
DOI: 10.1007/s10915-005-9062-8
Journal of Scientific Computing (© 2006)

Dynamic Tubular Grid: An Efficient Data Structure
and Algorithms for High Resolution Level Sets

Michael B. Nielsen1 and Ken Museth2

Received November 12, 2004; accepted (in revised form) January 26, 2005

Level set methods [Osher and Sethian. Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Com-
put. Phys. 79 (1988) 12] have proved very successful for interface tracking in
many different areas of computational science. However, current level set meth-
ods are limited by a poor balance between computational efficiency and stor-
age requirements. Tree-based methods have relatively slow access times, whereas
narrow band schemes lead to very large memory footprints for high resolution
interfaces. In this paper we present a level set scheme for which both compu-
tational complexity and storage requirements scale with the size of the inter-
face. Our novel level set data structure and algorithms are fast, cache efficient
and allow for a very low memory footprint when representing high resolu-
tion level sets. We use a time-dependent and interface adapting grid dubbed
the “Dynamic Tubular Grid” or DT-Grid. Additionally, it has been optimized
for advanced finite difference schemes currently employed in accurate level set
computations. As a key feature of the DT-Grid, the associated interface prop-
agations are not limited to any computational box and can expand freely. We
present several numerical evaluations, including a level set simulation on a grid
with an effective resolution of 10243.

KEY WORDS: Interface tracking; level sets; compact model representations;
deformable surfaces; partial differential equations.

1. INTRODUCTION

This paper presents an efficient data structure and algorithms for the
tracking of propagating interfaces in various computer simulations. Inter-
face tracking is an important problem in many different scientific fields

1 University of Århus, Arhus, Denmark.
2 Department of Science and Technology, Linköping Institute of Technology,

601 74 Norrköping, Sweden. E-mail: museth@acm.org

© 2006 Springer Science+Business Media, Inc.

Nielsen and Museth

ranging from physics and chemistry to computer vision and computer
graphics. To mention a few: two-phase tracking in computational fluid
dynamics (e.g. water/air), tracking of the blue-core in simulations of chem-
ical combustion in burning flames, propagation of curves in image segmen-
tation and deforming surfaces in geometric modeling.

All of these fields have found the level set method [23, 25, 32] by
Osher and Sethian to be very useful and robust [5, 9, 10, 18, 22 24, 28,
35, 41]. This PDE based method represents the dynamic interface implic-
itly as the zero level set (i.e. iso-surface) of a time-dependent signed dis-
tance function discretized on a computational grid. The level set method
essentially adds a spatial dimension to address the problem of efficiently
representing and tracking the interface. This allows level set surfaces to
undergo arbitrary changes in topology while at the same time preventing
them from self-intersecting, which is very hard to avoid with explicit sur-
face representations.

However, the robustness and flexibility of the level set method comes
at the price of having to solve a time-dependent PDE on a discrete grid of
dimension one higher than that of the actual interface. The related com-
putational issue is effectively addressed by so-called narrow band schemes
that utilize the fact that it is sufficient to solve the level set PDE in the
vicinity of the interface in order to track it. Consequently, narrow band
implementations of the level set method have the desired property that
the computational complexity scales with the size of the interface (i.e.
area in 3D and arc-length in 2D) rather than with the volume (or area)
in which it is embedded. However, all current publications on these nar-
row band schemes either require the full computational grid to be stored
or the narrow band grid points to be stored in a hierarchical tree struc-
ture. This leads to either very large memory footprints or complicated tree
data structures with relatively slow access and construction times. Further-
more, these narrow band methods are limited by a convex boundary of the
underlying computational grid, which typically restricts the extent of inter-
face expansion to a predefined box. The main contribution of this paper
is to present a novel efficient data structure and algorithms that are not
hampered by these limitations.

Our general approach to addressing these limitations is to introduce a
dynamic uniform grid that is only defined in a tubular region around the
propagating interface. So, in contrast to existing narrow band methods we
do not store any information outside of this dynamic tube. Also, since we
apply a uniform sampling around the interface we are not hampered by
some of the limitations related to multi-resolution techniques such as the
use of hierarchical trees. Our data structure can readily be used with all
of the finite difference schemes developed for uniform full grids. Moreover,

Dynamic Tubular Grid

Lipschitz discontinuities from interpolation over non-uniform grid cells is
not an issue. In fact, our studies show that our 3D DT-Grid is faster and
more memory efficient than a state-of-the-art octree implementation [12,
33]. Finally, our data structure is free of any boundary restrictions on the
interface expansion which leads to what we call “out-of-the-box” level set
simulations. Throughout this paper we shall refer to our approach as the
Dynamic Tubular Grid, or simply DT-Grid.

1.1. Previous Work

The celebrated level set method was proposed by Osher and Sethian
in 1988 [25]. In its original formulation a discretized function of the dis-
tance to an initial interface is propagated by solving a time-dependent
PDE on a full Cartesian grid by means of sophisticated finite difference
schemes developed for Hamilton–Jacobi equations. While an incredibly
elegant solution to the challenging problem of interface tracking, it had
the disadvantage that the associated computational complexity scaled with
the size of the grid in which the interface was embedded, rather than with
the actual size of the interface itself.

This limitation was removed by the introduction of so-called narrow
band schemes that simply solve the level set PDE in close vicinity of the
zero level set, i.e. the interface. This idea was first proposed by Adal-
steinsson and Sethian [1], but the numerical implementation was based
on a very wide band around the interface to avoid frequent and costly
rebuilds. Later Whitaker [39] proposed an approximate but faster narrow
band scheme dubbed the “Sparse Field Method”. In addition to stor-
ing the full grid, the actual interface grid points were arranged in linked
lists, and the level set PDE only solved at these grid points. This solution
was then propagated to neighboring grid points by means of an approx-
imate city-block distance metric. The width of the resulting narrow band
was only as wide as the size of the finite difference stencils used on the
interface grid points. Additionally, costly re-initializations were avoided
by employing speed function extension [2] that preserves the approximate
signed distance to the interface. Finally, Peng et al. [27] proposed a fast
narrow band scheme that accurately solves the level set PDE in a narrow
band around the interface. Subsequently, this solution is propagated out
to an extra band by means of an Euclidian distance metric. Their method
employs data structures based on simple arrays as opposed to the linked
lists used in [39].

All of these narrow band schemes effectively address the problem of
computational complexity present in the original level set formulation [25].
However, they all explicitly store a full cartesian grid and additional data

Nielsen and Museth

structures to identify the narrow band grid points. Hence, the associated
memory requirements scale with the size of the full grid, as opposed to the
size of the interface. This can be a severely limiting factor for level set sim-
ulations that require large grids to resolve details of complex interfaces or
large deformations over time. To the best of our knowledge, the only pub-
lished previous work that attempts to address this serious problem is a rel-
atively small body of work based on tree structures as the underlying grid
representation. For contours this typically amounts to using quadtrees [6,
21, 39] and more recently this idea was extended to surfaces by means of
octrees [16]. Furthermore, Milne [20] and Sussman et al. [29] have explored
level sets in conjunction with patch based AMR.

Tree based approaches do indeed reduce the memory footprint of
the associated interface representation. However, a problem seems to be
that the data structures are relatively slow to access and modify during
interface propagations. This can lead to significant reductions in perfor-
mance when compared to regular narrow band schemes based on full uni-
form Cartesian grids, see the evaluation in Sec. 4 and e.g., [4]. However, a
reviewer of this paper has pointed out to us that work in submission by
Lossasso et al. [11] proposes using a uniform grid where every cell is an
octree of its own. This should remove much of the slow access and make
it easy to extend the grid in space by simply adding uniform grid cells
without the need to modify the octrees in other cells or their depth struc-
ture. However, we lack implementation details to test these improvements
against DT-Grid.

While tree data structures allow for multi-resolution representations,
all practical tree methods appear to use uniform resolution near the inter-
face [6, 16, 21, 39]. This is partly due to the fact that it is hard to design
reliable “refinement oracles” which can guarantee that no fine features are
missed due to under-sampling as the interface propagates in time. Refining
uniformly near the interface and storing only these grid points in the octree
(as we have done for evaluation purposes in Sec. 4) enables using the stan-
dard higher order finite difference schemes like ENO [26] or WENO [17]
in space and the TVD Runge–Kutta methods [34] in time. However, a non-
uniform discretization makes it non-trivial to accurately employ these finite
difference schemes. Tree based methods often use a semi-Lagrangian scheme
[36] which is strictly limited to hyperbolic problems like advection in exter-
nal velocity fields. While very efficient for problems typically encountered
in CFD, it is unclear how to extend this approach to parabolic problems
like curvature based interface flow. Additionally, since the semi-Lagrangian
method uses interpolation on the non-uniform grid, nontrivial issues like
Lipschitz continuity also has to be explicitly addressed [21]. However, as
demonstrated by Losasso et al. [16] a simple adaptive interpolation scheme,

Dynamic Tubular Grid

like the one described in [40], works fine when high accuracy is not a major
concern.

To the best of our knowledge, the only work directly related to ours
is the work by Bridson [4] and Houston et al. [14]. Bridson [4] suggests
to store the level set in a sparse block grid which is a coarse uniform
grid with finer uniform grids nested in the coarse grid cells that intersect
the interface. This approach allows for higher resolutions, but the mem-
ory usage is not proportional to the size of interface. Bridson also sug-
gests a solution based on a hashtable to allow the grid to expand, but
does not demonstrate it. The method of Houston et al. [14] was described
in a technical sketch (one page abstract) recently presented at a graphics
conference, where we concurrently summarized the main features of DT-
Grid [3]. Their work primarily focuses on fluid simulations, and they pro-
pose a data structure based on Run-Length-Encoding which decouples the
storage of the elements from the actual encoding. While we do not have
enough details to reproduce their method for evaluation, we list the fol-
lowing characteristics based on the abstract and private communication.
In 3D, their approach requires O(MXMY + M3) storage, where MX, MY

and M3 are the number of grid points in, respectively, the X and Y dimen-
sions of a bounding box and the narrow band. Hence their memory usage
is not proportional to the interface. Sequential access time is O(MXMY

M3
+1)

whereas random and stencil access times are logarithmic in the number
of runs in each scan-line. Their method maintains a dynamically resizing
bounding box which allows the level set to grow dynamically. However,
if the MXMY dependency in their storage requirements becomes domi-
nant, their method does not allow for out-of-the-box level set simulations.
The characteristics of our method, DT-Grid, will be outlined in the next
section.

1.2. Contributions

Our work stands apart from previously published work in several
ways. We do not use any tree structures or full grids with additional
data structures to represent the narrow band. DT-Grid takes an entirely
different approach by storing the narrow band in a very compact non-
hierarchical data structure that uses less memory than previous methods
without compromising the computational efficiency. Below we summarize
our contributions.

• The memory usage of DT-Grid is proportional to the size of the
interface. More specifically the storage requirements are O(MN)

(in 3D O(M3)) where MN is the number of grid points in the

Nielsen and Museth

N -dimensional narrow band. In fact our evaluations show DT-Grid
to be more compact than other grid or tree-based level set schemes
that employ a uniform sampling of the interface. As a result, our
data structure allows for higher resolutions of level sets before hard-
ware memory restrictions are potentially violated.

• All our evaluations have shown that the computational efficiency
of accurate level set deformations based on DT-Grid is better than
both narrow band and tree-based approaches. We strongly believe
this is due to the added cache coherency from the dramatically
reduced memory footprints. More specifically we have developed
efficient algorithms that guarantee the following properties of DT-
Grid:

1. Access to grid points has time complexity O(1), when the
grid is accessed sequentially.

2. Access to neighboring grid points within finite difference
stencils has time complexity O(1).

3. The time complexity of random and neighbor access to
grid points outside the finite difference stencil is loga-
rithmic in the number of connected components within
p-columns (see Sec. 2.1 for the definition).

4. The time complexity of constructing and rebuilding the
DT-Grid is linear in the number of grid points in the nar-
row band.

• Our data structure allows level set interfaces to freely deform with-
out boundary restrictions imposed by underlying grids or trees
employed in other methods. This effectively implies that interfaces
can expand arbitrarily. We demonstrate this with out-of-the-box
level set deformations.

• Our compact data structure generalizes and scales well to any num-
ber of dimensions.

• Unlike approaches employing non-uniform grids our flexible data
structure can transparently be integrated with all existing finite
difference schemes typically used to numerically solve both hyper-
bolic and parabolic level set equations on uniform dense grids.

This paper is organized as follows. Section 2 introduces the DT-Grid
data structure. A general N -dimensional definition is given and a detailed
explanation is presented in 2D. In Sec. 3, we describe efficient algorithms
that are fundamental to improved level set simulations on the DT-grid.
Many of the details of these algorithms are given in appendices. We realize
that not all readers are interested in these details, and as such effort has

Dynamic Tubular Grid

been made to make the main part of this paper self-contained even if
the appendices are skipped. In Sec. 4, we evaluate the time and mem-
ory efficiency of the DT-Grid compared to previous methods. We also
demonstrate the low memory footprint in a 10243 high resolution level set
simulation. We then show how level set simulations on a DT-Grid can
go out-of-the-box, a feature not shared with any existing narrow band or
tree-based level set method. Finally, Sec. 5 concludes the paper and out-
lines future work.

2. DATA STRUCTURE

Throughout this paper by tubular grid we mean a subset of grid
points, defined on an infinite grid, within a fixed distance from an inter-
face. As the interface propagates this subset changes, thus giving rise to
the term dynamic tubular grid. In this section we define the DT-Grid, an
efficient data structure for N -dimensional dynamic tubular grids.

A straightforward non-hierarchical approach to representing a tubu-
lar grid is to explicitly store float values and indices of all its grid points.
To obtain constant access times to neighboring grid points, one could
also store additional pointers. However, this approach does not scale well
as the number of grid points in the tubular grid increases. The DT-
Grid employs a better approach by combining a compressed index storage
scheme with knowledge of the connectivity properties of the tubular grid
to obtain a memory and time efficient data structure. This is achievable by
means of a lexicographical storage order of the grid points.

2.1. Definition of the DT-Grid

The DT-Grid is defined recursively in terms of DT-Grids of lower
dimensionality, and as such our approach readily generalizes to any
dimension. However, for simplicity we shall limit a detailed description of
the data structure to 2D and illustrate with the example depicted in Fig. 1.

As a prelude to this description it is convenient to introduce the
following general terminology based on the nomenclature given in Table I.

• In N -dimensions, p-column (short for projection column) number
XN−1 = (x1, x2, . . . , xN−1) is defined as the set of grid points in the
tubular grid that project to (x1, x2, . . . , xN−1,0) by orthogonal pro-
jection onto the subspace spanned by the first N − 1 coordinate
directions. Thus a p-column is always 1D.

Nielsen and Museth

Fig. 1. (a) A dense 2D grid. (b) Corresponding 2D DT-Grid. (c) A dense 1D grid. (d)
Corresponding 1D DT-Grid. Note the lexicographic storage order.

Table I. Nomenclature Used Throughout This Paper

N The Dimension.
XN Grid point or p-column number (x1, x2, . . . , xN)

φ(XN) Scalar level set function.
�− Interior region.
�+ Exterior region.
dx The uniform grid spacing.
Tα The tubular grid { XN ∈�N

∣
∣ |φ(XN)|<α}.

MN Number of grid points in the ND tubular grid.
γ Width of the tubular grid.
CXN

Number of connected components in p-column XN .
CN Total number of connected components in ND DT-Grid.

• A connected component in N -dimensions is defined as a maximal set
of adjacent grid points within a p-column.

For example, in 2D, p-column number x is defined as the set of grid
points in the tubular grid that project to (x,0) by orthogonal projection
onto the X axis. In Fig. 1a, p-column number 3 is defined as the set of
grid points {(3,1), (3,2), (3,4), (3,5)}, and it contains two connected com-
ponents, {(3,1), (3,2)} and {(3,4), (3,5)}. Note that the lower leftmost grid
point in Fig. 1a is (0,0). A N -dimensional DT-Grid can be defined recur-
sively in terms of a (N −1)-dimensional DT-Grid using pseudo C++ syn-
tax as follows

Dynamic Tubular Grid

template<typename Type> class DTGridND<Type> {
Array1D<Type> value;
Array1D<Index> nCoord;
Array1D<unsigned int> acc;
DTGrid(N-1)D<IndexPair> proj(N-1)D;

}

Below we define the 2D DT-Grid in pseudo C++ syntax and explain
its constituents in detail.
template<typename Type> class DTGrid2D<Type> {

Array1D<Type> value;
Array1D<Index> yCoord;
Array1D<unsigned int> acc;
DTGrid1D<IndexPair> proj1D;

}

template<typename Type> class DTGrid1D<Type> {
Array1D<Type> value;
Array1D<Index> xCoord;
Array1D<unsigned int> acc;

}

value: The value array (in DTGrid2D) stores the numerical values of
all grid points in the two-dimensional tubular grid in (x, y) lexicographic
order. Typically the associated Type will be float or double. In Fig.
1{a,b} the grid points contained in the tubular grid are colored yellow and
blue. In this illustrative example the numerical values of the grid points in
the tubular grid are simply chosen to be the corresponding lexicographic
storage order in the DT-Grid.

yCoord: The yCoord array stores the min and max y-coordinate of
each connected component. In Fig. 1{a,b} these grid points are shown in
yellow. Thus, rather than simply storing y-coordinates of all grid points,
we exploit the connectivity in the tubular grid.

acc: The acc array (in DTGrid2D) stores pointers into the value
array which identifies the first tubular grid point in each connected com-
ponent. As will be explained later this information is essential for obtain-
ing a fast random access operation.

proj1D: The proj1D constituent holds pairs of indices into the
value and yCoord arrays, for the first grid point in each p-column in
the tubular grid. This is illustrated with arrows in Fig. 1b. Also note that
proj1D is defined recursively as a DTGrid1D with Type=IndexPair,
see Fig. 1{c,d}. The constituents of the 1D DT-Grid are defined similarly,
except for the fact that is does not have a proj0D constituent. proj1D
introduces additional structure into the 2D DT-Grid and allows for fast
access to each p-column independently. As will be explained in the next
section, this structure is used extensively in most of the algorithms of the
data structure. Note that it is possible to reduce the storage, at the tradeoff
of an extra array lookup, by only storing the index into the yCoord (in

Nielsen and Museth

general nCoord) array. The corresponding index into the value array
can then be obtained by looking it up in the acc array using the index
into the yCoord array divided by two.

Figure 2 shows an example of a sphere represented in a 3D DT-
Grid. The 2D and 1D DT-Grid constituents are also included in the
illustrations. The red and green grid points are the grid points in the 3D
tubular grid. The red grid points are the start and end grid points of con-
nected components. Fig. 2c shows p-column number (25,25) consisting
of two connected components. The white pixel in Fig. 2c illustrates the
IndexPair that points to p-column number (25,25).

The storage requirements of a N -dimensional DT-Grid are O(MN)

(see Table I) which can be justified as follows: Clearly, the storage require-
ments of a 1D DT-Grid are O(M1) since it does not contain a proj0D
constituent. The storage requirements of a N -dimensional DT-Grid are
O(MN−1 +MN) which by induction equals O(MN).

One additional and important property of the DT-Grid can be
deduced from the definition given above. Since the DT-Grid is defined
recursively, the coordinate vectors of all grid points are explicitly stored,
albeit in a compressed format. This means that the grid points of the
DT-Grid are not restricted to a particular range of indices as is the case
with the traditional full grid or tree-based methods. Hence, the DT-Grid
is in fact capable of representing unbounded, dynamically expanding and
non-convex grids. This allows for truly out-of-the-box level set simulations
which we demonstrate in Sec. 4.3.

Fig. 2. Color coded representation of the tubular grid of a sphere in a 3D DT-Grid. (a) Entire
sphere. (b) Middle slice of sphere. (c) P-column consisting of two connected components.

Dynamic Tubular Grid

3. ALGORITHMS OF THE DATA STRUCTURE

In this section, we describe in detail the key algorithms of our mem-
ory-, cache- and time-efficient DT-Grid data structure. The DT-Grid has the
exact same algorithmic interface as a full grid. Furthermore, even though
our data structure only stores the values of a tubular grid, methods that
provide access to any grid point are supported. In our case these methods
simply return a signed value, positive in �+ and negative in �−, with abso-
lute value equal to the width of the tubular grid. This design approach hides
the added complexity of our improved data structure and makes it almost
trivial to integrate DT-Grid with existing level set simulation code.

Due to the recursive nature of the storage format of the DT-Grid,
many of the operations presented here are also recursive in nature. The
rest of this section is structured as follows. Section 3.1 describes a con-
stant time operation for inserting grid points into the DT-Grid. In Secs.
3.2 and 3.3 we describe how constant time sequential access to all grid
points within a finite difference stencil can be obtained when iterating
over the grid. This is essential in obtaining a fast data structure. Sec-
tion 3.4 describes a logarithmic time algorithm for random access to grid
points based on binary search. This algorithm is used if grid points are
accessed non-sequentially or lie outside of the stencil. As will be justi-
fied in the evaluation section, this random access algorithm, albeit asymp-
totically logarithmic, has proven to be almost as fast as random access
in a full grid, due to cache coherency. Next, Sec. 3.5 describes how con-
stant and logarithmic time neighbor access operations can be constructed.
Finally, Sec. 3.6 describes how the tubular grid is rebuilt. In particular, we
describe a generic algorithm for rebuilding the tubular grid, which can be
used independently of the method employed for re-initializing the level set
function to a signed distance function. Table II gives an overview of the
operations and their associated time complexities.

3.1. Push – Inserting Grid Points in Constant Time

The DT-Grid supports a low-level constant time push operation to
add new grid points to the data structure. Since the grid points are stored
in memory lexicographically as (x1, x2, . . . , xN), new grid points must be
pushed in this order.1 If, on the other hand, grid points were inserted
in an order different from their lexicographic order, each insertion would
take worst case linear time in the number of grid points stored. Fortu-
nately, such insertions can be avoided altogether in level set computations.

1i.e. in 3D, push(2,2,6) should be issued before push (2,5,1).

Nielsen and Museth

Table II. Time Complexities for Important Algorithms of a N -Dimensional
DT-Grid

Algorithm Time complexity

Push O(1)

Access to Stencil Grid Points O(1)

Sequential access O(1)

Random access O(
∑N−1

n=0 log CXn)

Neighbor access in mth coordinate direction O(1+∑N−1
n=m log CXn)

Rebuilding the tubular grid O(MN)

Dilating the tubular grid O(MN)

See subsequent sections for details.

A pop operation could be implemented similarly to the push oper-
ation, but is not needed. This is due to the fact that the structure of the
tubular grid only changes when the tubular grid is rebuilt. In that case the
new tubular grid is constructed from scratch.

The push method updates the array constituents of the DT-Grid
(defined in Sec. 2.1) and has to deal with the following three cases:

1. The new grid point is the first in a p-column. (As an example see
grid points {0,3,8,12,17} in Fig. 1a.)

2. The new grid point is the first grid point in a connected compo-
nent (and not the first in a p-column). (See grid point 10 in Fig.
1a.)

3. The new grid point is the last in an existing connected compo-
nent at insertion time. (See the remaining colored grid points in
Fig. 1a.)

In Appendix A, we give the full details of the push operation.

3.2. Constant Time Sequential Access Using Iterators

The DT-Grid has support for an Iterator which is a construct that
provides constant time sequential access to grid points in the DT-Grid.
The Iterator is in effect a wrapper around a Locator (see Sec. 3.5) that
uniquely identifies a grid point. Note that using the Locator constituent
it is possible to obtain logarithmic time access to neighboring grid points.
However, as will be described in the next section, the Stencil Iterator pro-
vides constant time access to neighboring grid points within a stencil.

The key method of the Iterator is the increment operation which
simply increments the associated Locator to point to the next grid point
in the tubular grid. This has time complexity O(1). In Appendix B, we
describe this increment method in detail.

Dynamic Tubular Grid

3.3. Constant Time Stencil Access Using Iterators

Most level set methods require access to a finite difference stencil of
grid points in order to compute approximations to derivatives like gradi-
ents and curvature. Hence, fast access to all members of the stencil is a
necessity to ensure optimal performance. By shifting a stencil of Iterators
over the tubular grid it is possible to gain constant time access on average
to all grid points within the stencil. This is optimal and applies when iter-
ating over the entire tubular grid, which is the case e.g., when advecting,
propagating or reinitializing the level set function.

To achieve the above, the DT-Grid has support for a Stencil Iterator,
which contains a stencil of Iterators, one for each grid point within the
stencil.

Incrementing a Stencil Iterator is a bit more involved than increment-
ing a single Iterator. Here we give an overview of the process.

1. First the Iterator corresponding to the center grid point of the
stencil is incremented using the increment method described in
the previous section. This center Iterator dictates the movement
of the entire stencil.

2. Next the remaining Iterators, corresponding to non-center stencil
grid points, are incremented until they point to the correct sten-
cil grid point. This is done using the incrementUntil method
which is described in detail in Appendix C. A non-center stencil
grid point may not exist in the tubular grid. If this is the case,
access to that particular stencil grid point returns −γ if the grid
point lies in �− and γ otherwise.

Narrow band level set algorithms typically operate on a number of
concentric tubes of increasing width centered about the interface, see [1,
27]. If the DT-Grid is a signed distance field, the Stencil Iterator can be
parameterized to return only the grid points within a certain tube, e.g., the
zero crossing, without requiring additional storage. This is done simply by
incrementing the Iterator of the stencil center grid point until it points to
a grid point with absolute value below some threshold.

Incrementing a stencil of Iterators across the DT-Grid provides con-
stant time access on average to all stencil grid points in a particular
tube as long as all grid points in the tube are visited. This is the case
since: (a) each Iterator of the Stencil Iterator passes over the tubular grid
exactly once, which has complexity O(MN), where MN is the number of
grid points in the tubular grid, (b) MN is proportional to the number of
grid points in any tube centered about the interface, (c) the number of grid

Nielsen and Museth

points within the stencil is a constant, (d) access to a grid point through
an Iterator has time complexity O(1).

3.4. Logarithmic Time Random Access

As described above, the DT-Grid supports constant time access to
grid points within a stencil when accessing the grid sequentially. This is
used in all level set algorithms that we have considered, except for the fast
marching method [31, 37, 38], which instead uses random and neighbor
access (neighbor access is described in the next section). The DT-Grid sup-
ports fast operations for random access, which is the mapping from an
arbitrary N -dimensional grid point to its corresponding numerical value.
A full grid provides constant time random access to all its grid points
since this simply amounts to an array access. Constant time random access
to grid points is not possible in a DT-Grid. However, logarithmic time, in
the number of connected components within p-columns, can be obtained.
Note that this is optimal with respect to the storage format. Furthermore,
since the number of connected components is usually very small compared
to the number of grid points, and since the DT-Grid is very cache coher-
ent, random access is almost as fast as for full grids in practice (see eval-
uation section for details).

Random access to the grid point XN on a N -dimensional DT-Grid is
defined recursively in dimensionality as follows.

1. The random access algorithm of the N − 1-dimensional DT-Grid
constituent is used to determine if p-column number XN−1 is con-
tained in the projection of the tubular grid.

2. If this is the case, it is determined if the grid point’s N th coor-
dinate, xN , lies between the min and max N th coordinates in
p-column number XN−1.

3. If this is the case, binary search for xN in p-column number XN−1
in the nCoord array is employed to find the nearest start or
end coordinate of a connected component in the N th coordinate
direction.

4. Finally, it is determined whether the grid point actually exists in
the p-column (i.e. is inside the tubular grid) and if this is the case
its value is returned.

Access to grid points outside the tubular grid simply return −γ if the
grid point lies in �− and γ if the grid point lies in �+. The time
complexity of random access to a grid point, XN = (x1, x2, . . . , xN), is
O(

∑N−1
n=0 log CXn

), where CXn
is the number of connected components in

p-column Xn. Appendix D describes the random access operation in full

Dynamic Tubular Grid

detail. We finally note that in cases where the number of connected com-
ponents within p-columns is small it is actually advantageous to employ a
linear search instead of the asymptotically optimal binary search.

Employing the random access operation it is easy to implement the
following fundamental operations: (1) an operation that determines if a
grid point is inside or outside of the interface, (2) an operation that deter-
mines if a grid point is in the tubular grid, (3) an operation that deter-
mines the closest point on the interface to a grid point inside the tubular
grid.

3.5. Logarithmic Time Neighbor Access

This section describes how the DT-Grid implements fast neighbor
access to grid points by utilizing structural information about the grid.
Constant access time to a grid point is possible if its index into the value
array constituent is known. However, this index does not provide any
structural information about the location of the grid point in relation to
neighboring grid points in the coordinate directions. For this reason the
DT-Grid supports Locator based access. A Locator points to and provides
structural information about a grid point in a DT-Grid. It allows for con-
stant access time to the grid point itself and faster neighbor access than
can be achieved using random access alone. Locators are not explicitly
stored but can be computed by an operation similar to a random access
operation. A N -dimensional Locator is defined recursively with respect to
dimensionality as
struct LocatorND {

Locator(N-1)D loc;
unsigned int iv;
unsigned int ic;
Index Xn;

};

where loc is a N − 1-dimensional Locator. The components iv and ic
point respectively into the value and nCoord arrays of DTGridND. In
particular iv, points to the value of the grid point and ic points to
the N th coordinate of the first grid point in the connected component in
which the grid point lies. The last component, Xn, is the N th coordinate
of the grid point.

As mentioned above, neighbor access using locators is faster than
neighbor access using random access. In fact, when doing neighbor search
in the mth coordinate direction, the structural information about the orig-
inal and neighboring grid point is identical in the first m − 1 coordinate
directions. For the sake of simplicity we explain this in 2D, but stress that
the general N -dimensional case is similar. Recall that the storage order

Nielsen and Museth

of grid points in a 2D DT-Grid follows the (x, y) lexicographic ordering.
Thus, the numerical values of the neighbors in the Y coordinate direction,
(x, y − 1) and (x, y + 1), can be found in constant time from a Locator
using the indices iv ±1, respectively. If the particular neighbor does not
exist in the tubular grid, γ is returned if the neighbor is outside the inter-
face, and −γ otherwise.

Neighbors in the X coordinate direction can be found in time
O(log Cx±1), where Cx ± 1 is the number of connected components
in p-column number x ± 1. This is done by first locating the neigh-
bor in the proj1D constituent using iv ±1 of the 1D Locator con-
stituent. Next, one can apply a binary search for Y in the x ± 1th
column.

In general, neighbor search in the mth coordinate direction in a N -
dimensional DT-Grid takes time O(1+∑N−1

n=m log CXn
).

3.6. Dilating and Rebuilding the Tubular Grid

To ensure numerical stability, level set methods typically apply a reini-
tialization procedure (after the propagation step) to reset the level set
function to a signed distance function. Existing narrow band level set
methods furthermore combine this reinitialization step with a method to
rebuild the narrow band to ensure that it includes all grid points within
a tube of a certain width. When reinitializing the level set function using
the fast marching method [31, 37, 38] the tubular grid is rebuilt simulta-
neously with the reinitialization process. The remainder of this section is
organized as follows: Sec. 3.6.1 describes an algorithm that allows us to
dilate the tubular grid. The basic idea is simple, but leads to an inefficient
algorithm. However, by taking advantage of the storage format of the DT-
Grid we show how to construct a very efficient algorithm. Section 3.6.2
describes a generic and efficient algorithm for rebuilding the DT-Grid. By
generic we mean that the algorithm can be applied independently of the
method used to reinitialize the tubular grid (i.e., solve the Eikonal equa-
tion, |∇φ|=1). A main building block in this algorithm is the tubular grid
dilation algorithm described in Sec. 3.6.1.

3.6.1. Dilating the Tubular Grid in Linear Time

In this section, we present a fast algorithm for dilating a N -dimensional
DT-Grid. This algorithm is essential for obtaining feasible asymptotic and
practical execution times when rebuilding the tubular grid, which is the topic
of the next section.

Dynamic Tubular Grid

A simple idea is to construct a new tubular grid by adding all grid
points that pass under a stencil iterated over the original tubular grid.
In N -dimensions a desired dilation of H · dx can be achieved with a
stencil shaped as a hypercube with 2H + 1 grid points along each edge.
Clearly, the resulting tubular grid is a conservative estimate of the grid
points no more than a distance of H · dx away from the original tubu-
lar grid. The estimate in 1D is exact, but for a N -dimensional stencil, the
maximal distance within the stencil measured from the stencil center is√

NH ·dx.
A direct implementation of the simple idea outlined above yields a

time complexity of O(MN · (2H + 1)N). Asymptotically, this amounts to
O(MN), since (2H + 1)N is constant. However, in practice this approach
is slow and grid points are added to the tubular grid in an order that is
not cache coherent (i.e. not lexicographically ordered).

The dilation algorithm on a N -dimensional DT-Grid exploits the
recursive definition of the DT-Grid and, except for the 1D DT-Grid, uses
the dilation algorithm of its N −1 dimensional DT-Grid constituent recur-
sively. This results in a fast dilation algorithm that ensures cache coher-
ency for subsequent traversals.

The dilation algorithm consists of two steps: an allocation step that
computes and allocates the dilated tubular grid, followed by a step that
copies the values of the original tubular grid to the dilated tubular grid.
The time complexity of the allocation step is O(CN), where CN is the total
number of connected components in the original N -dimensional tubular
grid. In most practical cases CN is sublinear, i.e. CN �MN , where MN is
the number of grid points in the original tubular grid. The time complex-
ity of the copying step is O(MN). Note that the number of grid points in
the original and the dilated tubular grid are proportional.

Next we give an overview of the allocation step of the algorithm,
omitting the copy step, since this is trivial. We start with 1D, followed by a
description in 2D which readily generalizes to any number of dimensions.
In appendices E and F, we provide pseudo code and give the full detail of
the algorithms in 1D and ND, respectively.

An illustration of a tubular grid dilation in 2D is depicted in Fig. 3.
Figure 3a shows an initial 2D DT-Grid as well as its 1D DT-Grid constit-
uent. Figure 3c shows the result of dilating the 2D tubular grid by a sten-
cil with H = 1. Grid points added to the DT-Grids by the dilation algo-
rithm are colored red.

As mentioned earlier, the xCoord array of DTGrid1D stores a
number of connected components, each identified by a start and an end
index. The dilation algorithm in 1D simply amounts to dilating each
of the connected components by H grid points in both directions and

Nielsen and Museth

Fig. 3. (a) The original DT-Grid. (b) The process of computing a new p-column (number
3) in the dilated DT-Grid (adding the red grid points) (c) The final dilated DT-Grid.

merging adjacent and overlapping connected components into a single
connected component, see Fig. 3.

The 2D dilation algorithm starts by invoking the 1D dilation algo-
rithm on the 1D DT-Grid constituent. Recall that the 1D DT-Grid con-
stituent stores the projection of the 2D tubular grid onto the X-axis. The
result of the 1D dilation is that the 1D DT-Grid constituent contains the
dilated projection of the 2D tubular grid which is in fact equal to the pro-
jection of the dilated 2D tubular grid, see Fig. 3c.

Next, each p-column of the dilated 2D DT-Grid has to be com-
puted. Note that each element in the 1D DT-Grid constituent identifies a
p-column in the 2D DT-Grid. Hence, we know exactly which p-columns
should be computed in the dilated 2D tubular grid. The process of com-
puting p-column number x proceeds as follows: First dilate the original
p-columns numbered x −H, . . . , x −1, x, x +1, . . . , x +H independently in
the Y direction by H grid points. Next form the union of all the connected
components resulting from this dilation in order to obtain p-column num-
ber x in the dilated 2D tubular grid. This is illustrated in Fig. 3b. The
index pairs contained in the dilated 1D DT-Grid constituent are computed
simultaneously with the p-columns. Repeating the process above for each
new p-column completes the dilation.

To sum up, the process outlined above dilates the DT-Grid in each
dimension independently, and forms new p-columns by taking the union
of the dilated original p-columns touched by the stencil. It should be
clear, that this method is equivalent to shifting a stencil over the grid and
including all grid points that pass under the stencil.

Dynamic Tubular Grid

3.6.2. Rebuilding the Tubular Grid in Linear Time

In this section we outline an algorithm to rebuild a DT-Grid, denoted
Tα, to include all grid points within a distance α from the interface. The
algorithm devised here assumes that the original tubular grid is a dis-
tance field and contains all grid points in Tδ, where δ <α. The difference
α − δ may be equal to the maximal movement of the interface between
rebuilds. Note that if a method is not restricted by the CFL condition [23],
as e.g. with semi-Lagrangian integration, the maximal movement need not
be equal to dx. Rebuilding the tubular grid is composed of the following
steps

1. Remove from the original tubular grid all grid points outside Tδ.
In practice this is done by constructing an intermediate tubular
grid and copying all grid points within Tδ to it. This step has time
complexity O(MN).

2. Dilate the intermediate tubular grid by α − δ, where α − δ corre-
sponds to the difference in width between the tubes Tα and Tδ,
using the tubular grid dilation algorithm of Sec. 3.6.1. This step
also has time complexity O(MN).

3. Initialize the values of the grid points included in the new tubu-
lar grid by the dilation algorithm to ±δ depending on whether
they are interior or exterior to the region bounded by the inter-
face. This step also has time complexity O(MN).

Since each of the above three steps has time complexity O(MN), so
does rebuilding of the tubular grid.

4. EVALUATION AND RESULTS

In this section we present results from three different level set simula-
tions that each demonstrate different features of our DT-Grid. In particular,
Sec. 4.1 compares the memory- and time-usage of the DT-Grid to existing
methods. Next, Sec. 4.2 verifies that the low memory footprint of the DT-
Grid allows for very high resolution simulations. Finally, Sec. 4.3 shows that
level set simulations can go out-of-the-box when employed on a DT-Grid.

4.1. Memory and Time Complexity

The following comparisons use the exact same level set simulation
code on top of all narrow band approaches and the DT-Grid. Extensive
effort was devoted to optimizing implementations of all methods.

Nielsen and Museth

Our benchmark test is an extruded spiral evolving under volume-con-
serving mean curvature flow [27]

∂φ

∂t
= (κ − κ̄)|∇φ|, (1)

where κ is local mean curvature and κ̄ is the average mean curvature on
the interface. We demonstrate the efficiency of the DT-Grid with respect
to two numerical methods on a 1283 grid as shown in Fig. 4.

4.1.1. Numerical Method 1

In the first approach we advect the level set using second order central
differences for the spatial parabolic term (κ|∇φ|) and fifth order accurate
HJ-WENO [17] discretization for the spatial hyperbolic term (κ̄|∇φ|). We
use a third order accurate TVD Runge–Kutta [34] time-stepping method. In
the reinitialization step we solve the PDE of Peng et al. [27] to steady state,
again using a fifth order accurate HJ-WENO discretization of the spatial
terms and a third order accurate TVD Runge–Kutta time stepping method.

In Figs. 5 and 6 we compare the following methods: (1) The DT-Grid
(blue), (2) The method of Peng et al. [27] (green), (3) The method of Peng
et al. improved with an O(MN) method for rebuilding the narrow band [3]
(red), (4) An octree data structure [12, 30, 33] (cyan) storing only the grid
points inside the narrow band and using a uniform resolution. We describe
the octree implementation in more detail in Appendix G.

Figure 5 shows the time-usage of the different methods. In each itera-
tion of the simulation, we take the maximal time step allowed by the CFL
condition. As can be seen, the DT-Grid approach is faster than both the nar-
row band methods and the octree approach. In this simulation the O(MN)

Peng approach is slower than the original method of Peng. This is partly
due to the relatively small simulation grid and the cache ineffectiveness of
the O(MN) method. For simulations on larger grids, the original method of
Peng will be slower than the improved O(MN) Peng method, since it requires
a pass through the entire full grid to rebuild the narrow band structure. We
have run a large variety of simulations on a wide range of grid sizes and in
all cases the DT-Grid has performed better than existing approaches.

In Fig. 6, the memory usage is depicted. The index compression
scheme of the DT-Grid makes it more memory efficient than the other
approaches. The index arrays of the method of Peng, scale with the size
of the interface [27]. However the full grid and a mask array are stored
at all times thus forming a lower bound (shown as the black horizontal
line in Fig. 6). The memory usage of the octree, scales with the size of the
interface, but the storage format is not as effective as that of the DT-Grid.

Dynamic Tubular Grid

Fig. 4. Extruded spiral evolving under volume conserving mean curvature flow [27] with
effective resolution 1283. The evolution of the interface is depicted from top-left to bot-
tom-right. This example is used as a benchmark test for the narrow band [27], Octree and
DT-Grid level set methods. Timings and memory usage are given in Figs. 5–8.

Nielsen and Museth

Fig. 5. Time usage in milli seconds on a 3 GHz P4 machine with HJ WENO RK3 for both
advection and remormalization.

As a reference we have also plotted the memory usage (computed analyt-
ically) of a non-hierarchical storage format that stores the indices of all
grid points (magenta) and the very compact linear octree [30] storage for-
mat (yellow). Both of these are also less efficient than the DT-Grid. Note
that due to the relatively small size of the simulation grid in this particular
example, the memory savings of the DT-Grid may appear to be moderate.
However, we emphasize that the memory consumption of the DT-Grid is
in fact close to optimal as will be described below. In Sec. 4.2 we demon-
strate a simulation on a high resolution grid, where the memory consump-
tions of the DT-Grid and the method of Peng are 67.2 MB and 5.2 GB,
respectively.

Figure 7 illustrates the efficiency of the index compression scheme of
the DT-Grid. We have plotted the total amount of memory occupied by

Dynamic Tubular Grid

Fig. 6. Memory usage.

the schemes to the amount of memory occupied by the numerical values
in the tubular grid (or narrow band) alone. As can be seen this quantity is
very close to 1 for the DT-Grid. This is optimal with respect to schemes
that store the numerical values in the narrow band uncompressed.

To sum up: The narrow band method of Peng is fast but not mem-
ory efficient. The memory usage of the octree scales with the size of the
interface, however our tests indicate that the approach is relatively slow.
The DT-Grid appears to be the only approach which is both memory and
time efficient. In fact it is both faster than the narrow band method of
Peng et al. [27] and more memory efficient than the octree.

4.1.2. Numerical Method 2

In the second approach we advect the level set using HJ-WENO and
TVD Runge–Kutta as above, but reinitialize the level set in the narrow
band (or tubular grid) using the Fast Marching method [32].

Nielsen and Museth

Fig. 7. Efficiency of index compression.

We compare the following methods: (1) DT-Grid (figure-label DT-
Grid FMM), (2) Peng (figure-label Peng FMM).

The time usage is plotted in Fig. 8. In this case the DT-Grid also per-
forms better than the full grid Peng approach. This can be attributed to
the cache coherency of the DT-Grid. The fast marching method employs
a lot of random and neighbor access operations since it does not visit
a grid sequentially. Even though these operations on the DT-Grid are
asymptotically slower than in a full grid, its cache efficiency makes the
total simulation time faster than the Peng method.

4.2. High Resolution Level Sets

The DT-Grid has a very low memory footprint, hence allowing very
large or equivalently very high resolution level set surfaces to be rep-
resented without exceeding the main memory limit. Enright et al. [7]

Dynamic Tubular Grid

Fig. 8. Time usage in milli seconds on a 3 GHz P4 machine with HJ WENO RK3 for
advection and FMM for renormalization.

introduced a test based on a three dimensional incompressible flow field
initially proposed by LeVeque [15] to demonstrate the volume conserving
properties of the particle level set method. The test was run on a 1003

full grid with and without particles. The particle level set method proved
excellent in conserving the volume, however, the resolution of the compu-
tational grid was insufficient to capture the thin filaments. Later, Enright
et al. [8] demonstrated that the interface could be fully resolved on an
octree grid with an effective resolution of 5123, using a combined semi-
Lagrangian and particle level set method.

From Fig. 9 it can be concluded that the interface can also be fully
resolved on a DT-Grid with an effective resolution of 10243 without par-
ticles. However, we stress that the DT-Grid should not be considered an
alternative to the particle level set approach. The setup of this simula-
tion is identical to that of Enright et al. [7] which uses HJ-WENO and
TVD Runge–Kutta for both the advection and reinitialization steps. This

Nielsen and Museth

Fig. 9. The DT-Grid enables high resolution grids to be represented with a very low mem-
ory footprint. In this example the resolution was 10243 and the maximal memory usage
67.2 MB. The same simulation run with the method of Peng et al. [27] would consume 5.2 GB
of storage.

particular example clearly demonstrates that the DT-Grid enables high res-
olution interfaces to be represented.

At the time step where the number of grid points in the tubular grid
peaks, 1.41% of the grid points in the entire full 10243 volume is occupied
by the tubular grid and hence stored by the DT-Grid. At this time, the
DT-Grid uses only 67.2 MB of storage in total. Furthermore, the memory
used by the DT-Grid is only 1.64% of the storage that the 10243 full vol-
ume would occupy alone. The additional 0.23 = 1.64 − 1.41% of storage
used by the DT-Grid is occupied by the compressed indices and lower
dimensionality DT-Grid constituents. From the number of grid points in
the tubular grid at peak time, we computed analytically that the method
of Peng would occupy at least 5.2 GB of storage. Other non-hierarchical
approaches to storing the tubular grid, such as storing the indices explicity
would result in a total memory usage of 9.86% and additionally stor-
ing pointers to the neighbors would yield 43.68%, giving a total memory

Dynamic Tubular Grid

usage of 144 and 490 MB, respectively. The above analysis clearly illus-
trates the effectiveness of the index compression scheme employed by the
DT-Grid.

4.3. Out-of-the-Box Level Sets

The DT-Grid is not bounded by an underlying box of a fixed com-
putational domain. In this section we illustrate this important property by
evolving the level set shown in Fig. 10(a) using convection-diffusion [23].
In the convection-diffusion equation we combine motion by mean curva-
ture with motion by a vector field that at each point is the normalized
radial direction from the origin. The mean curvature term creates multi-
ple pinch-offs at the center of the level set surface (see the left-most image
in Fig. 10(a)), and we force its contribution to zero over time. The radial
vector field advects the level set surface away from the origin. This simu-
lation is designed merely to demonstrate the out-of-the-box feature of our
DT-Grid, and as such the detail of the setup (including the initial shape)
is irrelevant.

Figure 10(b) illustrates what happens on full grids and octrees. As
the level set moves beyond the boundary, it disappears. In contrast, the
level set on the DT-Grid (Fig. 10(a)) moves beyond the box as the grid
is not bounded. The memory usage in Fig. 10(a) is 14.0, 25.2, 39.3 and

Fig. 10. DT-Grid level set simulations can go out-of-the-box whereas level set simulations
based on full grids and Octrees are limited to the box of the underlying grid.

Nielsen and Museth

64.1 MB, respectively, numbered from left to right. (Note that the increase
in memory is exclusively due to the fact that surface area increases
with the expansion). Effective grid sizes are approximately 2563, 3433,
4553 and 6303, while the DT-Grid in general is a non-convex tubular
grid.

This “out-of-the-box” feature is not obtainable using existing narrow
band or standard octree based approaches without either compromising
memory consumption or computational efficiency. Using full grids, one
could progressively allocate larger grids as the level set approaches the
boundaries. However, due to memory constraints this becomes impossible
already at relatively small grid sizes. Octrees are more memory efficient
than the full grid narrow band approach, but if progressively reallocating
to larger octrees, the depth of the tree grows, making the traversal more
inefficient. Furthermore, the octree is not as memory efficient and fast as
the DT-Grid. The combined uniform and octree grid by Losasso et al.
[11], currently under submission, decouples the depth of the octree from
the overall domain size, hence making an expansion of the domain more
feasible.

Out-of-the-box level set simulations are extremely convenient and use-
ful since no boundary conditions are needed and the level set can move
freely without ever colliding with the boundaries of an underlying grid. A
large body of existing work could take advantage of this, e.g., the simula-
tion of dendritic growth in [13].

5. CONCLUSIONS AND FUTURE WORK

Level set surfaces are of great importance in computational phys-
ics and chemistry for the tracking of interfaces. In this paper we have
presented the DT-Grid, a novel, non-hierarchical data structure and effi-
cient algorithms for representing and manipulating level sets. The DT-Grid
is designed to provide a very low memory footprint, making it possible
to represent higher resolution interfaces than previous narrow band and
tree based methods. Furthermore, both the data structure and the algo-
rithms have been designed to take advantage of the memory hierarchies of
modern computers, thus making the DT-Grid very fast. In fact, all evalu-
ations that we have performed show that the DT-Grid is both more time
and memory efficient than existing narrow-band and tree-based algorithms
for level set surfaces. The most important novel feature of the DT-Grid
is that it allows for level set simulations to be out-of-the-box, which is
demonstrated for the first time in Sec. 4.3: the DT-Grid can expand freely
without being limited by the computational box of an underlying grid, and
boundary conditions can be avoided. The DT-Grid has been specifically

Dynamic Tubular Grid

designed for the sequential access used in most level set algorithms and
provides constant time access to grid points within the stencil. A draw-
back is that random and neighbor access times become asymptotically log-
arithmic if accessing grid points outside the stencil or non-sequentially.
However, the reader should keep in mind that random access is logarith-
mic in the number of connected components within a p-column, as opposed
to the actual number of elements within the connected components in a
p-column. Furthermore, all our practical experiments have shown that due
to the cache coherency of the DT-Grid, random access is almost as fast as
the constant time access on full grids in practice. This is evident from the
fact that our level set simulations based on the fast marching method –
which in turn employs random and neighbor access operations – are still
faster on the DT-Grid.

In this paper, we have focused on the ability of the DT-Grid to store
the narrow band of a level set interface. However, it can readily be used
to store any closed non-convex volume e.g. the velocities in a volume
enclosed by a fluid. Hence, it should be rather straightforward to store and
manipulate both a fluid interface and the velocities in the enclosed volume
in a combined DT-Grid data structure.

The DT-Grid is not an adaptive representation in its traditional sense
since the interface and/or volume is represented uniformly. However, in the
future we plan to extend it to a multi-resolution approach.

We believe that the DT-Grid will be of great importance in the area
of practical level set simulations and foresee many exciting applications of
level sets that were not previously possible.

ACKNOWLEDGMENTS

The authors are very grateful to Ola Nilsson for raytracing images
and for providing many helpful comments on drafts of this paper. The
comments of Anders Brodersen also improved the paper. KM would
also like to thank Mike Giles at Oxford University for a very stim-
ulating discussion that took place at Caltech in the summer of 2003.
This conversation largely inspired the initial phase of the current work.
This work was partly funded by the Swedish Research Council (VR
grant # 621-2004-5017) and partly supported by Center for Interactive
Spaces under ISIS Katrinebjerg, Århus, Denmark. Finally we would like
to thank the referees of this paper for useful comments and suggestions
for improvements.

Nielsen and Museth

Appendix A: The Push Algorithm

In this appendix, we present a C++ pseudo code representation of the
push operation for a 2D DT-Grid. The general N -dimensional version is
similar.

void push(Index x, Index y, Scalar val)
{

if (proj1D.xCoord.last() != x) // (x,y) lies in new p-column
{

Pair p(value.size(), yCoord.size());
proj1D.push(x, p);
yCoord.push(y);
yCoord.push(y);
acc.push(value.size());

}
else if (yCoord.last() != y-1) // (x,y) first in connected

component
{

yCoord.push(y);
yCoord.push(y);
acc.push(value.size());

}
else // (x,y) last in connected component
{

yCoord.last() = y;
}
value.push(val);

}

Remarks: In case 1, (x,y) is the first grid point in the x’th p-col-
umn and the proj1D data structure must be set to point to this grid
point. The y coordinate is pushed twice onto the yCoord array since it
denotes both the start and end of a new connected component. This is
also reflected in case 2. In case 3 the end of the connected component is
set to y since (x,y) was adjacent to the previous, yCoord.last(), grid
point pushed. All operations above are O(1), hence the push operation is
O(1).

Appendix B: The Increment Algorithm

Here we give the implementation details of the increment operation
supported by an Iterator. The increment algorithm simply increments
the Iterator to point to the next grid point in the tubular grid. We assume
that the Iterator of an N -dimensional DT-Grid, IteratorND, contains

• A reference, grid, to the DT-Grid being iterated over.
• A reference, iterator(N-1)D, to an N − 1-dimensional iterator

(if N >1) defined equivalently.
• A value, value.

Dynamic Tubular Grid

Furthermore we assume that the IndexPair described in Sec. 2.1 has
two members, iv that points into the value array and ic that points
into the nCoord array. Using the definition of the LocatorND presented
in Sec. 3.5, the increment operation looks as follows in C++ pseudo
code

void IteratorND::increment(LocatorND loc)
{

loc.iv++;

value = grid.value[loc.iv];

if (loc.Xn == grid.nCoord(loc.ic+1))
{

loc.ic += 2;
loc.Xn = grid.nCoord(loc.ic);

if (grid.proj(N-1)D.value[loc.loc.iv+1].ic == loc.ic)
{

iterator(N-1)D.increment(loc.loc);
}

}
else
{

loc.Xn++;
}

}

Remarks: The first if statement tests if IteratorND exits a
connected component. The second if statement tests if IteratorND
passes to a new p-column and increments the Locators of lower dimen-
sionalities recursively to e.g. set the grid point coordinates appropriately.
Since all steps above are O(1), the increment method is O(1).

Appendix C: The IncrementUntil Algorithm

The incrementUntil(GridPoint XN , LocatorND loc) operation
of IteratorND increments an Iterator until it points to the grid point
with the coordinates given by XN , see Secs. 3.2 and 3.3 and Appendix 5.
It works as follows

1. Increment loc until it points to the lexicographically smallest
grid point, YN , in the tubular grid, that is larger than or equal
to XN .

2. If XN ==YN set value=grid.value[loc.iv], otherwise set
value=sign(grid.value[loc.iv])·γ .

Remarks: In practice it is crucial how step 1 above is implemented
and a few optimizations are possible:

Nielsen and Museth

• If the center grid point of the stencil stays in the same p-column
after an increment operation, we know that non-center stencil
grid points will also stay in the same p-column. In this case we only
need to increment loc until either yN =xN or yN−1 �=xN−1.

• If the center grid point of the stencil only moves one grid point
in the N th coordinate direction by an increment operation, we
know that those non-center stencil grid points, that will not pass
out of the tubular grid, will also move exactly one grid point in the
N th coordinate direction. In that case step 1 and step 2 above can
be implemented with the following three lines

loc.iv++;
value = grid.value[loc.iv];
loc.Xn++;

This optimization can typically be applied if the stencil is guaran-
teed never to pass out of the tubular grid when iterating over a cer-
tain tube.

Note that the optimizations described above can be applied recursively.
Since we assume that the entire tubular grid is visited, all steps above take
time O(1) on average given the arguments in Sec. 3.3, and hence access to
grid points within the stencil is O(1) on average.

Appendix D: The Random Access Algorithm

Let γ be the width of the tubular grid and XN = (XN−1, xN) an N -
dimensional grid point with N − 1 and 1 dimensional sub components
XN−1 and xN respectively. The method randomAccess returns a triple
(inside, i, v). inside is a boolean telling whether XN is inside the
tubular grid, i is the index of XN into the value array of DTGridND
(which is valid if inside==true) and v is the value of XN . Below we
assume that the IndexPair described in Sec. 2.1 has two members, iv
that points into the value array and ic that points into the nCoord
array. The algorithm proceeds as follows:

1. If N ==1 set kmin =0 and kmax = xCoord.size()-1. Otherwise

(a) Set (inside,i,v) = proj(N-1)D.randomAccess(XN−1).
(b) If inside==false return (false,0,γ).
(c) Set kmin = proj(N-1)D.value[i].ic and kmax = proj

(N-1)D.value[i+1].ic-1.

2. If xN < nCoord[kmin] || xN >nCoord[kmax] return (false,
0,γ).

Dynamic Tubular Grid

3. Perform a binary search for xN at even positions (indices that point
to the start of a connected component) in the nCoord array. The
search is delimited by the indices kmin and kmax −1 (both inclusive),
and the index determined is denoted k.

4. nCoord[k] �xN < nCoord[k+2] and there are two cases:

(a) If xN <= nCoord[k+1], set i=acc[(k>>1)]+xN

-nCoord[k] and return (true,i,value[i]).
(b) Else return (false,0,sign(value[acc[k>>1]])·γ).

Remarks: Step 1 determines kmin and kmax which are the indices into
the nCoord array of the minimum and maximum N th coordinate in p-
column number (x1, x2, . . . , xN−1). In step 4, the >> is the right-shift oper-
ator. k is right-shifted by one since k is an index into the nCoord array
which has twice as many elements as the acc array.

Steps 2 and 4 above have time complexity O(1). Step 3 has time com-
plexity O(log CXN−1), where CXN−1 is the number of connected compo-
nents in the XN−1th column. Hence by applying this argument recursively
in step 1 it can be seen that random access in a N-dimensional DT-Grid
has time complexity O(

∑N−1
n=0 log CXn

). Note also that this complexity is
optimal with respect to the storage format, e.g. O(1) random access time
is not possible.

Appendix E: The 1D Dilation Algorithm
The 1D dilation algorithm is sufficiently simple to be presented in C++
pseudo code. Below we only describe the allocation step of the dila-
tion algorithm, since the copying step is trivial, see Sec. 3.6.1. Below the
DTGrid1D named d1D eventually contains the dilated DT-Grid and we
assume that the DT-Grid is dilated by a hypercube stencil with 2H + 1
grid points along each edge, see Sec. 3.6.1.

void DTGrid1D::dilate(unsigned int H, DTGrid1D d1D) {
unsigned int numValues;
Index start = xCoord[0]-H;
Index end = xCoord[1]+H;
unsigned int i = 2;

d1D.xCoord.push(start);
d1D.xCoord.push(end);
d1D.acc.push(0);

while (i < xCoord.size())
{

start = xCoord[i]-H;
i++;
if (start <= end+1)

Nielsen and Museth

{
d1D.xCoord.last() = end = xCoord[i]+H;

}
else
{

unsigned int j = d1D.xCoord.size();
unsigned int connectedComponentLength
= d1D.xCoord[j-1]-d1D.xCoord[j-2]+1;
d1D.acc.push(d1D.acc.last()+connectedComponentLength);
d1D.xCoord.push(start);
end = xCoord[i]+H;
d1D.xCoord.push(end);

}
i++;

}

numValues = d1D.acc.last() + d1D.xCoord[j-1]-d1D.xCoord[j-2]+1;
values.allocate(numValues);

}

Remarks: If the test start <= end+1 in the if statement is true,
it means that two adjacent connected components overlap. Hence storage
of the new connected component in the xCoord and acc arrays is post-
poned. If the else case is entered, the connected component currently
being processed does not overlap with the previous. In that case it can be
stored. Clearly the allocation step of the 1D dilation algorithm has time
complexity O(C1), where C1 is the total number of connected components
in the 1D DT-Grid.

Appendix F: The N -Dimensional Dilation Algorithm

In this section we describe the allocation step of the N -dimensional tubu-
lar grid dilation algorithm for N > 1 (again, the copying step is trivial,
see Sec. 3.6.1). Recall that this algorithm effectively corresponds to shift-
ing a stencil shaped as a hypercube with 2H + 1 grid points along each
edge over the original DT-Grid and including, in the new DT-Grid, all
grid points that pass under the stencil.

Below we assume the existence of a data structure named the Col-
umn Union. It maintains a queue of p-columns and the maximal number
of p-columns allowed in the queue is (2H +1)N−1, which is a constant. It
supports the following operations

• InsertColumn: Inserts a p-column at the end of the queue. The p-
column is identified by its start- and end-index into the nCoord
array of DTGridND. This operation has time complexity O(1).

• RemoveColumn: Removes the first p-column in the queue. This
operation has time complexity O(1).

Dynamic Tubular Grid

• ComputeUnion: Computes a new p-column consisting of the con-
nected components formed by taking the union of all connected
components in the p-columns stored in the Column Union data
structure. Furthermore each connected component is dilated inde-
pendently by H grid points in each direction on the fly before
including it in the union. Since the start- and end-coordinates
of connected components are sorted within each p-column in the
nCoord array, forming the union is simple: Scan through the coor-
dinates of all connected components simultaneously in ascending
order. Maintain a count that is incremented when a connected com-
ponent is entered and decremented when a connected component is
exited. The coordinates encountered when the count is zero can be
taken as the coordinates of the connected components of the union.
Adjacent connected components must be merged into a single con-
nected component. This operation has a time complexity that is
linear in the number of connected components in the p-columns
stored, since finding the minimum coordinate at each step takes
time max O((2H +1)N−1)=O(1).

Next we describe the allocation step of the N -dimensional tubular
grid dilation algorithm in detail.

1. Call proj(N-1)D.dilate(H, dilatedProj(N-1)D). After
this call, dilatedProj(N-1)D will hold the dilated N-1 dimen-
sional DT-Grid constituent. The pairs of indices, IndexPair,
stored in dilatedProj(N-1)D are not yet initialized, only the
raw storage is allocated.

2. Obtain an Iterator, iteratorDilate, from dilatedProj
(N-1)D.

3. Obtain a StencilIterator, iteratorOrig, from proj
(N-1)D. The stencil of the StencilIterator effectively
has dimensions (2H + 1)N−1, however as the stencil moves
over proj(N-1) it is only necessary to monitor which grid
points enter and exit the stencil respectively, so the number of
Iterator instances maintained by
iteratorOrig is in fact 2(2H + 1)N−2. The movement of
the stencil will be dictated by the movement of the iterator
Dilate Iterator.

4. Iterate over all grid points in dilatedProj(N-1)D using
iteratorDilate. For each such grid point, do the following

(a) For each of the 2(2H + 1)N−2 Iterator instances of
iteratorOrig that point to an existing grid point in

Nielsen and Museth

proj(N-1)D, do the following: The existing grid point
in proj(N-1)D contains an IndexPair and hence
identify a p-column in the original DTGridND. If the
p-column is entering the stencil, call insertColumn
on the Column Union data structure to insert the
p-column. If the p-column is exiting the stencil, call
removeColumn on the Column Union data struc-
ture. Iterating the stencil over the grid points of
proj(N-1)D (and hence the p-columns of the orig-
inal DTGridND) in lexicographic order ensures that
p-columns enter and leave the stencil like a FIFO
queue.

(b) Call computeUnion on the Column Union to compute
the connected components of the new p-column pointed
to by iteratorDilate in the dilated DTGridND. At
this point the ColumnUnion contains all p-columns
from the original DTGridND touched by a (2H + 1)N

stencil centered at the new p-column. The IndexPair
in dilatedProj(N-1)D is set to point to this new p-
column and the connected components of the new p-
column are inserted directly into the nCoord array of
the dilated DTGridND. Furthermore the content of the
corresponding part of the acc array is computed by a
scan through the start and end indices of the connected
components in the new p-column just computed. At the
same time a variable numValues indicating the total
number of grid points included so far in the dilated
DTGridND is incremented by the number of grid points
in this p-column.

(c) Increment iteratorDilate. The movement of this
Iterator dictates the movement of the iterOrig
StencilIterator.

5. Allocate memory for the value array. It will include numValues
elements.

The time complexity of the allocation step of the ND tubular grid
dilation algorithm can be derived as follows: In 2D, we first dilate the 1D
DT-Grid constituent which takes time O(C1) as described in the previ-
ous appendix. Next, every p-column in the original 2D DT-Grid (of which
there are M1) is inserted into and removed from the Column Union data
structure 2G + 1 times. Each operation takes time O(1). Hence the total
time for this is O(M1), since 2H + 1 is a constant. To compute the new

Dynamic Tubular Grid

p-columns, each connected component (of which there are C2) is used
2H + 1 times, since this is the number of unions that it contributes to.
Each time a connected component is used to compute a union this takes
time O(2H +1) since it was located from a total of 2G+1 possibilities to
be the connected component with the smallest start or end Y coordinate.
In total, computing the new p-columns takes time O((2H +1)2C2), which
equals O(C2), since (2H +1)2 is a constant. Finally, summing all the con-
tributions gives a time complexity of O(C1 +M1 +C2) which is O(C2).

The complexity analysis proceeds similarly in N -dimensions except
that 2H + 1 must be replaced by (2H + 1)N−1 and (2H + 1)2 replaced by
(2H + 1)N , hence the allocation step of the dilation algorithm on an N

dimensional DT-Grid has time complexity O(CN).

Appendix G: Octree Implementation

In Sec. 4 we compare an octree based level set implementation to the DT-
Grid. The octree used stores only the grid points inside the narrow band
and uses a uniform resolution. A cell is defined as

struct OctreeCell
{

OctreeCell *parent;
union
{

OctreeCell *children[8];
float *data[8];

} u;
};

The implementation uses the algorithm of Stolte et al. [33] to traverse the
octree sequentially and the neighbor access algorithms of Frisken et al.
[12]. Octree cells are allocated in a memory pool [19] to speed up alloca-
tion and deallocation and to increase the cache coherency. The octree is
constructed and rebuilt in time O(MN). Our implementation is optimized
and appropriate methods inlined.

REFERENCES

1. Adalsteinsson, D., and Sethian, J. A. (1995). A fast level set method for propagating
interfaces. J. Comput. Phys. 118(2), 269–277.

2. Adalsteinsson, D., and Sethian, J. A. (1999). The fast construction of extension velocities
in level set methods. J. Comput. Phys. 148, 2–22.

3. Breen, D., Fedkiw, R., Museth, K., Osher, S., Sapiro, G., and Whitaker, R. (2004). Level
Sets and PDE Methods for Computer Graphics. ACM SIGGRAPH ’04 COURSE #27.
ACM SIGGRAPH, Los Angeles, CA, August 2004. ISBN 1-58113-950-X.

Nielsen and Museth

4. Bridson, R. (2003). Compuational Aspects of Dynamic Surfaces. Ph.D., thesis, Stanford
University, Stanford, California.

5. Chan, T., and Vese, L. (2001). Active contours without edges. IEEE Trans. Image Pro-
cess. 10, 266–277.

6. Droske, M., Meyer, B., Rumpf, M., and Schaller, C. (2001). An adaptive level set method
for medical image segmentation. Lect. Notes Comput. Sci. pp. 412–422.

7. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. (2002). A hybrid particle level set
method for improved interface capturing. J. Comput. Phys. 183(1), 83–116.

8. Enright, D., Losasso, F., and Fedkiw, R. (2005). A fast and accurate semi-lagrangian
particle level set method. Comput. Struct. 83(6–7), 479–490.

9. Fedkiw, R., Aslam, T., and Xu, S. (1999). The ghost fluid method for deflagration and
detonation discontinuities. J. Comput. Phys. 154, 393–427.

10. Foster, N., and Fedkiw, R. (2001). Practical animation of liquids. In ACM SIGGRAPH
’01, ACM Press, pp. 23–30.

11. Osher, S., Losasso, F., and Fedkiw, R. Spatially adaptive techniques for level set methods
and incompressible flow. Comput. Fluids (in review).

12. Frisken, S., and Perry, R. (2003). Simple and efficient traversal methods for quadtrees
and octrees. J. Graphics Tools 7(3), 1–11.

13. Gibou, F., Fedkiw, R., Caflisch, R., and Osher, S. (2003). A level set approach for the
numerical simulation of dendritic growth. J. Sci. Comput. 19(1–3), 183–199.

14. Houston, B., Wiebe, M., and Batty, C. (2004). Rle sparse level sets. In Proceedings of the
SIGGRAPH 2004 Conference on Sketches & Applications. ACM Press.

15. Leveque, R. J. (1996). High-resolution conservative algorithms for advection in incom-
pressible flow. SIAM 33(2), 627–665.

16. Losasso, F., Gibou, F., and Fedkiw, R. (2004). Simulating water and smoke with an oc-
tree data structure. In ACM SIGGRAPH ’04, ACM Press, pp. 457–462.

17. Liu, X. D., Osher, S. J., and Chan, T. (1994). Weighted essentially nonoscillatory
schemes. J. Comput. Phys. 115, 200–212.

18. Museth, K., Breen, D., Whitaker, R., and Barr, A. (2002). Level set surface editing oper-
ators. ACM Trans. on Graphics (Proc. SIGGRAPH) 21(3), 330–338.

19. Meyers, S. (1997). Effective C++ (2nd ed.): 50 Specific Ways to Improve Your Programs
and Designs. Addison-Wesley Longman Publishing Co., Inc.

20. Milne, R. B. (2003). An Adaptive Level Set Method. Ph.D., thesis, Berkeley National Lab-
oratory, Physics Division, Mathematics Department.

21. Min, C. (2004). Local level set method in high dimension and codimension. J. Comput.
Phys. 200, 368–382.

22. Nguyen, D., Fedkiw, R., and Jensen, H. W. (2002). Physically based modeling and ani-
mation of fire. In ACM SIGGRAPH ’02, ACM Press, pp. 721–728.

23. Osher, S. J., and Fedkiw, R. P. (2002). Level Set Methods and Dynamic Implicit Surfaces.
Springer, Berlin.

24. Osher, S., and Paragios, N. (eds). (2003). Geometric Level Set Methods in Imaging, Vision
and Graphics. Springer-Verlag.

25. Osher, S., and Sethian, J. (1988). Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49.

26. Osher, S., and Shu, C. W. (1991). High-order essentially nonoscillatory schemes for ham-
ilton-jacobi equations. SIAM J. Num. Anal. 28, 907–922.

27. Peng, D., Merriman, B., Osher, S., Zhao, H., and Kang, M. (1999). A pde-based fast
local level set method. J. Comput. Phys. 155(2), 410–438.

28. Rudin, L., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise
removal algorithms. Physica D 60, 259–268.

Dynamic Tubular Grid

29. Sussman, M., Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., and Welcome, M.
L. (1999). An adaptive level set approach for incompressible two-phase flows. J. Comput.
Phys. 148, 81–124.

30. Samet, H. (1990). Applications of Spatial Data Structures: Computer Graphics, Image Pro-
cessing, GIS. Addison-Wesley, Reading, MA.

31. Sethian, J. A. (1996). A fast marching level set method for monotonically advancing
fronts. Proc. Nat. Acad. Sci. USA 93(4), 1591–1595.

32. Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods, Second edition
Cambridge University Press, Cambridge, UK.

33. Stolte, N., and Kaufman, A. (1998). Parallel spatial enumeration of implicit surfaces
using interval arithmetic for octree generation and its direct visualization. In Implicit Sur-
faces ’98, pp. 81–87.

34. Shu, C. W., and Osher, S. (1988). Efficient implementation of essentially non-oscillatory
shock capturing schemes. J. Comput. Phys. 77, 439–471.

35. Sussman, M., Smereka, P., and Osher, S. (1994). A level set approach to computing solu-
tions to incompressible two-flow. J. Comput. Phys. 114, 146–159.

36. Strain, J. A. (1999). Tree methods for moving interfaces. J. Comput. Phys. 151(2), 616–
648.

37. Tsitsiklis, J. N. (1994). Efficient algorithms for globally optimal trajectories. Proceedings
of the 33rd Conference on Decision and Control, Lake Buena Vista, LF, pp. 1368–1373.

38. Tsitsiklis, J. N. (1995). Efficient algorithms for globally optimal trajectories. IEEE Trans.
Automat. Contr. 40, 1528–1538.

39. Whitaker. R. T. (1998). A level-set approach to 3d reconstruction from range data. Int. J.
Comput. Vision 29(3), 203–231.

40. Westermann, R., Kobbelt, L., and Ertl, T. (1999). Real-time exploration of regular vol-
ume data by adaptive reconstruction of isosurfaces. Visual Comput. 15(2), 100–111.

41. Zhao, H., Osher, S., Merrian, B., and Kang, M. (2000). Implicit and nonparametric
shape reconstruction from unorganized data using a variational level set method. Com-
put. Vision Image Understand. 80, 294–314.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

