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Abstract
We propose a novel approach to guiding of Eulerian-based smoke animations through coupling of simulations at
different grid resolutions. Specifically we present a variational formulation that allows smoke animations to adopt
the low-frequency features from a lower resolution simulation (or non-physical synthesis), while simultaneously
developing higher frequencies. The overall motivation for this work is to address the fact that art-direction of
smoke animations is notoriously tedious. Particularly a change in grid resolution can result in dramatic changes in
the behavior of smoke animations, and existing methods for guiding either significantly lack high frequency detail
or may result in undesired features developing over time. Provided that the bulk movement can be represented
satisfactorily at low resolution, our technique effectively allows artists to prototype simulations at low resolution
(where computations are fast) and subsequently add extra details without altering the overall “look and feel”.
Our implementation is based on a customized multi-grid solver with memory-efficient data structures.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Animation—

1. Introduction

Grid-based Navier-Stokes solvers, like [Sta99, FSJ01], are
commonly used for smoke effects in movie production, but
they require significant CPU and memory resources. This is
especially problematic in the context of visual effects since
photorealistic smoke typically call for simulations on high-
resolution grids. Simulation effects often require many it-
erations to create the desired look. In order to have quick
turn-around times, artists often perform their art-direction it-
erations at a low resolution to determine the most effective
simulation setup, and then run the simulations at final high
resolutions. However, the change of resolution often com-
pletely changes the overall “look” of the animation, which
may cause the composition to fail from the director’s view-
point [FGP07]. This property is especially evident when the
initial grid resolution is very low and the solution has far
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from converged. It is primarily caused by the numerical vis-
cosity of the discretization and is in turn further enhanced by
the inherent non-linearity of the Navier-Stokes equations.

There is no set methodology for scaling simulation set-
tings such that the high resolution simulation matches the
look. Instead the artist has to intuit the alterations from ex-
perience and engage in an iterative process in high resolution
as well.

The goal of this paper is to propose a technique for Eu-
lerian grid-based smoke simulations [Sta99, FSJ01] that al-
lows animators to use low-resolution input simulations to
guide higher-resolution ones in such a way that details are
added, but the overall (i.e. low frequency) flow is preserved
as well as possible. Therein lies the assumption that the de-
sired overall bulk movement is representable by the low res-
olution simulation , and our approach presupposes that this is
the case. Our method is comprised of a physically based fluid
simulation combined with a novel pressure projection step
that minimizes the deviation of the velocity field’s low fre-
quencies from the low-resolution guiding flow, whilst con-
straining the velocity field to be divergence free.

The feasibility of guiding, or tracking, based on low res-
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Figure 1: A velocity, density, and temperature source injects hot high-velocity smoke subject to a buoyancy force. Left: Un-
guided simulation (2563). Middle: Unguided simulation (643). Right: 2563 simulation guided by the 643 simulation. There
is poor resemblance between the unguided simulations. The guided simulation follows the general flow of the low resolution
simulation, and adds dynamic high frequency detail.

olution input simulations has previously been demonstrated
by Bergou et al. [BMWG07] for thin shells and by Thürey et
al. [TKPR06] for Lattice Boltzmann (LBM) and Smoothed
Particle Hydrodynamics (SPH) simulations of liquids. Like
Bergou et al. we analyze the problem in a mathematical
framework and formulate guiding as a set of constrained
equations. The motivation that led us to take this approach
was that simpler strategies, considered to some extent by
previous work, did not suffice. In particular upsampling a
low-resolution velocity field followed by pressure projection
(see Figure 5.c) or blending the velocity field with a guiding
velocity field (see discussion in [TKPR06]) is incapable of
producing higher frequencies and causes significant smooth-
ing of high frequency detail, respectively. Another relatively
simple strategy is to blend the low frequencies of the ve-
locity field with a low-resolution guiding simulation before
pressure projection. This is essentially the idea presented
by Thürey et al. except that they consider guiding particles.
However this approach may, in our experience (see section
8), introduce undesired features over time when applied to an
Eulerian-based smoke simulation. We hypothesize that this
is due in part to the loss of explicit control over the low fre-
quencies during the standard pressure projection step.

Our proposed workflow consists of first applying ex-
isting fluid control methodologies to create a low reso-
lution simulation. Next step is to invoke our framework
with the low resolution simulation as input, possibly itera-
tively to control several frequency bands separately. Addi-
tional sub-grid motion details can then be generated using
one of the recently developed turbulence synthesis meth-
ods [SB08, KTJG08, NSCL08].

Provided that an appropriate low-resolution simulation
can be found, our framework allows the look development of
the bulk movement to take place in low resolution. Thereby
it offers a starting point in high resolution for control that
pertains directly to high frequency features. In particular this
paper claims the following novel contributions over previous
work:

• A variational formulation of a guiding velocity field and a
resulting set of linear equations.

• A practical implementation of our guiding framework, in-
cluding methods for lowpass filter estimation and han-
dling of boundaries.

• A custom multi-threaded multigrid implementation based
on a fast and compact dynamic matrix storage format.

2. Related Work

The concept of high level animation control of full Navier-
Stokes based simulations was first advocated by Foster
and Metaxas [FM97]. Later Treuille et al. [TMPS03] pro-
posed a gradient descent based optimization framework for
keyframe control of smoke simulations. Specifically the
framework optimizes for forces that result in the fluid assum-
ing keyframed poses. McNamara et al. [MTPS04] improved
the speed of this framework by several orders of magnitude
by adopting the adjoint method. While powerful and generic,
simulation time seems to limit the resolutions feasible with
this approach, as an entire fluid simulation has to be run for
each step in the optimization.

Thürey et al. [TKPR06] successfully demonstrated guid-
ing simulations for SPH and LBM. In particular, they pro-
pose a fast technique for controlling low frequencies of liq-
uid animations by applying a combination of feedback and
attraction forces. Contrary to our work, [TKPR06] is force-
based, which (as noted in their paper) makes it difficult to
enforce constraints on the velocity field during pressure pro-
jection.Thürey et al. do not directly address this problem,
but refer to the work of Shi et al. [SY05] for a possible solu-
tion. Shi et al. consider the problem of making liquid simu-
lations follow rapidly changing target animations. They pro-
pose a force-based solution that is comprised of a velocity-
and shape-feedback force as well as a potential function. The
shape-feedback force of Shi et al. is designed to be diver-
gence free, and is therefore unaffected by the pressure pro-
jection step. However, the shape-feedback force is specifi-
cally designed for target shapes and is not well suited for
smoke simulations with no specific target shapes.

Recent work has also successfully focused on improving
run times and memory usage of full Navier-Stokes simula-
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tions by developing procedural methods that synthesize the
high frequency detail, given a low resolution simulation as
input [SB08, KTJG08, NSCL08]. Although the goal of our
work bears similarities with these synthesis methods we em-
phasize that it is fundamentally different in that we partly
simulate the high frequency detail. Our method also allows
for non-physically based inputs which enhances the ability
of animators to art-direct fluid animations. We stress that our
work in no way precludes the procedural synthesis methods,
but is meant to work with such techniques to produce high
resolution simulations quickly.

Concurrently with our work, Mullen et al. [MCP∗09] de-
veloped energy preserving integrators for simplicial grids.
These integrators can also be applied to obtain higher re-
semblance between low and high resolution simulations.

3. Algorithm Overview

The flow of an inviscid, incompressible fluid is described by
the inviscid Euler equations ∂v

∂t + (v ·∇)v = −∇p + f and
∇·v = 0, where v denotes the velocity of the fluid, p denotes
pressure, f is an external force, and the fluid density is as-
sumed to be 1 for simplicity. In computer graphics, this set of
equations is often solved using the operator splitting approx-
imation described in [Sta99]. The central idea is to decouple
self-advection, addition of external forces and enforcement
of incompressibility by sequentially solving for each of these
terms. As illustrated in Figure 2, our method only requires
modification of the pressure projection step that solves for
the latter term. Specifically, our method proceeds as follow-
ing for each iteration of the guided, high-resolution simula-
tion:

1. Obtain the low-resolution, guiding velocity field vlow
through simulation or art direction.

2. Upsample vlow to high resolution.
3. Advect and add forces using traditional methods to obtain

the intermediate velocity field ṽ in high resolution.
4. Obtain the guiding weights α through art direction or an

automated process.
5. Solve a modified projection step using the upsampled

vlow, the guiding weights α and ṽ to obtain the new high-
resolution, guided velocity field v.

The guiding weights α will be explained in the following
section.

4. Variational Model of Guiding

In this section we analyze guiding velocity fields for fluid
animation in a mathematical framework. As discussed in the
introduction, existing simpler methods do in our experience
not suffice. Motivated by this, we consider guiding of fluids
as a constrained variational problem. Furthermore we derive
the resulting linear equations that solve for the stationary
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Project
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Figure 2: Our method consists of two components (in green)
which are easily integrated in a traditional fluid simulation
pipeline (in red). The low-resolution input velocity field is
upsampled for the guided projection step, which ensures a
similar bulk movement of the high-resolution simulation but
with added detail. An unguided simulation of high resolution
is provided for reference.

point of this variational problem. We first derive the varia-
tional problem continuously but could equally well have de-
rived the linear equations directly from a specific discretiza-
tion. As a prelude we briefly summarize how the pressure
projection step can be regarded as a variational problem.

4.1. Preliminaries

The Poisson equation

∇· ṽ = ∆p (1)

combined with v = ṽ−∇p enforces the continuity condition
of the inviscid Euler equations, where v and ṽ are velocity
fields, v is divergence free and p is pressure. It can be de-
rived from the minimization of the difference between two
velocity fields v and ṽ subject to the continuity constraint
that v be divergence free (see [FP02] pp. 202-204). Mathe-
matically this amounts to minimizing

1
2

∫
Ω

|v(r)− ṽ(r)|2 dr (2)

subject to the constraint

∇·v(r) = 0 (3)

where r is the position vector and Ω is the fluid domain.
Eq. (2) and Eq. (3) can be combined into the saddle point
problem ∫

Ω

{
1
2
|v(r)− ṽ(r)|2−λ(r)∇·v(r)

}
dr (4)

where λ(r) are scalar-valued Lagrange multipliers. Taking
the first variation and solving for a stationary point, one ob-
tains Eq. (1) and Eq. (3) with λ replacing p (hence "‘pres-
sure"’ is, in fact, a Lagrange multiplier).

4.2. Guiding Equations

To let a given low-resolution velocity field, vlow, guide a
high-resolution velocity field, v, we add an additional term to
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Eq. (2) and Eq. (3). The new term prescribes that a smoothed
version of the high-resolution velocity field should be as
close as possible to the low-resolution input velocity field
upsampled to high resolution. Enforcing that the convolution
of the high-resolution velocity field should be identical (by
imposing a constraint) to the low-resolution input velocity
field upsampled to high resolution leads to ill-posed prob-
lems for most lowpass filters (i.e. a (unique) solution does
not exist). Mathematically, our term is formulated as

R =
1
2

∫
Ω

|[F ∗v] (r)−vlow(r)|2 dr (5)

where F is a, possibly spatially varying, lowpass filter, ∗ de-
notes a convolution and vlow is the low-resolution input ve-
locity field upsampled to high resolution. Next we combine
Eq. (4) and Eq. (5) into the saddle point problem∫

Ω

{
α(r)

2
|v(r)− ṽ(r)|2−λ(r)∇·v(r)

+
(1−α(r))

2
|[F ∗v] (r)−vlow(r)|2

}
dr (6)

where α ∈ (0;1] is a scaling parameter that determines the
relative weight of each of the terms. In section 8 we will
show how α can be used to introduce artistic control. For
now we make the following observations; 1) α can vary both
spatially and temporally, 2) for α = 1 we obtain a normal
unguided fluid simulation and 3) the solution to the saddle
point problem, v, is divergence free due to the constraint
enforced by the Lagrange multipliers. To solve this saddle
point problem for v we employ the calculus of variations.
This amounts to deriving the stationary points of Eq. (6) that
have zero first variation. Here we focus on the first variation,
δR, of our term R given by Eq. (5), and next combine with
the first variation of Eq. (4) considered in [FP02]. Assume in
the following that the velocity field v gives rise to the desired
stationary point, Rstationary. That is, Rstationary = R(v). Next
we consider δv to be the variation of v, and ignore second
order terms (i.e. terms of the kind δv2) that do not contribute
to the first variation. The first variation, δR, then reads as

δR = R−Rstationary = R(v+δv)−R(v)

=
∫

Ω

[F ∗δv] (r) · [[F ∗v] (r)−vlow(r)]dr

=
∫

Ω

δv(r) ·
∫

Ω

F(q− r) [[F ∗v] (q)−vlow(q)]dqdr

which holds from the definition of convolution, the linearity
of the integral, and the definition and distributivity of the dot
product. The integration variable q arises from the expansion
of F ∗δv into its integral definition. Since δv(r) is arbitrary
in all points of the domain, and δR = 0 for a stationary point,
we obtain the following necessary and sufficient condition
for a stationary point of Eq. (5):∫

Ω

F(q− r) [[F ∗v] (q)−vlow(q)]dq = 0

Combining this integral with the integral obtained for the
first variation of Eq. (4), derived in [FP02], and including the
scaling parameter α > 0, a necessary and sufficient condition
for a stationary point of Eq. (6) is:

v(r)+ 1
α(r)∇λ(r)+ 1

α(r)
∫

Ω
(1−α(q))F(q− r) [F ∗v] (q)dq

= ṽ(r)+ 1
α(r)

∫
Ω
(1−α(q))F(q− r)vlow(q)dq (7)

where the right hand side is known (the reason for dividing
by α is that the implementation of Eq. (8) simplifies). The
linear system obtained by discretizing and combining Eq. (7)
with the constraints in Eq. (3) is however not well suited for
relaxation methods such as Gauss Seidel which forms part of
a multigrid implementation. This is due to the fact that Gauss
Seidel employs a division by the diagonal entry, which is
zero in the lower part of the matrix corresponding to Eq. (3)
since no terms including λ are present. In order to obtain a
linear system with non-zero diagonal entries in all rows, we
apply the constraint Eq. (3) to Eq. (7) instead of discretizing
Eq. (3) explicitly:

∇·
(

1
α(r)∇λ(r)+ 1

α(r)
∫

Ω
(1−α(q))F(q− r) [F ∗v] (q)dq

)
=∇·

(
ṽ(r)+ 1

α(r)
∫

Ω
(1−α(q))F(q− r)vlow(q)dq

)
(8)

where we have used that ∇ · v(r) = 0. If α is not spatially
varying, Eq. (7) becomes

v(r)+ 1
α
∇λ(r)+ (1−α)

α

∫
Ω
F(q− r) [F ∗v] (q)dq

= ṽ(r)+ (1−α)
α

∫
Ω
F(q− r)vlow(q)dq (9)

and Eq. (8) simplifies to

1
α

∆λ(r)+ (1−α)
α

∇·
∫

Ω
F(q− r) [F ∗v] (q)dq

=∇· ṽ(r)+ (1−α)
α

∇·
∫

Ω
F(q− r)vlow(q)dq (10)

By combining and discretizing Eq. (7) and Eq. (8) (or Eq. (9)
and Eq. (10) if α is not spatially varying), we get a linear
system of (D+1)N equations in (D+1)N unknowns (v and
λ), where D is the dimension and N is the number of grid
points.

A few important properties of the derived equations are:

• The guiding velocity field, vlow, does not have to be diver-
gence free.

• The derived guiding equations are self-consistent in the
sense that if a fluid velocity field, v, is used to guide itself,
meaning that if vlow =F∗v, then the result will be v itself.
We have verified this experimentally.

• A solution to Eq. (7) and Eq. (8) exists simply because a
divergence free velocity field exists. We leave a rigorous
proof of the conditions required for uniqueness of the so-
lution as future work. In practice it is our experience that
the solution to the linear system converges to the desired
precision in few multigrid cycles unless α� 1.

• By construction of the variational problem, the low fre-
quencies of the solution to the linear system will be a
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blend of the low frequencies in ṽ and vlow, and the contri-
bution from each of these in the final velocity field can be
controlled using α.

4.3. The Discretization of the Guiding Equations

We discretize the system of equations, Eq. (7-8) or Eq. (9-
10), on a staggered MAC grid using finite difference ap-
proximations. That is, velocities are stored on cell faces,
and the pressure/Lagrange multipliers are stored in cell cen-
ters. The operator matrix for the linear system, Eq. (9) com-
bined with Eq. (10), is depicted in Figure 3. Note that we
solve for all unknowns simultaneously. The gradient,∇λ,
divergence, ∇ · ṽ, and Laplacian, ∆λ, are discretized us-
ing the usual second order approximations [FSJ01]. The
term (1−α)

α

∫
Ω
F(q − r) [F ∗v] (q)dq is discretized by a

sum of point-wise multiplications at cell faces ranging over
the support of the lowpass filter. Let F be the discretized
version of the lowpass filter, F , then the discretization is
(1−α)

α ∑q∈suppF F(q− r) [F ∗v] (q). Likewise the convolu-
tion and the right-hand-side correlation are implemented as
a sum. The guiding terms involving the divergence are dis-
cretized by the usual second order approximation to the di-
vergence. The upper part of the matrix, the first DN equa-
tions, are discretized on staggered cell faces, whereas the
last N equations are discretized in cell centers. The resulting
equation system is linear and sparse. However, the system of
equations is asymmetric (see Figure 3) and due to the sup-
port of the lowpass filters, the matrix requires an impractical
amount of memory when stored uncompressed. However, by
employing the multigrid method [BHM00], the system can
be solved to sufficient precision in few multigrid cycles, and
the matrix stored in a compact format.

5. Boundaries

A common complication in fluid simulations is boundary
conditions. The situation is further complicated when deal-
ing with simulations at multiple resolutions, since sampling
issues might cause a voxelization of the boundary to differ
between the simulations.We represent boundaries as the zero
level set of a signed distance function sampled at the same
resolutions as the simulations. This means that boundaries
are limited to having features representable within the fre-
quency space of the simulation resolutions to avoid sam-
pling artifacts. Particularly, boundary features that are too
thin to be represented properly in the low-resolution sim-
ulation might appear in the high-resolution simulation and
potentially result in visual artifacts. We have left this issue
as a direction for future work.

If the lowpass filter, F , overlaps the boundaries, one
might worry that visual artifacts could occur. We have ex-
plored relaxing the guiding weights near boundaries (in or-
der to make the guiding more loose or disable it entirely). We

have, however, not found this necessary, as we did not ob-
serve a qualitative improvement of the result. In fact, we ob-
served that turning guiding off inside narrow pipes of fluid,
caused the high-resolution fluid to move much faster than
the guiding input due to less numerical dissipation, which is
not desirable. We have also seen no major impact on con-
vergence of the multigrid solver. However, if a large fraction
of the domain is part of the boundary, disabling guiding in
these parts of the domain speeds up the multigrid solver con-
siderably.

5.1. The Penalization Method

Internal boundaries are traditionally hard to address in the
multigrid paradigm. This is primarily due to the fact that the
domain embedded by the internal boundaries is excluded by
the multigrid solve, which in turn complicates the otherwise
simple rectangular fluid domain. However, it is possible to
treat internal boundaries implicitly, and basically solve for
pressure and velocity everywhere in the computational do-
main, i.e. the multigrid solver itself is not explicitly aware
of boundaries. One method that does exactly this is the pe-
nalization method of Angot et al. [ABF99, KCR08]. This
method also has the advantage of being non-iterative, which
makes it a good candidate for our application. An alternative
iterative method for handling boundaries in multigrid con-
text was recently proposed in [MCPN08]. The penalization
method solves for pressure and velocity everywhere. How-
ever, inside boundaries, the velocity, v, is penalized towards
the prescribed velocity of the boundary, v̄, and at the surface
of the boundary, the velocity satisfies the no-slip condition
(the Euler equations, being inviscid, are subject to free-slip,
so we rely here on numerical viscosity to make the problem
well-posed). Mathematically the penalization is achieved by
adding a penalization term, 1

η
χboundary(v− v̄), to the left-

hand side of the momentum equation, where χboundary is the
characteristic function of the boundary, and η� 1:

∂v
∂t

+(v ·∇)v+∇p+
1
η

χboundary(v− v̄) = f (11)

In practice we use η = 10−20, consult [ABF99] for a study
of the effect of η. As discretization is not addressed in the
original references [ABF99,KCR08], we derive here how to
discretize the penalization term to allow for arbitrarily large
time steps. In particular an implicit discretization is required,
as an explicit discretization restricts the time step to be in
the order of ∆t ≤ 2η, which is highly unpractical. This can
be seen by performing a Von Neumann analysis of the sim-
plified equation ∂v

∂t + 1
η

v = 0. We describe first how to dis-
cretize the penalized momentum equation and how it affects
the Poisson equation. Finally we consider how to discretize
the penalized guiding equations.

Outside boundaries the discretization is equal to the non-
penalized discretization since the characteristic function
χboundary = 0. Inside the boundary we discretize the velocity
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Figure 3: Shows the linear system Ax = b of (D + 1)N equations in (D + 1)N unknowns that results from combining Eq. (9)
and Eq. (10) where D is the number of dimensions and N is the number of grid cells. Note that the matrix A acts as an operator
on x. However to emphasize the relationship with Eq. (9) and Eq. (10) we have included the complete expressions in the matrix
(this is why e.g. v(r) appears both as an unknown and in the matrix).

v of the penalization term at time n + 1, thus obtaining the
discretization of the penalized momentum equation Eq. (11):

vn+1−vn

∆t
− fn = −(vn ·∇)vn−∇pn− 1

η
(vn+1− v̄n+1)

⇓

vn+1 =
(

ṽn +∆t
(
−∇pn +

1
η

v̄n+1
))

1
1+ ∆t

η

(12)

where ṽn = vn + (fn− (vn ·∇)vn)∆t. The usual Poisson
equation arises by taking the divergence of the momen-
tum equation subject to the constraint ∇ · vn+1 = 0. How-
ever, taking the divergence of Eq. (12), subject to the same
constraint, leads to a slightly different system of equations.
Combining with the normal Poisson equation outside bound-
aries we obtain the following system of equations that should
be used whenever boundaries are present:

∇· v̂n =∇·
(
χboundaryψ∇p+(1−χboundary)∇p

)
(13)

and the velocity update

vn+1 = v̂n−χboundaryψ∇p− (1−χboundary)∇p (14)

respectively, where ψ = 1
1+ ∆t

η

and v̂n = (1−χboundary)ṽn +

χboundary

(
ṽn + ∆t

η
v̄n+1

)
ψ.Note that we have left out the

factor of ∆t in front of p in both equations. This is possi-
ble since ∆t is a constant and we are only interested in p up
to a scale.

With these derivations in mind it is easy to devise a penal-
ization strategy for the guiding equations. By setting F ≡ 0
when its center point, r, is inside a boundary, it is straightfor-
ward to verify that the following equations are equivalent to
the guiding equations Eq. (7) and Eq. (8) outside the bound-
ary, and equal to Eq. (13) and Eq. (14) inside the boundary.
Due to the latter equality, the velocity is driven towards the
actual boundary velocity inside the boundary. Consider G1
to be the discretization of G1 and G2 to be the discretization
of G2, where G1 = 1

α(r)
∫

Ω
(1−α(q))F(q− r) [F ∗v] (q)dq

and G2 = 1
α(r)

∫
Ω
(1−α(q))F(q−r)vlow(q) are the guiding

terms on the left- and right-hand side of Eq. (7). The penal-
ized guiding equations become:

∇· v̂n =∇·
(

χboundaryψ∇p+(1−χboundary)
1

α(r)
∇p+G1−G2

)
and

vn+1 = v̂n−χboundaryψ∇p−(1−χboundary)
1

α(r)
∇p−G1 +G2

These equations replace Eq. (7) and Eq. (8) whenever bound-
aries are present.

6. Filter Estimation, Upsampling and Downsampling

For some types of simulations we vary the filter,F , through-
out the domain to achieve a certain artistic goal (see section
8). For physically based guiding velocity fields, it is in our
experience very hard to apply a common lowpass filter, such
as a Gaussian, by heuristically determining a suitable stan-
dard deviation. In particular it often results in guided simu-
lations that are too smooth. Instead we construct the lowpass
filter based on the following intuition: To use a high reso-
lution velocity field as input to our guiding algorithm, the
velocity field would have to be smoothed and downsampled.
The guiding algorithm would then subsequently reconstruct
the velocity field in high resolution and use this as vlow in the
minimization. Assuming that the combination of these oper-
ations can be expressed as a convolution, the estimation of
the lowpass filter, F , encompasses the effects of smoothing
(with a Gaussian kernel), G, downsampling, D, and upsam-
pling, U . Essentially the desired filter is just U ◦D◦G. How-
ever simply constructing the discrete filter in this way is very
sensitive to how G is centered relative to D. Another issue
is what exactly the standard deviation of G should be set to.
For this reason we estimate an approximation to U ◦D ◦G
offline via an optimization process. The estimated lowpass
filter is not simulation dependent but depends only on the
upsampling factor, the width, w, of the filter as well as the
downsampling and upsampling methods.

The input to the filter estimation consists of a filter width,
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w, a 2D image, A, of N uniformly distributed random num-
bers (to avoid bias), and an upsampling factor. An optimiza-
tion is then performed to find the standard deviation, σ, of
G and the lowpass filter, F̂ , that minimizes the difference
between U(D(G(σ)∗A)) and F̂ ∗A, where ∗ denotes a con-
volution. In each iteration of the optimization, we construct
a N×(w2) system of linear equations, Mx = b, that is solved
in a least squares sense. The vector, x, represents the filter,
F̂ , we are estimating, while the right-hand side, b, contains
U(D(G(σ) ∗ A)). The matrix, M, contains a row for each
grid point in A, and each row contains the values of A that
fall in the w×w support of the filter we are estimating.To
facilitate speedups during the multigrid solve of the guid-
ing equations, we make the final guiding filter, F , separable.
We have observed that F̂ is usually very close to separable,
so we construct the w diagonal values of F by setting them
equal to the diagonal values of F̂ . The diagonal values com-
pletely define a separable F , as the values of F are given
by a tensor product of the square root of the diagonal val-
ues with themselves. This tensor product definition directly
extends to three dimensions, and we construct our filters for
3D guided simulations by a triple tensor product.

We both up- and down-sample by means of a cubic con-
volution [Key81]. Practical experience has shown that us-
ing linear interpolation is not sufficient. Boundaries are han-
dled by explicitly setting the velocity of the low resolution
boundaries in the low resolution velocity field before upsam-
pling. In this way the upsampling process itself is unaware
of boundaries.

7. Multigrid Solver

We adopt the multigrid method (see [BHM00] for an intro-
duction) to solve the linear system in Figure 3. Some of the
advantages of the multigrid method are that for a grid with
N grid points, it requires linear O(N) storage, handles both
symmetric and asymmetric linear systems and the low fre-
quencies of the solution itself act as a preconditioner.
Briefly explained, the multigrid method solves a linear sys-
tem Ax = b on progressively coarser grids. It transfers so-
lutions from coarser to finer grids and residuals from finer
to coarser grids by means of interpolation and restriction
operators, respectively. On each grid, or level, of the multi-
grid solve, a matrix operator is constructed and a relaxation
method is employed for a small number of iterations. The
strength of the multigrid method comes from the fact that
the low frequencies of the solution converge much faster on
coarser than finer grids.

For our linear system we found that extending the solver
with restriction and interpolation operators that operate on
cell faces as well as cell centers (in order to maintain a stag-
gered grid on each level of the multigrid solve) improved the
ratio of errors in each iteration roughly by a factor of two
and required only a few multigrid cycles to converge.

The matrix operators on each multigrid level are stored

in a compact storage format motivated by the fact that the
stencils of the discretized equations (see Figure 3) are iden-
tical in many grid points. For example, in the case where
F and α do not vary spatially, all grid points, that contain
fluid and for which the support of the stencil is completely
inside the spatial domain, will have identical stencils at the
top multigrid level. By means of interpolation and restriction
operators this property transfers to lower levels as well. Our
matrix storage format is comprised of an indexed represen-
tation in which each grid point stores an index into an array
of unique stencils, such that no duplicate stencils are stored.
When the indexed representation is constructed, a stencil in
a given grid point is only computed whenever it is detected
that the stencil in the current grid point may not be identical
to any of the stencils previously computed, thus speeding up
the computation. Whenever F and α do not vary spatially it
is possible to further reduce storage requirements, because
F is separable, meaning that

∫
Ω
F(q− r) [F ∗v] (q)dq is

also separable. Hence, only a 1D representation of the sten-
cil needs to be stored. Currently we only exploit this on the
top level.We do not even store the matrix operator at the top-
most multigrid level when separability can be exploited be-
cause we found that both matrix multiply and relaxation can
be computed efficiently, in parallel, on the fly. For the 2563

guided smoke spray example (see section 8 and Figure 1)
using a lowpass filter of width 9, the combined effect of our
indexed representation and separability reduced total stor-
age requirements of the matrix operators to 208MB from the
4.04TB required if storing all non-zero entries.In the case of
moving boundaries, the stencils at the grid points that change
status from boundary to fluid or vice versa are modified by
the penalization method. Although in the worst case the en-
tire matrix has to be re-computed when this happens, in prac-
tice only a few grid points, compared to the total number of
grid points in the domain, change status. Hence the matrix
can be re-computed locally by only updating the stencil val-
ues that are actually affected by the change. The locality of
the change is maintained throughout lower multigrid levels,
hence facilitating a fast update to matrix operators at all lev-
els.

We have taken the approach of parallelizing the individual
components of our multigrid solver such as the relaxation
and matrix-vector multiplication using Intel Thread Build-
ing Blocks [Rei07]. This gives a speedup of between four
and five on an eight-core machine. Whenever possible, the
relaxation and matrix-vector multiplication operate in par-
allel using separable filters only. We use Successive Over-
Relaxation (SOR) with an over-relaxation parameter of 1.35
(found experimentally). Direct parallelization of SOR can-
not guarantee a data flow consistent with a serial SOR algo-
rithm, and hence the convergence analysis of the serial algo-
rithm does not apply. However, we found that parallelizing
SOR gives convergence rates equivalent to those obtained in
serial. Particularly these convergence rates are significantly
better than those obtained using weighted Jacobi relaxation.
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Figure 4: Upper triple: High resolution unguided, low reso-
lution unguided and high resolution guided simulations at
frame 210 of a smoke column interacting with a moving
boundary. In low resolution and guided high resolution the
boundary touches the top of the smoke column whereas in
high resolution the boundary passes through the smoke. Due
to diffusion the column appears thicker in low resolution.
Lower triple: Frame 256 from same simulation.

8. Results and Discussion

We illustrate our variational guiding approach with the fol-
lowing examples. All simulations were run on a MAC
Pro with 4GB of memory and two Intel Xeon quad-core
2.80GHz processors. We employ BFECC [KLLR07] and
monotonic cubic interpolation [FSJ01] for advection. Iden-
tical time steps were used in low and high resolution.
Rising Smoke Column
A spherical density- and hot temperature-source is placed at
the bottom of an elongated domain in which the smoke ve-
locities are subjected to buoyancy. Both the density and tem-
perature fields are advected in the flow. The low-resolution
domain is 16× 64× 16, and the high-resolution domain is
upsampled by a factor of four to 64× 256× 64. Figure
5 illustrates that the low-resolution simulation rises slower
and with less turbulence than the high-resolution simulation.
Due to diffusion of densities the smoke column in low res-
olution appears to be thicker than in high resolution. The
rightmost image shows that just using the simple approach of
upsampling the low-resolution velocity field does not result
in high frequency details. Guided simulations with varying α

are shown in Figure 7 and enable a smooth interpolation be-
tween a strictly guided and an unguided simulation. In prac-
tice we run guided simulations with α = 0.65 which appears
to obtain a plausible mix of high frequency detail and guided

low frequency flow. Increasing the width of the guiding filter
allows for higher frequency detail to develop and we use a 93

filter stencil. The guiding matrix operators required 72MB
and took 119 seconds to compute. 4 multigrid cycles were
required to converge to a divergence of roughly 10−5 for the
guided (31 seconds per frame) and unguided (16 seconds
per frame) simulations at resolution 64× 256× 64. Figure
6 illustrates that for Eulerian smoke simulations, undesir-
able features may develop over time when explicitly blend-
ing the low frequencies of the current velocity field with the
upsampled guiding velocity field as proposed in [TKPR06].
Granted, their method is based on guiding particles whereas
we set the low frequencies everywhere in the domain. Addi-
tionally, the choice of blend-factor used in [TKPR06] may,
in our experience, give plausible results for one simulation,
but undesired features for another. This implies that manual
experimentation in high resolution may be required. How-
ever, if a successful blend-factor can be found, this simple
method provides a faster alternative to our method.
Rising Smoke Column with Moving Boundary
This setup is similar to the Rising Smoke Column simula-
tion except that a moving boundary is timed to touch the top
of the smoke column in low resolution as shown in Figure
4. In high resolution the boundary passes through the faster
moving smoke. The guided high-resolution simulation re-
tains the qualitative features of the low-resolution simulation
and adds higher frequency detail. The initial guiding matrix
operators required 280MB and took 254 seconds to com-
pute. The guided and unguided high resolution simulations
took respectively 84 and 45 seconds per frame.
Smoke Spray
A velocity-, density- and temperature-source injects hot
high-velocity smoke subject to a buoyancy force as shown
in Figure 1. Again, the guided simulation retains the low
frequency qualitative features of its guiding simulation. The
total storage required for the matrix operators of the guided
simulation is 208MB and the computation took 696 seconds.
The guided simulation took 580 seconds per frame and the
unguided simulation 315 seconds at resolution 2563.
Guiding Curves
A low-resolution, non-physically based velocity field in the
shape of a torus is used to guide a smoke torus (see Figure
8). Both the lowpass filter F and the guiding parameter α

vary spatially; the identity filter is used in a narrow band
inside the initial smoke band to prevent drift of the low-
frequency velocities, and guiding is gradually diminished
outside the initial smoke band by increasing α. Vorticity con-
finement [FSJ01] is used to induce high-frequency instabili-
ties. The rightmost images of Figure 8 show the same setup
with a trefoil knot curve. For both simulations it was neces-
sary to uniformly quantize the values of α to limit the num-
ber of unique stencils in the matrix operators and thereby
the storage requirements. We have verified experimentally
that the quantization did not cause visual artifacts. For the
torus simulation, the matrix operators required 1496 MB and
took 1061 seconds to compute. The simulation ran for 150
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Figure 5: Left: High resolution simulation. Middle: Low
resolution simulation. Right: Low resolution velocity field
upsampled to high resolution followed by pressure projec-
tion and density advection (note that this is not a guided sim-
ulation). High frequencies cannot develop during the stan-
dard pressure projection [Bri08].

seconds per frame at resolution 1283. The trefoil knot simu-
lation needed 2064 MB, and the computation of the matrix
operators took 2549 seconds. The simulation took 155 sec-
onds per frame at resolution 1283.

The framework proposed in this paper has several limita-
tions:

• It is an assumption of our method that an artist can obtain
a satisfactory bulk movement in low resolution. If this is
not the case, our method does not apply.

• Provided that an appropriate low-resolution simulation
can be found, our framework allows animators to proto-
type in low resolution and then add details with a guided
high-resolution simulation. However, for the examples
presented in this paper we found the guided simulations
to incur an overhead of 84− 94% compared to the high-
resolution unguided simulation. For this reason we wish
to pursue further strategies for optimization in the future.

• The amount of density-diffusion and -dissipation is signif-
icantly higher in low resolution. For this reason, features
in the high-resolution guided simulation may deviate in
intensity from the low-resolution simulation. Specifically,
this is the case when sheets of diffused densities develop
and when thin structures dissipate away in low resolution.

• Our approach fails if boundaries have very thin or fine
features that cannot be represented simultaneously on the
high- and low-resolution grids. At least this will be the
case close to the boundary where boundary conditions
must be fulfilled. We plan to address this in future work,
possibly by adapting the methods for handling thin shells
by Guendelman et al. [GSLF05] and the accurate, varia-
tional boundary coupling of Batty et al. [BBB07].

9. Conclusion

Smoke simulations are notoriously hard to art-direct due in
part to numerical viscosity and the non-linearity of the gov-
erning equations. In this paper we proposed a self-consistent
variational method for guiding a high resolution Eulerian
smoke simulation by a lower resolution flow. The low fre-
quencies of the guided simulation agree as much as possible

Figure 6: Frame 399 from the smoke column simulation.
Left: Explicitly blending with a low frequency guiding ve-
locity field before pressure projection may result in undesir-
able features developing over time. Right: Guided simula-
tion with identical blending parameter, α, for comparison.

with the low resolution flow, and higher frequencies can de-
velop. It is a fundamental assumption of our method that a
satisfactory low-resolution simulation exists, otherwise our
method does not apply. The low-resolution flow can orig-
inate from a physically based simulation, be purely art di-
rected or arise from a combination of the two. Our method
allows for a smooth interpolation between a strictly guided
and an unguided physical simulation, and appears to be free
of the visual artifacts that may result from using previous
methods. An interesting alternative to the multigrid approach
taken in this paper might be the multilevel bases described
by Oswald [Osw01]. Finally, we believe that the variational
approach taken in this paper is applicable to a wide range of
fluid control paradigms in computer graphics.
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