structural information about the location of the grid point in relation to neighboring grid
points in the coordinate directions. For this reason the DT-Grid supports Locator based access.
A Locator points to and provides structural information about a grid point in a DT-Grid. It
allows for constant access time to the grid point itself and faster neighbor access than can be
achieved using random access alone. Locators are not explicitly stored but can be computed
by an operation similar to a random access operation. A N -dimensional Locator is defined
recursively with respect to dimensionality as

struct LocatorND {

Locator(N-1)D loc;

unsigned int iv;

unsigned int ic;

Index Xn;

};
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where loc is a N −1-dimensional Locator, and the components iv and ic point respectively
into the value and nCoord arrays of DTGridND. In particular iv points to the value of the grid
point and ic points to the N’th coordinate of the first grid point in the connected component
in which the grid point lies. The last component, Xn, is the N’th coordinate of the grid point.

As mentioned above, neighbor access using locators is faster than neighbor access using
random access. In fact, when doing neighbor search in the m’th coordinate direction, the
structural information about the original and neighboring grid point is identical in the first
m-1 coordinate directions. For the sake of simplicity we explain this in 2D, but stress that
the general N-dimensional case is similar. Recall that the storage order of grid points in a 2D
DT-Grid follows the (x, y) lexicographic ordering. Thus, the numerical values of the neighbors
in the Y coordinate direction, (x, y − 1) and (x, y + 1), can be found in constant time from a
Locator using the indices iv±1, respectively. If the particular neighbor does not exist in the
tubular grid, γ is returned if the neighbor is outside the interface, and −γ otherwise.

Neighbors in the X coordinate direction can be found in time O(log Cx±1), where Cx±1 is
the number of connected components in p-column number x± 1. This is done by first locating
the neighbor in the proj1D constituent using iv±1 of the 1D Locator constituent. Next, one
can apply a binary search for Y in the x± 1’th column.

In general, neighbor search in the m’th coordinate direction in a N-dimensional DT-Grid
takes time O(1 +

∑N−1
n=m log CXn).

5.3.4 Constant Time Sequential Access Using Iterators

The DT-Grid has support for an Iterator which is a construct that provides constant time
sequential access to grid points in the DT-Grid. The Iterator is in effect a wrapper around a
Locator (see section 5.3.3) that uniquely identifies a grid point. Note that using the Locator
constituent it is possible to obtain logarithmic, and in a single case constant, time access to
neighboring grid points. However, as will be described in the next section, the Stencil Iterator
provides constant time access to neighboring grid points within a stencil.

The key method of the Iterator is the increment operation which simply increments the
associated Locator to point to the next grid point in the tubular grid. This operation has time
complexity O(1). In the following subsection we describe this increment method in detail.

Details of the Increment Algorithm

Here we give the details of the increment operation supported by an Iterator. The increment
algorithm simply increments the Locator wrapped by the Iterator to point to the next grid point
in the tubular grid. We assume that the Iterator of a N-dimensional DT-Grid, IteratorND,
contains

• A reference, grid, to the DT-Grid being iterated over.

• A reference, iterator(N-1)D, to a N − 1 dimensional iterator (if N > 1) defined equiva-
lently.

• A value, value.

Furthermore we assume that the IndexPair described in section 5.2.1 has two members, iv that
points into the value array and ic that points into the nCoord array. Using the definition of the
LocatorND presented in section 5.3.3, the increment operation looks as follows in C++ pseudo
code
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void IteratorND::increment(LocatorND loc)

{

loc.iv++;

value = grid.value[loc.iv];

if (loc.Xn == grid.nCoord(loc.ic+1))

{

loc.ic += 2;

loc.Xn = grid.nCoord(loc.ic);

if (grid.proj(N-1)D.value[loc.loc.iv+1].ic == loc.ic)

{

iterator(N-1)D.increment(loc.loc);

}

}

else

{

loc.Xn++;

}

}

Remarks: The first if-statement tests if IteratorND exits a connected component, and
loc.ic points to the start of a connected component. The second if statement tests if IteratorND
passes to a new p-column and increments the Locators of lower dimensionality recursively to
e.g. set the grid point coordinates appropriately. Since all steps above are O(1), the increment
method is O(1).

5.3.5 Constant Time Stencil Access Using Iterators

Level set methods require access to a finite difference stencil of grid points in order to compute
approximations to derivatives like gradients and curvature. Hence, fast access to all members
of the stencil is a necessity to ensure good performance. By shifting a stencil of Iterators over
the tubular grid it is possible to gain constant time access on average to all grid points within
the stencil. This is optimal and applies when iterating over the entire tubular grid, which is the
case e.g. when advecting, propagating or reinitializing the level set function.

To achieve the above, the DT-Grid has support for a Stencil Iterator, which contains a stencil
of Iterators, one for each grid point within the stencil.

Incrementing a Stencil Iterator is a bit more involved than incrementing a single Iterator.
Here we give an overview of the process.

1. First the Iterator corresponding to the center grid point of the stencil is incremented using
the increment method described in the previous section. This center Iterator dictates the
movement of the entire stencil.

2. Next the remaining Iterators, corresponding to non-center stencil grid points, are in-
cremented until they point to the correct stencil grid point. This is done using the
incrementUntil method which is described in detail in the next subsection. A non-
center stencil grid point may not exist in the tubular grid. If this is the case, access to
that particular stencil grid point returns −γ if the grid point lies in Ω− and γ otherwise.

Narrow band level set algorithms typically operate on a number of concentric tubes of increas-
ing width centered about the interface, see [1,120] as well as chapters 2 and 3. If the DT-Grid is
a signed distance field, the Stencil Iterator can be parameterized to return only the grid points
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within a certain tube, e.g. the zero crossing, without requiring additional storage (see figure
2.7). This is done simply by incrementing the Iterator of the stencil center grid point until it
points to a grid point with absolute value below some threshold.

Incrementing a stencil of Iterators across the DT-Grid provides constant time access on
average to all stencil grid points in a particular tube as long as all grid points in the tube are
visited. This is the case since: a) Each Iterator of the Stencil Iterator passes over the tubular
grid exactly once, which has complexity O(MN ), where MN is the number of grid points in the
tubular grid, b) MN is proportional to the number of grid points in any tube centered about
the interface (because tube has fixed width) and inside the tubular grid, c) The number of grid
points within the stencil is a constant, d) Access to a grid point through an Iterator has time
complexity O(1).

Details of the IncrementUntil Algorithm

The incrementUntil(GridPoint XN, LocatorND loc) operation of
IteratorND increments an Iterator until it points to the grid point with the coordinates given
by XN . It works as follows

1. Increment loc until it points to the lexicographically smallest grid point, YN , in the
tubular grid, that is larger than or equal to XN .

2. If XN == YN set value=grid.value[loc.iv], otherwise set
value=sign(grid.value[loc.iv])·γ.

Remarks: In practice it is crucial how step 1 above is implemented and a few optimizations
are possible:

• If the center grid point of the stencil only moves one grid point in the N ’th coordinate
direction by an increment operation, we know that those non-center stencil grid points
that will not pass out of the tubular grid, will also move exactly one grid point in the N ’th
coordinate direction. In that case step 1 and step 2 above can be implemented with the
following three lines

loc.iv++;

value = grid.value[loc.iv];

loc.Xn++;

This optimization can typically be applied if the stencil is guaranteed never to pass out
of the tubular grid when iterating over a certain tube, or similarly for those grid points of
the stencil that are guaranteed not to pass out of the tube at a given grid point.

• If the center grid point of the stencil moves only one grid point in the N ’th coordinate
direction, but we are not sure if a particular non-center stencil grid point will move outside
the tube or not, slightly more processing is required. However, the iterator corresponding
to the non-center stencil grid point needs to be incremented at most once. In the case
where it already points to the next correct non-center grid point (because it moved out of
the tubular grid in a previous iteration) no increments are of course needed.

Note that the optimizations described above can be applied recursively to DT-Grids of lower
dimensionality. Since we assume that the entire tubular grid is visited, all steps above take time
O(1) on average given the arguments in section 5.3.5, and hence access to grid points within the
stencil is O(1) on average.



5.3. DT-Grid Algorithms 65

5.3.6 Dilating the Tubular Grid in Linear Time

Level set methods typically apply a reinitialization procedure (after the advection/propagation
step) to reset the level set function to a signed distance function (see chapter 2). Existing narrow
band level set methods furthermore combine this reinitialization step with a method to rebuild
the narrow band to ensure that it includes all grid points within a tube of a certain width.

In this section we present a fast algorithm for dilating a N-dimensional DT-Grid. This algo-
rithm is essential for obtaining feasible asymptotic and practical execution times when rebuilding
the tubular grid, which is the topic of the next section.

A simple idea for a dilation algorithm is to construct a new tubular grid by adding all grid
points that pass under a stencil iterated over the original tubular grid. In N dimensions a desired
dilation of H · dx can be achieved with a stencil shaped as a hypercube with 2H + 1 grid points
along each edge. Clearly, the resulting tubular grid is a conservative estimate of the grid points
no more than a distance of H · dx away from the original tubular grid. The estimate in 1D is
exact, but for a N -dimensional stencil, the maximal distance within the stencil measured from
the stencil center is

√
NH · dx.

A direct implementation of the simple idea outlined above yields a time complexity of O(MN ·
(2H + 1)N ). Asymptotically, this amounts to O(MN ), since (2H + 1)N is constant. However, in
practice this approach is slow and grid points are added to the tubular grid in an order that is
not cache coherent (i.e. not lexicographically ordered) unless special care is taken.

Figure 5.4: (a) The original DT-Grid. (b) The process of computing a new p-column (number
three when counting from zero) in the dilated DT-Grid (adding the red grid points) (c) The
final dilated DT-Grid.

We have taken a different less obvious but faster approach. In particular the dilation algo-
rithm on a N -dimensional DT-Grid exploits the recursive definition of the DT-Grid and, except
for the 1D DT-Grid, uses the dilation algorithm of its N − 1 dimensional DT-Grid constituent
recursively. This results in a fast dilation algorithm that ensures cache coherency for subsequent
traversals.

The dilation algorithm consists of two steps: An allocation step that computes and allocates
the dilated tubular grid, followed by a step that copies the values of the original tubular grid
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to the dilated tubular grid. The time complexity of the allocation step is O(CN ), where CN is
the total number of connected components in the original N-dimensional tubular grid. In most
practical cases CN is sublinear, i.e. CN << MN , where MN is the number of grid points in the
original tubular grid. The time complexity of the copying step is O(MN ). Note that the number
of grid points in the original and the dilated tubular grid are proportional 4

Next we give an overview of the allocation step of the algorithm, omitting the copying step,
since this is trivial. We start with 1D, followed by a description in 2D which readily generalizes
to any number of dimensions. In the subsequent subsections we provide pseudo code and give
the full detail of the algorithms in 1D and ND, respectively.

An illustration of a tubular grid dilation in 2D is depicted in figure 5.4. Figure 5.4.a shows
an initial 2D DT-Grid as well as its 1D DT-Grid constituent. Figure 5.4.c shows the result of
dilating the 2D tubular grid by a stencil with H = 1. Grid points added to the DT-Grids by
the dilation algorithm are colored red.

As mentioned earlier, the xCoord array of DTGrid1D stores a number of connected compo-
nents, each identified by a start and an end index. The dilation algorithm in 1D simply amounts
to dilating each of the connected components by H grid points in both directions and merging
adjacent and overlapping connected components into a single connected component, see figure
5.4.

The 2D dilation algorithm starts by invoking the 1D dilation algorithm on the 1D DT-Grid
constituent. Recall that the 1D DT-Grid constituent stores the orthogonal projection of the 2D
tubular grid onto the X axis. The result of the 1D dilation is that the 1D DT-Grid constituent
contains the dilated projection of the 2D tubular grid which is in fact equal to the projection of
the dilated 2D tubular grid, see figure 5.4.c.

Next, each p-column of the dilated 2D DT-Grid has to be computed. Note that each element
in the 1D DT-Grid constituent identifies a p-column in the 2D DT-Grid. Hence, we know exactly
which p-columns should be computed in the dilated 2D tubular grid. The process of computing
the dilated p-column number x proceeds as follows: First dilate the original p-columns numbered
x−H, .., x− 1, x, x + 1, .., x + H independently in the Y direction by H grid points. Next form
the union of all the connected components resulting from this dilation in order to obtain p-
column number x in the dilated 2D tubular grid. This is illustrated in figure 5.4.b. The index
pairs contained in the dilated 1D DT-Grid constituent are computed simultaneously with the
p-columns. Repeating the process above for each new p-column completes the dilation.

To sum up, the process outlined above dilates the DT-Grid in each dimension independently,
and forms new p-columns by taking the union of the dilated original p-columns touched by the
stencil. It should be clear, that this method is equivalent to shifting a hypercube-shaped stencil
over the grid and including all grid points that pass under the stencil. In particular our approach
essentially corresponds to separating the N dimensional hypercube into N differently oriented
and axis aligned 1D hypercubes which are applied in each coordinate direction independently,
much like a separable filter in image analysis.

To assist in the intuition of the dilation algorithm, figure 5.5 shows dilation applied to a
slightly more complicated example than that in figure 5.4.

4This is due to the fact that the number of grid points in each tube are proportional to each other for a
given level set. Tubes further away from the interface naturally contain more grid points than tubes closer to the
interface. The constant of proportionality depends on the dilation procedure used to construct the tubes.
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Figure 5.5: (a) The original 2D DT-Grid as well as its 1D DT-Grid constituent. Start and end
coordinates of connected components are colored yellow and the internal grid points are colored
blue. (b) The original 2D DT-Grid dilated with a stencil of width three (H = 1). Same color
coding as in (a).

Details of the 1D Dilation Algorithm

The 1D dilation algorithm is sufficiently simple to be presented in C++ pseudo code. Below
we only describe the allocation step of the dilation algorithm, since the copying step is trivial.
Below the DTGrid1D named d1D eventually contains the dilated DT-Grid and we assume that
the DT-Grid is dilated by a hypercube stencil with 2H + 1 grid points along each edge.

void DTGrid1D::dilate(unsigned int H, DTGrid1D d1D)

{

unsigned int numValues;

Index start = xCoord[0]-H;

Index end = xCoord[1]+H;

unsigned int i = 2;

d1D.xCoord.push(start);

d1D.xCoord.push(end);

d1D.acc.push(0);

while ( i < xCoord.size() )

{

start = xCoord[i]-H;

i++;

if ( start <= end+1 )

{

// connected components overlap

d1D.xCoord.last() = end = xCoord[i]+H;

}
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else

{

// connected components do not overlap

unsigned int j = d1D.xCoord.size();

unsigned int connectedComponentLength = d1D.xCoord[j-1]-d1D.xCoord[j-2]+1;

d1D.acc.push(d1D.acc.last()+connectedComponentLength);

d1D.xCoord.push(start);

end = xCoord[i]+H;

d1D.xCoord.push(end);

}

i++;

}

// i points one past the end

// d1D.xCoord[i-1]-d1D.xCoord[i-2]+1 are the number of grid points in the last connected component

numValues = d1D.acc.last() + d1D.xCoord[i-1]-d1D.xCoord[i-2]+1;

values.allocate(numValues);

}

Remarks: If the test start <= end+1 in the if statement is true, it means that two
adjacent connected components overlap. If the else case is entered, the connected component
currently being processed does not overlap with the previous. In that case the new connected
component must be stored separately. Clearly the allocation step of the 1D dilation algorithm
has time complexity O(C1), where C1 is the total number of connected components in the
original 1D DT-Grid.

Details of the N Dimensional Dilation Algorithm

In this section we describe the allocation step of the N dimensional tubular grid dilation algo-
rithm for N > 1 (again, the copying step is trivial, see section 5.3.6). Recall that this algorithm
effectively corresponds to shifting a stencil shaped as a hypercube with 2H +1 grid points along
each edge over the original DT-Grid and including, in the new DT-Grid, all grid points that
pass under the stencil.

Below we assume the existence of a data structure named the Column Union. The Column
Union maintains a FIFO (First-In First-Out) queue of p-columns (given by the start and end
coordinates of their connected components) and the maximal number of p-columns allowed in
the queue is (2H + 1)N−1, which is a constant. The Column Union furthermore supports the
following operations

• InsertColumn: Inserts a p-column at the end of the queue. The p-column is identified
by its start- and end-index into the nCoord array of DTGridND. This operation has time
complexity O(1).

• RemoveColumn: Removes the first p-column in the queue. This operation has time
complexity O(1).

• ComputeUnion: Computes a new p-column consisting of the connected components
formed by taking the union of all connected components in the p-columns stored in the
Column Union data structure. Furthermore each connected component is dilated inde-
pendently by H grid points in each direction before including it in the union. Since the
start- and end-coordinates of connected components are sorted within each p-column in the
nCoord array, forming the union is simple: Scan through the coordinates of all connected
components simultaneously in ascending order. Maintain a count that is incremented
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whenever a connected component is entered and decremented whenever a connected com-
ponent is exited. The coordinates encountered whenever the count is zero can be taken as
the coordinates of the connected components of the union. Note that adjacent connected
components must be merged into a single connected component. This operation has a
time complexity that is linear in the number of connected components in the p-columns
stored, since finding the minimum coordinate among all p-columns in the Column Union
at each step takes time at most O((2H + 1)N−1) = O(1).

Next we describe the allocation step of the N-dimensional tubular grid dilation algorithm
in detail. We assume that the call to the method is initiated on a N -dimensional DT-Grid,
dtGridND, as dtGridND.dilate(H, dilatedDTGridND). When the call returns, dilatedDTGridND
holds the dilated version of dtGridND. The dilate method proceeds as follows

1. Call proj(N-1)D.dilate(H, dilatedDTGridND.proj(N-1)D) recursively. After this call,
dilatedDTGridND.proj(N-1)D will hold the dilated N − 1 dimensional DT-Grid con-
stituent. The pairs of indices, IndexPair, stored in dilatedDTGridND.proj(N-1)D are
not yet initialized, only the raw storage is allocated. Recall that the pairs of indices identify
p-columns in the dilated N -dimensional DT-Grid computed next.

2. Obtain an Iterator, iteratorDilated, from dilatedDTGridND.proj(N-1)D.

3. Obtain a Stencil Iterator, stencilIteratorOrig, from proj(N-1)D. At all time, iteratorDilated
and stencilIteratorOrig will be centered over the same grid point, XN−1, although they
operate on two different N − 1 dimensional DT-Grid instances. The stencil of the Stencil
Iterator should be a N − 1 dimensional hyper-cube with size (2H + 1)N−1. Recall that
a grid point XN−1 in proj(N-1)D identifies a p-column in the original N dimensional
DT-Grid. The purpose of the stencil is to identify all p-columns in the original N dimen-
sional DT-Grid required to form p-column number XN−1 in the dilated N dimensional
DT-Grid by a union, see figure 5.4.b. An important observation is that as the stencil
moves over proj(N-1), it is only necessary to monitor which grid points, or equivalently
p-columns, in the original N dimensional DT-Grid, enter and exit the stencil respectively.
This means that the number of Iterator instances maintained by stencilIteratorOrig is
in fact only 2(2H + 1)N−2, corresponding to the back and front faces of the N − 1 dimen-
sional hyper-cube. The movement of stencilIteratorOrig will at all time be dictated
by the movement of the iteratorDilate Iterator.

4. Iterate over all grid points in dilatedDTGridND.proj(N-1)D using
iteratorDilated. For each such grid point, XN−1, do the following:

(a) For each of the 2(2H + 1)N−2 Iterator instances of iteratorOrig that point to an
existing grid point, YN−1, in proj(N-1)D, do the following: At YN−1 proj(N-1)D
contains an IndexPair and hence identifies p-column YN−1 in the original N dimen-
sional DT-Grid. If p-column YN−1 is entering the stencil, call insertColumn on the
Column Union data structure to insert p-column YN−1. If p-column YN−1 is exiting
the stencil, call removeColumn on the Column Union data structure. Iterating the
stencil over the grid points of proj(N-1)D (and hence the p-columns of the original
N dimensional DT-Grid) in lexicographic order, ensures that p-columns enter and
exit the stencil, and hence the Column Union data structure, like a FIFO queue.
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(b) Call computeUnion on the Column Union to compute the connected components of
the new p-column XN−1 in the dilated N dimensional DT-Grid. At this point the
ColumnUnion contains all p-columns from the original DTGridND touched by the (2H+
1)N−1 stencil centered at XN−1. The IndexPair in dilatedDTGridND.proj(N-1)D
is set to point to the dilated p-column XN−1 and the connected components of XN−1

are inserted directly into the nCoord array of the dilatedDTGridND. Furthermore the
content of the acc array is computed by a O(CN ) scan through the start and end
indices of the connected components of XN−1 to determine the number of grid points
in the p-column. At the same time a variable numValues indicating the total number
of grid points included so far in dilatedDTGridND is incremented by the number of
grid points in p-column XN−1.

(c) Increment iteratorDilated. The movement of this Iterator dictates the movement
of the stencilIteratorOrig Stencil Iterator.

5. Allocate memory for the value array. It will include numValues number of elements.

The time complexity of the allocation step of the ND tubular grid dilation algorithm can
be derived as follows. We first exemplify in 2D and generalize to ND in the end. In 2D, we
first dilate the 1D DT-Grid constituent which takes time O(C1) as described in the previous
subsection 5. Next every p-column in the original 2D DT-Grid (of which there are M1) is inserted
into and removed from the Column Union data structure (H + 1)(2−2) = 1 times. Each such
operation takes time O(1). Hence the total time for this is O(M1), since (H + 1)(2−2) = 1 is a
constant. To compute the new p-columns, each connected component (of which there are C2) is
used 2H + 1 times, since this is the number of dilated p-columns, or unions, that it contributes
to. Each step of a union takes time O(2H + 1) since the selected connected component was
located from a total of 2H + 1 possibilities to be the connected component with the smallest
start or end Y coordinate. In total, computing the new p-columns takes time O((2H + 1)2C2),
which equals O(C2), since (2H + 1)2 is a constant. Finally, summing all the contributions gives
a time complexity of O(C1 + M1 + C2) which is O(C2) since M1 = O(C2) and C1 = O(C2).

The complexity analysis proceeds similarly in N dimensions except that in analysing each
of the N levels of the data structure, (H + 1)(2−2) must be replaced by (H + 1)N−2, (2H + 1)
must be replaced by (2H + 1)N−1 and (2H + 1)2 replaced by (2H + 1)2N−2, all of which are
constants. Hence the allocation step of the dilation algorithm on an N dimensional DT-Grid
has time complexity O(CN ).

5.3.7 Rebuilding the Tubular Grid in Linear Time

In this section we outline a generic algorithm to rebuild a DT-Grid, denoted Tα, to include all
grid points within a distance α from the interface. By generic we mean that the algorithm
can be applied independently of the method used to reinitialize the tubular grid (i.e. , solve
the Eikonal equation, |∇φ| = 1). A main building block in this algorithm is the tubular grid
dilation algorithm described in section 5.3.6. The algorithm devised here assumes that the
original tubular grid is a distance field and contains all grid points in Tδ, where δ < α. The
difference α − δ may be equal to the maximal movement of the interface between rebuilds.

5Note that the dilation process cannot add new connected components, it can only merge connected components



5.3. DT-Grid Algorithms 71

Note that if a method is not restricted by the CFL condition [111], as e.g. the case with semi-
Lagrangian integration, the maximal movement need not be equal to dx. Rebuilding the tubular
grid is composed of the following steps

1. Remove from the original tubular grid all grid points outside Tδ. In practice this is done
by constructing an intermediate tubular grid and copying all grid points within Tδ to it.
This step has time complexity O(MN ).

2. Dilate the intermediate tubular grid by α− δ, where α− δ corresponds to the difference in
width between the tubes Tα and Tδ, using the tubular grid dilation algorithm of section
5.3.6. This step also has time complexity O(MN ).

3. Initialize the values of the grid points included in the new tubular grid by the dilation
algorithm to ±δ depending on whether they are interior or exterior to the region bounded
by the interface. This step also has time complexity O(MN ).

Since each of the above three steps has time complexity O(MN ), so does rebuilding of the
tubular grid.

5.3.8 CSG Operations in Linear Time

The standard CSG (Constructive Solid Geometry) operations of union, intersection and differ-
ence can be computed between two ND DT-Grids in time O(MN + QN ) where MN and QN

are the number of grid points in the first and second DT-Grid respectively. We limit our pre-
sentation here to CSG operations between two aligned grids, i.e. two grids that are subject to
the same scale and rotation.

On a dense uniform grid, the CSG operation between two level set embeddings, φ1 and φ2,
can be computed in a single simultaneous pass over both grids where a function is evaluated at
each grid point. Assuming the negative inside and positive outside sign convention, the function
to be evaluated amounts to min(φ1, φ2) for union, max(φ1, φ2) for intersection and max(φ1,−φ2)
for subtracting φ2 from φ1 [111].

Even though φ1 and φ2 are signed distance fields, the embedding function resulting from
a CSG operation is not necessarily a signed distance field. There are several cases where this
occurs and the reader is referred to [13] for a comprehensive list of observations. For this reason,
reinitialization techniques and narrow band rebuild must be applied after a CSG operation. This
is of course no different on a DT-Grid.

The CSG operation between two DT-Grids M and Q resulting in a DT-Grid S proceeds
similarly to the case with a uniform grid outlined above. The main difference is that on the
DT-Grid we visit only the grid points included in the two tubular grids as opposed to the full
volumetric embeddings. Furthermore, only when the CSG function evaluated at a grid point
results in a value that is numerically less than γ (the width of the narrow band), is that grid point
included in S. However, due to the fact that the CSG operation does not in all cases preserve the
signed distance field property, grid points further than γ away from the zero crossing of S may
actually be included in the tubular grid of S. These grid points can be removed after the CSG
operation by discarding grid points away from the zero crossing and subsequently re-computing
a signed distance field.

The CSG operation between M and Q proceeds as follows. First an iterator from M and
Q is obtained. Each of these iterators provides access to the grid points in the corresponding
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DT-Grid in lexicographic order. Next continue iteratively with a simultaneous sequential scan
through both DT-Grids utilizing the two iterators as follows: In each iteration the coordinates
of the current grid point pointed to by each iterator are compared. If the coordinates are equal,
the given CSG function is applied and the grid point inserted into S. If the grid points are not
equal, it means that a grid point that does not exist in both tubular grids has been encountered.
Choose the lexicographically smaller of the two grid points and denote it XN . Assume without
loss of generality that XN ∈M and XN /∈ Q. Whether the given grid point should be included
in S depends on the type of CSG operation being applied and the inside/outside status of XN

in Q. For example, if the union is being computed, XN should be included in S if it has positive
sign in Q and otherwise not. This is due to the simple fact that since XN /∈ Q and XN has
positive sign in Q, its value is implicitly γ. Since XN ∈ M its value is less than γ. Hence so is
the minimum and XN should be included in Q. Using similar observations one can deduce that
in the case of CSG intersection, XN should be included in S if it has negative sign in Q, and for
CSG difference it should be included if we are subtracting Q from M and it has positive sign
in Q or if we are subtracting M from Q and it has negative sign in Q.

Since a single simultaneous scan over both tubular grids is the only processing required, it is
clear that the time complexity amounts to O(MN + QN ). No detailed subsection is provided in
this case since our textual description translates directly into an algorithm utilizing higher level
DT-Grid concepts such as iterators and push operations introduced earlier.

5.4 Augmenting the DT-Grid with Auxiliary Data

The numerical values of the level set are an integral part of the DT-Grid. This is the case
since they are required to determine the signs of grid points outside the narrow band during
stencil iteration as well as during neighbor and random access. However, due to the fact that
the topology and values of the DT-Grid are stored separately, a value is uniquely determined by
a single index into the sequentially allocated value constituent of the ND DT-Grid. Although
this index is not explicitly stored for each grid point, it is computed during access to the data
struture, both sequential and random. This also means that upon access, the index of the
value can conveniently be used to access additional auxiliary properties (or subordinate fields as
denoted in [48]) attached to each grid point and stored outside the core DT-Grid data structure.
For example, this has been used to succesfully implement DT-Grid based surface velocities for
fluid simulation, DT-Grid based particle level sets and the solution of PDEs on DT-Grid based
level set manifolds [106], see chapter 15 for additional detail. In particular these applications
require particles, scalars and velocities attached to each grid point.

5.5 Open Level Sets

To increase the efficiency of level set operations in practice, several applications work only on
subsets, or sub-volumes, of the level set embedding. This is a widely used technique in both
visual effects production and academia. One example is the utilization of level sets for geometric
modeling as introduced by Museth et al. [96]. In their work, the editing operations are usually
applied locally. This makes it possible to achieve near interactive response times by deploying
the editing operators on sub-volumes enclosing their support/domain. Had the computations
been used on the entire level set, it would have resulted in unnecessary computation away
from the support of the localized editing operators and hence implied a significant slowdown.
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A similar approach can be taken when utilizing level sets for collision detection in e.g. cloth
simulation [16], simulation of deformable bodies based on finite elements and level sets [53], or
fluid simulation interacting with boundaries [35]. If a conservative estimate can be made on the
part of the level set relevant for the interaction, the particular subset can be extracted from the
global level set embedding, thus resulting in lower memory footprints and improved response
times due to e.g. increased cache coherency.

Extracting subvolumes from a level set surface may result in so-called open or unenclosed
level sets, where the surface is not necessarily closed. Although the level set method in general
assumes a closed surface, open level sets should pose no problems as long as the deformations tend
to zero at the boundary (as in [96]), proper boundary conditions are specified at the boundaries
or if only lookups of level set values are required. When representing level sets on dense uniform
grids, open level sets require no specialized attention, but for a sparse representation such as
the DT-Grid which as described up to now assumes a closed surface, the associated algorithms
break down in certain cases. The H-RLE grid described in the next chapter allows for the
representation of open level sets without any modification to its algorithms due to the fact that
it stores information about regions outside the narrow band. In contrast the DT-Grid does not
store any information on regions outside the narrow band. Retrospectively, it is in fact possible
to represent open level sets on a DT-Grid as long as the sub-volume, from which the open level
set is extracted, is convex and non-empty (i.e. intersects the narrow band). However, it does
require a few minor modifications to the algorithms, and in the following we briefly review these
modifications.

Consider figure 5.6.a where only the portion of the level set inside the blue rectangle is
required for a particular application. The immediate solution to representing this subset on a
DT-Grid is to perform a CSG intersection between the rectangle and the level set. The result
of this can be seen in 5.6.c. However this introduces an undesirable narrow band around the
border of the rectangle thus adding to the storage requirements and search times in the level
set subvolume. Instead it is preferable to only store the part of the narrow band relevant for
the interaction with the simulation at hand as shown in 5.6.b. Unfortunately the random access
as well as stencil iteration algorithms break down outside the narrow band in such cases. In
particular, the random access algorithm in section 5.3.2 will return +γ, where γ is the width of
the narrow band, for all grid points above the narrow band in figure 5.6.b 6, whereas it should in
fact return −γ since these grid points are inside the original surface. The situation complicates
further when the narrow band of the subset is not connected as shown in figure 5.7 corresponding
to the part of the level set inside the red rectangle in figure 5.6.a.

Since the endpoints of any connected curve, fully contained within a convex bounding volume
and not crossing over the narrow band must have the same sign, it is indeed possible to deduce
the correct sign from a DT-Grid representation of an open level set. Consider random access into
a grid point outside the narrow band in the open level set depicted in figure 5.7. In 2D there are
two cases we must consider. First consider point a. Since it lies in between the two connected
narrow band components it must have sign identical to any of the first7 values encountered in
the ±X directions 8 and illustrated in red in figure 5.7. Next consider point b. In that case we
need to take into account the signs of the two lexicographically closest grid points, depicted in
blue. If the signs at these grid points are equal we just return γ multiplied by this sign. If the

6This is due to the fact that since the grid point does not exist, the sign of the nearest lexicographically larger
grid point is used.

7By first we refer to the lexicographic ordering of the elements.
8Note that in some cases only grid points in one of the directions are available.
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Figure 5.6: (a) Original DT-Grid encoding of a narrow band level set. (b) The open narrow
band level set resulting from discarding all values of the original level set outside the blue
rectangle. (c) The closed narrow band level set resulting from a CSG intersection between the
blue rectangle and the original level set.

signs are not equal, one of the grid points must be in the same p-column as b and hence we can
just pick the sign of this value 9. To sum up, random and neighbor access into open level sets
on a DT-Grid is possible, but requires modifications to the algorithms. In general the treatment
of open level sets will slow down random access in regions outside the narrow band because we
always need to lookup the sign of the lexicographically closest value which is not incorporated
into the algorithm given in section 5.3.2.

In the case of stencil iteration and CSG operations, a similar approach considering the
lexicographically closest elements must be taken when determining the signs of grid points
outside the narrow band. A simpler strategy can also be employed when performing stencil
iteration under the assumption that if a grid point in the stencil is outside the narrow band it
will have the same sign as the sign of the center element. This is true for all the applications
we have considered and eliminates the need to employ the more elaborate strategy described
above. Narrow band dilation and rebuild is also possible: The changes required here include the
approach for determining the correct sign as above as well as the need to intersect the dilation
of the individual p-columns with the bounding box of the open level set.

Given the arguments above we conclude that DT-Grid is indeed capable of representing and
manipulating open level sets. It does however require slight modifications to the algorithms as

9Otherwise we could construct a connected curve which connects two values of different sign and which does
not cross over the narrow band and the boundaries of the bounding box.
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Figure 5.7: The open narrow band level set resulting from discarding all values of the original
level set outside the red rectangle in figure 5.6.a.

well as the addition of a bounding box enclosing the narrow band. It is left for future work to
investigate exactly how much these changes affect performance.

5.6 Examples

We next proceed with the illustration of two important qualitative features of the DT-Grid. In
particular we show its ability to support high resolution level set deformations and its intrinsic
out-of-the-box feature. In chapter 7 we present a more detailed quantitative evaluation of the
DT-Grid and finally in chapter 15 several applications in computer graphics are demonstrated.
This includes the utilization of the DT-Grid for storing both the surface and fluid interior in
high resolution fluid simulation.

5.6.1 An Out-Of-The-Box Simulation

The DT-Grid is not bounded by a fixed computational domain. In this section we illustrate this
important property by evolving the left-most level set shown in figure 5.8(a) using convection-
diffusion [111]. In the convection-diffusion equation we combine propagation by mean curvature
with advection in a velocity field that at each point is the normalized radial direction from
the origin. The mean curvature term creates multiple pinch-offs at the center of the level set
surface (see the left-most image in figure 5.8(a)), and we force its contribution to zero over time.
The radial velocity field advects the level set surface away from the origin. This simulation
is designed merely to demonstrate the out-of-the-box feature of our DT-Grid, and as such the
detail of the setup (including the initial shape) is irrelevant.

Figure 5.8(b) illustrates what happens on statically allocated dense uniform grids and octrees.
As the level set moves beyond the boundary, it disappears. In contrast, the level set on the DT-
Grid (figure 5.8(a)) moves beyond the box as the grid is not bounded. The memory usage of
the DT-Grids in figure 5.8(a) is 14.0MB, 25.2MB, 39.3MB and 64.1MB, respectively, numbered
from left to right. (Note that the increase in memory is exclusively due to the fact that surface
area increases with the expansion). While the DT-Grid in general is a non-convex tubular grid,
the effective grid sizes in figure 5.8(a) are approximately 2563, 3433, 4553 and 6303.

This “out-of-the-box” feature is not obtainable using existing narrow band or standard oc-
tree based approaches without either compromising memory consumption or computational
efficiency. Using dense uniform grids, one could progressively allocate larger grids as the level
set approaches the boundaries. However, due to memory constraints this becomes impossible
already at relatively small grid sizes. Octrees are more memory efficient than the dense uniform
grid and narrow band approaches, but if progressively reallocating to larger octrees, the depth
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(a) DT-Grid

(b) Dense Uniform Grid and Octrees

Figure 5.8: DT-Grid level set simulations can go out-of-the-box whereas level set simulations
based on dense uniform grids and octrees are limited to the domain of the underlying grid.
Renderings by Ola Nilsson based on my simulation data.

of the tree grows, making the traversal less efficient. The combined uniform and octree grid by
Losasso et al. [83] decouples the depth of the octree from the overall domain size, hence making
an expansion of the domain more feasible. Nevertheless their coupling of the octree structure
with a coarser uniform grid will eventually face excessive memory usage, in particular in the
case of large and sparsely populated computational domains. Finally recall that in chapter
3 several other approaches for obtaining approximate out-of-the-box behavior were reviewed.
As explained, they face certain limitations. On the DT-Grid, deformations can expand semi-
indefinitely as long as the storage requirements of the narrow band stay within the bounds of the
available physical memory. In particular the out-of-the-box feature of the DT-Grid is enabled
automatically by its recursive definition as well as the dilation algorithm described previously.

Out-of-the-box level set simulations can be convenient since no boundary conditions are
required unless needed by the particular application. Furthermore the level set can move freely
without ever colliding with the boundaries of an underlying grid. A large body of existing work
could take advantage of this, e.g., the simulation of dendritic growth in [40]. In chapter 15 we
illustrate several applications taking advantage of the DT-Grid’s unique out-of-the-box feature.
These include fluid and snow simulations.

5.6.2 A High Resolution Simulation - The Enright Test

The DT-Grid has a relatively low memory footprint, hence allowing high resolution level set
surfaces to be represented without exceeding the main memory limit. We illustrate this here
using the Enright Test [33]. To demonstrate the volume conserving properties of the particle
level set method, Enright et al. [33] introduced the Enright Test based on a three dimensional
incompressible (i.e. divergence free) flow field initially proposed by LeVeque [75]. The setup
used is: A sphere with a radius of 0.15 is placed within a unit computational domain at position
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Figure 5.9: The DT-Grid enables high resolution grids to be represented with a very low memory
footprint. In this example the resolution was 10243 and the maximal memory usage of the
corresponding DT-Grid was 67.2MB. The same simulation run with the method of Peng et
al. [120] would consume 5.2GB of storage (computed analytically). Renderings by Ola Nilsson
based on my simulation data.

(0.35, 0.35, 0.35). The sphere is then advected in the velocity field:

u (x, y, z) = 2sin2 (πx) sin (2πy) sin (2πz) cos
(

t2π
T

)
v (x, y, z) = −sin (2πx) sin2 (πy) sin (2πz) cos

(
t2π
T

)
w (x, y, z) = −sin (2πx) sin (2πy) sin2 (πz) cos

(
t2π
T

) (5.1)

where T = 3 is the period of t. This velocity field is divergence free and is reversed at time
t = 1.5. As a result, a level set advected in this velocity field should return to its original shape
at time t = 3, provided that sufficient resolution is used.

In [33] the Enright Test was run on a 1003 dense uniform grid with and without particles as
shown in figure 5.10. The particle level set method proved better in conserving the volume and
thin features, however the resolution of the computational grid was still insufficient to capture the
thin filaments. Later, Enright et al. [34] demonstrated that the interface could be fully resolved
on an octree grid with an effective resolution of 5123, using a combined semi-Lagrangian and
particle level set method.

From figure 5.9 it can be concluded that the interface can also be fully resolved on a DT-
Grid with an effective resolution of 10243 without particles. However, we stress that the DT-Grid
should not be considered an alternative to the particle level set approach. The setup of this
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Figure 5.10: The Enright test in resolution 100× 100× 100, reprinted from [33]. Left: Without
particles. Right: Using particles.

simulation is identical to that of Enright et al. [33] which uses HJ-WENO [58,59,80] and TVD
Runge-Kutta [133] for both the advection and reinitialization steps. This particular example
clearly demonstrates that the DT-Grid enables high resolution interfaces to be represented. In
particular the grid resolution can be refined to a level where particles are not needed in order
to preserve the fine features and ensure a surface without holes.

At the time step where the number of grid points in the tubular grid peaks, 1.41% of the
grid points in the full 10243 dense volume is occupied by the tubular grid and hence stored by
the DT-Grid. At this time, the DT-Grid uses only 67.2 MB of storage in total. Furthermore,
the memory used by the DT-Grid is only 1.64% of the storage that the 10243 full volume would
occupy alone. The additional 0.23 = 1.64 − 1.41% of storage used by the DT-Grid is occupied
by the compressed indices and lower dimensionality DT-Grid constituents. From the number
of grid points in the tubular grid at peak time, we computed analytically that the method of
Peng et al. [120] would occupy at least 5.2GB of storage. Other non-hierarchical approaches
to storing the tubular grid, such as representing the indices explicitly would result in a total
memory usage of 9.86% and additionally storing pointers to the neighbors would yield 43.68%,
giving a total memory usage of 144 MB and 490 MB respectively. The above analysis clearly
illustrates the effectiveness of the index compression scheme employed by the DT-Grid.

5.7 Summary

This chapter presented the Dynamic Tubular Grid, or DT-Grid, and set of algorithms for repre-
senting high resolution level sets. We described the data structure as well as the push, random
access, neighbor access, stencil iteration, dilation and rebuild algorithms in detail and argued
for their asymptotic time- and storage-complexities. Finally we demonstrated that the DT-Grid
enables high resolution level set simulations and a provided proof of concept example of its
intrinsic out-of-the-box capability.



Chapter 6

The H-RLE Grid - Flexible High Resolution Level

Set Simulations

Run-Length Encoding, or (RLE), is a widely used lossless data compression technique based on
the simple idea of replacing sequences (runs) of identical data values by a count number and
a single value (run code). The idea of RLE compressed level sets was originally proposed by
Bridson [15], but Houston et al. [50] were the first to actually design and implement a RLE-
based level set data structure. The reason RLE is particularly feasible in the context of level set
embeddings is that level sets are most typically represented as clamped signed distance fields.
The clamped regions consist of constant values well suited for RLE. Houston et al. employed
compression of these clamped regions and left the values inside the narrow band uncompressed.

In this chapter we consider how to replace the p-column encoding of the DT-Grid data
structure with a run-length encoding similar to that of Houston et al. [50]. We also describe
how to modify the DT-Grid algorithms in order to accommodate the run-length encoding, and
in fact only minor changes are required. We call the new data structure arising from these
modifications the Hierarchical Run Length Encoded or H-RLE grid [48,49].

The benefit of replacing the p-column encoding of the DT-Grid with a run-length encoding
is that RLE allows for greater versatility in the encoding of the narrow band. This is in large
part due to the notion of flexible run-codes which we define more carefully below. In particular
RLE allows for flexible encodings of the narrow band, including grid cells of varying width, it
decouples the level set values from the actual data structure and provides a solution to storing
and processing open/unenclosed level sets created from intersecting a narrow band level set
with an arbitrary shaped, i.e. possibly non-convex, volume. The price we have to pay for
this flexibility is a slight degradation in performance with respect to storage requirements and
computational efficiency for level set computations when compared to the DT-Grid. However,
due to the adaptation of the DT-Grid algorithms to the H-RLE data structure, the H-RLE still
in many cases performs better than octrees, narrow band level sets and the original Sparse RLE
level set of Houston et al. [50] (see chapter 7). Next we outline the exact contributions of the
H-RLE data structure.

6.1 Contributions

In many respects, the DT-Grid and H-RLE data structures are similar. However, in contrast
to the DT-Grid, the H-RLE grid stores information (in compressed form) about the regions
outside the grid by utilizing so-called run-codes. In this way greater versatility is obtained in
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the H-RLE. In particular the H-RLE level set differs from the DT-Grid via the following three
contributions:

• Flexible P-Column Encoding with Run Codes: As will be explained in section 6.2,
the H-RLE data structure employs RLE to encode the domain into a series of runs, each
associated with a specific run code. A run code categorizes a run as being either defined
(inside the narrow band), or undefined. One benefit of run codes is that they allow for
random access into open/unenclosed level sets and in general unenclosed scalar or vector
fields. A defined or undefined run can be identified by wide range of possible run codes1

and hence adds great flexibility to the encoding of defined and undefined regions. In
fact the flexible encoding gives the possibility of representing defined grid cells of varying
length in the direction of a run, hence essentially creating an adaptive representation [52].
In contrast the DT-Grid is restricted to storing uniform grid cells.

• Decoupling: Contrary to the DT-Grid, the H-RLE data structure decouples the RLE-
compressed grid structure from the defined values in the narrow band. This can save
storage (compared to the DT-Grid approach) when defined values are not required for the
processing at hand. In particular the H-RLE can avoid storing any defined values and still
correctly represent multiple regions of constant values. Additionally, in contrast to the
DT-Grid, the H-RLE does not require any defined values in order to deduce properties of
undefined regions.

• Modified Algorithms: The fundamental structures of all the H-RLE algorithms are
identical to those of the DT-Grid. However, since the p-column encoding has changed to
an RLE utilizing run codes and since information on regions outside the narrow band is
available, modifications are required.

Practical applications of these features for computer graphics are discussed further in section
6.4. In addition to the three contributions just outlined, the H-RLE level set representation
inherits the following features from the DT-Grid:

• Sequential traversal of the narrow band grid points with O(1) access time to grid points
within the finite difference stencil.

• Logarithmic time random access (and neighbor access) to any grid point inside the bound-
ing volume, and constant time access outside the bounding volume.

• Both the encoding computational complexity and the overall memory consumption is pro-
portional to and scales with the area of the geometric surface.

• Compatible with existing finite difference schemes used to solve the level set partial differ-
ential equation on dense uniform grids.

• “Out-of-the-box” dynamic grid representation that frees surface deformations from dealing
with any fixed boundaries of the computational domain, hence allowing surfaces to expand
and contract freely without encountering boundaries and without any extra book-keeping.

• Generalizes to any number of dimensions.
1Wide range of possible run codes, that is, within the bit-precision of a n bit run code this includes 2n

possibilities.
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In the next section, 6.2, we define the H-RLE data structure. We start in 1D, next move
to 2D and finally argue that the data structure generalizes to any dimension. Section 6.3
describe the fundamental algorithms of the H-RLE. Due to the similarities with the DT-Grid
algorithms the descriptions are more brief and mainly give the overall outline as well as pinpoint
the modifications required. After that section 6.4 focuses on and discusses the versatility of the
H-RLE. Finally section 6.5 provides a brief summary of this chapter.

6.2 H-RLE Data Structure

As mentioned above, Run-Length Encoding (RLE) is a popular lossless data compression al-
gorithm based on the simple idea of replacing sequences (runs) of identical data values by a
count number and a single value (run code). A sequence of level set values, φ1, .., φn, can be
considered as a stream of data to which one can apply RLE. To facilitate compression of a
narrow band level set of width β we introduce the following three run codes: Negative (interior
region with φ < −0.5β), positive (exterior region with φ > 0.5β) and defined (within the narrow
band, |φ| ≤ 0.5β ). Each continuous sequence of adjacent values not within the narrow band is
compressed to just a single run, whereas values within the narrow band are stored explicitly and
uncompressed. In our implementation, the defined run code for grid points inside the narrow
band will be an index into a separate array storing the corresponding values of φ contained in
the run.

6.2.1 Taxonomy of the RLE Data Structure

As a prelude to the presentation of our dimensionally hierarchical data structure, it is convenient
to introduce the following terms. A run is a sequence of connected values with the same run code.
An RLE segment is a collection of adjacent runs corresponding to a single axis aligned scan-line
through the level set. An RLE block represents the encoding of a collection of segments not
necessarily immediately adjacent to each other and oriented along a particular axis. The RLE
block serves as a fundamental building block in our hierarchical data structure. A hierarchical
RLE grid is a recursive entity composed of n linked RLE blocks in Rn and finally a hierarchical
RLE level set is a hierarchical RLE grid together with the separate array of defined values, see
Figure 6.1. Within the hierarchical RLE grid, it is convenient to think of the hierarchy of RLE
blocks as beginning with the top RLE block (highest level of encoding) and proceeding to lower
RLE blocks (lowest level of encoding) until the bottom RLE block is encountered. Furthermore
the bottom RLE block will correspond to the primary direction of encoding. In 3D, the top
(level 3) and bottom (level 1) RLE blocks are respectively the z-axis and the x-axis RLE blocks
2.

Let us first consider the simple 1D level set function, φ(x), illustrated on the left in Figure 6.1.
The rectangle at the bottom shows the RLE segment containing five (colored) runs corresponding
to β = 3. The right hand side of Figure 6.1 illustrates the corresponding hierarchical RLE level
set and its two components: An RLE block that encodes the topology of the segment (gray),
and an array with discrete values of φ(x) within the narrow band (bottom). This decoupling of
values and topology is essential in our data structure as it facilitates great flexibility. In fact,
this separation is somewhat analogous to the separation of topology (connectivity) and geometry
(coordinates of grid points) common in mesh data structures.

2This choice of assigning levels to axes is arbitrary and any choice is feasible.
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Figure 6.1: Left: 1D RLE encoding of a level set function with two zero crossings. The width
of the narrow band is β = 3 and corresponds to the region of the green guidelines. Right:
The corresponding 1-level hierarchical RLE level set data structure. Note the 1D RLE block
illustrated by the gray box. See Section 6.2 for details.

Each RLE block consists of the following four separate arrays:

• Start indices for each segment are stored as pointers into the run-codes array. (In 1D a
single pointer since the block only has one segment.)

• Extents of the coordinates along the encoding axis are stored as a [min,max + 1) pair.
Note that the +1 makes the extents consistent with the definition of the run breaks below.

• Run codes define how each segment is divided into different runs. Negative and positive
run codes denote compressed runs while defined run codes are pointers into an associated
defined data array or the start indices array of the next lower RLE block if it exists.

• Run breaks contain, in an order mirroring that of the run codes, the coordinates along the
encoding axis at which each run starts, except for the first run in each segment. The start
coordinates of the first run of each segment are determined by the above-defined minimum
extents.

Note that although the hierarchical RLE grid coincides with the RLE block in 1D this is not
the case for higher dimensions (see Figure 6.2.)

6.2.2 The Hierarchical Data Structure

Let us consider the 2D example in Figure 6.2 illustrating a 7 × 7 bounding box containing a
subset of a level set function. In the bottom of Figure 6.2 is the corresponding 2D H-RLE level
set. It is composed of two RLE blocks related hierarchically, the top RLE block encoded along
the y-axis and the bottom RLE block encoded along the x-axis. First, each linear traversal of the
2D level set function along the x-axis is encoded resulting in the x-block shown in the bottom-
right part of Figure 6.2. Note that traversals resulting in a single non-defined run are not stored
but rather offloaded to the next higher level RLE block. The higher level RLE block is encoded
along the y-axis leading to the y-RLE block shown in the bottom-left part of Figure 6.2. As
shown in Figure 6.2 (bottom), the RLE blocks store the run-codes sequentially. Run-codes in the
x-RLE block reference into the single array of defined values and indicate where that particular
run of defined values begins. The run-codes of defined runs in the y-RLE block reference into
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the x-RLE block start index array. This is related to the fact that the lowest level RLE block
encodes level set values, whereas all higher RLE blocks are actually encoding the results of the
previous RLE encoding. Note also that the bounding box extents are stored explicitly as part of
the data structure. The bounding box associated with the H-RLE block extents is very useful
for many graphics applications and is fully dynamic. In fact, the rebuild algorithm described in
6.3 applies a dilation algorithm that dynamically expands or shrinks this bounding box as the
interface moves.

Similar to the DT-Grid, the H-RLE generalizes to any dimension through dimensionally
hierarchical encoding based on the taxonomy introduced above. In particular the H-RLE stores
one RLE block for each axial direction (or dimension) as well as an array of defined values. We
stress that doing a hierarchical encoding, as opposed to only encoding in a single direction (as
in Houston et al. [50]), ensures that the memory requirements of the data structure are O(MN ),
where MN is the number of defined grid points inside the narrow band.
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Figure 6.2: Top Left: A sphere shape overlaid on a coarse grid (notice the similarity with
figure 5.1 in chapter 5). Middle Left: The sphere interface is now indicated. The grid points
are categorized into narrow band (green), interior (red) and exterior (blue) grid points. Top
Right: A schematic representation of a 2D H-RLE level set. The top-level y-axis encoding is
given in the 1 × 7 grid and the x-axis encoding is the 7 × 7 grid. Along the y-axis encoding,
the ranges 0 and 6 are categorized as fully exterior, while the range 1-5 is defined. The defined
values of the y-axis encoding indicate the offset of the corresponding x-axis segment encoding.
The x-axis encoding contains no information for regions not encoded by the y-axis as defined.
The values of the defined ranges of the x-axis encoding are the level set values of the narrow
band. Bottom: The layout and contents of the H-RLE level set data structure corresponding
to the schematic representation above. The defined values of the y-RLE grid’s defined runs are
stored in the x-RLE grid’s start indices table. The defined values of the x-RLE grid’s defined
runs are stored in the decoupled defined values arrays. See Section 6.2 for further explanation.
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6.3 H-RLE Algorithms

In this section we describe a set of algorithms for the use of our H-RLE level set in graphics and
level set applications. To ease the description, we refer the reader to the nomenclature defined
in table 6.1.

N The dimension of the H-RLE grid.
MN , QN The total count of defined grid points within the ND narrow band.
si A segment index in the i’th dimension RLE block.
rsi The number of runs in segment si in the i’th dimension RLE block.

Table 6.1: Nomenclature used throughout the chapter.

An overview as well as the time complexities of the algorithms being described in this section
are given in table 6.2. Next we describe these algorithms in turn.

6.3.1 Constant Time Push

Due to the H-RLE’s versatility in describing regions outside the narrow band as well as its decou-
pling of the defined values, the exact implementation of a push operation is problem dependent.
Here we describe two low level push operations. As input the first push operation accepts the
specification of a run whereas the second push operation accepts the coordinates of a grid point
and a defined value. In both cases we assume that data is pushed in (Z, Y, X) lexicographic
order 3 and that a bounding box for the grid is given4. The value returned when accessing grid
points outside of the given bounding box is application specific. For level set simulations it is
typically feasible to return the positive run code.

Push Operation I: The first push operation is applicable in general, not only for narrow
band level sets. We assume that every grid point inside the bounding box is pushed exactly
once (as part of a run) 5. The push operation works recursively and is initially called on the
bottom RLE block with a run code as well as the length and start coordinates6 of the run. Note
that values are not passed to the push operation, as the values are maintained separately from
the topology.

• If the run begins a new segment, the start index of the segment is initialized (to the number
of runs present in the RLE block) and stored along with the run code and run break (the
run break is computed from the start coordinates and length of the run).

• If the run does not start a new segment it is checked whether the type of the run is identical
to the type of the immediately adjacent run 7. If this is not the case the new run is stored,
and otherwise it is merged with the adjacent run.

• In the case where a higher level i’th RLE block exist, we call push recursively on it if
the run ended the current segment (this can be determined from the extents known prior

3The (Z, Y, X) lexicographic order corresponds to the order of the hierarchical run-length encoding.
4Contrary to the DT-Grid, the H-RLE requires that the bounding box is known prior to the encoding.
5Depending on the particular application it should be relatively straightforward to relax this assumption in

order to obtain a faster push operation. For example to allow pushing each grid point at most once.
6Essentially it is not necessary to specify the start coordinates of the run, since the bounding box and the

previously pushed run uniquely determines the position of the next run.
7In the case of a standard level set encoding it is thus checked if they are both positive, negative or defined.
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Algorithm Time Complexity
Push O(1)
Access to Stencil Grid Points O(1)
Sequential Access O(1)
Random Access O(1 +

∑N
i=1 log rsi)

Neighbor Access in m’th O(1 +
∑m−1

i=1 log rsi)
Coordinate Direction
Rebuilding the tubular grid O(MN )
Dilating the tubular grid O(MN )
CSG operation O(MN + QN )

Table 6.2: Algorithms of a N-dimensional H-RLE data structure. Asymptotic time complexities
are similar to those of the DT-Grid, except that rsi denotes number of runs instead of number
of connected components. Furthermore, in the exposition given here, the encoding-order of the
axes of the H-RLE data structure are XYZ, whereas for the DT-Grid they were ZYX. This
makes the time complexity for neighbor search appear slightly different.

to the encoding). The parameters to the recursive push call are the last i coordinates
of the start point of the run, a run length of one and a specific run code. The value of
the specific run code is determined as follows: If the completed segment contains at least
one defined run we use a defined run code equal to the index of the segment in the start
indices array. If the completed segment consists of a single run we use the run code of
this run. In the case where the completed segment consists of a single run, the encoding
is completely deferred to the higher level RLE block by removing the completed segment
from the current RLE block before the recursive call.

The above operation uses constant time on at most N RLE blocks and hence the time com-
plexity is O(1) for pushing a run.

Push Operation II: The second push operation is specifically designed to push values of
a signed distance field level set. In this case it is convenient to only push the defined grid points
inside the narrow band, hence leaving the encoding of the outside regions to the push operation.
The push operation works recursively and is initially called on the bottom RLE block with the
coordinates and value of the grid point as well as a positive or negative run-code in accordance
with the sign of the value:

• If the grid point lies in a new segment, the encoding of the previous segment, if one exists,
is completed with either a positive or negative run depending on which is consistent with
the last defined value pushed onto the previous segment. Next a new segment (index) is
initialized and, unless the grid point coincides with the minimum extent, an undefined run
consistent with the sign of value being pushed is inserted first. Finally if i ≥ 0, where i
is N (the dimension) minus the level of the next RLE block, push is called recursively on
the next higher level RLE block with the last i+1 coordinates of the grid point, the index
into the segment start indices array and the positive/negative run-code as parameters.

• If the grid point lies in an existing segment there are two cases: If the grid point is adjacent
to a defined run, this run is extended with the grid point. Otherwise a run consistent with
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both the current and previously pushed grid point is inserted before the grid point itself.

Again, the above operation uses constant time on at most N RLE blocks and hence the time
complexity for pushing a defined value is O(1).

6.3.2 Logarithmic Time Random Access

The random access algorithm of the H-RLE level set begins as a procedural call on the top
RLE block with two parameters: A vector of query coordinates, Q = (q1, .., qN ), and a segment
index, sN , initialized to zero. The algorithm then proceeds recursively similar to the algorithm
described for the DT-Grid in chapter 5. Due to the different terminology of the H-RLE data
structure we describe the random access operation in more detail below.

1. The vector of query coordinates Q = (q1, .., qi) is split to isolate the i’th query coordinate,
qi.

2. From the given segment index, si, one can determine the indices of both the first run and
the first run break as well as the total number of runs in the segment (the segment length)
from the i’th RLE block. In particular, the index of the first run is given by the si’th
entry in the start indices array, the index of the first run break is given by the index of
the first run code minus si, and finally the number of runs in the segment is given by the
difference between the si+1’th and si’th entries in the start indices array. The run code
of the run containing qi can be determined via a binary (or linear) search within the run
breaks array in the region of the current segment (defined by the first run, first run break
and the segment length). If the determined run code is negative or positive, then return
the corresponding run code value. Otherwise, compute the defined data index by adding
together the run code with the offset of qi from the start coordinate of the run.

3. If a lower RLE block exists, then this procedure is recursively called on it (go to Step 1
above), using the remaining vector of query coordinates and the defined data index as the
respective values of its vector of query coordinates and segment index parameters. If no
lower RLE block exists, return the defined data index and/or the corresponding value in
an associated array, e.g. the defined values of the level set function φ.

The computational complexity of the random access algorithm is as follows: Step 1 above
takes constant time. Step 2 takes time logarithmic in the number of runs (as opposed to the
number of grid points within the runs) in a single segment in an RLE block. Note that a binary
search is possible since the run breaks are sorted in increasing order within each segment as part
of the encoding. Step three calls recursively on a lower level RLE block of which there are at
most N − 1, where N is the dimension of the H-RLE grid. The total time required amounts to
O(

∑
i=1..N log rsi), where rsi is the number of runs in the segment identified by segment index

si and contained in the i-th dimension RLE block.

6.3.3 Logarithmic Time Neighbor Access

Neighbor search proceeds similarly to the algorithm employed for the DT-Grid. For example,
finding a neighbor in the Y -direction requires first locating the neighboring segment in the Y -
direction which can be done in constant time. Next a binary search is performed (as described in
Step 2 of the random access operation above) amongst the run breaks of the neighboring segment
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in the X-direction. In general the time complexity of a neighbor search in the m’th direction
(where X is the first direction, Y is the second and so on) is O(1 +

∑
i=1..(m−1) log rsi), where

again rsi is the number of runs in the segment identified by segment index si and contained in
the i-th dimension RLE block.

6.3.4 Constant Time Sequential Access

Constant time access to single grid points during sequential access is facilitated by means of
iterators that proceed similarly to the iterators defined on the DT-Grid. The sequential access
iterator begins as a procedure call on the top RLE block with two parameters: A segment
index initialized to zero, and an empty vector of parent coordinates (specified below). The
procedure begins by traversing the runs of the specified segment. Non-defined runs are ignored
when encountered. When a defined run is encountered, both its length and its start coordinate
along the current encoding axis are determined (from the segment indices si and si+1. Then an
iteration along the individual coordinates of this run commences. At each coordinate, the defined
data index is computed by adding together the run code with the current coordinate’s offset from
the start of the run. Also, a vector of current coordinates is created by concatenating the input
vector of parent coordinates with the current coordinate. If the RLE block is the bottommost,
then append both the current coordinate vector and the defined data index to the resulting
enumeration. Otherwise, the above described procedure is called recursively on the next lower
RLE block using the defined data index and the constructed current coordinate vector as the
respective values of its segment index and parent coordinates parameters. This sequential access
iterator traverses each defined run in each of the RLE blocks in addition to enumerating each
of the defined data indices. The resulting computational complexity is O(MN ) and hence O(1)
per defined data element.

In order to obtain constant time access to all grid points within the finite difference stencils
typically used in level set deformations, one can iterate an entire stencil of iterators over the
narrow band. Whenever a grid point in the stencil moves outside the defined narrow band region,
the corresponding iterator continues into an undefined positive or negative run and is assigned
the value associated with this run8. Similar to the DT-Grid case it is possible to exploit the
movement of the center of the stencil to further improve the practical access time. All iterators
within the stencil pass over the grid once, so - on average - access to grid points within the
stencil is O(1) if the entire grid is visited.

6.3.5 Rebuilding the Hierarchical RLE Level Set in Linear Time

Rebuilding the Hierarchical RLE Level Set proceeds exactly as in the case of the DT-Grid. In
particular the operation is comprised of two steps: First grid points that are too far from the
interface are removed. Next, the remaining subset of the original H-RLE level set is dilated
recursively by effectively adding grid points that pass under a hypercube-shaped stencil being
iterated over the subset. Below we briefly summarize the dilation operation in the terminology
of the H-RLE data structure.

The dilation of a 1D H-RLE level set simply corresponds to dilating the corresponding 1D
RLE segment as illustrated in Figure 6.3. It consists of two steps: First each defined run in the
segment is dilated independently. Next, a new RLE segment is constructed by forming the union

8This type of iterator is also used during CSG operations on the H-RLE and constitutes the main difference
from CSG operations on the DT-Grid.
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Figure 6.3: Dilation of an RLE segment by one grid point. Top: Original segment with existing
defined grid points labeled e. Bottom: Dilated segment with new grid points labeled n.

of each dilated run and keeping the remaining inside/outside runs consistent with the original
segment.

The dilation algorithm of a 2D H-RLE level set operates in each coordinate direction inde-
pendently and proceeds as follows:

1. Dilate the y-axis RLE block as a 1D RLE segment. The y-axis RLE block corresponds
to the projection of the 2D H-RLE level set onto the y-axis, and the dilated y-axis RLE
block corresponds to the projection of the dilated 2D H-RLE level set.

2. To dilate the x-axis RLE block, the defined grid points of the dilated y-axis RLE block are
processed iteratively: Let the current grid point have y-coordinate ym. The corresponding
dilated x-axis RLE segment is computed by first dilating all defined x-axis RLE segments
in the original x-axis RLE block with y coordinate in the range ym−n to ym +n, where n
is the number of dilation grid points. Next the union is taken of these individually dilated
x-axis RLE segments.

3. Allocate storage for the decoupled value array of the dilated 2D H-RLE level set. In a
single pass, the value of grid points also existing in the original 2D H-RLE level set can be
set to their original value and the value of grid points added as a result of the dilation can
be initialized according to the positive and negative runs of the undilated H-RLE level set.

Contrary to the DT-Grid, the dilation of the H-RLE requires that the bounding box, or
extents, of the resulting grid are known in advance as this information is required for doing the
actual run-length encoding. However, given the extents of the original H-RLE grid as well as the
dilation width, the new extents are straightforward to compute. Whenever new grid points enter
the narrow band defined by the H-RLE, their sign is determined by the sign of the undefined
run they were part of in the un-dilated grid.

6.4 Versatility of the H-RLE

Open/Unenclosed Level Sets:

In situations where large occlusions only have portions of their surface in close proximity to
the body or fluid under simulation, it is advantageous to clip the occlusions to these simulation
regions, especially if the whole occlusion object requires significant memory or requires per-
frame scan conversion because of dynamic properties. This issue was discussed in more depth
in chapter 5. Even though both the DT-Grid and H-RLE can represent open level sets, the
H-RLE allows for more flexible encodings of open level sets, in that the open level set can
be generated from intersection with an arbitrarily shaped, i.e. possibly non-convex and non-
connected, bounding volume. On the DT-Grid the open level set is restricted to be generated



90 Chapter 6. The H-RLE Grid - Flexible High Resolution Level Set Simulations

Figure 6.4: (a) A H-RLE encoding of a narrow band level set. Red denotes negative inside
regions, blue denotes positive outside regions and green denotes the narrow band. (b) The open
level set representation resulting from intersecting the H-RLE grid in (a) with the bounding box
in the lower-left corner.

by a connected and convex bounding shape. Non-convex open level sets could be applied e.g. in
the level set modeling framework of Museth et al. [96] when blending surfaces along intersection
curves. Using the H-RLE, the small possibly non-convex volume within which the blending
will take place can be extracted and used for processing the blend, thereby speeding up the
computations. Additionally, random access into open level sets on the H-RLE have the possibility
of being faster than on the DT-Grid. Consider the open level set in figure 6.4.b generated from
the larger closed level set in figure 6.4.a. The wider uniform outside (blue) region in the bottom
is represented at the top level in the encoding of the H-RLE. All queries falling into this range
can be satisfied at the top level of the H-RLE encoding, since sign information is stored at this
level. On the DT-Grid the search would need to progress to the finest level of the encoding in
order to determine the sign of the closest value because the level set is open.

Flexible Encoding

Due to the H-RLE’s utilization of run codes it is possible to obtain flexible encodings of both
defined and undefined regions. For describing a basic encoding of level sets that allowed for
both open and closed representations we employed three different run types in this chapter;
positive, negative and defined. Recall that the defined run code refers to a set of run codes
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denoting indices into either a defined value array or the segment start indices array on a lower
level in the encoding. However, as argued previously a run can be represented by a wide range
of possible run codes. For example the flexible encoding can be used to have several types of
defined regions. An application of this is to have cells of varying length in the direction of a run,
hence essentially creating an adaptive representation. One type of defined run can be used for
runs of consecutive unit-length grid cells whereas another type can be used for grid cells of length
greater than one. The idea of utilizing the flexibility of the H-RLE for this type of encoding was
proposed in the recent [52] which leverages on the DT-Grid and H-RLE techniques presented in
this dissertation. In particular [52] demonstrates the feasibility of grid cells of varying length in
the context of fluid simulation of large bodies of water where tall columns typically have linear
pressure profiles. Note that the DT-Grid is only able to represent grid cells of unit length.

Decoupling

The H-RLE decouples the defined (level set) values from the data structure and algorithms due
to the utilization of run codes in specifying defined and undefined regions. One implication
of this is that it may not be necessary to store any (level set) values at all. On the other
hand, the DT-Grid data structure contains no information about inside or outside if no narrow
band values are specified. However, using the H-RLE it is straightforward to e.g. represent
multiple constant value regions efficiently simply by encoding them as runs with different run
codes. A possible application of this is H-RLE representations of matrices with sequences of
constant values. Finally we note that the H-RLE, contrary to the DT-Grid, is capable of storing
both closed and open/unenclosed scalar and vector fields and still provide arbitrary encodings
of outside regions. This property is not available with the DT-Grid which can only assign
values/properties to regions outside the narrow band based on adjacent (level set) values inside
the narrow band.

6.5 Summary

This chapter introduced the Hierarchical Run-Length Encoded (H-RLE) Grid, a versatile data
structure for high resolution level sets. The H-RLE has many similarities to the DT-Grid, but
employs a run-length encoding in place of the p-column encoding utilized by the DT-Grid. This
makes the H-RLE more flexible than the DT-Grid in terms of the encoding of the narrow band,
the decoupling of level set values from the hierarchical encoding and allows for more flexible
representations of open level sets. The DT-Grid algorithms were adopted to the run-length
encoding of the H-RLE with minor modifications.





Chapter 7

Evaluation and Discussion of DT-Grid and H-RLE

Grid

The two previous chapters have presented the Dynamic Tubular Grid (DT-Grid) and the Hier-
archical Run Length Encoded (H-RLE) Grid for representing and manipulating high resolution
level sets. Algorithmic details and asymptotical time- and storage-complexities were provided
along with a few examples demonstrating the out-of-the-box and versatility capabilities of these
representations. Chapter 15 in part V reviews additional applications of these data structures
for high resolution level set and fluid simulations. In this chapter we perform an evaluation of
and discuss known strengths and weaknesses of the DT-Grid and H-RLE. Our evaluations cover
level set simulations with several numerical schemes, memory requirements when representing
high resolution level sets and render times for ray tracing which employs a high number of
random access operations. The level sets used in our evaluations are converted from polygonal
meshes using our methods described in chapter 14. These polygonal mesh models are publically
available from the Stanford Scanning Repository and depicted in figure 7.1.

Briefly outlined this chapter proceeds as follows. First section 7.1 outlines the methodology
and presents the various data structures against which we evaluate the DT-Grid and H-RLE.
Next section 7.2 presents the benchmarks for level set simulations. Following that sections 7.3
and 7.4 evaluate the random access performance as well as the storage requirements for high
resolution level set representations. Finally section 7.5 discusses known strengths and weaknesses
of our work, and section 7.6 concludes this chapter with a brief summary.

7.1 Evaluated Data Structures and Methodology

The performance evaluations presented in this chapter compare several different level set rep-
resentations and algorithms with respect to time- and memory-usage. Several of the evaluated
data structures have identical asymptotic time complexities associated with their operations,
and hence comparing their actual run-times is a delicate matter. In particular the constants
involved in the time-complexities depend strongly on the level of optimization applied to the
implementation. Additionally the relative performance of the various data structures may vary
across computer architectures, compilers and operating systems. In this dissertation, all imple-
mentations are based on the most recent references available, and insights gained continuously
have enabled continuously optimized implementations of the evaluated data structures. For this
reason the relative performance of the evaluated data structures is also not completely identical
to the results reported in [48], however the main conclusion remains the same.
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Figure 7.1: 3D level set models used for performance evaluations. (a) The David (b) The Happy
Buddha (c) The Lucy Angel (d) The Thai Statuette (e) The Stanford Bunny. The terms in
boldface will be used in the tables in this chapter as a shorthand notation for the corresponding
models. All models courtesy of the Stanford Scanning Repository.

We focus in this chapter on performance evaluations in the configuration listed in table 7.1,
and leave for future work to investigate the robustness of the results across different architectures,
compilers and operating systems. We have implemented all test programs in C++ and used
the Visual Studio 2005 version 8.0 compiler with maximal optimization enabled. The level set
simulation and ray tracing code utilized in our benchmarks is templated1 with respect to the
underlying grid representation, meaning that identical and equally optimized simulation code is
used for the tests of all data structures. In particular only the implementations of the underlying
data structure and associated operations such as sequential access, random access and narrow
band rebuild differ between the tests.

We have evaluated the following data structure implementations:

1Templated in the C++ meaning of the word.
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Processor AMD Athlon 64
Clock rate 2.41 GHz
Operating system Windows XP Pro
L1 data cache size 64 KB
L1 instruction cache size 64 KB
L1 line size 64 B
L1 associativity 2-way
L1 data latency 1.25
L2 data cache size 1 MB
L2 line size 64 B
L2 associativity 16-way
L2 data latency 5.04
Physical memory 2 GB
Physical memory latency 52.6
Physical memory random latency 113.9

Table 7.1: The hardware and operating system configurations used for the performance evalua-
tions in this chapter. Latency measurements are reported in nanoseconds and were found using
LMbench 3.0 [90] (see also http://www.bitmover.com/lmbench/).

• Peng I: The narrow band level set method of Peng et al. [120]. This method rebuilds
the narrow band by visiting the entire dense uniform grid, hence the time complexity is
O(L3), where L is the side length of the enclosing grid. In addition to storing the dense
uniform grid, mask and coordinate arrays are also stored.

• Peng II: The narrow band level set method of Peng et al. [120] combined with the method
for rebuilding the narrow band proposed by Nilsson et al. [108]. The method for rebuilding
the narrow band visits only the grid points contained in the union between the old and
the new narrow bands, hence it has a time complexity that is linear in the number of grid
points in the narrow band: O(MN ).

• Octree I: An octree that stores only the grid points in the narrow band. The nodes of
the octree are defined as:

struct OctreeCell
{

OctreeCell *parent;
union
{

OctreeCell *children;
float *values;

} u;
};

Note that the octree nodes at the finest level are omitted and the octree nodes at the
second-finest level instead point directly to the values. This saves the storage required by
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the finest level of refinement in the octree and at the same time makes the depth of the
octree one less, hence making random and neighbor access faster. Notice also that values
are referenced by a single pointer. This saves the additional storage of one pointer per
grid point in the narrow band (in contrast to Octree II below). The implementation uses
the algorithm of Stolte et al. [138] to traverse the octree sequentially and the neighbor
access algorithms of Frisken et al. [38]. Octree cells are allocated in a memory pool [92]
to speed up allocation and deallocation and to increase the cache coherency. The octree
is constructed and rebuilt in time O(MN log MN ).

• Octree II: An octree that stores only the grid points in the narrow band. The nodes are
defined as:

struct OctreeCell
{

OctreeCell *parent;
union
{

OctreeCell *children[8];
float *values[8];

} u;
};

Similar to and with the same benefits as Octree I, the octree nodes at the finest level of
Octree II are omitted and the octree nodes at the second-finest level instead point directly
to values. In contrast to Octree I, the values are not referenced by a single pointer in the
octree node. This adds storage but appears to improve the random access speed. The
remaining properties of Octree II are identical to those of Octree I.

• RLE Sparse: The RLE Sparse Level Set data structure of Houston et al. [50]. My
implementation is based on the details given in their technical sketch as well as on personal
correspondence with the authors.

• H-RLE: The Hierarchical Run Length Encoded (H-RLE) Grid described in chapter 6.

• DT-Grid: The Dynamic Tubular Grid (DT-Grid) described in chapter 5.

• DT-Grid NR: The Dynamic Tubular Grid (DT-Grid) described in chapter 5, but with
only one level of encoding (NR = Non Recursive). Hence in 3D the proj2D constituent is
represented as a dense uniform grid instead of a 2D DT-Grid.

7.2 Evaluation of Level Set Simulation Performance

In this section we evaluate the performance of the level set representations introduced in the
previous section for level set simulations utilizing sequential access alone. We consider the
following three model problems:

• Level Set Erosion: As the first model problem we consider erosion of the Thai Statuette
in which the surface is propagated inwards in the normal direction with unit speed. The
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corresponding level set equation is given by

∂φ

∂t
− |∇φ| = 0 (7.1)

where φ is the level set function. Equation 7.1 is hyperbolic.

• Mean Curvature Flow: As the second model problem we evaluate mean curvature flow
on the Stanford Bunny. Geometrically mean curvature flow corresponds to a smoothing
of the surface and the corresponding level set equation is

∂φ

∂t
− κ|∇φ| = 0 (7.2)

where κ is the mean curvature. Due to the κ term, equation 7.2 is parabolic.

• Level Set Advection: As the third model problem we consider advection on the Stanford
Bunny in a constant velocity field, V. The corresponding level set equation is

∂φ

∂t
+ V · ∇φ = 0 (7.3)

Equation 7.3 is hyperbolic.

We consider each of these model problems using two discretizations differing in the order
of numerical accuracy. In both of the two discretizations, the term κ|∇φ| appearing in the
parabolic equation 7.2 is discretized identically. In particular |∇φ| is discretized using second
order accurate central differences, and the curvature is computed using second order accurate
finite differences as well. The term |∇φ| appearing in the hyperbolic equations are evaluated
according to Godunov’s scheme. The details of the two different discretizations are:

• Low order accurate method: The spatial derivatives are computed using first order
accurate one-sided upwind finite differences. In time a first order accurate forward Euler
discretization is used. We use a narrow band radius of γ = 3∆x.

• High order accurate method: The spatial derivatives are computed using three-fifth
order accurate WENO finite differences adhering to an upwind scheme. In time a third
order accurate TVD Runge Kutta discretization is used. We use a narrow band radius of
γ = 6∆x.

In each step of the simulation, the level set equation in question is first solved in the γ tube
of the narrow band. Next the reinitialization PDE (see equation 2.5) is solved in the entire
narrow band three times, i.e. a fixed number of times. At the boundary of the narrow band we
use the clamped ±γ signed distance field values outside the narrow band. Finally the narrow
band is rebuilt and the next simulation step begins. In each step of the simulation we take the
maximal time-step allowed for a stable simulation, and a total of 200 simulation steps are taken
in each test.

As initial condition for the simulations we consider level set data scan converted from the
Stanford Bunny and the Thai Statuette shown in figure 7.1. We sample the models at various
different resolutions to ensure that our evaluations cover cases ranging from the situation where
the level set data fits into the L2 cache to situations where the level set data takes up a significant
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part of main memory. In particular the models have been sampled at the following resolutions
2:

• Stanford Bunny: R0 is 24x24x20, R1 is 56x55x44, R2 is 120x119x94, R3 is 248x246x193,
R4 is 504x500x392.

• Thai Statuette: R0 is 26x38x22, R1 is 58x93x50, R2 is 122x200x105, R3 is 250x416x216,
R4 is 506x847x437.

The evaluations are presented as follows: For each model problem, discretization, sampling
resolution and data structure we evaluate the average time-usage per simulation step (reported
in seconds) as well as the minimal and maximal memory usage (reported in MB) of a single
grid instance during the course of the 200 simulation steps taken in each test. Average time and
memory usage are reported in two different tables for each test due to layout considerations.
Each test is run approximately five times and the average time reported here is the median of the
average times found in these runs. Note that for the Peng methods, the memory usage includes
the dense uniform grid, mask as well as index lists employed by the method. Furthermore the
memory usage reported for all methods includes the storage occupied by the entire narrow band,
i.e. the γ + ∆x tube. Finally note that for all tests, the peak memory will be roughly doubled
during the simulation, since a double buffering approach is used.

Tables 7.3 to 7.14 show the results of the evaluations. Regarding memory usage the general
tendency is that DT-Grid requires the least storage followed by H-RLE, RLE Sparse, the octrees
and the Peng methods. Furthermore it is evident that for model problems 7.1 and 7.2, where the
surface area tends to zero, the storage requirements of all evaluated data structures, except the
dense uniform grid employed by the Peng methods. also tend to zero. The reduction in memory
requirements gained by using the DT-Grid or H-RLE over the Peng methods varies. However,
in the extreme case of model problem 7.1 at resolution R4, the minimal memory usage of the
DT-Grid is 0.2% of the minimal memory usage of the Peng methods.

The evaluations of average time per iteration are not as clear-cut as the storage requirements.
However, the general tendency is that the DT-Grid performs faster than the remaining methods,
including the Peng methods and the H-RLE. In particular the DT-Grid appears to be faster
than Peng II except in three cases, all at the lowest resolution. Intuitively this may be somewhat
surprising if one would expect the Peng II method to be faster than the alternatives whenever
the grids fit entirely into either the L1 or L2 cache. However, this reasoning implicitly assumes
that the simulation is CPU limited. In particular we have found three explanations of the fact
that the DT-Grid is in most cases faster than Peng II:

• Peng II requires more storage than the DT-Grid: We hypothesize that this fact
partly explains that the DT-Grid is in some cases faster than Peng II even though all
data is located in the cache. Using the AMD CodeAnalyst tool we found that even at
low resolutions, the CPU is stalling, waiting for data from the L1 cache, during level
set simulations. Hence the performance is bounded from below by the L1 access time
as opposed to being CPU bound. Table 7.2 shows measurements of L1 and L2 accesses
and misses using the AMD CodeAnalyst tool. As is evident from these measurements,
the DT-Grid has fewer accesses (and misses) to the cache hierarchy than Peng II, even at
resolution R0. Since the running-time is bounded by the L1 cache access time, it is very

2These resolutions are the ones used with the low order accurate method. The resolutions used with the high
order accurate method have a slightly bigger bounding box since they employ a narrow band radius of γ = 6∆x
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likely that this explains that DT-Grid appears to be faster than Peng II. We hypothesize
that the reason that DT-Grid has fewer accesses to the cache hierarchy is that it requires
less storage, even at low resolution. The operations on the DT-Grid all require more CPU
cycles than the equivalent Peng II operations, however the number of non-idle CPU cycles
is not the performance bottleneck. Some local variables may also reside in the L1 cache,
and in particular the DT-Grid accesses more local variables than the Peng II method.
However, it all amounts to accesses to the cache hierarchy, and as can be seen from table
7.2, the total number of accesses to the local variables and data residing in the cache is
larger for the Peng II method.

• Narrow band access-scattering: At resolutions where all data does not reside in the
cache another effect degrades the performance of the Peng II method compared to the
DT-Grid. In particular, the Peng II method does not exploit spatial locality as well as
the DT-Grid, because the level set data is stored in a dense uniform grid. Hence two
consecutive grid points in the Peng II narrow band data structure may be far from each
other in physical memory and hence trigger a cache miss when accessed. This effect can
be seen by comparing the measurements at resolutions R0 and R4 in table 7.2. Note that
similar to the average time per iteration, the cache coherency of the Peng II method has
degraded compared to the DT-Grid and the measurements at resolution R0. In addition
to this effect, the O(MN ) rebuild method used by Peng II has the property that accesses
to memory are becoming increasingly scattered over time as the simulation progresses.
Figure 7.2 illustrates the cache coherency of the narrow band of a simulation at resolution
2563 that simply translates the level set by the constant velocity field V = (1, 1, 1). In
particular the cache coherency is shown initially and after 200 iterations. The cache
coherency degrades both for a low order and a high order accurate method. However,
the impact on performance over the course of 200 iterations is largest for the low order
accurate method, most likely because the access time comprises a larger part of the total
simulation time in this case. In particular we observed at 12% drop in performance for
the low order method and a 4% drop in performance for the high order method over
the course of the 200 iterations. Accessing all grid points in the narrow band in random
order incurs drops in performance of 123% and 81% respectively for the low order and the
high order accurate methods. Hence simulations running for longer periods of time may
observe a significant drop in performance. An option during narrow band rebuild is to sort
either all grid points in the narrow band or the new grid points entering the narrow band
such that the most cache coherent access possible with a dense uniform grid is maintained
throughout the simulation. However, preliminary tests show that sorting every iteration
introduces an overhead in performance.

• Swapping due to insufficient main memory: At high resolutions where the storage
requirements of the Peng methods exceed the physical memory available, the operating
system starts swapping memory to and from disk during the simulation. Relying on the
operating system for this task degrades performance, and we will return to this in part III
of this dissertation. Swapping effects are not evident in the evaluations performed in this
subsection, except in a single case where it is not possible to execute the Peng I method.
However, in section 7.3.2 where we evaluate the performance of a ray tracing application
on a computer with 1 GB of main memory, these effects are clearly visible.
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Besides the tendency that the DT-Grid in general performs faster than the remaining data
structures, the H-RLE method seems to perform comparable to the Peng II method. There
is a clear tendency for H-RLE to be faster than Peng II for low order accurate discretizations
at higher resolutions. However, except for the cases of all resolutions in model problem 7.3
and the highest resolution in model problem 7.1 where H-RLE is faster than Peng II, Peng
II appears to be faster than H-RLE for the high order accurate discretization. The H-RLE
appears to be slower than the DT-Grid, and most likely this can be explained by the fact that
the H-RLE requires more storage and more accesses to local variables than the DT-Grid. In
particular more local variables and data accesses are required by the H-RLE to iterate over the
runs than required by the DT-Grid to iterate over the projection columns. The octree methods
have simulation time complexities in the order of O(MN log MN ) and only perform faster than
the Peng I method which has a time complexity of O(L3).

The observations made in this section give rise to a number of properties that must be
exhibited by a level set data structure in order to be faster than the DT-Grid. In particular
such a data structure should ensure temporal locality, spatial locality, a small memory footprint
and access to as few local variables as possible. In this way the number of accesses to the L1
cache is lowered, and thereby the performance improved.

R0 R4
Avg L1 L1 L2 L2 Avg L1 L1 L2 L2
Time Data Data Data Data Time Data Data Data Data

Acc Miss Acc Miss Acc Miss Acc Miss
DT-Grid 0.0035 1.0000 1.0000 1.0000 0.0000 2.6908 1.0000 1.0000 1.0000 1.0000
Peng II 0.0036 1.0250 3.0000 2.6667 0.0000 3.7814 1.0686 11.6065 8.0440 48.9056

Table 7.2: Cache measurements using the AMD CodeAnalyst Tool for model problem 7.1 using
the low order accurate discretization and the Thai Statuette as initial level set data. Internally
in each column, the number of accesses and misses are divided by the corresponding number of
accesses/misses for the DT-Grid.

Grid\Resolution
R0 R1 R2 R3 R4
Avg Avg Avg Avg Avg
Time Time Time Time Time

DT-Grid 0.0035 0.0184 0.0940 0.4017 2.6908
H-RLE 0.0048 0.0225 0.1058 0.4770 3.1641
Octree I 0.0085 0.0487 0.2469 1.1522 8.3792
Octree II 0.0085 0.0478 0.2508 1.1677 8.6671
Peng I 0.0120 0.0947 0.7806 6.0718 41.9458
Peng II 0.0036 0.0189 0.1060 0.5225 3.7814
RLE 0.0060 0.0312 0.1542 0.7994 5.0189

Table 7.3: Average time usage of model problem 7.1 using the low order accurate discretization
and the Thai Statuette as initial level set data.
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Figure 7.2: This figure shows how entries in the list of narrow band grid points map to addresses
in memory using the method of Peng et al. [120] combined with the sparse rebuild of Nilsson
et al. [108]. The data is normalized in such a way that 10000 samples of the memory locations
(lowpass-filtered) of consecutive grid points in the narrow band are mapped to each integer in the
range 0 to 9999 by retaining the order that the locations have in physical memory. The leftmost
image shows the situation before the simulation begins. Since the level set is initialized in the
lexicographic order consistent with stride-1 access, the graph is just a straight line, corresponding
to the most memory-coherent narrow band access. The middle and rightmost image show the
narrow band mapping after 200 iterations for a high-order and a low-order accurate simulation
respectively.

Grid\Resolution
R0 R1 R2 R3 R4

Max Min Max Min Max Min Max Min Max Min
Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem

DT-Grid 0.05 0.00 0.31 0.00 1.75 0.00 8.59 0.00 38.33 1.76
H-RLE 0.05 0.00 0.34 0.00 1.87 0.00 9.14 0.00 40.78 1.89
Octree I 0.06 0.00 0.43 0.00 2.42 0.00 12.10 0.00 53.98 2.49
Octree II 0.10 0.00 0.68 0.00 3.91 0.00 19.42 0.00 86.60 3.94
Peng I 0.22 0.16 1.95 1.54 15.66 13.33 123.26 111.76 963.26 914.31
Peng II 0.22 0.16 1.95 1.54 15.66 13.33 123.26 111.76 963.26 914.31
RLE 0.06 0.00 0.37 0.00 2.01 0.00 9.76 0.00 43.42 1.99

Table 7.4: Memory usage of model problem 7.1 using the low order accurate discretization and
the Thai Statuette as initial level set data.
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Grid\Resolution
R0 R1 R2 R3 R4
Avg Avg Avg Avg Avg
Time Time Time Time Time

DT-Grid 0.0591 0.3272 1.6627 7.9290 54.2011
H-RLE 0.0681 0.3741 1.8910 8.9763 61.6142
Octree I 0.1071 0.6165 3.1071 14.9504 118.9552
Octree II 0.1016 0.5875 2.9944 14.3973 118.2406
Peng I 0.0748 0.4460 2.6848 15.3447 NP
Peng II 0.0580 0.3313 1.7685 8.7615 62.3916
RLE 0.0714 0.4308 2.5301 13.0160 59.9009

Table 7.5: Average time usage of model problem 7.1 using the high order accurate discretization
and the Thai Statuette as initial level set data.

Grid\Resolution
R0 R1 R2 R3 R4

Max Min Max Min Max Min Max Min Max Min
Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem

DT-Grid 0.05 0.00 0.38 0.00 2.30 0.00 12.31 0.00 58.03 2.46
H-RLE 0.05 0.00 0.40 0.00 2.41 0.01 12.81 0.00 60.34 2.59
Octree I 0.07 0.01 0.50 0.01 3.07 0.01 16.54 0.01 78.86 3.33
Octree II 0.10 0.01 0.83 0.01 5.15 0.01 27.72 0.01 131.51 5.51
Peng I 0.21 0.15 1.98 1.47 16.29 13.10 127.75 110.53 NP NP
Peng II 0.21 0.15 1.98 1.47 16.29 13.10 127.75 110.53 988.23 910.41
RLE 0.06 0.00 0.42 0.00 2.53 0.00 13.41 0.00 62.91 2.67

Table 7.6: Memory usage of model problem 7.1 using the high order accurate discretization and
the Thai Statuette as initial level set data.

Grid\Resolution
R0 R1 R2 R3 R4
Avg Avg Avg Avg Avg
Time Time Time Time Time

DT-Grid 0.0030 0.0325 0.2174 1.1040 4.8327
H-RLE 0.0037 0.0378 0.2616 1.2913 5.6066
Octree I 0.0075 0.0926 0.6484 3.4012 16.0563
Octree II 0.0075 0.0914 0.6588 3.4281 16.5954
Peng I 0.0072 0.0716 0.6381 4.3819 25.8788
Peng II 0.0030 0.0328 0.2372 1.4188 6.2713
RLE 0.0051 0.0555 0.3690 1.8818 9.1996

Table 7.7: Average time usage of model problem 7.2 using the low order accurate discretization
and the Stanford Bunny as initial level set data.
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Grid\Resolution
R0 R1 R2 R3 R4

Max Min Max Min Max Min Max Min Max Min
Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem

DT-Grid 0.03 0.00 0.23 0.12 1.20 0.90 5.47 4.93 23.20 22.31
H-RLE 0.04 0.00 0.25 0.13 1.30 0.98 5.90 5.33 25.00 24.08
Octree I 0.05 0.00 0.32 0.17 1.67 1.26 7.64 6.95 32.69 31.49
Octree II 0.07 0.00 0.50 0.27 2.66 2.00 12.14 11.01 51.82 49.91
Peng I 0.13 0.09 1.09 0.95 8.62 8.22 66.01 65.32 512.57 511.44
Peng II 0.13 0.09 1.09 0.95 8.62 8.22 66.01 65.32 512.57 511.44
RLE 0.04 0.00 0.26 0.14 1.36 1.02 6.18 5.57 26.20 25.19

Table 7.8: Memory usage of model problem 7.2 using the low order accurate discretization and
the Stanford Bunny as initial level set data.

Grid\Resolution
R0 R1 R2 R3 R4
Avg Avg Avg Avg Avg
Time Time Time Time Time

DT-Grid 0.0421 0.4261 3.3881 17.9380 81.4784
H-RLE 0.0552 0.4845 3.8277 20.3261 92.4673
Octree I 0.0751 0.8636 6.7141 35.9063 187.4805
Octree II 0.0705 0.8288 6.4946 34.6557 185.5037
Peng I 0.0504 0.5273 4.4804 24.9956 107.4884
Peng II 0.0401 0.4412 3.6845 19.4587 89.4366
RLE 0.0520 0.6018 3.8757 25.5550 117.4520

Table 7.9: Average time usage of model problem 7.2 using the high order accurate discretization
and the Stanford Bunny as initial level set data.

Grid\Resolution
R0 R1 R2 R3 R4

Max Min Max Min Max Min Max Min Max Min
Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem

DT-Grid 0.03 0.01 0.28 0.15 1.66 1.33 8.10 7.48 35.70 34.60
H-RLE 0.04 0.01 0.29 0.17 1.75 1.41 8.52 7.88 37.46 36.34
Octree I 0.04 0.01 0.36 0.23 2.23 1.86 10.97 10.27 48.61 47.30
Octree II 0.07 0.01 0.59 0.37 3.69 3.06 18.16 16.96 80.35 78.17
Peng I 0.12 0.08 1.13 0.99 9.20 8.80 69.55 68.79 529.52 528.18
Peng II 0.12 0.08 1.13 0.99 9.20 8.80 69.55 68.79 529.52 528.18
RLE 0.04 0.01 0.30 0.16 1.81 1.45 8.78 8.11 38.63 37.44

Table 7.10: Memory usage of model problem 7.2 using the high order accurate discretization
and the Stanford Bunny as initial level set data.
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Grid\Resolution
R0 R1 R2 R3 R4
Avg Avg Avg Avg Avg
Time Time Time Time Time

DT-Grid 0.0028 0.0332 0.2082 1.0061 4.3715
H-RLE 0.0035 0.0398 0.2498 1.2028 5.1950
Octree I 0.0069 0.0923 0.5806 2.8306 13.1044
Octree II 0.0067 0.0903 0.5931 2.8741 13.7486
Peng I 0.0615 0.2907 1.5337 8.2898 42.7709
Peng II 0.0027 0.0364 0.2436 1.3742 6.2306
RLE 0.0046 0.0597 0.3705 1.8998 9.0410

Table 7.11: Average time usage of model problem 7.3 using the low order accurate discretization
and the Stanford Bunny as initial level set data.

Grid\Resolution
R0 R1 R2 R3 R4

Max Min Max Min Max Min Max Min Max Min
Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem

DT-Grid 0.03 0.00 0.23 0.16 1.20 1.03 5.47 5.15 23.20 22.66
H-RLE 0.04 0.00 0.25 0.17 1.30 1.12 5.90 5.57 25.00 24.44
Octree I 0.05 0.00 0.32 0.21 1.68 1.43 7.66 7.21 32.69 31.89
Octree II 0.08 0.00 0.51 0.34 2.67 2.26 12.16 11.43 51.83 50.53
Peng I 1.25 1.21 5.63 5.53 27.67 27.42 151.06 150.62 925.06 924.27
Peng II 1.25 1.21 5.63 5.53 27.67 27.42 151.06 150.62 925.06 924.27
RLE 0.04 0.00 0.26 0.18 1.36 1.17 6.18 5.82 26.20 25.60

Table 7.12: Memory usage of model problem 7.3 using the low order accurate discretization and
the Stanford Bunny as initial level set data.

Grid\Resolution
R0 R1 R2 R3 R4
Avg Avg Avg Avg Avg
Time Time Time Time Time

DT-Grid 0.0380 0.4720 3.3888 17.7175 80.0852
H-RLE 0.0478 0.4787 3.6926 19.3733 87.7248
Octree I 0.0682 0.7827 5.9242 31.3724 166.0236
Octree II 0.0647 0.7525 5.7529 30.3128 163.9544
Peng I 0.1157 0.8631 5.7173 29.3470 126.2994
Peng II 0.0497 0.5528 4.1134 20.9014 98.3220
RLE 0.0443 0.3881 3.8393 21.8846 99.1223

Table 7.13: Average time usage of model problem 7.3 using the high order accurate discretization
and the Stanford Bunny as initial level set data.
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Grid\Resolution
R0 R1 R2 R3 R4

Max Min Max Min Max Min Max Min Max Min
Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem

DT-Grid 0.03 0.00 0.28 0.13 1.66 1.22 8.10 6.99 35.70 32.57
H-RLE 0.04 0.00 0.29 0.14 1.75 1.29 8.52 7.36 37.46 34.27
Octree I 0.05 0.00 0.37 0.18 2.24 1.66 10.98 9.51 48.61 44.50
Octree II 0.07 0.00 0.61 0.29 3.70 2.73 18.18 15.67 80.37 73.26
Peng I 1.25 1.24 5.71 5.65 28.37 28.29 155.07 154.97 943.94 943.69
Peng II 1.25 1.24 5.71 5.65 28.37 28.29 155.07 154.97 943.94 943.69
RLE 0.04 0.00 0.30 0.14 1.81 1.33 8.78 7.58 38.63 35.24

Table 7.14: Memory usage of model problem 7.3 using the high order accurate discretization
and the Stanford Bunny as initial level set data.
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7.3 Evaluation of Random Access Performance

In this section we evaluate the performance of two applications requiring the use of random and
neighbor access operations. First section 7.3.1 evaluates the use of the fast marching method in
a level set simulation and next we consider ray tracing in section 7.3.2.

7.3.1 Evaluation of Fast Marching
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Here we consider the model problem of volume conserving mean curvature flow [120] which
geometrically corresponds to a smoothing of the surface that conserves its enclosed volume. The
corresponding level set equation is

∂φ

∂t
− (κ− κ̄)|∇φ| = 0 (7.4)

where κ is the mean curvature, and κ̄ is the average mean curvature of the initial shape, in
this case the extruded spiral depicted in figure 5.3 in chapter 5. Referring to equation 7.4 we
discretize the spatial parabolic term (κ|∇φ|) using second order accurate central differences
and the spatial hyperbolic term (κ̄|∇φ|) using fifth order HJ-WENO. Temporally we employ
a third order accurate TVD Runge Kutta method. We reinitialize φ to a signed distance field
by solving the Eikonal equation using a first order accurate fast marching method [131]. In
contrast to the PDE based reinitialization that we employed in the previous tests, the fast
marching method does not visit the narrow band sequentially, recall the brief explanation in
chapter 2. This means that for the solution of the Eikonal equation a large amount of random
and neighbor access operations are required. Figures 7.3, 7.4 and 7.5 compare the performance
of this benchmark on a dense uniform grid utilizing the Peng narrow band method for level set
propagation to the performance on the DT-Grid. On the dense uniform grid, the narrow band
is rebuilt simultaneously with solving the Eikonal equation in time O(MN log MN ). The rebuild
procedure is implemented by including into the narrow band the grid points whose computed
distance values are numerically less than γ. As can be seen from figure 7.3 the total simulation
time, including both the solution of the level set equation 7.4 and the Eikonal equation, is slightly
better on the DT-Grid than on a dense uniform grid. However, due to the utilization of the fast
marching method for reinitializing the level set function, the picture is somewhat different from
the previous tests as evident from figure 7.5. In fact, the time spent on reinitialization is less on
the dense uniform grid, but due to the fact that the solution of the level set equation is in this
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case faster on the DT-Grid as depicted in figure 7.4, the total simulation time remains lower on
the DT-Grid. However, for fast marching based reinitialization alone, the dense uniform grid is
preferable as long as the grid sizes are small enough to fit in physical memory.

7.3.2 Evaluation of Level Set Ray Tracing

Grid\Resolution
R0 R1 R2 R3 R4 R5 R6 R7 R8

Time Time Time Time Time Time Time Time Time
DT-Grid NR 11.58 25.31 39.27 48.89 57.16 65.69 109.88 230.45 547.00
DT-Grid, Binary Search 11.98 27.95 44.14 54.63 62.70 71.97 113.63 215.09 472.34
DT-Grid, Linear Search 11.72 27.55 42.89 53.06 61.59 69.97 112.75 214.75 476.77
H-RLE 11.67 28.98 45.63 57.05 65.94 74.73 117.44 211.30 453.78
Octree I 14.22 32.67 51.09 64.28 73.42 85.03 131.28 216.75 385.59
Octree II 13.78 32.14 50.00 62.47 71.31 82.22 126.16 209.64 561.25
Dense Uniform Grid 13.83 26.88 39.14 48.67 56.80 65.38 119.06 NP NP
RLE 11.70 26.61 41.64 51.67 59.73 68.28 108.66 201.72 460.58

Table 7.15: Raytracing test of the David statue at resolutions R0(11x9x19), R1(38x24x83),
R2(88x53x206), R3(138x82x329), R4(188x110x451), R5(238x139x574), R6(488x284x1187),
R7(988x573x2413), R8(1988x1150x4865). Timings are given in seconds. NP indicates that
the test was not possible due to insufficient memory. All models store a clamped signed distance
field and have a narrow band radius of three grid points.

In this sub-section we evaluate performance by means of an application that requires a large
amount of random access operations. In particular we compare the ray tracing times for various
level set models and grid representations 3.

The tests were performed on the architecture shown in table 7.1 with 1GB of main memory.
Tables 7.16 and 7.15 list the rendering times for various models, and we will briefly outline the
general tendencies and draw conclusions from these.

At most grid sizes a dense uniform grid approach appears to perform best. This can be
attributed to its constant time random access operation. All other data structures evaluated
here have logarithmic access times. For larger models however ray tracing on a dense uniform
grid either becomes slower than most or all grid representations due to memory-to-disk-swapping
or impossible (NP) due to violating the virtual memory limits.

At low and intermediate grid resolutions, the non-recursive DT-Grid and the RLE in general
perform faster than the other logarithmic time access data structures. This is due to the fact
that DT-Grid NR and RLE only perform logarithmic search in a single projection column and
scanline respectively. At higher resolutions the performance of DTGrid NR and RLE drops.
Our hypothesis is that this is mainly due to the 2D dense uniform acceleration structure stored
by these data structures. At higher resolutions this acceleration structure incurs less cache
coherency, which is supported by the cache measurements given in table 7.17.

3While one could evaluate the performance of the random access operation by accessing grid points in a truly
random or sequential fashion, these tests do not seem particularly relevant. The reason being that if an application
requires access to the grid sequentially an iterator is a better choice, and applications that access the grid in a
truly random manner are probably rare.
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Grid\Resolution
R0 R1 R2 R3 R4 R5 R6 R7 R8

Time Time Time Time Time Time Time Time Time
DT-Grid NR 41.44 74.50 101.11 122.33 143.97 167.91 299.38 652.95 1724.13
DT-Grid, Binary Search 46.08 85.17 115.27 137.06 160.50 182.13 293.34 521.02 1082.77
DT-Grid, Linear Search 47.50 84.91 111.52 132.69 155.51 176.55 285.08 511.00 1061.08
H-RLE 50.41 93.20 123.45 148.52 171.25 195.41 320.36 596.14 1364.55
Octree I 51.63 100.11 132.61 160.16 182.17 210.24 331.44 569.92 1157.58
Octree II 50.31 96.83 129.75 155.13 176.41 204.06 320.01 545.91 NP
Dense Uniform Grid 41.47 71.59 95.95 118.08 138.19 161.50 820.30 NP NP
RLE 45.52 81.41 107.97 129.19 151.81 174.09 292.36 561.41 1363.34

Table 7.16: Raytracing test of the Happy Buddha at resolutions R0(19x40x20), R1(44x101x45),
R2(94x222x95), R3(144x344x145), R4(194x476x195), R5(244x588x245), R6(494x1196x495),
R7(994x2414x996), R8(194x4849x1997). Timings are given in seconds. NP indicates that the
test was not possible due to insufficient memory. All models store a clamped signed distance
field and have a narrow band radius of three grid points.

Grid\Resolution

R0 R8
L1 L1 L2 L2 L1 L1 L2 L2

Data Data Data Data Data Data Data Data
Acc Miss Acc Miss Acc Miss Acc Miss

DT-Grid NR 0.7902 0.8669 0.8990 2.0561 0.9579 1.8374 1.8412 6.8878
DT-Grid, Linear Search 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 7.17: Cache measurements in raytracing test of the Happy Buddha at resolutions
R0(19x40x20) and R8(194x4849x1997). The numbers in each column are normalized to the
measurement for the DT-Grid. At high resolution, the relative number of cache misses in-
creases for the DT-Grid NR data structure. We hopethesize that this at least partly explains
its degradation in performance at higher resolutions.

The general tendency among the other data structures is that DT-Grid performs better
than octrees, although there are a few exceptions. Cache measurements show that the octree
has about 20% more accesses to the L1 cache than the DT-Grid at the highest resolution.
L1 accesses cover both access to data and local variables, and we hypothesize that the slower
performance is caused by the octree’s search methods that need to access more data than the
DT-Grid. The performance of the H-RLE is a hard to characterize. In most cases it performs
better than the octree, and in some cases it performs better than the DT-Grid. In a few
cases it performs worse than the octree. Similarly the performance of the RLE grid is hard to
characterize generally at higher resolutions.

To sum up: For random access, a dense uniform grid seems to be preferable at resolutions
that fit into memory. At higher resolutions the performance of the dense uniform grid drops, and
the relative performance of the other data structures varies. At most resolutions the DT-Grid
and H-RLE perform better than the octree data structures.
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7.4 Evaluation of Storage Requirements for High Resolution
Level Sets

In this section we consider the storage requirements of the various data structures for representing
high resolution level set surfaces. We focus on two different methods of evaluation. In the first
method we measure the number of bits per grid point in the narrow band required for storing
the grid-topology. In the second method we measure the total storage requirements of the level
set representation (i.e. values and topology).

Consider first table 7.18 which lists the number of bits per grid point in the narrow band
required by the topology. The number of topology bits per narrow band grid point is computed
by the following formula:

(total memory - value memory)× 8
M3

(7.5)

where total memory encompasses the total memory usage of the data structure in bytes, value
memory measures the memory occupied by the values of the grid points in the narrow band in
bytes and M3 is the number of grid points in the narrow band. Note that figure 7.18 lists the
number of topology bits for two different narrow band widths, γ = 3 and γ = 5 respectively. As
can be seen from table 7.18, the efficiency of all representations increase when the narrow band
is widened which is what one would intuitively expect. For all models the DT-Grid offers the
best topology-storage efficiency followed by the non recursive DT-Grid and the H-RLE. Even
though the asymptotic memory usage of the octree is proportional to the area of the surface,
its inherent pointer structure leads to a relatively inefficient representation of the grid topology.
The dense grid approaches are the least efficient. Note that in chapter 10 we introduce a method
for compressing the topology of the DT-Grid that further increases the efficiency of the topology
representation. In fact the DT-Grid topology compression method results in less than one bit per
grid point in the narrow band (around 0.25 bits per grid point on average), while still allowing
for relatively efficient level set simulations (although not as efficient as the original DT-Grid).

Table 7.19 lists the total memory usage of the data structures for the higher resolution models
in table 7.18. Since all representations evaluated here store the values in the narrow band
uncompressed the overall picture of table 7.19 is identical to that of table 7.18. However, to
give an impression of the absolute difference measured in MB that the different representations
of topology result in, we have included table 7.19. As can be seen the DT-Grid variants and
the H-RLE represent the level set most efficiently although a bit of efficiency is sacrificed by
the H-RLE due to its encoding of undefined regions. However, as already argued this results
in a flexible encoding not shared by the DT-Grid. The dense grid representations require a
prohibitively large amount of storage. For storing the Happy Buddha with γ = 5 for example, a
dense grid representation including the additional data structures required by the narrow band
method of Peng et al. [120] consumes 94GB of storage. On the DT-Grid the Happy Buddha
with γ = 5 can be represented in 1.4GB when the most memory efficient optimization is applied.
It should be noted that the adaptive distance field of Frisken et al. [39] probably would be more
memory efficient than the representations listed here in some cases since it samples adaptively
along the surface. However, as mentioned earlier, current octree-based level set implementations
refine uniformly near the interface.
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Model
Octree Octree Dense Dense DT-Grid DT-Grid H-RLE RLE

I II Grid Grid Non Sparse

Incl Peng Recursive

Lucy, γ = 3
833× 487× 281 24 54 867 1140 5.0/4.5/3.5/3.0 5.1 7.0 8.7
3409× 1987× 1142 25 55 3529 4492 5.0/4.6/3.5/3.0 5.1 7.1 8.7
Lucy, γ = 5
833× 487× 281 18 49 521 707 3.0/2.7/2.1/1.8 3.0 4.2 5.2
3409× 1987× 1142 19 49 2112 2735 3.0/2.7/2.1/3.0 3.1 4.3 5.2
David, γ = 3
1186× 487× 283 25 54 773 1023 5.2/4.7/3.6/3.1 4.8 6.7 7.3
4864× 1987× 1149 25 55 3157 4028 5.2/4.7/3.7/3.1 4.9 6.8 7.4
David, γ = 5
1186× 487× 283 18 49 461 632 3.1/2.8/2.2/1.9 2.9 4.0 4.4
4864× 1987× 1149 19 49 1888 2456 3.1/2.8/2.2/1.9 2.9 4.1 4.5
Bunny, γ = 3
491× 487× 381 25 54 830 1093 8.4/7.0/5.6/5.6 7.9 9.1 14
1991× 1974× 1544 25 54 3387 4315 8.3/6.9/5.5/5.5 7.8 9.0 14
Bunny, γ = 5
491× 487× 381 19 49 493 673 5.1/4.2/3.4/3.4 4.8 5.5 8.5
1991× 1974× 1544 19 49 2027 2622 5.0/4.2/3.3/3.3 4.7 5.4 8.4
Buddha, γ = 3
1195× 494× 493 25 54 739 980 7.5/6.4/5.1/4.9 6.8 9.3 12
4848× 1996× 1993 25 NP 3043 3887 7.5/6.4/5.1/4.9 6.8 9.3 12
Buddha, γ = 5
1195× 494× 493 18 49 438 603 4.5/3.8/3.0/3.0 4.0 5.6 7.0
4848× 1996× 1993 18 NP 1818 2361 4.5/2.9/3.0/3.8 4.1 5.6 7.0

Table 7.18: This table demonstrates the efficiency of representing the topology for various level
set data structures that store the values in the narrow band uncompressed. The reported
numbers are the number of topology bits per grid point in the narrow band. The exact formula
for computing this is given in the text. For the DT-Grid four numbers are presented due to
the possible optimizations listed in chapter 5 (see page 53). The first number corresponds to
the most general form of the data structure and the three others correspond to optimizations
1,1 + 2 and 3 respectively. The dense uniform grid is unable to represent the higher resolution
models, but for this representation it is easy to compute the memory usage analytically. Note
that Dense Grid corresponds to the storage required by the dense grid alone, whereas Dense
Grid Incl Peng includes the mask and coordinate storage arrays of the narrow band method.
Finally note that NP = Not Possible.
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Model
Octree Octree Dense Dense DT-Grid DT-Grid H-RLE RLE

I II Grid Grid Non Sparse

Incl Peng Recursive

Lucy, γ = 3
3409× 1987× 1142 474 718 30.0GB 37.0GB 308/304/295/291 308 324 338

Lucy, γ = 5
3409× 1987× 1142 696 1.10 GB 29.0GB 37.0GB 481/477/468/464 482 498 511

David, γ = 3
4864× 1987× 1149 761 1.20GB 42.0GB 54.0GB 495/488/474/466 491 516 525

David, γ = 5
4864× 1987× 1149 1.10GB 1.80GB 42.0GB 54.0GB 773/766/752/745 768 794 802

Bunny, γ = 3
1991× 1974× 1544 386 586 23.0GB 29.0GB 273/264/255/254 270 278 311

Bunny, γ = 5
1991× 1974× 1544 569 911 23.0GB 29.0GB 416/407/397/397 413 421 454

Buddha, γ = 3
4848× 1996× 1993 1.40GB NP 74.0GB 93.0GB 946/919/888/884 929 990 1.00GB

Buddha, γ = 5
4848× 1996× 1993 2.00GB NP 74.0GB 94.0GB 1.45/1.42/1.39/1.39 GB 1.43 GB 1.50 GB 1.55 GB

Table 7.19: This table demonstrates the memory usage of various level set representations for
several high resolution models with narrow band widths of γ = 3 and γ = 5 respectively. The
reported numbers are given in MB unless stated otherwise. For the DT-Grid four numbers are
presented due to the possible optimizations listed in chapter 5 (see page 53). The first number
corresponds to the most general form of the data structure and the three others correspond to
optimizations 1,1+2 and 3 respectively. The dense uniform grid is unable to represent any of the
models, but for this representation it is easy to compute the memory usage analytically. Note
that Dense Grid corresponds to the storage required by the dense grid alone, whereas Dense
Grid Incl Peng includes the mask and coordinate storage arrays of the narrow band method.
Finally note that NP = Not Possible.
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7.5 Discussion

Up to now this chapter has illustrated two of the main advantages of the DT-Grid and H-RLE
representations; Their storage and computational efficiency. Furthermore, chapter 5 exemplified
the out-of-the-box feature inherent to the DT-Grid and H-RLE, and in chapter 6 we elaborated
on the versatility of the H-RLE representation over the DT-Grid. In this section we discuss
additional advantages as well as disadvantages of the DT-Grid and H-RLE representations.

One advantage of the DT-Grid and H-RLE, compared to adaptive methods, is that existing
numerical schemes and level set methods can be employed on these data structures without any
change. In fact identical simulation code was employed on all data structures for the level set
simulation benchmarks.

One level set method that we have not considered in our work is the fast sweeping method
[153] for solving the Eikonal equation. The fast sweeping method performs several sweeps over
the entire grid in different directions. On a dense uniform grid this is straightforward, but for
sparse representations such as DT-Grid and H-RLE it is not immediately clear how to implement
the fast sweeping method efficiently. This is due to the fact that grid points are stored in one
particular lexicographic order and that accessing the narrow band in another order requires
either a re-encoding of the narrow band or heavy utilization of random and neighbor access
operations. While we do not exclude the possible existence of an efficient solution it does not
seem straightforward. Note that traditional narrow band methods such as Peng [120] have the
same problem if computations are restricted to the narrow band as opposed to the entire volume.

All narrow band methods, including the DT-Grid and H-RLE, incur an overhead both with
respect to storage and simulation time if the volume of the narrow band becomes comparable to
the volume of the embedding space. In such cases, which we have not encountered in practice
in any of our applications, the full level set method should be applied.

The DT-Grid and H-RLE do not support the insertion of grid points at arbitrary positions.
Instead grid points must be pushed onto the data structures in lexicographic order. When
seen as a general purpose data structure for storing narrow band volumetric data, this is most
likely the biggest practical limitation of the DT-Grid and H-RLE. However, as we have shown,
level set simulations can be implemented without random inserts. An application that does
not generate grid points in lexicographic order is the polygonal mesh to level set conversion
algorithm presented in part IV of this dissertation. Three bucket sorts of linear time complexity
are typically applied to the grid points prior to being pushed onto the DT-Grid or H-RLE to
ensure a lexicographic ordering. The same strategy can be applied to any application that does
not generate grid points in lexicographic order.

Both the DT-Grid and H-RLE favor some directions over others in encoding the narrow
band. This implies that to some extent, memory usage and computation times depend on which
direction is chosen as the primary encoding direction. However, informal tests have shown that
in practice the variation in memory usage usually lies within a few percent although it is of
course possible to construct examples that behave differently. In all benchmarks presented in
this dissertation, no attention was paid to aligning models in any particular way.

Octrees are most likely preferable over the DT-Grid and H-RLE in ray tracing due to their
ability to adaptively represent a signed distance field away from the interface. On the contrary,
DT-Grid and H-RLE are narrow band representations. However it is possible that the DT-Grid
and H-RLE can be utilized in a nested hierarchical manner, similar to the approach taken in
AMR, and thereby provide coarser approximations to signed distances away from the surface.
Whether this is feasible is left for investigation by future work.



7.6. Summary 113

7.6 Summary

This chapter compared the storage requirements and run-times of the DT-Grid and H-RLE to
previous octree, narrow band and RLE methods. The benchmarks included several different
numerical level set methods, memory usage for low and high resolution level sets as well as
rendering times for ray tracing. In general the DT-Grid was shown to perform better than
previous methods, including the H-RLE, in the context of level set simulations, both with
respect to memory usage and run-time. The H-RLE performed comparable to the method of
Peng et al. [120] combined with the narrow band rebuild of Nilsson et al. [108], with a tendency
to be faster for low order accurate methods and slower for high order accurate methods. For
ray tracing based on random access, a dense uniform grid is faster than the alternatives tested
in this thesis as long as sufficient memory is present to keep the gridded data in memory. In
most cases the DT-Grid and H-RLE perform faster than octrees. The chapter ended with a
discussion of known advantages and disadvantages of the DT-Grid and H-RLE representations.
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Chapter 8

Introduction

In part II we proposed the DT-Grid and H-RLE data structures for representing high resolution
level set surfaces. These data structures allow for out-of-the-box simulations and were shown to
outperform existing state-of-the-art level set methods both in terms of computational efficiency
and storage requirements. While the DT-Grid and H-RLE do indeed allow for high resolution
level sets, there are still cases where it is simply not possible to represent and deform the
surfaces within the 1-2 GB limit of physical memory available on typical desktop computers.
Whereas direct ray tracing of level sets based on DT-Grid and H-RLE requires basically no
auxiliary data structures, level set simulations on the other hand typically require multiple
surfaces (double buffers) as well as velocity fields, morph targets in memory simultaneously.
Our novel work presented in part III targets these problems by proposing a generic framework
for the representation and deformation of level set surfaces at extreme resolutions. In particular
our framework is composed of two modules that each utilize optimized and application specific
algorithms: 1) A fast out-of-core data management scheme that allows high resolutions of the
deforming geometry, the only limitation being the amount of disk space, and 2) compact and
relatively fast compression strategies that effectively reduce both offline storage requirements
and online memory footprints during simulation.

Out-of-core and compression techniques have been applied to a wide range of computer graph-
ics problems in recent years, but our work is the first to apply it in the context of level set
simulations. Our framework is generic in the sense that the two modules can transparently be
integrated, separately or in any combination, into existing level set and fluid simulation software
based on the DT-Grid [105] and the H-RLE [48]. The framework can be applied to narrow band
signed distances, fluid velocities, scalar fields, particle properties as well as standard graphics
attributes like colors, texture coordinates, normals, displacements etc. In fact, our framework
is applicable to a large body of computer graphics problems that involve sequential or random
access to very large co-dimension one (level set) and zero (e.g. fluid) data sets. Our out-of-
core framework is shown to be several times faster than current state-of-the-art level set data
structures relying on OS paging i.e. the DT-Grid, and can for gigabyte sized level sets sus-
tain a throughput (grid points/sec) as high as 65% of state-of-the-art throughput for in-core
simulations. We also demonstrate that our compression techniques out-perform state-of-the-art
compression algorithms for narrow bands. Several applications in computer graphics can benefit
from our framework, and here we give an example of a shape metamorphosis with peak-storage
requirements close to 5GB simulated on a desktop machine with 1GB of memory. In chapter
15 in part V several other applications are demonstrated. This includes fluid simulations in-
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teracting with large boundaries (≈ 10243) and the solution of partial differential equations on
large surfaces (≈ 40963). Finally we note that chapter 14 in part IV presents an algorithm for
converting triangle meshes into out-of-core level sets. Specifically we demonstrate the generation
of a surface at effective resolution 35000 × 20000 × 11500 (7 billion grid points in the narrow
band).

Briefly outlined, the structure of part III is as follows. Chapter 9 describes related work
in the areas of compression and out-of-core methods. Next chapter 10 describes our generic
framework as well as the compression and out-of-core components comprising it. Following that
chapter 11 presents an extensive evaluation of both the compression and out-of-core components
of our framework, including level set simulation and offline compression. The advantages and
limitations of our generic framework are also discussed.



Chapter 9

Related Work on Compression and Out-Of-Core

Methods

Our out-of-core and compression framework is essentially based on two techniques that are well
known in the field of computer science: Data compression and out-of-core methods like page-
replacement and prefetching. As such there is a large body of related work and for the sake of
clarity we shall review this work as two separate topics. However, we stress that our work stands
apart from this previous work in several ways. Most importantly we are the first to optimize
and apply these techniques to level set methods. Consequently most of the work described here
is not directly related to ours.

9.0.1 Compression Methods

The DT-Grid and H-RLE represent narrow bands of volumetric data. Mesh compression meth-
ods on the other hand, see [66] and references therein, compress only the surface itself and
possibly the normals. Even though it is indeed feasible to compute differential properties from
meshes [28], this is generally not an optimal storage format for implicit surfaces like level sets.
The reason is primarily that the conversion (i.e. map) between the implicit level set and the
explicit mesh is not guaranteed to be one-to-one. Consequently important higher order infor-
mation is lost by converting to the mesh representation using [65, 69, 82] and this information
is not recoverable by a subsequent mesh to level set scan conversion. Methods with very good
compression ratios have also been proposed for isosurface meshes created from volumetric scalar
fields [32, 73, 148]. However, again information is lost for our purposes, and furthermore these
methods work only in-core and consider all grid points in the bounding box, not just in a
narrow band. Converting a narrow band volume grid to a clamped dense volume grid (e.g. a
clamped signed distance field) is easy and makes it possible to employ existing volume compres-
sion methods [51,99]. However, for large dense grids this approach is far from optimal in terms
of compression performance, memory- and time-usage. Note that the method for compressing
surfaces represented as signed distance fields by Laney et al. [71] also operates on the entire vol-
ume. In particular the method employs a wavelet compression of the signed distance field and
applies an aggressive thresholding scheme that sets wavelet coefficients to zero if their support
does not include the zero crossing. Thus this method may actually discard information very
close to the interface hence destroying higher order accurate content.

The work on compression most related to ours is the method for compressing unstructured
hexahedral volume meshes by Isenburg and Alliez [55] and the work on volumetric encoding
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for streaming isosurface extraction by Mascarenhas et al. [86]. Isenburg and Alliez consider in-
core compression that separately compresses topology and geometry. Mascarenhas et al. later
extended the method of Isenburg and Alliez to include the compression of scalar grid values and
additionally proposed an out-of-core decoder. The method is applied to structured uniform grids
and used in the context of streaming isosurface extraction. In particular, the grid is partitioned
into partial volume grids (essentially narrow bands) in such a way that a bound on the ratio
between the number of grid cells loaded and the number of grid cells intersecting any isosurface
is guaranteed. This approach is however not suitable for online simulations. In particular it is
not feasible to employ [86] to online compressed simulations, since a stencil of neighboring grid
points, used for finite difference computations, must be available. Nevertheless, in chapter 11 we
compare our compression method to [55, 86] as an offline compression tool for reducing storage
requirements of the produced data.

9.0.2 Out-Of-Core Methods

The area of out-of-core1 methods is very large and actually dates back as far as the fifties -
not long after the emerge of digital computers. Out-of-core techniques are applicable in a wide
range of fields where data intensive algorithms and applications are ubiquitous. This includes
image repositories, digital libraries, relational and spatial databases, computational geometry,
simulation, linear algebra and of course computer graphics. For a recent survey of the entire
field see [157]. For the interested reader we refer to [150] for a specific survey in linear algebra
and simulation, and [135] for a survey that focuses on computer graphics.

In computer graphics, out-of-core methods have been applied to a wide range of problems in-
cluding isosurface extraction [86,162], compression of meshes [56] and scalar fields [51], streaming
compression of triangle meshes [57], stream processing of points [115], mesh editing and simpli-
fication [23] and visualization [23,25,43].

Various approaches have been proposed for improving the access efficiency to out-of-core
multi-dimensional grids during computation or for optimizing online range-queries in areas such
as scientific computing, computational fluid dynamics and visualization. This includes blocking
techniques [129], re-blocking and permutation of dimensions [70] as well as the exploitation of
modern disks properties [128]. In computer graphics, improved indexing schemes for full three
dimensional grids were proposed by Pascucci and Frank [116] in the context of planar subset
visualization. The above techniques all deal with dense uniform grids whereas we consider
topologically complex narrow bands of grid data. Furthermore our method does not require the
layout of data on disk to be changed.

We are not the first to apply out-of-core techniques for online simulation. Pioneering work
was done by Salmon and Warren [126] for N-body simulation in astrophysics. Their work was
based on a tree data structure and applied reordered traversals and a “Least-Recently-Used”
page-replacement policy for efficiency. More recently, an out-of-core algorithm for Eulerian
grid based cosmological simulation was proposed by Trac and Pen [152]. Global information
is computed on a low resolution grid that fits entirely in memory, whereas local information is
computed on an out-of-core high resolution grid tiled into individual blocks that fit into memory.
The individual blocks are loaded and simulated in parallel for a number of time steps and then
written back to disk.

There is also a large body of work on general purpose page-replacement and prefetching

1Out-of-core algorithms are also often referred to as external memory algorithms.
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strategies developed for operating systems, scientific applications, data bases, web servers etc.
General purpose algorithms for page-replacement must meet many requirements including sim-
plicity, good performance and possibly adaptivity to changing and mixed access patterns. In
contrast, the page-replacement and prefetching algorithms we propose are application-specific
and hence designed to work close-to-optimal for particular problems. For an introduction to
the standard page-replacement techniques like “Least-Recently-Used” (LRU), “Most-Recently-
Used” (MRU) and “Least-Frequently-Used” (LFU) see the excellent book by Tanenbaum [146].
For these standard techniques it is simple to derive examples where the given page-replacement
policy will not perform optimally for our application. This is also the case for several more
advanced schemes like LRU-K [109], LFRU [72], 2-Queue [63], LIRS [60], Multi-Queue [164] and
FBR [123]. In chapter 10 we will provide an example of this.

Another category of recent general purpose page-replacement strategies exploits the regu-
larity of the access patterns for a given application. Based on the results of an access analysis
a specific page-replacement algorithm is chosen. Work in this category includes the sequen-
tial and loop access pattern detection method, UBM, by Kim et al. [67], application/file-level
characterization of access patterns by Choi et al. [21], Early Eviction LRU by Smaragdakis et
al. [136], SEQ by Glass and Cao [42], ARC by Megiddo and Modha [91] and CAR by Bansal and
Modha [6]. However, the task of automatic access pattern detection is extremely difficult and
page-replacement decisions may actually hurt performance when the estimate is incorrect [18].
Furthermore, it takes some time for these prediction methods to actually start working as an
analysis is required before the appropriate strategy can be initiated.

Similarly to page-replacement techniques a lot of effort has been put into developing general
purpose prefetching methods. Consult [18] for a recent overview. Patterson et al. [118], for
example, describes a general purpose resource management system that balances hinted2 and
unhinted caching with hinted prefetching using cost-benefit analysis. There are several reasons
why this framework is not feasible for our application. For example, the access patterns of our
level set and fluid applications are not easily specified as hints in their system. In addition,
explicit timings for disk access and disk driver times are required for the cost-benefit analysis.
Brown [18] focuses on a fully automatic system for prefetching by combining automatically
generated compiler-inserted hints with a runtime layer and extensions to the operating system.

In contrast to all the work mentioned above we focus on one particular application for which
the general structures of the access patterns are known in advance. Hence we can exploit this
to develop a close-to-optimal strategy which is easy to implement and light-weight as to incur
minimal performance overhead by avoiding costly online analysis.

Other examples of application-aware caches include the out-of-core mesh of Isenburg and
Gumhold [56], the work on application controlled demand paging for out-of-core visualization
by Cox and Ellsworth [25] and the octant caching on the etree by Lopez et al. [81].

In-core scan conversion algorithms for converting triangle meshes to signed distance fields
have been in use for quite a while. See e.g. the successful method of Mauch [89] as well as
the recent [4] and the references therein. However, to the best of our knowledge, no previous
attempts have been made at out-of-core scan conversion algorithms. The work that comes
closest to ours is the algorithm for generating out-of-core octrees on desktop machines by Tu et
al. [156].

2Hinted caching and prefetching accepts hints or directives from the user that specify the nature of future
requests, e.g. sequential access and so on.





Chapter 10

The Out-Of-Core and Compressed DT-Grid -

External Memory Level Set Methods

Despite the introduction of the DT-Grid [105] and the H-RLE [48] data structures, a significant
issue continues to be the restriction on level set resolutions when compared to state-of-the-art
explicit representations. While it is not unusual to encounter out-of-core meshes today with
several hundred millions of triangles1, the same level of detail is yet to be demonstrated with
level set representations. Recent advances in level set data structures including the DT-Grid
and H-RLE have indeed increased the potential resolution of level set surfaces, but they do
not employ compression of the actual numerical values inside the narrow band2 and they only
work in-core. Consequently current level set methods are effectively limited by the available
main memory. Given the fact that level set and fluid simulations typically require additional
storage for auxiliary fields (e.g. particles, velocities and pressure), this in turn imposes significant
limitations on the practical resolutions of deformable models. These facts have motivated the
work presented in this chapter.

We have developed a framework that allows for representations and deformations of level set
surfaces, fluid velocities and additional fields at very high resolutions, the only limitation being
the amount of available disk space. Our general approach is to employ new application-specific
out-of-core prefetching and page-replacement techniques combined with statistical compression
algorithms. The out-of-core component allows us to utilize the disk space, typically several
orders of magnitude larger than main memory, by streaming level sets to and from disk dur-
ing simulation. In addition, the compression component effectively reduces both offline storage
requirements and online memory footprints during simulation. Reducing offline storage require-
ments is relevant for level set and fluid simulations since they typically produce large amounts of
(temporal) data needed for post processing like direct ray tracing, higher order mesh extraction,
motion blur, simulation restarts etc. While out-of-core and compression techniques are certainly
not new in computer graphics, to the best of our knowledge we are the first to employ them for
level set deformations and fluid animations.

Out-of-core algorithms are generally motivated by the simple fact that hard disks are several
orders of magnitude cheaper and larger than main memory [150], thus pushing the limits of
feasible computations on desktop computers. In addition we have performed out-of-core scan
conversions of huge meshes that would require close to 150 GB of main memory if run in-core.

1The St. Matthew [76] model for example has more than 186 million vertices and takes up more than 6GB of
storage

2Note that though H-RLE is based on run-length encoding it does not compress inside the narrow band
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Finally, when algorithms are CPU bound the performance of optimized out-of-core implemen-
tations can be close to in-core counterparts.

The out-of-core component of our framework is generic in the sense that it can easily be
integrated with existing level set modeling and simulation software based on either DT-Grid,
H-RLE, or traditional dense uniform grid representations. However, the sparse representations
are preferable since they limit the amount of data that must be processed. For this dissertation
we have chosen to build our out-of-core and compression framework on the DT-Grid since
it performs slightly better than the H-RLE, see chapter 7. Consequently, existing level set
simulation code is not required to be rewritten in order to use our framework. Our compression
schemes are optimized for the DT-Grid representation, but they can readily be modified to work
on the H-RLE. Our framework is flexible since the out-of-core and compression components can
be integrated separately or in combination. In addition, the out-of-core framework can be applied
to narrow band signed distances, fluid velocities, scalar fields, sparse matrices, particle properties
as well as standard graphics attributes like colors, texture coordinates, normals, displacements
and so on. No specialized hardware is required, but our framework does of course benefit from
fast disks or disk arrays.

Our framework allows us to both represent and deform level set surfaces with resolutions
and narrow band grid point counts higher than ever before documented. We will also demon-
strate that our out-of-core framework is several times faster than current state-of-the-art data
structures relying on OS paging and prefetching for models that do not fit in main memory.
Naturally, our framework does not perform as fast as the DT-Grid and H-RLE for deformations
that fit in memory. However, by basing our framework on the DT-Grid we obtain a performance
that is as high as 65% of peak in-core performance. Remarkably, this 65% throughput (measured
in processed grid points per second) remains constant even for models of several gigabytes that
do not fit in memory. In addition we show that our compression techniques out-perform related
state-of-the-art compression algorithms for compressing partial volume grids or narrow bands of
volumetric data.

We emphasize that while several of the techniques presented in this chapter are probably
applicable for large-scale scientific computing this is not the main focus of our work. Instead
we are targeting computer graphics applications - more specifically high-resolution level set and
fluid simulations - on standard desktop computers. All the examples in part III are produced
on a desktop machine with 1 GB of RAM. In spite of this we note that the grid sizes we are
able to achieve on desktop machines are high even when compared to many super-computing
simulations . For example, Akcelik et al. [2] run earth quake simulations on an unstructured
mesh with 4 billion grid points on 3000 AlphaServer processors. Our largest Lucy statue scan
conversion contains 7 billion grid points in the narrow band.

To demonstrate the versatility and significance of our novel framework several graphics ap-
plications are demonstrated in chapter 15 in part V as well as in section 10.5 of the current
chapter. This includes high resolution partially out-of-core fluid simulations interacting with
large out-of-core boundaries, out-of-core shape metamorphosis and the out-of-core solution of
partial differential equations on manifolds. Also, to produce high resolution input to our out-
of-core and compressed simulations we have developed a new mesh to level set scan converter
that is only limited by disk space with regard to both the size of the input mesh and the size of
the output level set. This out-of-core scan converter is described in detail in chapter 14 in part
IV. An explicit list of contributions and an outline of this chapter is given in the next section.
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10.1 Contributions

Our main contribution is the development of a generic framework for the representation and
deformation of level set surfaces and auxiliary fields, only limitated by the amount of available
disk space. Specifically this framework has the following contributions:

• Near optimal out-of-core page-replacement and prefetching algorithms optimized for se-
quential access with finite difference stencils used during simulation. Our algorithms out-
perform state-of-the-art level set data structures relying on OS paging and prefetching and
obtain a peak performance equal to 65% of state-of-the-art in-core performance.

• Fast and compact compression schemes for narrow band level sets that work both online
and offline.

The rest of this chapter is organized as follows: Section 10.2 introduces the basic terminology
and structure of our framework. Next sections 10.3 and 10.4 describe the out-of-core and com-
pression components of the framework in detail, and finally section 10.6 concludes the chapter
with a brief summary.

10.2 Out-Of-Core and Compression Level Set Framework

Figure 10.1: The generic framework.

An overview of our generic framework is illustrated in figure 10.1, and we will briefly describe
the components from left to right: The level set is represented on a computational Grid. The
Slice Cache allows for implementations of both sequential and random access to grid points in
a local stencil. The Slice Cache stores a number of 2D slices of the 3D computational Grid
as illustrated with the bunny example. As the simulation or compression progresses through
the grid, these slices are automatically modified and replaced by the framework. The staggered
rectangular boxes shown on the right illustrate the fact that our framework separately stores
the Topology and numerical Values of the grid as well as any Auxiliary fields. For example,
the topology typically requires less storage than the values. This can be exploited in a level
set simulation; topology can be kept in-core and only numerical values stored out-of-core. The
separation of topology, values and auxiliary fields also enables the Component Codecs to take ad-
vantage of application specific knowledge to obtain improved compression of each of the separate
components. The Slice Cache and the Component Codecs together comprise the compression
component of the framework. A Storage Handler next takes care of storing the separate grid
components either in memory or on disk. Finally an application specific Storage Cache, between
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Figure 10.2: a) Illustration of the 1D, 2D and 3D components of a DT-Grid representation of the
Stanford bunny at 643 resolution. b) Recall that the 1D and 2D DT-Grid components contain
pointers to p-columns in respectively 2D and 3D, and the 3D DT-Grid component stores the
actual distance values of the level set function. See chapter 5.

the Disk and the Storage Handler, implements our out-of-core scheme. Its function is to cache
and stream pages of grid values and topology to and from disk. We emphasize again that the
components for compression and out-of-core data management can be omitted and combined
arbitrarily in our framework.

10.2.1 Terminology

For notational convenience we briefly recall the DT-Grid terminology. Figure 10.2 depicts a
DT-Grid encoding of the Stanford Bunny in effective resolution 643. Throughout this chapter
we will illustrate our techniques with this particular example. Recall from chapter 5 that the
DT-Grid employs a hierarchical representation of the narrow band and that each level in this
hierarchy contains three components: value, coord and acc. When referring to the components
at the n’th level in the hierarchy we will be using the terminology valuenD, coordnD and accnD

respectively. Furthermore we will denote the value3D component by the term values and the
remaining components by the term topology.

For describing the IO performance of the algorithms presented in this chapter we adopt the
terminology of the Parallel Disk Model introduced by Vitter and Shriver [158]. In particular we
denote the problem size by N , the internal memory size by M and the block transfer size by
B - all in units of data items. For this work we assume desktop machines with a single CPU
(P = 1) and a single disk drive (D = 1).
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Figure 10.3: Outline of a stencil consisting of five grid points (0-4) as well as a cache slice and
the corresponding memory/disk page layout. In this example all grid points are occupied with
data and each page is two grid points long. The pages in memory are outlined in white and the
others in black. c denotes a clean page that has not yet been written to, and d is a dirty page
that has been written to.

10.3 Out-Of-Core Data Management

The Storage Cache component in figure 10.1 utilizes two different out-of-core data management
schemes. For random access we simply employ a standard “Least-Recently-Used” (LRU) page
replacement algorithm since it is acknowledged as being the best general choice in many cases
(cf. most operating systems). However, for sequential stencil access we have developed a new
and near-optimal page-replacement policy as well as a new prefetching strategy. In combination
these methods reduce the number of loaded disk blocks during sequential stencil access. We
focus mainly on sequential streaming since a majority of state-of-the-art level set algorithms
can be formulated in terms of sequential access operations exclusively. This is true for all the
out-of-core examples presented in this chapter and in part V.

As illustrated in figure 10.3, a sequential stencil access pattern in a narrow band data struc-
ture does not necessarily imply a sequential memory or disk access pattern when data is laid out
in contiguous lexicographic order in memory or on disk. This characteristic becomes increasingly
pronounced both in the case of larger level sets where the 2D slices become larger and in the
case of stencils that include more grid points and hence span more 2D slices. Only data in the
primary encoding direction3 maps to contiguous locations on disk or in memory. To address
this problem we need to develop page-replacement and prefetching schemes.

Even without prefetching and page-replacement strategies, the IO complexity of sequential
stencil access on the DT-Grid is asymptotically optimal. This is due to the fact that it requires
only O(N

B ) IO operations to do stencil-iteration, which equals the lower bound for a sequential
scan with respect to asymptotic O-notation [157]. Likewise dilation and rebuilding of the narrow
band [105] is linear in the number of IOs. Sequential stencil access essentially corresponds to
S sequential and simultaneous scans over the data, where S is the number of grid points in
the stencil. However, to increase performance in practice it is necessary to minimize the actual
number of loaded disk blocks. A straightforward IO implementation will in the worst case
result in loading S N

B disk blocks. A lower bound is N
B disk blocks since we need to access all grid

points. Hence in practice S is a limiting constant of proportionality. For a high order FD scheme
like WENO [79], a stencil with support for second order accurate curvature computations has
S = 31, whereas for only first order upwind computations, S = 7. As we will demonstrate in
chapter 11, our page-replacement and prefetching techniques do in practice lower the number
of passes4 such that it comes closer to the lower bound. This is the case even for large stencils

3For (x, y, z) lexicographic order this is the z direction.
4Measured as the ratio of the number of loaded disk blocks to the total number of disk blocks with data.
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such as WENO.
The optimal page replacement strategy [146] for a demand-paged system (i.e. no prefetching)

is simple; If a page must be evicted from the cache, always pick the page that will be used
furthest in the future. This strategy is of course impossible to implement in practice except for
offline processes where the demand-sequence of pages is known in advance. Furthermore, since
sequential stencil access into the (x, y, z) lexicographic storage order of the data structure differs
from sequential access into the underlying blocks, or pages, of data on disk, the replacement
issue is non-trivial. As argued previously, existing general purpose page-replacement techniques
are not well suited for this access pattern. Consider for example the LRU replacement-strategy.
Figure 10.3 shows a 2D grid, a stencil consisting of five iterators and the corresponding positions
on the paged disk. For the exposition to follow we assume that each iterator in the stencil
contains the id of the page it currently points to. Additionally, each iterator is denoted a reader
and/or writer depending on the type of access it provides. Assume that page five is the least
recently used page. When iterator four moves forward it generates a page fault (i.e. the page
does not exist in memory) as page eight is not in memory. As a result page five is evicted to
make room for page eight. Next consider that iterator one moves forward into page five which
was just evicted. This generates a new page fault and page five is loaded again. Similar to the
LRU strategy it is possible to construct examples where all other existing non-analysis based
page-replacement strategies, that we are aware of, fail. On the other hand the analysis based
algorithms face other problems such as the fact that they need to detect a certain access pattern
before they start working properly.

Given the fact that our framework is application specific we exploit knowledge about the
domain to obtain a replacement-strategy that comes close to the optimal. This strategy is
verified in chapter 11. Our caching strategy accommodates the following three essential design
criteria:

• The number of disk IO and seek operations is heuristically minimized. In particular seeking
is expensive on modern hard drives.

• The disk is kept busy doing IO at all times.

• CPU-cycles are not wasted by copying pages in memory or waiting for disk IO to complete.

The Storage Cache, that implements the page-replacement and prefetching strategies, only
depends on two parameters; The number of pages and the page-size. In chapter 11 we provide
some benchmarks indicating how these parameters affect performance and the page-hit-ratio.

10.3.1 Page-Replacement

Since the out-of-core framework stores and streams the grid values and topology in lexicographic
order, the neighboring stencil iterators may be physically far apart as explained above and
illustrated in figure 10.3. The fundamental observation however, is that during each increment
of the stencil, the iterators in the stencil in most cases move forward at identical speeds. This
property can only be violated at the boundaries of the narrow band where some iterators may
move more grid points than others in order to be correctly positioned relative to the center
stencil grid point.

Given this observation, the optimal page replacement strategy (which is invoked if the max-
imal number of pages allowed already reside in the cache) is to first check if the page in memory
with the lowest page-id does not have an iterator pointing to it. In that case we evict and return
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this page, and if the page is dirty it is first written to disk. In figure 10.3 for example, page three
can safely be evicted as it will not be used again in the future since all iterators move forward.
If the first page in memory does indeed contain an iterator, the best strategy is instead to evict
the page in memory that is furthest away from any of the iterators in the forward direction.
This is the case since the optimal strategy is to evict the page in memory that will be used
furthest in the future.

In chapter 11 we verify that the above strategy is close to optimal by comparing it to the
optimal strategy which we computed in an offline pass from logged sequences of page requests.

10.3.2 Prefetching

Prefetching is performed by a separate high priority IO thread contained in the Storage Cache.
Using a separate IO thread to some extent hides IO latency since this thread will wait for the
IO operations to complete.

The IO thread iteratively performs the following steps in prioritized order, and as soon as
a step is satisfied, continues from the beginning. The tasks are to prefetch pages into memory
and evict pages that are no longer in use. The thread performs at most one read and one write
operation per iteration. The individual steps are:

1. Prefetching: The IO thread first checks if all pages that will be accessed by the stencil
iterator are already in-core. In particular this is the case if all pages ahead of the iterators
in the stencil are in-core. If this is the case, no prefetching needs to be done. In addition
the prefetching of a page should only occur if it does not result in the eviction of a page
that is closer in the forward direction to any iterator in the stencil. This is in accordance
with our replacement strategy. To determine which page to prefetch we use a variation of
the elevator algorithm [146], originally designed for elevator and disk arm movements. In
our context the elevator algorithm maintains a position, which coincides with the position
of an iterator in the stencil, and prefetches the nearest page in the forward direction that
is not currently in-core. The variation of the elevator algorithm we employ always moves
in the forward direction to the next iterator position and wraps around to continue from
the beginning when the end of the data is reached. As illustrated in [146] in the context of
disk arm movements, this strategy heuristically results in fewer disk seek operations and
ensures that no page-requests are left un-serviced for long periods of time. Note that if all
pages between two iterator positions are already in-core, e.g. positions 1 and 3 in figure
10.3, no pages need to be prefetched in this interval. In this case our elevator algorithm
will move more than one iterator position forward in order to locate the next page to be
prefetched.

2. Write-Back: If no page was prefetched, the IO thread will attempt to write the dirty
pages to disk that will not be written to again during the sequential stencil access. This
is done to avoid first writing and evicting another page before prefetching a page in front
of an iterator. Write-Back is accomplished by first checking to see if there exist any dirty
pages in the cache. If this is the case, the IO thread continually loops through the pages
in the cache, starting from the page with the lowest page-id and until a dirty page is
encountered. If no write iterators point to the dirty page it is written to disk. In some
situations it is advantageous to limit Write-Back such that it is only invoked if the number
of pages in the cache is above some threshold. This can ensure for example that if a file
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fits entirely in-core it will be kept in memory immediately ready for future access, and
disk resources can hence be utilized for other purposes.

3. Idle mode: If no read or write operations were performed, the IO thread sleeps until an
iterator enters a new page.

The above strategy out-performed a prefetching strategy that made its prefetching decision
based on which iterator was closest to a page not residing in memory (in the forward direction)
and in addition serviced page faults immediately. We believe that this result is due to an
increase in the number of disk seek operations for the latter approach. In practice we use a
dynamically expanding hierarchical page table to store the pages. We also employ direct IO
to prevent intermediate buffering by the OS. Hence we more effectively exploit direct memory
access (DMA) and save CPU cycles and memory-bus bandwidth for numerical computations.
We finally note that the Storage Cache is not dependent on any hardware or OS specific details,
except that the page size is typically a multiple of the disk block size. Nor do we manually align
data to fit into cache lines or similar optimizations.

10.4 Compression Algorithms

The compression framework can be applied both online during simulation and offline as a tool
for application specific storage reduction of simulation data amenable to further processing in a
production pipeline. Using the proposed compression framework it is possible to compress very
large level set grids out-of-core with a relatively low memory footprint. The Component Codecs
we propose in this chapter are based on prediction-based statistical encoding methods and
separately compress the topology and values of the grid. In practice we use the fast arithmetic
coder described by Moffat et al. [95] combined with our own optimized adaptive probability
tables. While these methods are ideal for sequential access, random access is typically not
feasible into a statistically encoded stream of data. To remedy this somewhat, synchronization
points could be inserted into the streams of data. Naturally this comes at the cost of decreasing
compression efficiency. As discussed previously we use sequential algorithms and focus here
solely on online as well as offline compression using sequential access.

Next we describe how to compress the topology and the signed distance field values of the
grid. The topology is compressed lossless whereas the values can be compressed in either a
lossless or a lossy fashion. Note that the signed distance field is the most typical level set
representation, and that the topology component-codecs presented in this chapter are specific
for the DT-Grid. However, very similar codecs can be applied to the H-RLE.

10.4.1 Compressing The Topology

The value1D constituent of the topology consists of monotonically increasing indices (figure
10.4.a) that point into the coord constituent of the 2D grid component. The difference between
two such consecutive values (figure 10.4.b) is twice the number of connected components in a
p-column in the 2D grid component. For an illustration, see the 2D grid component in figure
10.6.a. Due to the large spatial coherency in a level set narrow band, this quantity does not
usually vary much. To compress it, we encode this difference, i.e. the number of connected
components in p-columns, using a second order adaptive probability model [127]. The value2D

component has characteristics similar to the value1D component as shown in figure 10.5.a, and
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Figure 10.4: a) The values of the value1D con-
stituent as a histogram. b) The difference
between consecutive value1D values as a his-
togram.

Figure 10.5: a) The values of the value2D con-
stituent of the 2D grid component as a his-
togram. b) The difference between two con-
secutive value2D values as a histogram.

the semantics of the difference between two consecutive values in (x, y) lexicographic order is the
same, see figure 10.5.b. Hence this constituent is also compressed using a second order adaptive
probability model.

The coord1D (x-coordinates) constituent of the topology is encoded using a single differential
encoding and a zeroth order adaptive probability model [127]. Typically the coord1D component
constitutes only an insignificant percentage of the aggregate space usage since it consists only
of the end points of the connected components obtained by projecting the level set narrow band
onto the X-axis. For example, only two x-coordinates are needed to store the Stanford bunny,
since it projects to a single connected component on the X-axis. As a reference see figure 10.2
where these two x coordinates are marked in green in the 1D component.

The coord2D (y-coordinates) constituent of the topology consists of the y-coordinates that
trace out the boundary curves in the XY plane of the projection of the level set narrow band.
This is illustrated with green in figure 10.6.a. Again due to the large amount of coherency in
the narrow band, these curves are fairly smooth. Hence it is feasible to employ a predictor that
estimates a given y-coordinate from the y-coordinates in the (at most) three previous p-columns
in the XY plane. Figure 10.6.b illustrates how the y-coordinates in three previous p-columns,
shown in blue, are used to predict the y-coordinate in the next p-column, shown in red-brown.
In particular we use as predictor the Lagrange form of the unique interpolating polynomial [68]
that passes through the y-coordinates in the previous p-columns 5. Our tests show that higher
order interpolants tend to degrade the quality of the prediction which explains why we only use
the y-coordinates from the previous two or three p-columns.

Since the topology of these y-coordinate boundary curves is not explicitly given in the
coord2D constituent, the curves become harder to predict. Recall that the coord2D constituent
only lists the y-coordinates in lexicographic order. Hence to locate the actual y-coordinates in
the previous p-columns, we utilize the known information of which connected component we are
currently compressing6. We then predict from the y-coordinates of the connected components
with identical y-coordinate ids in previous p-columns. Note that we cannot simply use the actual
true y-coordinate as a means of determining the appropriate y-coordinates in the previous p-

5The Lagrange form of the unique interpolating polynomial is preferable over the Newton form because the
local configuration of the points from which we are predicting the y coordinates is always the same. Hence the
cardinal functions of the Lagrange form can be precomputed.

6In particular its connected component id, starting from zero and counted in lexicographic order within a
p-column.
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columns since it will not be available during decompression. The above selection criterion means
that the prediction will degrade along p-columns where the number of connected components
change, but in practice we have not found this to be a problem.

Figure 10.6: a) The 2D grid component of
the 643 Stanford bunny DT-Grid. The y-
coordinates of the coord2D constituent are
shown in green. b) A close-up shows actual y-
coordinate (red-brown) predicted by three pre-
vious y-coordinates (blue).

Figure 10.7: a) The 3D grid component of
the 643 Stanford bunny DT-Grid. The z-
coordinates of the coord3D constituent are
shown in green. b) A close-up shows actual z-
coordinate (red-brown) predicted by three im-
mediately adjacent z-coordinates (blue). c)
Situation in b) shown from above.

The coord3D constituent consists of the z-coordinates of the grid points that trace out the
boundary surfaces of the level set narrow band. These are shown in green in figure 10.7.a. Only
surpassed by the storage requirements of the actual signed distance field values in the grid,
the coord3D (z-coordinates) constituent of the topology usually requires the most space. To
compress a given z-coordinate, shown in red-brown in figure 10.7.b, the z-components of the
three immediate neighbors, shown in blue, are used to predict the given z-coordinate as lying in
the same plane, see figure 10.7.c. We predict z(D) as z(A) +∇z |A ·

(
1
1

)
= z(B) + z(C)− z(A).

Given the symmetry in this prediction with respect to z(B) and z(C) (both z(B) and z(C)
are added) we compress the residual 7 using a context-based adaptive probability model (see
e.g. [148]) with z(B) + z(C) − 2z(A) as context. In particular the context is used to select
a probability model, and the goal is to cluster similar predictions in the same model, hereby
decreasing the entropy and consequently increasing the compression performance. The intuition
behind our context is that it measures the deviation of z(B) and z(C) from z(A). The smaller
the deviation, the smaller the residuals tend to be. Special care has to be taken when some grid
points are not available for our predictor. We distinguish between the following three cases: 1)
If no grid points exist at all, we use 0 as the prediction. 2) If one grid point exists we use the
z-coordinate of that grid point as the prediction. 3) If two exist we use the average of their
z-coordinates as the prediction. All in all this compression strategy turned out to outperform
alternatives like differential encoding, 1D Lagrange polynomial interpolation and 2D Shepard
interpolation.

Finally we recall that the acc constituent of the grid components is actually redundant.
It is merely used to improve random access into DT-Grid. Hence we can simply exclude the

7The residual is the true value minus the prediction.
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Figure 10.8: The values are compressed using a combination of the 3D Lorenzo predictor, the
2D parallelogram predictor and multi-dimensional differential predictor.

acc constituents in compressed form and rebuild them during decompression. This essentially
corresponds to exploiting the Kolmogorov complexity [77] for the compression of acc.

10.4.2 Compressing The Values

The values in the narrow band are by far the most memory consuming part of the data (typically
at least 80%). For level sets, the values are usually numerical approximations to signed distances,
which has been shown to be convenient both during simulation as well as for other applications
such as ray-tracing. To compress the narrow band of signed distance values we propose a
predictor based on a combination of the following three techniques: A new multi-dimensional
differential predictor, the 3D Lorenzo predictor of [51] and the 2D parallelogram predictor of
[151]. Since we are compressing narrow bands as opposed to dense volumes, utilizing clamped
values outside the narrow band (as is usually done in level set computations) to form predictions
will result in a degradation of compression performance according to our tests. Instead we
propose to use different predictors depending on the local topology of the narrow band. We
have benchmarked various predictors modified to accommodate the topology of a narrow band,
including the Lorenzo predictor [51] (with and without probability contexts), the distance field
compression (DFC) method by M.W. Jones [64] as well as several other custom codecs. Note
also that the DFC method and the Lorenzo predictor have been shown to perform comparable
to various types of wavelets. The codec we propose here gives the best compression performance
among the codecs we have benchmarked and at the same time remains fast.

Our multi-dimensional differential prediction is motivated by the fact that the axial accel-
eration in a signed distance field is typically small and that axial differential prediction applied
twice is a measure of acceleration. In fact the acceleration in the normal direction of a perfect
signed distance field is identically zero, except at medial axes. However, in practice several
circumstances make a predictor based on the acceleration in the normal direction problematic.
First of all, the signed distance fields used in the context of level set simulations are not entirely
accurate as they are computed by approximate numerical schemes. Secondly, it can be shown
(using 1st order FD) that the acceleration in the normal direction is a third degree polynomial in
the value of the current grid point. During decompression one would have to compute the roots
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of this polynomial in order to determine the decompressed value. This is time-consuming and in
addition to compressing the residuals themselves, one would also have to compress a two bit code
indicating which of the solutions to the third degree polynomial was the right residual 8. This
information is required during decompression when the actual value is not available. Tests also
show that our combined predictor leads to better and faster compression than if compression is
applied to the acceleration in the normal direction. This is due to the circumstances mentioned
above that degrade the performance of compression of the acceleration in the normal direction.

The intuition behind our approach is to always apply the predictor which uses the largest
number of already processed grid points. In our experience this results in the best compression
performance and explains the prioritized order of the predictors given below. Consider now
figure 10.8 depicting eleven locally connected grid points. Assume that we wish to compress
the value of the red grid point at position (x, y, z) and that the blue and green grid points that
exist in the narrow band have already been processed. Our predictor takes the following steps
to compute a residual which is then compressed using an arithmetic coder:

1. If all the blue grid points exist in the narrow band, we predict the value at the red
grid point using the 3D Lorenzo predictor by computing the following residual: v(x,y,z) −
(v(x−1,y−1,z−1)− v(x−1,y−1,z)− v(x−1,y,z−1) + v(x−1,y,z) + v(x,y−1,z)− v(x,y−1,z−1) + v(x,y,z−1)).

2. If some of the blue grid points do not exist in the narrow band we determine if it is
possible to apply the parallelogram predictor. This can be done if the red grid point
is part of a face (four connected grid points in a plane orthogonal to one of the axial
directions) where all grid points have already been processed. As can be seen from figure
10.8 there are three such possible faces. Say that all the grid points in the face parallel
to the XZ plane, v(x−1,y,z), v(x,y,z−1) and v(x−1,y,z−1), exist. The value at the red grid
points is then predicted using the parallelogram predictor and the residual is computed as
v(x,y,z)− (v(x−1,y,z) + v(x,y,z−1)− v(x−1,y,z−1)). The procedure for the remaining faces is the
same. Each face is examined in turn and the first face where the above conditions apply
is used to compute the residual.

3. If it is not possible to find a face as described above, we switch to using second order
differential prediction which, as previously mentioned, is a measure of acceleration. We
examine each coordinate direction in turn and the first direction where two previous grid
points exist (a blue and a green) is used to compute the residual. Say that the two previous
grid points in the X direction, v(x−1,y,z) and v(x−2,y,z), exist. Then we compute the residual
at the red grid point as v(x,y,z) − 2v(x−1,y,z) + v(x−2,y,z).

4. If it is not possible to apply second order differential prediction we apply first order dif-
ferential prediction if the previous grid point in one of the coordinate directions exist. For
example, if the previous grid point in the X direction exists we compute the residual as
v(x,y,z)−v(x−1,y,z). Again we use the first coordinate direction that applies to compute the
residual.

5. Finally, if none of the above conditions apply, we simply encode the value itself.

How often each of the individual predictions above is utilized depends on the narrow band
topology. Internally in the narrow band, (1) is always applied since all neighbors are available.

8This also means that one would have to solve the third degree polynomial during compression in order to
compute the right two bit code.
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The others are used on the boundary of the narrow band depending on the local configuration
of previously processed neighbors. Note that in the predictions (2), (3) and (4) above we do not
necessarily use the face or coordinate direction that results in the best prediction, instead we
just pick the first one that applies. The reason is that this procedure can be done independently
in both the encoder and decoder. The alternative is to examine all possibilities, choose the best
and also encode a two-bit code indicating which of the possibilities was chosen. In our experience
this overhead dominates the gain obtained by selecting the best prediction. We do however use
a different probability context in each of the steps used to compute the predicted value above.
Employing contexts improves compression performance mainly for larger level sets. For smaller
level sets the use of several contexts does not usually improve compression performance since
we typically use relatively many bits (14 and above) in the quantization step. This means that
the entropy in the individual adaptive contexts may be dominated by the probabilities allocated
for unused symbols. Also note that when using relatively many bits, higher order probability
models are not feasible in practice due to the amount of memory usage they incur. This is
contrary to text compression that uses fewer bits and where higher order models are frequently
used.

Whereas the topology is compressed lossless, the values are typically compressed in a lossy
fashion by employing uniform quantization within the range of the narrow band 9 to obtain
better compression ratios. In doing so it is important that the quantization does not introduce
noticeable visual distortion and that the truncation error introduced by the order of the numer-
ical simulation methods is not affected by the quantization rate. If quantization is not desirable
one can apply the method for lossless encoding of floating point values by Isenburg et al. [78].

An additional compression strategy would be to only encode a subset of the narrow band
and then recompute the rest from the definition of the level set as a distance function when
decoding. This amounts to encoding as many layers around the zero-crossing as is needed to
solve the Eikonal equation to a desired accuracy. The truncated narrow band will obviously lead
to a more efficient compression. In our case we do typically not use narrow bands wider than
required for the numerical accuracy, so we have not used this strategy in practice. However, it
may be applicable in situations where the narrow band is relatively wide, such as e.g. the morph
targets demonstrated in [48].

10.5 Example - An Out-Of-Core Shape Metamorphosis

The right-most image in figure 10.9 shows a highly detailed level set model of a bunny (1.62GB
and more than 350 million grid points in the narrow band) modeled as an out-of-core Constructive-
Solid-Geometry (CSG) intersection between a large level set bunny at resolution 20483 (304MB)
and a 203 tiling of similar smaller level set bunnies each at resolution 1283. The total size of the
tiling of level set bunnies is 7.47GB. The sizes are in uncompressed DT-Grid format. Figure 10.9
depicts three frames from a shape metamorphosis between the bunny at resolution 20483 and
the CSG bunny. The simulation was run in Windows XP Pro on a 2.41GHz AMD machine with
1GB of physical memory and a “Western Digital Raptor” disk. To the best of our knowledge this
is the highest resolution level set simulations ever documented to run on a personal computer
prior to our work. In the next chapter we present simulations at even higher resolutions as part

9During simulation with compressed values, the quantization range is expanded to ensure that advected values
fit within the quantization range. Narrow band level set methods need to limit the maximal movement between
time steps anyway to ensure that the zero-crossing is captured correctly.
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Figure 10.9: Level set morph between a 20483 bunny (304MB) and a highly detailed level set
CSG bunny (1.62GB) modeled as an out-of-core CSG intersection of the 20483 bunny (304MB)
with a tiling of 203 smaller bunnies each at resolution 1283 (7.47GB). Reported sizes are in
uncompressed DT-Grid format. Peak storage requirements for the morph are close to 5GB.

of our benchmark evaluations. The peak space requirements for this simulation are close to 5GB
in uncompressed DT-Grid format. Note that for large simulations like this, OS paging is not
even possible due to OS memory limits for a single application10. The uncompressed storage-
requirements for the entire simulation were 342 GB. Using the compression method described in
this chapter we compressed it to 83.6 GB (258 GB saved in total) without introducing noticeable
distortion. The grids were subsequently rendered directly using a ray tracer with ray leaping
of the level set. For further applications of the out-of-core and compression framework we refer
the reader to chapter 15 in part V, and in the next chapter we provide several benchmarks.

10.6 Summary

We have presented a novel level set framework that fits into existing level set pipelines based
on the DT-Grid and the H-RLE data structures. This allows for the first time for representa-
tions and deformations of virtually unlimited resolution models, the only limitation being the
amount of available disk space. The framework is based on two key components: Out-of-core
data management and compression. The main contributions of the out-of-core component is an
application-specific and near optimal paging policy as well as a prefetching algorithm. The com-
pression component contributes with compression codecs optimized for level set distance values
and DT-Grid topology. To demonstrate the feasibility of the framework, a shape metamorphosis
example requiring close to 5GB of storage was presented.

10In 32bit Windows XP Pro this is limited to 3 GB .



Chapter 11

Evaluation and Discussion of the Compressed and

Out-Of-Core DT-Grid

In this chapter we evaluate the performance of our out-of-core and compression framework. In
particular, we demonstrate that the level set framework can sustain a throughput that is 65%
of the peak performance of in-core simulations - even for models of sizes in the order of several
GB.

As emphasized previously the out-of-core and compression components can be combined
arbitrarily to form methods with distinctive properties and performance for level set simulations.
For instance, keeping both topology and values in-core gives the best performance, streaming
values to disk and keeping topology in-core gives the second-best performance, streaming values
to disk and compressing topology in-core usually gives the third-best overall performance and
so on. The two parameters of the out-of-core framework, the page size and the number of
pages in the cache, as well as the number of quantization bits used in the compression also
affect performance. Typically relatively few pages and large page sizes give the best results.
Depending on the size of the problem at hand and the computing resources available, the user
can choose the appropriate combination of framework components for his particular setting. In
this section we report the performance resulting from combining the different components of the
framework and elaborate on how to choose the parameters of the cache. We also verify the near-
optimality of our page-replacement policy for stencil iteration. We stress that our framework
is applicable on standard desktop machines. In particular all the benchmark tests presented in
this chapter are run on a Windows XP PC with a 2.41GHz AMD CPU, 1GB of main memory
and a “Western Digital Raptor” disk.

11.1 Page-Replacement and Prefetching

Table 11.1 lists the hit-ratio (number of page hits to the number of total page requests) of LRU
page-replacement without prefetching (demand-paging only), our page-replacement algorithm
without prefetching (demand-paging only), the optimal page-replacement policy for a demand-
paging algorithm [146] and our page-replacement algorithm with prefetching enabled. Clearly
a hit-ratio of one is an upper bound. It is not possible to apply the optimal demand-paging
strategy online since it requires knowledge of future requests, but by logging the page demands
during stencil iteration one can compute the optimal strategy offline in order to do comparisons.
The reader should note that the optimal demand-paging strategy is only optimal amongst the
demand-paged algorithms, i.e. where prefetching is not included. This explains why it is possible

137
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32 pages 64 pages 128 pages
Page-size (KB) LRU Opt LRU Opt LRU Opt

Demand Demand Demand Demand Demand Demand
0.5 0.631377 0.645004 0.631647 0.660637 0.631802 0.691117
1.0 0.631651 0.660015 0.631805 0.690580 0.640359 0.748979
2.0 0.631810 0.689569 0.640360 0.748286 0.642968 0.857327
4.0 0.640384 0.746922 0.643010 0.856420 0.888819 0.943889

Our Our Our Our Our Our
Demand Prefetch Demand Prefetch Demand Prefetch

0.5 0.642074 0.945229 0.657989 0.946476 0.688768 0.946760
1.0 0.654621 0.946133 0.685807 0.946775 0.745399 0.947049
2.0 0.679419 0.947686 0.740625 0.948007 0.853331 0.954492
4.0 0.730505 0.989303 0.848156 0.990706 0.943635 0.959498

Table 11.1: Comparison of the page-hit-ratios of our page-replacement policy with prefetching
disabled (Our Demand), our page-replacement policy with prefetching enabled (Our Prefetch),
LRU page-replacement without prefetching (LRU Demand) and the optimal page-replacement
policy for a demand-paged replacement policy computed offline (Opt Demand) from a logged
sequence of demand requests. See the text below for an exact explanation of these terms.
The results were generated by a single sequential stencil iteration over the Stanford Bunny in
resolution 10003 using a WENO finite difference stencil with S = 19 grid points, and the cache
contained no pages at the beginning.

for our combined page-replacement and prefetching algorithm to achieve better hit ratios than
the optimal demand-paged algorithm in table 11.1. The test case is a single sequential stencil
iteration over an out-of-core DT-Grid of the Stanford Bunny in resolution 10003 using a WENO
finite difference stencil with 19 grid points. Initially the cache contained no pages. As can be
seen from table 11.1 our page-replacement policy without prefetching comes very close to the
optimal and performs better than the LRU strategy. When combining with our prefetching
strategy, the hit-ratio is close to one for larger page sizes. Hence we conclude that our page-
replacement algorithm comes close to optimal and that our prefetching algorithm heightens
performance, bringing it near the optimal hit-ratio of one. Note that table 11.1 lists relatively
small page sizes. This is primarily to show how the hit-ratio increases with page size, and that
our replacement-strategy works well even in the presence of relatively small page sizes. In order
to increase the throughput however, larger page sizes must typically be used (see below). This
is particularly important for larger level sets. In such cases the hit ratio usually remains close
to one, even for gigabyte sized level set models.

To measure the I/O bandwidth performance we also logged the total number of pages read,
R, and compared this to the number of pages occupied by the level set model, P . Optimally
Q = R

P = 1, i.e. each page is loaded exactly once. For the tests above having a page size above
4K, Q is below 2 and in most cases close to 1. In this case the stencil contained S = 19 grid
points, hence the improvement over the worst case ratio of 19 is significant (recall the discussion
in section 10.3).

The choice of parameters for the out-of-core framework, page-size and number of pages, can
affect performance quite dramatically as illustrated in the graph in figure 11.1. The optimal
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Figure 11.1: The throughput (processed gridpoints/second) as a function of page size (in MB)
for various numbers of pages in the cache. The results were generated by sequential iteration
over the Stanford Bunny in resolution 80003 with a finite difference stencil of seven grid points.
The maximal memory usage of the cache was in this case restricted to 512 MB.

parameters depend on the problem at hand: The size and topology of the level sets involved,
the number of grid points in the stencil and the underlying hardware. One can run benchmark
tests to tune these parameters for a particular example, but this is typically not very practical.
While we leave it for future work to determine exactly how the optimal parameters depend on
hardware as well as characteristics of the simulation, we have found that a page size of 4MB
and a total of 32 pages in the cache performs quite well over a wide range of level set sizes and
stencils. The graph in figure 11.1 shows an elaborate benchmark test where the number of pages
and page size is varied for sequential stencil iteration over the Stanford Bunny in resolution
80003. In this particular case a page size of 8MB and a total of 32 pages performs best, but a
page size of 4MB and a total of 32 pages also performs quite well. The latter configuration is
the one we used for all benchmarks presented in the next section.

Note also that we use direct I/O (i.e. DMA) to bypass OS caching and prefetching. In our
experience this gives an average speedup of approximately 10%. If on the other hand we leave
out our own prefetching algorithm and rely solely on OS prefetching through the use of higher
level I/O system calls, the performance is roughly half of the performance obtained when we
utilize our own prefetching algorithm.

11.2 Online Out-of-Core and Compression Framework

As a prelude to the performance evaluation of our framework we define the following variations:

• OOC DT-Grid I: Values uncompressed out-of-core, topology uncompressed in-core.

• OOC DT-Grid II: Values uncompressed out-of-core, topology uncompressed out-of-core.

• OOC CDT-Grid I: Values uncompressed out-of-core, topology compressed in-core.

• OOC CDT-Grid II: Values compressed out-of-core, topology compressed out-of-core.

• CDT-Grid I: Values compressed in-core, topology compressed in-core.
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The performance of these data structures is evaluated by comparing the throughputs mea-
sured in processed grid points per second. We use three test-cases: 1) The read-throughput of
sequential iteration with a seven grid point finite difference stencil 1. 2) The combined read-
and write-throughput of sequential iteration with the same finite difference stencil. 3) The
throughput of an actual level set simulation, in this case an erosion.

Tables 11.2 and 11.3 list the average throughputs of several tests with the framework varia-
tions defined above as well as an implementation of the in-core DT-Grid. For simulations that
fit in-core, our framework introduces an overhead due to the additional software layer. In par-
ticular, when storing topology and values uncompressed in-core, simulations perform at about
76% of the performance of the original DT-Grid. Hence the framework overhead is approxi-
mately 24%. This also means that a throughput of 76% is an approximate upper bound for the
peak performance of our framework. However, due to fluctuations in overall system performance
this may vary slightly. For read and read/write iterations, the upper bounds on performance
were estimated to be approximately 72% and 76% respectively. A performance of an out-of-
core/compression data structure close to these upper bounds indicates that the method is CPU
limited, otherwise it is IO limited.

Table 11.2 and 11.3 indicate that the throughput of both read and read/write iterations for
our framework does not depend on the number of grid points in the narrow band of the level
set. This property is not shared by the original in-core DT-Grid for which the performance
drops significantly around a resolution of 40003 which is when the limit of physical memory
is exceeded. At resolutions of 60003 and above it is not even possible to initialize the original
DT-Grid data structure due to lack of virtual memory. The performance of iterations with
“OOC DT-Grid I” and “OOC DT-Grid II” are, although fluctuating, close to the approximate
upper bound, suggesting that stencil iterations are close to CPU bound. For the “OOC CDT-
Grid I”, which compresses the topology in-core and streams the values uncompressed to disk,
the performance is just above 50%. Since compression is relatively CPU intensive, this data
structure does not perform as well for iterations as the other out-of-core data structures. The
performance is worst for the “OOC CDT-Grid II” and the “CDT-Grid I” that both compress
the values and the topology. Recall that the values are the most memory consuming part of
the level set. Since statistical coding is relatively CPU intensive this is to be expected. In our
experience even very light weight compression schemes for the values are out-performed by their
out-of-core counterparts. This is due to the fact that the numerical computations hide the IO
latency, whereas an arithmetic coder will steal CPU time from the numerically demanding level
set or fluid computations. This overall behavior is also supported by the throughputs of the
level set simulations, although there are some differences. Again, the performance of the original
DT-Grid starts to degrade quite early due to lack of physical memory. At a resolution of 25003

the throughput has dropped to a mere 18%. In contrast the performance of “OOC DT-Grid
I” is more than 3.5 times faster. For simulations where all pages fit in-core, the performance
of “OOC DT-Grid I”, streaming only values to disk, is very close to its approximate upper
bound. However, when not all of the pages fit in-core, the framework becomes IO limited and
the performance drops to approximately 65%. This performance remains constant even for
simulations involving files sizes of several gigabytes. At resolutions of 80003 the performance
starts to degrade for “OOC DT-Grid I” since it stores the topology uncompressed in-core. Note
that even though the topology only takes up a relatively small part of the total size of a DT-Grid
(see table 11.6), the high resolution of our level sets imply that topology combined with buffering

1Note that stencil iteration is an essential component in a level set simulation.
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for the out-of-core component can start to fill up the available memory. For both “OOC DT-
Grid II” and “OOC CDT-Grid I” the performance is roughly the same and centered around
55% throughout the tests, although the performance of “OOC DT-Grid II” seems to degrade a
little for larger level sets. Given enough memory “OOC CDT-Grid I” performs superior since it
compresses the topology in-core and only stores values out-of-core.

Clearly no variation of our framework performs as well as pure in-core simulations using a
data structure such as DT-Grid. However we stress that our out-of-core framework generally
delivers more than 50% of this in-core peak performance - even for very high resolution simula-
tions requiring up to 5.5GB of storage for a single DT-Grid-based level set (note that the total
storage requirements of a simulation are significantly higher). The only exceptions are frame-
work variations employing value compression. The value codecs are relatively CPU intensive and
quantize the numerical distances to obtain good compression ratios. Given a maximum allowed
distortion this is convenient for static models or level sets corresponding to particular frames in
an animation. However for online simulations the compression error may accumulate unless care
is taken to ensure that the quantization error remains below the truncation error. We therefore
advocate utilizing the out-of-core framework combined with compression of the topology for
online simulations and a combined compression and out-of-core framework for offline storage
and transfer of data needed later in a production pipeline.
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Reading Reading&Writing Simulation
Grid GP/Sec GP/Sec GP/Sec

Res=10003, #GP=1.4e7, size=71MB, simsize=84MB
DT-Grid 1.1e7 (100%) 9.9e6 (100%) 1.2e6 (100%)
OOC DT-Grid I 7.1e6 (65%) 7.4e6 (75%) 9.4e5 (78%)
OOC DT-Grid II 6.8e6 (60%) 6.5e6 (66%) 9.0e5 (75%)
OOC CDT-Grid I 5.2e6 (47%) 5.1e6 (52%) 6.6e5 (55%)
CDT-Grid I 1.2e6 (11%) NP 8.6e4 (7%)
OOC CDT-Grid II 1.2e6 (11%) NP 9.9e4 (8%)

Res=20003, #GP=5.7e7, size=289MB, simsize=341MB
DT-Grid 1.1e7 (100%) 9.8e6 (99%) 1.2e6 (100%)
OOC DT-Grid I 7.5e6 (68%) 7.4e6 (75%) 7.7e5 (64%)
OOC DT-Grid II 7.7e6 (70%) 7.4e6 (75%) 6.9e5 (58%)
OOC CDT-Grid I 5.3e6 (48%) 5.2e6 (53%) 6.5e5 (54%)
CDT-Grid I 1.2e6 (11%) NP 8.6e4 (7%)
OOC CDT-Grid II 1.2e6 (11%) NP 1.0e6 (8%)

Res=25003, #GP=8.9e7, size=454MB, simsize=578MB
DT-Grid 1.1e7 (100%) 9.9e6 (100%) 2.2e5 (18%)
OOC DT-Grid I 7.4e6 (67%) 7.4e6 (75%) 7.9e5 (66%)
OOC DT-Grid II 7.8e6 (71%) 7.1e6 (72%) 6.9e5 (57%)
OOC CDT-Grid I 5.3e6 (48%) 5.2e6 (53%) 6.6e5 (55%)
CDT-Grid I 1.2e6 (11%) NP 8.6e4 (7%)
OOC CDT-Grid II 1.2e6 (11%) NP 8.6e4 (7%)

Res=30003, #GP=1.3e8, size=655MB, simsize=771MB
DT-Grid 1.1e7 (100%) 9.8e6 (99%) NP
OOC DT-Grid I 7.6e6 (69%) 7.5e6 (76%) 7.9e5 (66%)
OOC DT-Grid II 7.9e6 (72%) 7.8e6 (79%) 6.8e5 (57%)
OOC CDT-Grid I 5.3e6 (48%) 5.2e6 (53%) 6.5e5 (54%)
CDT-Grid I 1.2e6 (11%) NP 8.6e4 (7%)
OOC CDT-Grid II 1.2e6 (11%) NP 8.6e4 (7%)

Table 11.2: Throughput rates (gridpoints/second) for stencil iteration through the entire narrow
band of the Stanford Bunny in resolution 10003−30003 with reads only, stencil iteration through
the entire narrow band with reads and writes, and for a level set simulation (erosion). The
numbers given in parenthesis are the percentages of the in-core DT-Grid performance with
respect to the given test (read-iteration, read/write-iteration or simulation). For each instance
of the Stanford Bunny we report its resolution (res), the number of grid points in the narrow
band (#GP), the uncompressed DT-Grid size (size) and the uncompressed DT-Grid size where
an additional γ + ∆x-tube, which is required for simulation, has been added to the level set
(simsize). A 14 bit quantization was used for the compressed values. For the data structures
compressing the values, only read-iteration was considered since during compression it is not
possible to both read and write to the same stream of data. NP = Not Possible.
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Reading Reading&Writing Simulation
Grid GP/Sec GP/Sec GP/Sec

Res=40003, #GP=2.3e8, size=1.2GB, simsize=1.4GB
DT-Grid 3.3e6 (30%) 1.5e6 (15%) NP
OOC DT-Grid I 7.6e6 (69%) 7.5e6 (76%) 7.9e5 (66%)
OOC DT-Grid II 8.1e6 (74%) 7.2e6 (73%) 6.8e5 (57%)
OOC CDT-Grid I 5.3e6 (48%) 5.2e6 (53%) 6.6e5 (55%)
CDT-Grid I 1.2e6 (11%) NP 9.3e4 (8%)
OOC CDT-Grid II 1.2e6 (11%) NP 9.4e4 (8%)

Res=50003, #GP=3.6e8, size=1.8GB, simsize=2.1GB
DT-Grid 2.1e6 (19%) 1.3e6 (13%) NP
OOC DT-Grid I 7.7e6 (70%) 7.5e6 (76%) 7.9e5 (66%)
OOC DT-Grid II 8.2e6 (75%) 6.7e6 (68%) 6.6e5 (55%)
OOC CDT-Grid I 5.4e6 (49%) 5.3e6 (54%) 6.6e5 (55%)
CDT-Grid I 1.2e6 (11%) NP 9.2e4 (8%)
OOC CDT-Grid II 1.2e6 (11%) NP 9.4e4 (8%)

Res=60003, #GP=5.2e8, size=2.6GB, simsize=3.1GB
DT-Grid NP NP NP
OOC DT-Grid I 7.7e6 (70%) 7.5e6 (76%) 7.9e5 (66%)
OOC DT-Grid II 8.3e6 (75%) 6.7e6 (68%) 6.5e5 (54%)
OOC CDT-Grid I 5.3e6 (48%) 5.2e6 (53%) 6.6e5 (55%)
CDT-Grid I 1.2e6 (11%) NP 8.8e4 (7%)
OOC CDT-Grid II 1.2e6 (11%) NP 9.3e4 (8%)

Res=80003, #GP=9.2e8, size=4.7GB, simsize=5.5GB
DT-Grid NP NP NP
OOC DT-Grid I 7.6e6 (69%) 7.5e6 (76 %) 6.7e5 (56%)
OOC DT-Grid II 8.3e6 (75%) 6.7e6 (68%) 6.1e5 (51%)
OOC CDT-Grid I 5.3e6 (48%) 5.3e6 (54%) 6.4e5 (53%)
CDT-Grid I 1.2e6 (11%) NP NP
OOC CDT-Grid II 1.2e6 (11%) NP 9.2e4 (8%)

Table 11.3: Throughput rates (gridpoints/second) for stencil iteration through the entire narrow
band of the Stanford Bunny in resolution 40003 − 80003 with reads only, for stencil iteration
through the entire narrow band with reads and writes, and for a level set simulation (erosion).
The numbers given in parenthesis are the percentages of the in-core DT-Grid performance with
respect to the given test (read-iteration, read/write-iteration or simulation). For each instance
of the Stanford Bunny we report its resolution (res), the number of grid points in the narrow
band (#GP), the uncompressed DT-Grid size (size) and the uncompressed DT-Grid size where
an additional γ + ∆x-tube, which is required for simulation, has been added to the level set
(simsize). A 14 bit quantization was used for the compressed values. For the data structures
compressing the values, only read-iteration was considered since during compression it is not
possible to both read and write to the same stream of data. NP = Not Possible.
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11.3 Offline Compression

Our Method Isenburg/Mascarenhas
Model Comp Comp Comp Comp

Time Size Time Size
Bunny, γ = 5, 89x88x71
0.703 MB, 153818 grid points 0.188 s 0.160 MB 1.92 s 0.187 MB
Buddha, γ = 5 128x58x57
0.778 MB, 173005 grid points 0.218 s 0.189 MB 2.19 s 0.217 MB
Statuette, γ = 5, 88x55x49
0.303 MB, 66942 grid points 0.094 s 0.0789 MB 0.844 s 0.0872 MB

Table 11.4: Comparison between the performance of our compression framework and the meth-
ods of Isenburg et al. and Mascarenhas et al. γ is the width of the narrow band.

Next we compare our compression framework to the compression scheme for hexahedral
volume meshes by Isenburg and Alliez [55] and associated scalar values by Mascarenhas et
al. [86]. Unfortunately we are not able to make a direct comparison to the benchmarks reported
in [86]. Firstly only one of the data sets used in the chapter seems to be publicly available (the
engine data-set). Secondly the tests are run on hardware that we do not have access to and
finally only the cell counts (as opposed to grid point counts) are reported. Fortunately, source-
code for the encoder of Isenburg and Alliez is available online. It was then straightforward
to extend this source code with the scalar value compression method introduced in [86]. It
should be noted that none of these compression techniques work out-of-core and actually use
a significant amount of memory (This is also noted in [54], chapter 6). Consequently we are
limited to evaluating relatively small grids sizes compared to what is used elsewhere in this
chapter. Table 11.4 lists the compression times and compressed sizes of several models. In these
tests we used a 14 bit quantization for the values. The times listed include only the time spent
on compression. This is due to the fact that the two methods we compare use different data
structures and the setup and load time of these differ greatly. In particular the load time of
the data structure by Isenburg is significantly longer than the time for loading a DT-Grid into
memory. From table 11.4 it can be seen that on average our method is about 10 times faster
and compresses 14% better than [86].

We also evaluated the performance of our framework against the performance of the widely
used bzip2 compressor as shown in table 11.7. Additionally we compared against a custom
variant of bzip2 where each component of the DT-Grid is compressed separately hence allow-
ing the compressor to take advantage of the higher degree of redundancy present inside each
individual component. We note that regarding compression performance our method performs
significantly better than both approaches. Furthermore it is faster than bzip2 and in most cases
comparable in speed (averaging over compression and decompression time) to the custom bzip2
implementation, although it in the case of the Buddha model compresses more than twice as
fast as the custom bzip2 implementation.

Finally, tables 11.5 and 11.6 summarize performance of our compression framework applied
to level set models with (original) sizes in the order of several gigabytes. Since all models are
available from the public “Stanford Scanning Repository” we hope these tables might establish
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benchmarks for future evaluations of level set compressions. The timings include streaming to
and from disk, and again a 14 bit quantization was applied to the distance values. For these
models our compression method produces between 76% and 92% compression when compared to
an uncompressed DT-Grid representation. When compared to an uncompressed dense uniform
grid representation, our method consistently gives more than 99% compression for all these
examples. Note that the latter percentage is the one that should be used when comparing
our method to a volumetric method that compresses the entire clamped signed distance field
volume. From table 11.5 we can furthermore see the very low memory footprint of the Slice
Cache and probability tables associated with the arithmetic coder. These two components are
the main consumers of memory in our offline compressor, since our prefetcher only utilized a
single 32KB buffer for each component (6 in total). Hence for the largest model compressed
in the examples presented here, the overall memory usage is approximately 13MB. Notice also
how our method compresses the topology of the grid. This is evident from table 11.6 where the
percentages of compression for the individual components are listed. The only component that
is not compressed well is coord1D which the DT-Grid in many cases already represents using
very few bytes due to its hierarchical index compression.

Using the Metro tool [24] it is possible to measure the distortion between two meshes as the
Hausdorff distance normalized to the length of the bounding box diagonal. In our case we can
measure the distortion between meshes extracted from the de-compressed (includes quantization
artifacts) and the original narrow band distance volumes. In general the distortion decreases
as the resolution increases. This is simply due to the fact that quantization is applied in the
narrow band whose (Euclidean) width is decreasing as the grid resolution increases. In tables
11.5 and 11.6 the distortion measured on the bunny in lowest resolution was 8.7−5 which is the
same order of magnitude as the distortions reported in [73]. We were not able to measure the
distortion on the higher resolution distance fields due the large amount of triangles generated
by the extraction, but as argued above the distortion decreases as the resolution is increased. In
the future we plan to implement a Metro tool equivalent that operates directly on the level set.
Using the out-of-core and compression framework described in this dissertation the Hausdorff
distance can be evaluated simply by streaming the narrow band distance fields through memory.
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Model
Comp Decomp Orig Comp BPGP Grid % % Max Mem

Time Time Size Size Comp Point Comp/ Comp/ Slice-Cache/

(secs) (secs) (MB) (MB) Count DT-Grid Dense-Grid Prob-Table

Lucy
487× 281× 833 4.61 4.42 17.8 4.43 9.10 4.09e6 75 99 0.31 / 1.5
1987× 1142× 3409 78.8 73.7 303 68.4 8.24 6.96e7 77 99 1.3 / 5.8
3987× 2290× 6844 313 301 1226 254 7.59 2.81e8 79 99 2.7 / 15
David
1186× 487× 283 7.27 7.05 28.6 6.46 8.29 6.54e6 77 99 0.37 / 2.0
4864× 1987× 1149 122 117 489 93.2 7.01 1.12e8 81 99 1.6 / 9.6
9768× 3987× 2304 487 469 1975 303 5.63 4.51e8 85 99 3.3 / 23
Bunny
491× 487× 381 3.73 3.63 15.8 2.91 7.18 3.41e6 82 99 0.20 / 0.82
1991× 1974× 1544 59.0 60.0 264 26.6 3.92 5.69e7 90 99 0.95 / 1.7
3991× 3956× 3094 237 239 1064 85 3.10 2.29e8 92 99 2.1 / 3.1
Buddha
1195× 494× 493 13.7 12.9 55.5 11.1 7.65 1.21e7 80 99 0.55 / 1.2
4848× 1996× 1993 213 210 919 116 4.86 2.01e8 87 99 2.4 / 3.7
9718× 3998× 3993 888 873 3695 370 3.84 8.08e8 90 99 5.0 / 8.0

Table 11.5: Compression Statistics for various level set models. Narrow band width, γ = 3. Quantization
of the 32 bit values to 14 bits per grid point. Most of the captions should be self-explanatory except BPGP
which is the Bits Per Grid Point, Grid-Point Count which is the number of grid points in the narrow band,
% Compress/DT-Grid which is the percentage of compression measured against the uncompressed DT-
Grid representation, % Compress/DenseGrid which is the percentage of compression measured against
an uncompressed dense-volume grid containing the narrow band (this illustrates the efficiency of our
framework seen as a dense-volume compressor applied to a clamped signed distance field), and finally
Max Mem which is reported for the Slice-Cache and the probability tables (Prob-Table) in MB.
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Model
Orig Comp Comp % % % % % % %

Topology Topology Values Comp Comp Comp Comp Comp Comp Comp

BPGP BPGP BPGP coord1D coord2D coord3D val1D val2D val3D acc

Lucy
487× 281× 833 4.50 0.405 8.69 0 (0.0) 85 (0.0) 80 (5.4) 98 (0.0) 97 (1.4) 73 (88) 100 (5.5)

1987× 1142× 3409 4.57 0.256 7.34 0 (0.0) 89 (0.0) 88 (5.6) 99 (0.0) 99 (1.3) 77 (88) 100 (5.6)

3987× 2290× 6844 4.57 0.288 7.95 0 (0.0) 88 (0.0) 86 (5.6) 99 (0.0) 98 (1.3) 75 (88) 100 (5.6)

David
1186× 487× 283 4.67 0.376 7.91 0 (0.0) 84 (0.0) 83 (5.7) 99 (0.0) 97 (1.4) 75 (87) 100 (5.7)

4864× 1987× 1149 4.74 0.270 6.74 0 (0.0) 87 (0.0) 88 (5.8) 99 (0.0) 99 (1.4) 79 (87) 100 (5.8)

9768× 3987× 2304 4.74 0.232 5.40 0 (0.0) 87 (0.0) 89 (5.8) 99 (0.0) 99 (1.4) 83 (87) 100 (5.8)

Bunny
491× 487× 381 7.00 0.254 6.92 0 (0.0) 85 (0.0) 91 (7.2) 98 (0.0) 99 (3.6) 78 (82) 100 (7.2)

1991× 1974× 1544 6.94 0.223 3.69 0 (0.0) 88 (0.0) 92 (7.2) 99 (0.0) 99 (3.5) 88 (82) 100 (7.2)

3991× 3956× 3094 6.94 0.213 2.89 0 (0.0) 89 (0.0) 92 (7.2) 99 (0.0) 99 (3.5) 91 (82) 100 (7.2)

Buddha
1195× 494× 493 6.38 0.265 7.38 0 (0.0) 79 (0.0) 90 (6.8) 96 (0.0) 99 (3.0) 77 (83) 100 (6.8)

4848× 1996× 1993 6.36 0.215 4.65 0 (0.0) 84 (0.0) 92 (6.8) 98 (0.0) 99 (2.9) 88 (83) 100 (6.8)

9718× 3998× 3993 6.35 0.203 3.64 0 (0.0) 86 (0.0) 92 (6.8) 99 (0.0) 99 (2.9) 89 (83) 100 (6.8)

Table 11.6: Compression Statistics for various level set models. Narrow band width, γ = 3. Quantization
of the 32 bit float values to 14 bits. The table lists the Bits Per Grid Point (BPGP) for the original and
compressed topology and values respectively. Additionally the percentage of compression (% Comp) is
listed for each individual component of the topology as well as the values. The number in parenthesis
following the percentage of compression is the percentage that this particular component takes up of the
entire uncompressed DT-Grid.

Model
OOC CDT-Grid II Custom BZip2 BZip2

Comp Decomp % Comp Decomp % Comp Decomp %

Time Time Comp Time Time Comp Time Time Comp

Lucy,6844× 3987× 2290 313 301 81% 373 221 60% 640.8 342.5 14%
David,9768× 3987× 2304 487 467 86% 592 349 63% 1006.2 532.8 19%
Bunny,3991× 3956× 3094 237 239 93% 336 185 62% 576.9 294.1 18%
Buddha,9718× 3993× 3998 888 873 85% 1855 624 67% 1927 1019 17%

Table 11.7: This table shows the performance of the block-sorting and dictionary based compres-
sor bzip2 and compares it to our out-of-core compression framework for several high resolution
level set models represented as DT-Grids. Custom BZip2 is a modified variant of the BZip2
algorithm where the individual components of the DT-Grid are compressed separately and the
values quantized. Quantization rate is 14 bits per grid point for our method, OOC CDT-Grid
II, and Custom BZip2. No quantization was applied in the BZip2 case as this method simply
operates on the uncompressed DT-Grid file stored on disk.
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11.4 Discussion

We start by noting that our framework is intended for very large level set simulations given the
fact that it obviously cannot outperform pure in-core simulations given sufficient memory.

One seemingly obvious limitation of our framework is related to random access. In particular
random access into a statistically encoded stream of data based on an adaptive model is not
feasible since a compressed value depends on all values compressed before the value itself. Hence
potentially the entire stream of data would need to be decompressed to lookup a single value.
Random access into our out-of-core framework is indeed possible, and we have used it to ray trace
the models of the bunny shape-metamorphosis presented in chapter 10. Still it remains relatively
slow compared to in-core random access. We note two things regarding these facts. First of all
we are currently considering prefetching and page-replacement strategies than just basic LRU
for ray tracing. Secondly, ray tracing is in fact the only application we have considered that
requires random access. All other applications including the shape-metamorphosis in chapter
10 as well as the fluid simulation and PDE on manifold applications in chapter 15 rely solely on
sequential stencil access.

Regarding our out-of-core framework a few additional limitations can be pinpointed. Our
page-replacement and prefetching strategies were developed as application specific, particularly
optimized for sequential access with finite difference stencils. Obviously any attempt to utilize
them as general purpose strategies in another situation may fail dramatically. However, again we
stress that all our applications, except ray tracing, access memory in a pattern adhering to the
assumptions of our algorithms. A disadvantage of our out-of-core framework is that simultaneous
access to multiple out-of-core data structures will generally reduce performance due to the
latency of disk seeks. We are currently investigating this by exploring strategies for automatically
assigning resources when several out-of-core data structures are in play simultaneously.

One potential limitation of our streaming compression framework is that in order for it to be
sufficiently fast, the Slice Cache must reside entirely in-core. However, generally the few slices
required (for our compression codecs only 3-4) take up relatively little memory as evident from
the memory benchmarks presented in table 11.5.

Using our out-of-core level set framework it is possible to run simulations at resolutions
limited only by the disk space available. Furthermore, as only the narrow band is stored and
processed, simulations can be run relatively efficiently compared to previous methods, as demon-
strated throughout this dissertation. Hence in many respects one can argue that the level set
method has now matured to a point where the resolution obtainable is no longer the major
limiting factor. For visual effects production, low simulation times are of prime importance due
to the often quite limited post-production schedules. Even though the methods we propose are
capable of running out-of-core simulations at high throughputs, level set and fluid simulations
at the scales we are able to obtain become computationally intensive due to many calculations
required to solve the PDEs. Thus, even if given sufficient memory to run the simulations in-core,
they would be quite time consuming. This also means that future research should look more
closely into improving the computational efficiency of these high resolution simulations. Paral-
lelization is a strong alternative to out-of-core methods for increasing the resolution of level set
and fluid simulations, and distributed computations (e.g. using MPI) offer the possibility for
more memory distributed across several machines. The paper [52], which leverages on our DT-
Grid and H-RLE work, suggests this approach and advocates the feasibility of parallelization in
the context of fluid simulations. Obviously parallelization has the advantage that computations
are split between several processors which incurs an improvement in running time if the overhead
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in communicating boundary conditions between processors does not eclipse the gain obtained
by splitting the computations. On the contrary an out-of-core method such as ours is unlikely
to outperform an in-core method unless physical memory is exceeded and virtual memory taken
into use. However, our method has the advantage that it can be run on a single desktop machine
with limited physical memory resources.

We believe it feasible to combine our out-of-core and compression framework with paralleliza-
tion, hence facilitating both the use of several processors as well as enabling larger problems to
be maintained on each computational node which is likely to have a limited set of resources.

11.5 Summary

The performance of level set simulations in our out-of-core component combined with compres-
sion of topology was shown to be 50% − 65% of the peak performance of the in-core DT-Grid
which in turn has been shown to outperform other level set data structures (see chapter 7). The
performance of the out-of-core component is preserved for simulations at resolutions that far
exceed physical memory. In contrast the performance of the normal in-core DT-Grid was shown
to dramatically decrease until the OS virtual memory limit prevented the simulation from run-
ning. Benchmarks indicate that our application-specific compression scheme compresses better
and faster than a related volumetric band compression method. It also outperforms bzip2 a
widely used standard compression tool. We strongly believe that our framework applicable in
practice to several areas in computer graphics, including but not limited to, high-resolution fluid
simulations and shape deformations.
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Chapter 12

Introduction

Triangle mesh representations are by far the most commonly used exchange formats for boundary
representations. Surfaces generated from scannings of real world geometry, for example, are
typically available as triangle meshes, although the raw scanned representation is a set of points.
Furthermore, the models generated by artists are often converted to triangle meshes, even though
representations such as NURBS and subdivision surfaces are usually employed at the modeling
stage. We typically wish to utilize 3D models as initial shapes for level set surfaces including
fluids and boundaries. These facts motivate why converting a triangle mesh into a level set
representation is an essential part of the level set pipeline. Typically the conversion process
entails computing the signed distance transform to the given boundary representation in a narrow
band about the surface. In this dissertation we consider a special class of triangle meshes. The
class we consider encompasses consistent, or closed, orientable and non-self-intersecting, meshes.
This class of meshes is the simplest to consider since a mesh with these properties maps uniquely
to a level set surface which by definition must be closed and non-self-intersecting1. The literature
on this subject is vast, but nevertheless new techniques are needed for converting meshes into
the high resolution data structures presented in parts II and III. The main reason for this is that
a conversion algorithm must scale with the size of the surface, both in terms of computational
efficiency and storage requirements. We present both an in-core [48] and an out-of-core [106]
conversion algorithm for consistent polygonal meshes. The in-core converter can generate high
resolution level sets relatively fast, but performance decreases significantly when utilizing virtual
memory. In that case our out-of-core converter proves to be several times faster. Additionally
the out-of-core converter imposes no restrictions on the size of the input mesh or output level
set other than enough disk space must be available.

A brief outline of part IV is as follows. Chapter 13 summarizes previous work. Next chapter
14 presents the in-core and out-of-core converters along with performance evaluations and a
discussion.

1Note that in order to unambiguously generate the open, or unenclosed, level set representations mentioned
in part II, we need a closed representation initially.
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Chapter 13

Previous Methods for Converting Polygonal Meshes

In this section we consider related work on the generation of signed distance fields from polyg-
onal meshes. For our application, the signed distance fields are intended as input to level set
deformations. As touched on in the introduction to part IV, we will in this dissertation concen-
trate on consistent polygonal meshes represented by closed orientable and non-self-intersecting
objects with a clear separation of inside and outside.

The brute force method [119] for computing the signed distance field from a consistent
polygonal mesh is easy to devise but prohibitively slow. It works as follows: For each grid point
in the enclosing volume, the signed distance to the mesh is evaluated by considering the distance
to each individual triangle in turn. Due to these limitations, Payne and Toga [119] proposed an
optimized variant of the brute force method. In particular their method visits the entire grid and
for each grid point queries the signed distance in a hierarchical tree of bounding boxes enclosing
the triangles. The hierarchical organization allows for the relatively fast pruning of triangles
based on estimates of the smallest and largest distance to any triangle within the bounding box.
A related method is the LUB-tree approach for computing the minimum distance to a polygonal
mesh by Johnson and Cohen [62]. Given that the hierarchical tree is refined to the level of
individual triangles, these methods have time complexities in the order of O(M log F ) where M
is the number of grid points and F is the number of faces of the mesh.

A different approach was taken by Mauch [88, 89] who presented the Characteristics/Scan
Conversion (CSC) algorithm for computing the signed distance field to a polygonal mesh. The
method works by scan converting a set of overlapping polyhedra resembling conservative esti-
mates of the voronoi cells of the faces, edges and vertices of the mesh respectively. Contrary to
the true voronoi cells, the polyhedra are very fast to compute directly from the specification of
the mesh and a user-specified threshold of maximum distance. Owing to the user specification of
maximal distance this method is ideally suited for computing a narrow band signed distance field
representation. Apart from the O(L3) initialization time of the embedding volume, the method
of Mauch has a time complexity of O(cM + F ) where M is the number of grid points in the
narrow band, F is the number of faces, and c is a constant expressing the degree of overlap of the
polyhedra. The core method is fast due its linear time complexity and due to the fact that only
the grid points in the narrow band are touched by the algorithm during distance computation.
An alternative to the CSC algorithm is to only scan convert the individual triangles, correspond-
ing to the zero-crossing grid points. Subsequently one can then employ an approximate method
like the first order accurate fast marching method (FMM) [131] to propagate distance to grid
points further away. However as illustrated in [89], the CSC algorithm compares favorably to
FMM and tends to outperform it as the grid is refined. In addition the CSC method is accurate
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to within machine precision.
More recently, Sigg et al. [134] proposed an improvement to the CSC method based on

the scan conversion of fewer different types of polyhedra. Additionally the method was imple-
mented on graphics hardware hereby exploiting the specialized and optimized scan conversion
capabilities supported by the GPU.

In general any method for computing the signed distance from an arbitrary point to a mesh
can be used to compute the signed distance field: The method can simply be evaluated in every
grid point. A very recent approach to this was proposed by Baerentzen and Aanaes [5] . While
this algorithm is very robust it is not documented how well it performs against previous scan
conversion methods. Additionally it is not immediately feasible in the context of narrow band
signed distance fields, as distances at all grid points in the embedded volume are evaluated.

Finally we note that none of the existing work has considered the computation of very large
high resolution narrow band signed distance fields, such as those required as the input to our
data structures.



Chapter 14

Converting Polygonal Meshes

This chapter considers the problem of converting a closed non-self-intersecting polygonal mesh
into a narrow band signed distance field represented on a level set data structure such as the
DT-Grid or H-RLE. While fast algorithms for computing signed distance fields from meshes
have previously been proposed, none of them have considered level sets at the scale presented
in this dissertation. To remedy this we present two algorithms, both of which are algorithmic
constructs that extend and thus largely leverage on the CSC method [89]. The first algorithm [48]
operates entirely in-core in order to retain the speed offered by such a strategy. Both its storage
requirements and computational efficiency are linear in the number of faces of the mesh and
the number of grid points in the narrow band. However, for very large meshes and/or level
sets, this approach becomes infeasible and eventually breaks down due to its utilization of OS
virtual memory. The second algorithm [106] overcomes this problem by employing an out-of-
core conversion strategy. This method does not impose any restrictions on the size of the input
mesh nor the output level set, other than the fact that sufficient disk space must be available.
Although the second algorithm incurs an increase in asymptotic time complexity compared to
the in-core algorithm, it is significantly faster in practice when the in-core approach relies on
virtual memory. Using the out-of-core algorithm we demonstrate the generation of level sets
that are close to two orders of magnitude larger than demonstrated in the graphics community
prior to the work presented in this dissertation. All the level set models utilized throughout our
work are generated using the methods in this chapter. Due to the way the CSC method [89]
operates on the faces of the polygonal mesh representation it is generally referred to as a scan
conversion algorithm. When describing our algorithmic extensions to [89] we will retain this
descriptive term. Next we present our contributions as well as provide an outline of the sections
this chapter contains.

14.1 Contributions

The contributions of this chapter are

• An in-core conversion algorithm for computing DT-Grid or H-RLE based level set repre-
sentations from polygonal meshes. Storage requirements of the algorithm are O(M3 + F )
and computational requirements are O(cM3 + F ), where M3 is the number of grid points
in the 3D narrow band, F is the number of faces of the mesh and c is a scalar depending
on the overlap of the characteristic polyhedra (see previous chapter and [89]) which in turn
depend on the mesh and the width of the narrow band.
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• An out-of-core conversion algorithm for computing out-of-core DT-Grid or H-RLE based
level sets from polygonal meshes. The only practical limitation on the size of the input
mesh and output level set is the amount of available disk space. The storage requirements
are O(M3 + F ), but the computational requirements increase to O(cM3 + M3 log M3 +
F log F ), and the complexity in terms of IO operations is O

(
F
B logM/B

F
B + M3

B logM/B
M3
B

)
,

where B is the size of a disk block, and M is the memory size in the Parallel Disk
Model [158].

The methods above enable us to generate level sets of very high resolution. In particular we
have generated a narrow band level set with effective grid resolution 35000× 20000× 11500
and containing 7.08 billion grid points in the narrow band.

The remainder of this chapter is structured as follows. Section 14.2 presents the in-core
conversion algorithm and presents an example of the level set detail achievable with this method.
Next section 14.3 describes the out-of-core conversion algorithm and following that, chapter 14.4
evaluates and discusses the two methods proposed. Finally section 14.5 concludes this chapter
with a brief summary.

14.2 In-Core Scan Conversion

The scan conversion technique of [88, 89] for computing the signed distance transform to a
closed and non-self-intersecting mesh has gained wide-spread use. It sequentially scan converts
a set of characteristic polyhedra, resembling a set of widened voronoi cells, derived from the
mesh. In practice the method is fast and compares favorably with the fast marching method
[131]. Furthermore the result is accurate to within machine precision. The method as originally
proposed has memory requirements that are O(L3+F ), where L is the side-length of the enclosing
bounding box. The dependency on L3 does not scale well as L increases and hence becomes a
limiting factor. The core conversion algorithm in [88,89] has a time complexity of O(cM3 + F ),
where M3 is the number of grid points in the narrow band, F is the number of faces and c is a
scalar that depends on the overlap of the characteristic polyhedra. However, due to an O(L3)
initialization time, the overall time complexity is still O(L3 + F ). It should be noted that in
practice, the limiting factor of [88] that comes into play first is the memory consumption, but for
higher resolutions a time usage depending on O(L3) is also severely limiting. In this section we
describe how to augment the algorithm to only use O(M3 + F ) memory and O(cM3 + F ) time,
and how to use it in the context of the DT-Grid and the H-RLE level set representations. As
a prelude to introducing our DT-Grid / H-RLE scan converter, let us first consider a modified
scan converter of a polygonal mesh into a clamped signed distance function (|φ| ≤ γ) on a dense
uniform grid:

1. Partition the bounding volume of the mesh into P ×Q×R (non-overlapping) rectangular
axis-aligned sub-volumes and initialize the values in each of these to γ.

2. Partition the mesh into P ×Q×R sub-meshes, where the (p, q, r)’th sub-mesh contains all
polygons of the original mesh that lie within a distance of γ from the (p, q, r)’th sub-volume.

3. Scan convert each sub-mesh into the corresponding sub-volume using [88,89].

Our approach is similar to the one above, except that in order to ensure the O(cM3 + F )
time-complexity and the O(M3 + F ) memory-complexity, only one representative sub-volume,
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of size O(M3), is kept in memory. This representative sub-volume is only initialized once which
takes time O(M3). When scan converting the narrow band of the (p, q, r)’th sub-mesh into the
representative sub-volume, the coordinates of each grid point, for which a distance is computed,
are stored in a data structure and compressed on-the-fly. When the sub-mesh has been scan
converted, the computed signed distance values are saved into the data structure already holding
the coordinates. Furthermore the corresponding grid points in the representative sub-volume are
reset to γ. This procedure is then repeated for the remaining sub-meshes. The time complexity
of scan converting the P × Q × R sub-meshes is O(cM3 + F ) since for each sub-mesh care is
taken only to touch grid points inside the narrow band. Following the scan conversion process,
three bucket sorts are performed on the coordinates of the recorded grid points in order to bring
them into the lexicographic order required by the DT-Grid and H-RLE data structures. Each
bucket sort takes time O(L + M3) where L is the side-length of the grid bounding box. In our
analysis we assume that L = O(M3) which is usually the case in practice. Note also that we
have implicitly assumed that P ×Q× R = O(M3 + F ) and that each face intersects at most a
constant number of sub-volumes.

Our scan conversion method assumes that a sub-volume has a size in the order of O(M3)
in order to ensure the O(cM3 + F ) time complexity. In practice we usually choose the size of
a sub-volume heuristically based on the memory available and the size of the mesh (see section
14.4). In order to guarantee the theoretical time complexity in practice, one could estimate a
lower bound for M3 in a preprocessing step in time O(cM3 + F ) and space O(F ). However,
setting the size of a sub-volume heuristically saves the extra preprocessing step and works well
in practice.

The outlined scan conversion algorithm retains the speed of the original method [88] for
smaller level sets, whilst at the same time allowing for much higher resolution. We demonstrate
this in section 14.4. Finally we note that our conversion algorithm is fairly easy to parallelize
since each sub-volume can be converted independently on a separate processor.

Figure 14.1 shows renderings of the Lucy model with the DT-Grid as the underlying surface
representation. It demonstrates the wide range of scale represented and made possible by our
novel level set representations and the new scan conversion algorithm presented above.

14.3 Out-Of-Core Scan Conversion

The algorithm described in the previous section only works in-core and consequently the reso-
lutions of the input mesh and output level set are limited by the available memory. In fact for
many of the models used in this dissertation, resolutions either exceed the virtual memory limits
or result in slow OS page swapping. To address this problem we have developed an out-of-core
extension to our in-core scan conversion algorithm based on [89]. This extension allows us to
scan convert consistent mesh models into level sets of unprecedented resolution. The only prac-
tical limitation on the sizes of input meshes and output level sets is the available disk space. As
we will demonstrate in section 14.4, the out-of-core converter out-performs its in-core equivalent
when the memory requirements of the in-core scan converter exceed the physical memory limit
and virtual memory is utilized. To the best of our knowledge this is the first demonstration of
a scan converter that works fully out-of-core.

Our out-of-core algorithm begins by sorting the input mesh out-of-core to create a list of faces
where each face is represented by its vertex coordinates. This list of faces is next used to partition
the mesh into a number of sub-meshes. Each sub-mesh is then scan converted in-core using the
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Figure 14.1: Zooming in on The Lucy model (3000× 1726× 5144) using the DT-Grid as the un-
derlying level set representation. The pictures demonstrate the high detail present in the model.
Note that the bumps on the surface as seen from the closest viewpoint are not artifacts from
the scan conversion process, but rather very fine scale detail also present in the corresponding
mesh representation generated from scanned real world geometry. Renderings by Ola Nilsson
based on my scan conversion.

method of [89], and the generated grid points are streamed to disk. When all sub-meshes have
been scan converted, the collection of generated grid points are sorted into lexicographic order
using an external sort. The lexicographic order is required for the construction of an out-of-core
DT-Grid or H-RLE which constitutes the final step. More specifically our algorithm performs
the following steps:

1. The input mesh file is assumed to be a simple indexed triangle set such as ply or obj.
As a prelude to the mesh partitioning we de-reference all the vertex-indices of the faces
and create a list of faces, lf , where each face is represented by the coordinates of its three
vertices. Doing this naively using random access will in the worst case result in O(F )
IO operations, where F is the number of faces, since each index may reference a vertex
currently on disk. Instead we can create the list of faces by applying a number of external
sorts similar to [20]. This can be done in O

(
F
B logM/B

F
B

)
IO operations, where F is

the number of faces and B is the number of faces per disk block. Briefly described the
de-referencing works as follows: First we sort the list of faces according to the first vertex
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index of each face. Next we simultaneously scan through the sorted list of faces and the
list of vertex positions and replace the first vertex id of each face with its actual vertex
coordinate. This step is subsequently repeated for the second and third index of each face
respectively. The result is the list of faces, lf , represented by their coordinates required
for partitioning the mesh. The time complexity of this step is O(F log F ).

2. Next the mesh is partitioned into P×Q×R sub-meshes. P , Q and R depend on the amount
of available memory, and in general they are simply determined heuristically similar to the
approach taken for the in-core scan converter. The (p, q, r)′th sub-mesh consists of all the
faces within a distance of γ from the (p, q, r)′th sub-volume resulting from dividing the
bounding box of the mesh into P ×Q×R equally sized axis-aligned and non-overlapping
sub-volumes. To do the actual partitioning, a single scan through the list of faces deter-
mines for each face which sub-volumes it contributes to. During this scan, data is streamed
into a file, f , of 7-tuples, each consisting of the three vertex indices, the coordinates of the
three vertices, and the sub-volume id that this face maps into. Assuming that at most a
constant number of sub-volumes intersect each face, the partitioning step requires O(F

B )IO
operations and has a time complexity of O(F ).

3. To apply the method of [89], each of the sub-meshes are first converted into individual
indexed triangle sets. This is done by a single external sort of and a subsequent scan
through the sorted tuples in f . First the 7-tuples in f are sorted according to their sub-
volume id. Next a scan through f generates an indexed mesh representation for each
sub-mesh. Since f is sorted according to sub-volume id, the generation of a new sub-
mesh commences as soon as a new sub-volume-id is encountered. Internally for each
sub-mesh, local vertex and face indices are created with the use of a map data structure
mapping from global1 to local indices. The individual indexed sub-meshes are progressively
streamed to disk. Again this step requires O

(
F
B logM/B

F
B

)
IO operations and thus has a

time complexity of O(F log F ).

4. Next the in-core scan converter of [89] is separately applied on each sub-mesh. The coordi-
nates of the narrow band grid points and their associated signed distance values generated
for each sub-mesh are streamed to disk as 4-tuples {x, y, z, φx,y,z}. This is done in a way
similar to the in-core scan converter which ensures an O(F +cM3) time complexity of step
4. In terms of IO operations the complexity of this step is O(F

B + M3
B ) IO operations.

5. Finally the 4-tuples generated above are sorted into lexicographic order using a single exter-
nal sort and the out-of-core level set is constructed by sequentially pushing grid points into
the DT-Grid. Due to the external sort of grid points, this step requires O

(
M3
B logM/B

M3
B

)
IO operations and has a O(M3 log M3) time complexity.

Note that steps 3 and 4 above can be performed simultaneously such that a sub-mesh is scan
converted as soon as it is generated. In this way it is not necessary to stream the sub-meshes to
disk. For large models or grids, the external sorting in step 5 is usually the most time-consuming
due to the large number of narrow band grid points generated. For the models in table 14.3,
the number of grid points are in the order of billions. Hence it is important to sort the grid
points using only a single pass over the file as opposed to three passes (three since this is the

1By global index we mean the index in the input mesh.
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number required to generate the lexicographic order). In our experience this gives a factor of
2.5 improvement in the time spent on sorting. The peak memory consumptions of the algorithm
corresponds to the size of the largest sub-mesh plus the size of a sub-volume. The overall time
complexity of the algorithm is O(cM3 + M3 log M3 + F log F ), and the complexity in terms of
IO operations is O

(
F
B logM/B

F
B + M3

B logM/B
M3
B

)
. Our out-of-core scan conversion algorithm

is a typical example of an algorithm that can be solved with a linear time complexity in-core
but requires a linear times logarithmic number of IOs to be solved out-of-core [157].

14.4 Evaluation and Discussion

Method
2503 5003 10003 20003 30003 40003

4.005 16.97 69.80 283.1 655.2 1718
MB MB MB MB MB MB

CSC 4.156 6.391 NP NP NP NP
Our Method, In-Core 4.375 7.453 24.72 153.9 4227 NP
Our Method, Out-Of-Core 10.20 21.25 67.61 423.1 1096 2049

Table 14.1: Comparison of timings (measured in seconds) between the original CSC method of
Mauch [89] and our in-core and out-of-core algorithms for scan converting the Stanford Bunny
in increasing resolution with a narrow band width of γ = 3. The size in MB of the uncompressed
DT-Grid is given below the resolution. Using the original method it is Not Possible (NP) to
scan convert in resolution 1000 and above (in fact the limit is much lower than that since a
10003 dense uniform grid of floats requires close to 4GB). For the in-core scan converter it is
Not Possible (NP) to scan convert the Stanford Bunny in resolution 40003 because the overall
memory usage of the input mesh, the output level set and intermediate data structures exceed
the virtual memory limits. The DT-Grid construction time is not included since the in-core
scan converter is incapable of generating the DT-Grid for resolutions above 30003 due to virtual
memory limits.

In this section we present an evaluation and discussion of our scan conversion methods, and
compare them to the original CSC method of Mauch [89]. All scan conversions were done on
an AMD 2.41GHz machine with 1GB of main memory and a Western Digital WD4000YR hard
disk. The size of the sub-volumes was chosen heuristically and in all but one (clarified below)
case we utilized a fixed sub-volume of size 2563.

As can be surmised from table 14.1 our in-core scan converter retains the speed of the
original method, and our out-of-core scan converter outperforms the in-core converters when
model resolutions exceed the available memory. The original method reaches the virtual memory
limits quite quickly which renders it impossible to do scan conversions at 10003 and higher. Note
also that the running times of our in-core scan converter increase rapidly when the memory
limit is approached. When scan converting the bunny at 30003, our out-of-core scan converter
is roughly four times faster than our in-core scan converter.

Table 14.2 depicts the scan conversion statistics for our in-core scan converter on several
polygonal meshes. In all cases the scan conversion times are in the order of seconds or minutes.
Note that the reason the scan conversion time of the Lucy model at resolution 5123 is higher
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than at 10243 is due to the size of the Lucy mesh which forced us to use a smaller sub-volume
size of 1283 (otherwise the data structures that store the sub-mesh during scan conversion would
take up too much memory). The main bottlenecks are in terms of memory. For example, the
intermediate partitioned mesh structure (Mesh II ) requires more memory than the original
mesh. Note however that only the partitioned mesh needs to remain in memory during the scan
conversion process. Another example is the relatively large size of the intermediate structure
of grid points (IVC ) that is eventually sorted into lexicographic order. This illustrates one of
the consequences of the DT-Grid and H-RLE requirement that grid points must be pushed onto
the data structures in lexicographic order. The size of the intermediate data structures could
be reduced by introducing compression at the cost of longer execution times. However, despite
these facts we note that the memory usage still scales as O(M3 + F ) hence allowing for higher
resolution.

Table 14.3 lists several very high resolution level set models and out-of-core scan conversion
times. We realize that some of the models in table 14.3 are over-sampled in terms of triangle
to grid point resolution and the high resolutions are meant merely to illustrate the capability of
the out-of-core framework.

As can be seen from table 14.3, the out-of-core scan conversion times for these very high
resolution models are in the order of hours, but scan conversion remains feasible. Our method
uses a fairly large amount of intermediate disk space, but storage requirements are still linear
in the number of mesh faces and narrow band grid points. The disk requirements can of course
be reduced by means of compression and a more compact sorting like [87]. This will however
increase running times.

The highest resolution model is the Lucy which was converted into a 35000× 20000× 11500
narrow band level set containing 7.08 billion grid points in the narrow band. To the best of our
knowledge this is about two orders of magnitude larger than demonstrated prior to the work
presented in this dissertation and about one order of magnitude higher than achievable with our
in-core scan converter.
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Model
Time [sec] Size [MB] Grid

Mesh Mesh Scan Lexi DTGrid Tot Mesh Mesh IVC DTGrid Point

Load Part Conv Sort Const I II Count

Lucy, γ = 3 #faces=28055742, #vertices=14027872
512× 512× 512 55.3 456 744 0.453 1.70 1258 482 565 41.3 18.7 4.09e6
1024× 1024× 1024 55.3 330 697 1.69 8.56 1093 482 524 173 78.5 17.1e6
Lucy, γ = 5
512× 512× 512 55.4 424 997 0.703 2.16 1476 482 610 59.2 27.9 6.52e6
1024× 1024× 1024 55.5 312 899 2.81 13.5 1283 482 544 255 120 28.0e6
David, γ = 3 #faces=7227031, #vertices=3614098
512× 512× 512 14.4 3.98 161 0.468 2.52 183 124 132 66.2 30.2 6.54e6
1024× 1024× 1024 6.42 4.31 199 2.28 13.0 225 124 136 278 126 27.3e6
David, γ = 5
512× 512× 512 14.3 4.02 213 0.688 4.25 237 124 136 95.5 45.0 10.5e6
1024× 1024× 1024 6.42 4.36 269 3.49 21.1 304 124 142 409 192 44.7e6
Bunny, γ = 3 #faces=70064, #vertices=35034
512× 512× 512 1.50 0.0310 4.88 0.187 0.860 7.45 1.20 1.32 34.7 17.0 3.40e6
1024× 1024× 1024 2.23 0.0470 14.9 0.906 6.63 24.7 1.20 1.43 143 69.8 14.0e6
Bunny, γ = 5
512× 512× 512 1.83 0.0470 6.80 0.297 1.69 10.7 1.20 1.36 50.9 25.1 5.56e6
1024× 1024× 1024 2.61 0.0310 20.7 1.42 10.2 35.0 1.20 1.48 212 104 23.1e6
Buddha, γ = 3 #faces=1087716, #vertices=543652
512× 512× 512 14.4 0.593 42.1 0.812 5.24 63.1 18.7 20.3 123 59.3 12.1e6
1024× 1024× 1024 12.3 0.641 88.1 4.08 27.2 132 18.7 21.2 505 243 46.7e6
Buddha, γ = 5
512× 512× 512 13.9 0.594 58.7 1.16 8.51 82.9 18.7 21.1 181 88.3 19.8e6
1024× 1024× 1024 11.8 0.625 133 6.77 43.4 196 18.7 22.2 752 366 82.1e6

Table 14.2: Scan conversion statistics for the in-core scan converter. The statistics are divided
into three categories: Timings, storage requirements and the (narrow band) grid point count.
The timings (seconds) include the mesh load (Mesh Load) and partitioning time (Mesh Part),
actual scan conversion time (Scan Conv), lexicographic sort time (Lexi Sort), DT-Grid con-
struction time (DTGrid Const), and total time (Tot). The storage requirements (MB) include
the original mesh (Mesh I ), the intermediate sub-mesh structure (Mesh II ), the Index-Value
Container (IVC ) storing grid point indices and corresponding signed distance values, and the
final (uncompressed) DT-Grid (DT-Grid). The narrow band width γ = 3. All models are
courtesy of the Stanford Scanning Repository.



14.4. Evaluation and Discussion 165

Model
Time [min:sec] Size [MB] Grid-point

Mesh Scan Lexi DTGrid Tot Mesh Mesh IVC DTGrid Count

L&P Conv Sort Const I II ×109

Lucy
35000× 20000× 11500 70:50 278:24 839:40 198:21 1387:15 482 591 108060 36070 7.08

David
29500× 12000× 7000 12:58 146:06 465:51 108:12 733:09 124.1 159.0 62325 20991 4.08

Bunny
12000× 12000× 9500 0:07 179:29 272:04 54:37 506:17 1.203 3.652 31619 10307 2.07

Buddha
24500× 10000× 10000 1:40 318:01 617:30 143:14 1080:30 18.67 32 77340 27910 5.07

Table 14.3: Scan conversion statistics for the out-of-core scan converter. The statistics are
divided into three categories: Timings, storage requirements and the narrow band grid-point
count. The timings (min::sec) include the mesh load and partitioning time (Mesh L& P), actual
scan conversion time (Scan Conv), lexicographic sort time (Lexi Sort), DT-Grid construction
time (DTGrid Const), and total time (Tot). The storage requirements (MB) include the original
mesh (Mesh I ), the intermediate sub-mesh structure (Mesh II ), the Index-Value Container
(IVC ) storing 4-tuples of grid point indices and corresponding signed distance values, and the
final (uncompressed) DT-Grid (DT-Grid). The narrow band width γ = 3. All models are
courtesy of the Stanford Scanning Repository.
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14.5 Summary

This chapter presented two methods for converting consistent polygonal meshes into signed
distance field level set representations. Both methods leverage on the CSC method [89]. The
first method works in-core and allows higher resolution level sets to be generated fast due to the
fact that both time- and memory-requirements are proportional to the number of grid points in
the narrow band and the number of faces in the mesh. The second method works out-of-core and
poses no restrictions on the size of the input mesh nor the output level set, other than enough
disk space must be available. The out-of-core algorithm out-performs the in-core algorithm when
the storage requirements exceed the amount of physical memory available.
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Chapter 15

Applications

The preceding chapters covered the technical contributions of this dissertation. In particular
we introduced the DT-Grid and the H-RLE for high resolution in-core level set simulations not
restricted by the boundaries of a computational domain. Next we presented a generic frame-
work for out-of-core and compressed level set simulations that allowed very high resolution to
be achieved on desktop computers. Following that we concentrated on scan conversion and pre-
sented efficient methods for generating high resolution level set surfaces from polygonal meshes.
These technical contributions enable a large number of applications of high resolution level sets,
and the techniques have already been taken into use by several other members of the graphics
group. In this chapter we briefly review some of these applications and the main goal is to
demonstrate the wide applicability, practical feasibility and importance of our work.

A few examples and applications were presented earlier in this dissertation. Chapter 5
demonstrated the Enright Test in effective resolution 10242, twice the resolution presented by
concurrent work [34]. We also demonstrated by example the ability of the DT-Grid to run out-of-
the-box level set simulations, and in this chapter we will see additional applications illustrating
this feature. Finally in chapter 10 we demonstrated an example of a huge out-of-core level set
shape-metamorphosis run on a desktop computer with 1GB of memory and requiring close to
5GB of storage.

This chapter reviews several other applications and our techniques are applied to shape
deformations, ray tracing, fluid simulation, geometric texturing, modeling and animation of
snow, volume segmentation and the simulation of PDEs on level set manifolds. However we
stress that many other applications are possible, for example collision detection based on signed
distance field level sets, surface reconstruction from points and the simulation of large bodies of
water [52].

A substantial part of my time has been devoted to implementing from scratch a state-of-
the-art level set software framework including the data structures and algorithms presented in
this dissertation. In particular all applications presented in this chapter use my implementations
of the DT-Grid, H-RLE and out-of-core and compression framework. This software now forms
part of the shared GGL library available to all members of the graphics group. To date my
contributions to the library consist of more than 350.000 lines of code 1 and include a wealth of
data structures, algorithms, utilities and visualization components.

1According to a line count using the unix command wc -l
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15.1 High Resolution Surface Deformations

15.1.1 Bunny Enright Test

Figure 15.1: Extreme level set deformation of a high resolution model resulting in very thin
walls during the course of the simulation. The Stanford bunny is advected by a divergence free
and periodic vector field [35,75] and returns to its original shape after one period, provided the
simulation is run at sufficient resolution. The maximum bounding grid is 10243, but memory
requirements of the H-RLE grid never exceed 97MB. From left to right the simulation times are
(in units of the period) 0, 1/15, 1/2, 1. Rendering by Ola Nilsson based on my simulation data.
Stanford Bunny courtesy of the Stanford Scanning Repository.

The Stanford 3D Scanning Repository is quite prohibitive in terms of what one is allowed
to do with their 3D models, as several of them include religious symbols of some sort. But
as they say: “...You can do anything to the Stanford Bunny.”. We took their word for it and
placed the Stanford Bunny in the Enright Test velocity field [35] (see also chapter 5). Since the
velocity field is periodic and divergence free (i.e. without sources or sinks) a geometric surface
should return to its original shape after one period. However, very high grid resolutions are
required to faithfully capture the thin level set surface resulting from this deformation. Figure
(15.1) shows results from a simulation on a grid of effective resolution 10243 using a third order
accurate TVD Runge-Kutta [133] time integration and a fifth order accurate HJ-WENO [79]
space discretization. Using our effective data structures, this high resolution simulation was
achieved with a dynamic memory footprint never exceeding 97 MB.

15.1.2 Shape Metamorphosis

Shape metamorphosis with level sets have previously been restricted to relatively low resolution
models [14]. This is primarily due to the unfavorable memory requirements of the applied level
set schemes. However, using our scalable H-RLE and DT-Grid level set representations we can
perform high resolution morphs between geometric models with relatively fine surface details.

The morphing process from source to target can be achieved by a propagation of the source
level set according to [48]

∂φsource

∂t
+ (φsource − φtarget)|∇φsource| = 0 (15.1)

This PDE is propagated in time until steady state, when the two level sets completely overlap.
Figure 15.2 shows the result of morphing a human model 512 × 797 × 145 into a statuette at
resolution 1000× 1676× 865. This morph uses an H-RLE level set to represent both the source
and the target distance field resulting in a clamped speed function. Since the target level set is
static, it could also be encoded by the adaptive distance field structure of Frisken et al. [39].
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Figure 15.2: A level set shape metamorphosis. The human figure (left), courtesy of Frantic
Films, has a bounding box of 512 × 797 × 145. The Thai Statuette (right), retrieved from
the Stanford 3D Scanning Repository, has a bounding box 1000 × 1676 × 865. Rendering and
Simulation by Ola Nilsson.

The shape metamorphosis shown in figure 15.2 was rendered and simulated by Ola Nilsson
based on my data structure and level set framework implementations.

15.2 Fluid Simulation

The DT-Grid [106] and H-RLE [48] data structures can be applied to represent a significant part
of the numerical quantities used in the simulation of free surface fluids [35, 37] hence allowing
for higher resolutions fluids. In particular, our data structures are applicable to both fluid and
boundary/obstacle level set surfaces as well as volumetric properties such as fluid velocities
and pressure. In addition, any number of auxiliary fields such as for example surface and
boundary velocities, as well as the marker particles used by the particle level set method [33],
can be stored efficiently along with the DT-Grid and H-RLE representations. The primary
advantage of employing the DT-Grid and H-RLE in this way is that the storage complexity of
the volumetric properties scale with the volume of the fluid interior as opposed to the volume
of the enclosing bounding box. The same is true for the computational complexity since both
the advection of fluid velocities and the construction and solution of the Poisson matrix [36],
required to solve for fluid pressure, are effectively restricted to the voxels in the fluid interior.
This improves on traditional methods that are typically required to traverse the entire bounding
box to determine the mapping between voxels in the grid and entries in the Poisson matrix. It
should be noted that the main computational bottleneck of the fluid solver remains the solution
of the Poisson equation itself which has computational complexity O(N log N) in the multigrid
paradigm. The storage and computational requirements of the fluid and boundary surfaces scale
with surface area when utilizing our data structures, and existing numerical schemes for fluid
simulation [35,37], including the MAC grid and particle level set method, can be employed with
essentially no change. Furthermore, the fluid inherits the out-of-the-box properties of the DT-
Grid and H-RLE hence allowing the fluid to move and spread indefinitely. Figure 15.4 illustrates
the potential of out-of-the-box fluid simulation. In this particular example fluid is leaking out
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Figure 15.3: Closeup of the fluid simulation in figure 15.5 revealing the underlying DT-Grid
based surface and fluid representation.

of a canyon model thus creating a very large effective bounding box. Since the out-of-the-box
property is inherent to our data structures and automatically accounted for by the dilation
algorithm (see chapter 5), no specific attention has to be paid to this kind of behavior.

It should be noted that since our approach represents the interior of the fluid with uniform
grid cells, it is very likely that the octree-based fluid method of Losasso et al. [84] is both more
memory and computationally efficient since it allows for an adaptive representation of the fluid
interior away from the surface. However, the octree fluid method also incurs increased numerical
dissipation resulting in viscous flows as identified by Irving et al. [52]). Irving et al. propose a
method that leverages on our DT-Grid and H-RLE techniques for representing large bodies of
water by employing vertically enlongated cells in favour of an octree approach.

Since our out-of-core and compression framework does not change the interface of the DT-
Grid and H-RLE data structures, these techniques can be applied to fluid simulation as well. In
the out-of-core paradigm, fluid and boundary level set surfaces as well as surface velocities and
particles can be stored out-of-core hence allowing higher resolution fluid simulations. Figure
15.5 shows a frame from a partially out-of-core fluid simulation of a splashing fountain with an
effective resolution close to 5123. Figure 15.3 depicts the same frame and a closeup revealing the
underlying DT-Grid encoding. A similar simulation with effective resolution 931 × 1567 × 931
was shown in chapter 2.

The fluid simulation images in this chapter as well as in chapter 2 were generated using the
fluid simulator designed and implemented by Andreas Söderström and Ken Museth. It employs
MAC grids [35], DT-Grid (in-core and out-of-core) and marker particles [33] for improved accu-
racy and surface resolution. A similar approach to fluid simulation and utilizing an RLE based
data structure was documented in our H-RLE paper [48].
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Figure 15.4: Out-Of-The-Box Fluid Simulation. Fluid is leaking out of a canyon model thus
creating a very large effective bounding box. The out-of-the-box property is inherent to our
data structures and storage requirements scale with the surface area and volume interior of the
fluid. Simulation and rendering by Andreas Söderström.
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Figure 15.5: Partially out-of-core fountain fluid simulation with effective resolution close to 5123.
Simulation and rendering by Andreas Söderström.
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15.3 Ray Tracing

Ola Nilsson implemented a ray tracer for signed distance field level sets which can be used with
both the DT-Grid and H-RLE data structures as well as our out-of-core framework. Standard
ray tracing techniques [35,85] are directly applicable to the H-RLE and DT-Grid data structures.
In particular, since our data structures store samples of a signed distance function this allows
for ray leaping. Hence the data structures serve as acceleration structures as well and offer
logarithmic random access without the additional build (and memory consumption) of external
acceleration structures (e.g. kd-trees usually applied for meshes). It should be noted that our
data structures only store a narrow band whereas an octree offers the additional advantage of
storing distance samples throughout the domain. This can speed up ray leaping at the cost of
an increase in memory consumption.

The ray tracing algorithm proceeds by adaptive stepping based on the magnitude of the
level set values encountered along the ray’s path. Given an accurate signed distance field, it is
possible to take discrete steps along the ray’s path as large as the magnitude of the level set
values encountered until either a grid point immediately adjacent to the interface is discovered
(which can be inferred from the level set value being less than the voxel width) or the ray exits
the bounding domain of the level set. When near the interface an analytic solution to the ray-
interface crossing is found with a cubic polynomial root finder. The normal is computed as the
derivative of the cubic interpolation function. If no surface is found in the current narrow band
region, ray tracing can once again begin taking large steps.

In practice this allows us to efficiently ray trace very large models on ordinary desktop
machines. See for example figures 15.2 and 15.1 as well as the images of the out-of-core shape
metamorphosis in chapter 10.

15.4 PDEs on Manifolds

As an application of our out-of-core framework Ola Nilsson and Ken Museth demonstrated how
we can solve PDEs directly on large level set surfaces by employing out-of-core linear algebra
operations [106]. Specifically we can solve the wave-equation PDE embedded on a surface,
see [106] for a detailed description of the equations involved. The waves traveling on the surface
are represented as a number of auxiliary scalar fields associated with the particular out-of-
core DT-Grid. The several auxiliary fields make the method quite storage intensive. To avoid
excessive storage usage the simulated scalar fields can be compressed with any of our proposed
value codecs. Examples of the wave equation propagating on complex geometry is shown in figure
15.6 and 15.7. Note that the former visualizes the wave scalar field as actual 3D displacements
of the geometry, whereas the latter uses a simple color map. Using the out-of-core framework
we have solved the wave equation on surfaces of resolution up to 40963.
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Figure 15.6: The wave equation simulated on ”‘TOG”’ (Transactions On Graphics) 3D text. The
wave is visualized both through the displaced surface and surface color properties. Resolution
of model 512×250×200. Rendering and simulation by Ola Nilsson.

Figure 15.7: The wave equation on a Siggraph plaque. Resolution of model 1024×250×50. The
wave is visualized by color coded surface properties. Rendering and simulation by Ola Nilsson.

15.5 Geometric Texturing

Anders Brodersen and Ken Museth applied DT-Grid based level sets as the fundamental surface
representation for geometric texturing [17]. In geometric texturing 3D surface textures are
applied to a surface instead of the traditional well known 2D textures. The challenges include
making the geometric textures warp in order to accommodate the surface curvature and making
the algorithm robust in the presence of sharp features such as edges. This must of course be done
without introducing too much noticeable distortion into the warped 3D textures. A rendering
of a dragon geometrically textured with smaller dragons is shown in figure 15.8. Both the
large dragon and the 12 smaller texture dragons are sampled in resolution 512× 244× 350 and
represented as DT-Grids. Even though the individual level set resolutions are not particularly
impressive, the quantity of individual level sets makes a dense uniform grid approach impossible.
The DT-Grid is used in several stages of the geometric texturing algorithm. This includes the
warping of the texture elements, the blending of the texture elements with the base geometry
to obtain a smooth transition and finally for ray tracing of the base geometry augmented with
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Figure 15.8: A large dragon geometrically textured with smaller dragons. Each individual dragon
level set was represented using a DT-Grid with effective resolution 512× 244× 350. Rendering
and geometric texturing by Anders Brodersen.

the texture elements. Although not exploited in the current version, unenclosed/open level sets
can advantageously be employed during the blending phase to speed up computations.

15.6 Snow Modeling and Simulation

Tommy Hinks and Ken Museth applied the DT-Grid in a level set based framework for animation
of wind-driven snow buildup [47]. Figure 15.9 shows an example of a snow-cap generated using
this method. In contrast to previous methods the utilization of level sets allows for snow of
arbitrary topology and complexity to evolve in the dynamic wind fields. DT-Grids are used to
represent both the boundary objects in the scene as well as the topologically complex snow-
caps arising from snow buildup accumulating over time. The two main advantages of using the
DT-Grid are that the memory footprint of the simulation is reduced dramatically, and that the
out-of-the-box feature of the DT-Grid allows for the evolving snow-caps to dynamically expand
over time. Although very high resolutions are not demonstrated, the method has the potential
of high resolution due to the utilization of the DT-Grid. Furthermore since both boundaries
and snow-caps are represented as individual level sets, traditional dense uniform grids would
compromise the physical memory limits rather quickly. Although not explored in the current
work, this particular application would greatly benefit from the utilization of unenclosed/open
level sets, since snow buildup is a local operation. By using unenclosed level sets, expensive
global level set operations could be confined to a smaller narrow bands which would result in a
speedup of the overall simulation.
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Figure 15.9: Level set based snow buildup in dynamic wind-driven velocity fields. Effective
resolution of Buddha is 2563. The Buddha, the ground and the snow-caps are represented as
individual DT-Grids. Rendering and simulation by Tommy Hinks.

15.7 Volume Segmentation

The DT-Grid can also be applied to level set based segmentation as demonstrated by Gunnar
Johansson and Ken Museth [61]. They present a method that improves the method of level
set segmentation without edges by Chan and Vese [19]. In particular Johansson presents a two-
stage segmentation framework which relies on an initial surface estimated by topological analysis
followed by an iterative level set refinement method. An example level set surface generated
from the segmentation of a brain from a human head is shown in figure 15.10. In this case a
resolution of 256× 256× 109 was used. While this is quite low, it was dictated by the resolution
of the input, and in the future the method will be applied to higher resolution input data sets
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Figure 15.10: A DT-Grid based segmentation of a brain from scannings of a human head. The
resolution in this case was restricted to 256 × 256 × 109 due to the size of the input data set.
However higher resolution is feasible and will be demonstrated as the methods are applied to
higher resolution input data sets in the future. Rendering and level set segmentation by Gunnar
Johansson.

such as the visible human dataset. Due to the utilization of the DT-Grid data structure, higher
resolution is feasible, although the memory bottleneck remains the storage of the volumetric
data set being segmented.

15.8 Summary

The DT-Grid and H-RLE data structures as well as the out-of-core and compression level set
framework enable applications of high resolution level set representations. The techniques have
matured rather quickly and my implementations have been used in a large number of level
set applications by other members of the graphics group. This chapter briefly reviewed sev-
eral of these applications including shape deformations, fluid simulations, ray tracing, volume
segmentation, geometric texturing and the simulation of PDEs on manifolds.
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Chapter 16

Future Work

The work presented in this dissertation has demonstrated level set representations and deforma-
tions at very high resolution. In addition the computational efficiency of level sets was improved
and simulations are no longer confined to a predefined computational domain, rather they can
move out-of-the-box. Despite these improvements, the demand for higher resolution simulations
at lower simulation times is ubiquitous. Clearly, level set (and fluid) simulations are very CPU
intensive, and future research should continue to concentrate effort in this field to improve both
storage- and speed-requirements. Below we outline research directions likely to contribute to
the area of level sets in the future.

Enhancing the Spatial and Temporal Locality of Level Set Computations: Several
more or less standard methods for improving the utilization of the cache hierarchies of modern
computers have been proposed in the context of solving partial differential equations [29, 30].
These techniques include loop-blocking, loop-fusion as well as array padding. Quite deliberately,
such methods have not been considered in this dissertation as an advantage of our work is that
it does not require existing level set methods to be re-written. However, the power of properly
exploiting the cache hierarchy should not be neglected. In fact we have already seen the power
of improved cache coherency in chapter 7 where we demonstrated that the DT-Grid and H-
RLE can be faster than previous approaches despite the additional complexity and hence CPU
cycles required to access and manipulate these data structures. It is an interesting direction for
future work to investigate whether the performance of level set methods on very high resolution
surfaces can be significantly improved by considering techniques like loop-fusion. In fact we are
already investigating fusing level set advection, reinitialization and narrow band rebuild into a
single pass over the data in order to improve both the spatial and temporal locality of level sets.
One of the main design challenges is of course to avoid compromising generality with respect
to numerical schemes. In addition we find it very likely that these techniques may actually
significantly improve the performance of our out-of-core framework since locality is even more
important in this field given the greater time-margin between accesses to memory and disk.
Reducing the number of passes over the data in out-of-core level set simulation will amortize
each IO operation over more CPU cycles hence better exploiting disk bandwidth.

External Memory and Parallel Algorithms: In this dissertation we have demonstrated
the potential power of out-of-core techniques applied to level set representations and simulations.
However, future work in this area still remains. In particular we wish to explore the feasibility

183



184 Chapter 16. Future Work

of representing all parts of the fluid solver in our out-of-core framework hence moving the entire
simulation including the solution of the Poisson equation out-of-core. It is very likely that greater
attention has to be paid to spatial and temporal locality. Since the computational time of fluid
simulations remains a major bottleneck we intend to investigate the combination of parallel and
out-of-core methods. The feasibility of parallelization has already been advocated by Irving
et al. in [52] where they in fact parallelized the DT-Grid and H-RLE techniques presented in
this dissertation. Parallelization was also very recently exploited in producing the water visual
effects for the feature film “Poseidon”. Finally, page-replacement and prefetching strategies
should be devised for out-of-core applications using random access patterns such as ray tracing.
Preliminary investigations suggest that accesses during ray tracing are in fact far from truly
random and it would be interesting to investigate if this could be exploited.

Adaptive Level Set Methods: So far all applications of level sets in the area of computer
graphics have sampled the interface uniformly. It would however be interesting to investigate
whether adaptive level set methods are feasible for computer graphics. The concept of an
adaptive method is attractive because it may lead to savings both with respect to memory
and computational requirements. Introducing a non-uniform sampling also raises several issues
including: Which properties of the level set should determine where the resolution should be
increased or decreased and how should this be detected. Furthermore, the extra book-keeping
and error-monitoring associated with an adaptive method should be worthwhile and hence not
consume more computational power than saved by solving the level set equations adaptively.
Finally, the velocity fields and speed functions governing the interface motion must also be
represented adaptively which may not be a simple task in itself. In order for this to be feasible
for computer graphics, it should not compromise the flexibility and ease of use of level sets. As
mentioned in chapter 3, a few works within computational physics have investigated adaptive
level set methods [93, 144]. However, the experimental examples are limited and it is not clear
exactly how well these methods function in practice.

New Applications: Finally we intend to apply our techniques to new application areas,
not solely within computer graphics, in the future. This includes level set interfaces of higher
dimension and co-dimension important in studies of e.g. reflections in geometric optics [110,149].
See also [111] for an introduction. Due to the representation of higher (co-)dimensional interfaces
and hence an increase in the dimensionality of the computational grids, this research area is
hampered by excessive storage requirements. A previous approach targeting this problem by
the use of hierarchical trees [94] considers reflections defined on five dimensional grids and allows
for a maximal resolution of 645. Despite the fact that this resolution seems surprisingly low it
should be kept in mind that due to the dimensionality (five), a single grid instance of size 645

with four-byte float entries represented on a dense uniform grid would take up 4GB of storage.
We believe that the DT-Grid can be applied in this area to reduce both storage requirements
and computational efficiency.

The above list of directions for future work is by no means exhaustive. However it does present
numerous outstanding problems in direct continuation of our work hitherto. In multiple of the
cases above preliminary investigations are already taking place.
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Conclusions

Due to their several advantages, including the ability to describe arbitrary topological changes,
level sets have become prevalent not only in computer graphics but also in visual effects produc-
tion and engineering. As a result, existing level set technology is constantly being pushed to its
limits as the demand for larger and more detailed simulations becomes ubiquitous. Three disad-
vantages hamper the level set method as originally proposed: Computational inefficiency, storage
inefficiency and the confinement of deformations to a static predefined domain. Previous work
has to some extent addressed these limitations, but storage efficient algorithms tend to lower the
computational efficiency and computationally efficient algorithms tend to increase the storage
requirements. The research presented in this dissertation addresses these limitations from a
computer scientific perspective. In particular the contributions fall into three categories: Level
Set Representations and Algorithms, Conversion and enabled Level Set Applications. Below we
briefly summarize the contributions to each category in turn.

Level Set Representations and Algorithms: We presented the Dynamic Tubular Grid
(DT-Grid) [105], a memory and computationally efficient data structure allowing for high res-
olution level set simulations. Performance evaluations showed that the DT-Grid requires less
storage and is in general faster than previous approaches, including octrees [38, 138] and nar-
row band methods [120] as well as a concurrently developed RLE based data structure [50].
Additionally the DT-Grid allows for out-of-the-box simulations, can take advantage of existing
numerical level set schemes and generalizes to any number of dimensions. Next we introduced
the Hierarchical Run-Length Encoded (H-RLE) [48] grid combining the DT-Grid and its algo-
rithms with the run-length encoding of Houston et al. [50]. The advantage of this data structure
is an increase in versatility over the DT-Grid. In particular, H-RLE allows for flexible encodings,
efficient unenclosed level set representations and the decoupling of level set values from the data
structure. The H-RLE remains relatively fast, but performs slightly worse than the DT-Grid.

Motivated by the fact that current desktop computers are typically equipped with 1-2 GB
of memory and that huge level set simulations take up far more memory than this, we finally
proposed a generic out-of-core and compression framework for level set simulations [106] that
can be used in conjunction with the DT-Grid and H-RLE representations. The framework out-
performs the original state-of-the-art DT-Grid when the DT-Grid must rely on virtual memory.
The compression framework can also be applied as an efficient offline streaming compressor
which we demonstrated by comparison to existing methods. The out-of-core and compression
framework allows for level sets of very high resolutions and to the best of our knowledge no
previous work has attempted to apply out-of-core and compression methods to online level set
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simulation.

Conversion: As the DT-Grid, H-RLE and the out-of-core and compression framework allow
for very high resolution level set representations, it was necessary to consider algorithms for
converting polygonal meshes, the most common exchange format for 3D models today, into
level sets. We presented two approaches for converting consistent meshes into level sets largely
leveraging on the CSC method [89]. The first method works in-core and allows for higher
resolutions than previous conversion methods since both storage and time complexity of the
method is linear in the number of faces of the polygonal mesh and the grid points in the narrow
band. The second conversion algorithm works out-of-core and does not pose restrictions on the
size of the input mesh nor the size of the output level set other than enough disk space must be
available. For problems that exceed physical memory the out-of-core conversion algorithm was
shown to out-perform the in-core method relying on virtual memory.

Level Set Applications: The data structures and algorithms presented in this dissertation
enable applications of high resolution level sets in areas of computational science where the
narrow band level set method can be utilized. In particular the data structures and algorithms
can be applied to a variety of problems in computer graphics. This dissertation contributed
with several applications including high resolution and out-of-the-box shape deformations as
well as out-of-core shape metamorphosis. In addition several applications developed by other
researchers within the graphics group and enabled by the research presented here were briefly
reviewed. One particularly important application is fluid simulation, one of the most requested
and demanding effects in today’s feature films. Both the DT-Grid and H-RLE can be utilized for
representing many of the components used in fluid simulation. This includes the fluid surface,
boundary surfaces, marker particles, interior fluid pressure and velocities as well as boundary and
surface velocities. By utilizing our data structures, the computational and storage complexity
of a fluid simulation scale with the volume of the fluid interior as opposed to the volume of the
enclosing bounding box. Additionally fluid simulations are out-of-the-box and our out-of-core
framework can be applied to many of the components involved in the fluid simulation as well.
We also reviewed several other applications including volume segmentation, the solution of PDEs
on surfaces, geometric texturing, modeling and animation of snow and ray tracing.

The research proposed in this dissertation has been developed over the past three years. It
has been used in a variety of applications internally in the graphics group and other researchers
have leveraged on the techniques presented here. Furthermore the DT-Grid is in experimental
use in at least two major companies. This can be attributed to the fact that the research
has addressed and presented solutions to limitations of the level set method widely used in a
diversity of areas. In particular the techniques developed in this dissertation enable level sets of
very high resolution to be represented and deformed relatively efficiently compared to previous
work. This also implies that with respect to high resolution, meshes can no longer be considered
superior to the level set representation. The data structures and algorithms presented in this
dissertation are likely to form an integral part of many of our future research projects on level
sets and fluids, and we foresee many exciting applications and extensions in the near future.
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