Link6ping Electronic Articles in
Computer and Information Science
Vol. 9(2004): nr 1

Dynamic Tubular Grid:
An Efficient Data Structure and
Algorithms for High Resolution
Level Sets

Michael B. Nielsen
Ken Museth

Linkoping University Electronic Press
Linkdping, Sweden

http:/www.ep.liu.se/ea/cis/2004/001/

Published on November 11, 2004 by
Linkoping University Electronic Press
581 83 Linkdping, Sweden

Linkoping Electronic Articles in
Computer and Information Science
ISSN 1401-9841

Series editor: Erik Sandewall

(©2004 Michael B. Nielsen and Ken Museth
Typeset by the author using FIEX
Formatted using étendu style

Recommended citation:
<Author>. <Title>. Linkoping electronic articles
in computer and information science, Vol. 9(2004): nr 1.
http/www.ep.liu.se/ea/cis/2004/001/. November 11, 2004.

This URL will also contain a link to the author’s home page.

The publishers will keep this article on-line on the Internet
(or its possible replacement network in the future)
for a period of 25 years from the date of publication,
barring exceptional circumstances as described separately.

The on-line availability of the article implies
a permanent permission for anyone to read the article on-line,
to print out single copies of it, and to use it unchanged
for any non-commercial research and educational purpose,
including making copies for classroom use.
This permission can not be revoked by subsequent
transfers of copyright. All other uses of the article are
conditional on the consent of the copyright owner.

The publication of the article on the date stated above
included also the production of a limited number of copies
on paper, which were archived in Swedish university libraries
like all other written works published in Sweden.

The publisher has taken technical and administrative measures
to assure that the on-line version of the article will be
permanently accessible using the URL stated above,
unchanged, and permanently equal to the archived printed copies
at least until the expiration of the publication period.

For additional information about the Linkoping University
Electronic Press and its procedures for publication and for
assurance of document integrity, please refer to
its WWW home page: httpiwww.ep.liu.se/
or by conventional mail to the address stated above.

Abstract

Level set methods [OS88] have proved very successful for interface tracking in
many different areas of computational science. However, current level set meth-
ods are limited by a poor balance between computational efficiency and storage
requirements. Tree-based methods have relatively slow access times, whereas nar-
row band schemes lead to very large memory footprints for high resolution inter-
faces.

In this paper we present a level set scheme for which both computational com-
plexity and storage requirements scale with the size of the interface. Our novel
level set data structure and algorithms are fast, cache efficient and allow for a
very low memory footprint when representing high resolution level sets. We use
a time-dependent and interface adapting grid dubbed the “Dynamic Tubular Grid”
or DT-Grid. Additionally, it has been optimized for advanced finite difference
schemes currently employed in accurate level set computations. As a key feature
of the DT-Grid the associated interface propagations are not limited to any com-
putational box and can expand freely. We present several numerical evaluations,
including a level set simulation on a grid with an effective resolution of 10243.

Authors’ Affiliations

Michael B. Nielsen

University of Aarhus
Department of Computer Science
DK-8200 Aarhus N, Denmark
E-mail: Dbang@daimi.au.dk

Ken Museth (corresponding author)
Department of Science and Technology
Linkdéping University

SE-60174 Norrkdéping, Sweden

E-mail: kenmu@itn.liu.se

Webpage: http://www.gg.itn.liu.se

1 Introduction

This paper presents an efficient data structure and algorithms for the tracking of
propagating interfaces in various computer simulations. Interface tracking is an ex-
tremely important problem in many different scientific fields ranging from physics
and chemistry to computer vision and computer graphics. To mention just a few:
two-phase tracking in computational fluid dynamics (e.g. water/air), tracking of the
blue-core in simulations of chemical combustion in burning flames, propagation of
curves in image segmentation and deforming surfaces in geometric modeling.

All of these fields have found the level set method [OS88, OF02, Set99] by Os-
her and Sethian to be very useful and robust [ROF92, SS094, FAX99, ZOMKO0,
CVO01, FF01, FSJO1, MBWBO02, OP03]. This PDE based method represents the
dynamic interface implicitly as the zero level set (i.e. iso-surface) of a time-dependent
signed distance function discretized on a computational grid. The level set method
essentially adds a spatial and temporal dimension to address the problem of ef-
ficiently representing and tracking the interface. This allows level set surfaces to
undergo arbitrary changes in topology while at the same time preventing them from
self-intersecting, which is very hard to avoid with explicit surface representations.

However, the robustness and flexibility of the level set method comes at the
price of having to solve a time-dependent PDE on a discrete grid of dimension
one higher than that of the actual interface. The related computational issue is
effectively addressed by so-called narrow band schemes that simply utilize the
fact that it is sufficient to solve the level set PDE in the vicinity of the interface
in order to track it. Consequently, narrow band implementations of the level set
method have the desired property that the computational complexity scales with
the size of the interface (i.e. area in 3D and arc-length in 2D) rather than with the
volume (or area) in which it is embedded. However, all current publications on
these narrow band schemes either require the full computational grid to be stored
or the narrow band grid points to be stored in a hierarchical tree structure. This
leads to either very large memory footprints or complicated tree-data structures
with relatively slow access and construction times. Furthermore, these narrow
band methods are limited by a convex boundary of the underlying computational
grid, which typically restricts the extent of interface expansion to a predefined box.
The main contribution of this paper is to present a novel efficient data structure and
algorithms that are not hampered by these limitations.

Our general approach to addressing these limitations is to introduce a dynamic
uniform grid that is only defined in a tubular region around the propagating inter-
face. So, in contrast to existing narrow band methods we do not store any infor-
mation outside of this dynamic tube. Also, since we apply a uniform sampling
around the interface we are not hampered by some of the limitations related to
multi-resolution techniques such as the use of hierarchical trees. Our data struc-
ture can readily be used with all of the finite difference schemes developed for uni-
form full grids. Moreover, Lipschitz discontinuities from interpolation over non-
uniform grid cells is not an issue. In fact, our studies show that our 3D DT-Grid
is faster and more memory efficient than a state-of-the-art Octree implementation
[SK98, FPO3]. Finally, our data structure is completely free of any boundary re-
strictions on the interface expansion which leads to what we call “out-of-the-box”
level set simulations. Throughout this paper we shall refer to our approach as the
Dynamic Tubular Grid, or simply DT-Grid.

1.1 Previous Work

The celebrated level set method was proposed by Osher and Sethian in 1988
[OS88]. In its original formulation a discretized function of the distance to an

initial interface is propagated by solving a time-dependent PDE on a full Cartesian
grid by means of sophisticated finite difference schemes developed for Hamilton-
Jacobi equations. While an incredibly elegant solution to the challenging problem
of interface tracking, it had the disadvantage that the associated computational
complexity scaled with the size of the grid in which the interface was embedded,
rather than with the actual size of the interface itself.

This limitation was removed by the introduction of so-called narrow band
schemes that simply solve the level set PDE in close vicinity of the zero level
set, i.e. the interface. This idea was first proposed by Adalsteinsson and Sethian
[AS95], but the numerical implementation was based on a very wide band around
the interface to avoid frequent and costly rebuilds. Later Whitaker [Whi98] pro-
posed an approximate but faster narrow band scheme (dubbed “Sparse Field”) that
only solves the level set PDE on the actual interface grid points arranged in linked
lists. This solution was then propagated to neighboring grid points by means of an
approximate city-block distance metric. The width of the resulting narrow band
was only as wide as the size of the finite difference stencils used on the inter-
face grid points. Additionally, costly re-initializations were avoided by employing
speed function extension [AS99] that preserves the approximate signed distance to
the interface. Finally, Peng et al.[PMOT99] proposed a fast narrow band scheme
that accurately solves the level set PDE in a narrow band around the interface.
Subsequently, this solution is propagated out to an extra band by means of an Eu-
clidian distance metric. Their method employs data structures based on simple
arrays as opposed to the linked lists used in [Whi98].

All of these narrow band schemes effectively address the problem of compu-
tational complexity present in the original level set formulation [OS88]. However,
they all explicitly store a full cartesian grid and additional data structures to iden-
tify the narrow band grid points. Hence, the associated memory requirements scale
with the size of the full grid, as opposed to the size of the interface. This can be a
severely limiting factor for level set simulations that require large grids to resolve
details of complex interfaces or large deformations over time. To the best of our
knowledge the only published previous work that attempts to address this serious
problem is a relatively small body of work based on tree structures as the under-
lying grid representation. For contours this typically amounts to using quadtrees
[Str99, DMRSO01, Min03] and more recently this idea was extended to surfaces by
means of octrees [LGF04].

While tree based approaches do indeed reduce the memory footprint of the
associated interface representation they are hampered by a number of other lim-
itations. Most importantly the non-uniform discretization makes it non-trivial to
accurately use higher order finite difference schemes like ENO [OS91] or WENO
[LOC94] in space and the TVD Runge-Kutta methods [SO88] in time. Instead,
these tree based methods often use a semi-Lagrangian scheme [Str99] which is
strictly limited to hyperbolic problems like advection in external velocity fields.
While very efficient for problems typically encountered in CFD, it is unclear how
to extend this approach to parabolic problems like curvature based interface flow.
Additionally, since the semi-Lagrangian method uses interpolation on the non-
uniform grid, nontrivial issues like Lipschitz continuity also has to be explicitly
addressed [Min03]. Another problem seems to be that tree based data structures
are relatively slow to access and modify during interface propagations which can
lead to significant reductions in performance when compared to regular narrow
band schemes based on full uniform Cartesian grids. This problem is closely re-
lated to the fact that it can be rather tedious to implement optimized versions of
these tree structures. Finally, we note that while tree data structures allow for
multi-resolution representations, all practical tree methods appear to use uniform
resolution of the interface [Str99, DMRSO01, Min03, LGF04]. This is partly due to

the fact that it is hard to design reliable “refinement oracles” which can guarantee
that no fine features are missed due to under-sampling as the interface propagates
in time.

To the best of our knowledge, the only work directly related to ours is de-
scribed in a technical sketch (one page abstract) by Houston er al. [HWBO04] re-
cently presented at a graphics conference, where we concurrently summarized the
main features of DT-Grid [BFM104]. Their work primarily focuses on fluid sim-
ulations, and they propose a data structure based on Run-Length-Encoding which
decouples the storage of the elements from the actual encoding. While we do not
have enough details to reproduce their method for evaluation, we list the follow-
ing characteristics based on the abstract and private communication. In 3D, their
approach requires O(Mx My + Ms3) storage, where Mx, My and M3 are the
number of grid points in respectively the X and Y dimensions of a bounding box
and the narrow band. Hence their memory usage does not scale with the interface.
Sequential access time is O(M"Tj:f" + 1) whereas random and stencil access times
are logarithmic in the number of runs in each scan-line. Their method maintains
a dynamically resizing bounding box which allows the level set to grow dynami-
cally. However, if the M x My dependency in their storage requirements becomes
dominant, their method does not allow for out-of-the-box level set simulations.
The characteristics of our method, DT-Grid, will be outlined in the next section.

1.2 Contributions

Our work stands apart from previously published work in several ways. We do not
use any tree structures or full grids with additional data structures to represent the
narrow band. DT-Grid takes an entirely different approach by storing the narrow
band in a very compact non-hierarchical data structure that uses less memory than
previous methods without compromising the computational efficiency. Below we
summarize our contributions.

e The memory usage of DT-Grid scales with the size of the interface. More
specifically the storage requirements are O(M) (in 3D O(M3)) where My
is the number of grid points in the N-dimensional narrow band. In fact our
evaluations show DT-Grid to be more compact than other grid or tree-based
level set schemes that employ a uniform sampling of the interface. As a
result, our data structure allows for higher resolutions of level sets before
hardware memory restrictions are potentially violated.

e All our evaluations have shown that the computational efficiency of accurate
level set deformations based on DT-Grid is better than both narrow band and
tree-based approaches. We strongly believe this is due to the added cache
coherency from the dramatically reduced memory footprints. More specif-
ically we have developed efficient algorithms that guarantee the following
properties of DT-Grid:

1. Access to grid points has time complexity O(1), when the grid is ac-
cessed sequentially.

2. Access to neighboring grid points within finite difference stencils has
time complexity O(1).

3. The time complexity of random and neighbor access to grid points out-
side the finite difference stencil is logarithmic in the number of con-
nected components within p-columns (see section 2.1 for the defini-
tion).

4. The time complexity of constructing and rebuilding the DT-Grid is
linear in the number of grid points in the narrow band.

e Our data structure allows level set interfaces for the first time to freely de-
form without boundary restrictions imposed by underlying grids or trees em-
ployed in other methods. This effectively implies that interfaces can expand
arbitrarily. We demonstrate this with out-of-the-box level set deformations.

e Our compact data structure generalizes and scales well to any number of
dimensions.

e Unlike approaches employing non-uniform grids our flexible data structure
can transparently be integrated with all existing finite difference schemes
typically used to numerically solve both hyperbolic and parabolic level set
equations on uniform dense grids.

This paper is organized as follows. Section 2 introduces the DT-Grid data
structure. A general N-dimensional definition is given and a detailed explanation is
presented in 2D. In section 3 we describe efficient algorithms that are fundamental
to improved level set simulations on the DT-grid. In section 4 we evaluate the
time and memory efficiency of the DT-Grid compared to previous methods. We
also demonstrate the low memory footprint in a 10242 high resolution level set
simulation. We then show how level set simulations on a DT-Grid can go out-of-
the-box, a feature not shared with any existing narrow band or tree-based level set
method. Finally, section 5 concludes the paper and outlines future work.

2 Data Structure

Throughout this paper by tubular grid we mean a subset of grid points, defined
on an infinite grid, within a fixed distance from an interface. As the interface
propagates this subset changes, thus giving rise to the term dynamic tubular grid.
In this section we define the DT-Grid, an efficient data structure for N-dimensional
dynamic tubular grids.

A straightforward non-hierarchical approach to representing a tubular grid is
to explicitly store float values and indices of all its grid points. To obtain constant
access times to neighboring grid points, one could also store additional pointers.
However, this approach does not scale well as the number of grid points in the
tubular grid increases. The DT-Grid employs a better approach by combining a
compressed index storage scheme with knowledge of the connectivity properties
of the tubular grid to obtain a memory and time efficient data structure. This is
achievable by means of a lexicographical storage order of the grid points.

2.1 Definition of the DT-Grid

The DT-Grid is defined recursively in terms of DT-Grids of lower dimensionality,
and as such our approach readily generalizes to any dimension. However, for sim-
plicity we shall limit a detailed description of the data structure to 2D and illustrate
with the example depicted in Figure 1. As a prelude to this description it is con-
venient to introduce the following general terminology based on the nomenclature
given in table 1.

e In N-dimensions, p-column (short for projection column) number X y_1 =
(21,22, ...,xN—1) is defined as the set of grid points in the tubular grid that
project to (1, %2, ..., N—1,0) by orthogonal projection onto the subspace
spanned by the first N — 1 coordinate directions. Thus a p-column is always
1D.

e A connected component in N-dimensions is defined as a maximal set of
adjacent grid points within a p-column.

N The Dimension.

XN Grid point or p-column number (Z1, Z2, ..., TN)
¢(Xn) | Scalarlevel set function.

Q- Interior region.

Qt Exterior region.

dz The uniform grid spacing.

Ta The tubular grid { Xy € éRN| |p(Xn)| < a}.
My Number of grid points in the VD tubular grid.

o Width of the tubular grid.

Cx Number of connected components in p-column X 7.
Cn Total number of connected components in ND DT-Grid.

Table 1: Nomenclature used throughout the paper.

vatve s T T> I T + T+ T« I =T~ W]

yCoord[2[4]1[s]1]2]4]s]1]s5]2]¢]
(®)
acc| o

value 3o o2 [ox [o]
xCoord| 1] 5]
()

Figure 1: (a) A dense 2D grid. (b) Corresponding 2D DT-Grid. (c) A dense 1D
grid. (d) Corresponding 1D DT-Grid. Note the lexicographic storage order.

For example, in 2D, p-column number z is defined as the set of grid points in the
tubular grid that project to (x, 0) by orthogonal projection onto the X axis. In fig-

ure 1.a, p-column number 3 is defined as the set of grid points {(3, 1), (3, 2), (3,4),(3,5) },
and it contains two connected components, {(3,1),(3,2)} and {(3,4),(3,5)}.

Note that the lower leftmost grid point in figure 1.a is (0,0). A N-dimensional
DT-Grid can be defined recursively in terms of a (N-1)-dimensional DT-Grid us-

ing pseudo C++ syntax as follows

template<typename Type> class DIGridND<Type> {
ArraylD<Type> value;
ArraylD<Index> nCoord;
ArraylD<unsigned int> acc;
DTGrid (N-1)D<IndexPair> proj(N-1)D;

Below we define the 2D DT-Grid in pseudo C++ syntax and explain its con-
stituents in detail.

template<typename Type> class DTGrid2D<Type> {
ArraylD<Type> value;
ArraylD<Index> yCoord;
ArraylD<unsigned int> acc;
DTGridlD<IndexPair> projlD;

}

template<typename Type> class DIGridlD<Type> {
ArraylD<Type> value;
ArraylD<Index> xCoord;
ArraylD<unsigned int> acc;

value: The value array (in DTGrid2D) stores the numerical values of all
grid points in the two-dimensional tubular grid in (z,y) lexicographic order. Typ-
ically the associated Type will be £1loat or double. In figure 1.{a,b} the grid

~ 3 " /f‘{ ” > /f‘{ ” %
P s P e 2 e >

(@) (®) (©

Figure 2: Color coded representation of the tubular grid of a sphere in a 3D DT-
Grid. a) Entire sphere. b) Middle slice of sphere. c) P-column consisting of two
connected components.

points contained in the tubular grid are colored yellow and blue. In this illustra-
tive example the numerical values of the grid points in the tubular grid are simply
chosen to be the corresponding lexicographic storage order in the DT-Grid.

yCoord: The yCoord array stores the min and max y-coordinate of each
connected component. In figure 1.{a,b} these grid points are shown in yellow.
Thus, rather than simply storing y-coordinates of all grid points, we exploit the
connectivity in the tubular grid.

acc: The acc array (in DTGrid2D) stores pointers into the value array
which identifies the first tubular grid point in each connected component. As will
be explained later this information is essential for obtaining a fast random access
operation.

proj1D: The proj1D constituent holds pairs of indices into the value and
yCoord arrays, for the first grid point in each p-column in the tubular grid. This is
illustrated with arrows in figure 1.b. Also note that proj1D is defined recursively
as a DTGridl1D with Type=IndexPair, see figure 1.{c,d}. The constituents
of the 1D DT-Grid are defined similarly, except for the fact that is does not have a
projoD constituent. proj1D introduces additional structure into the 2D DT-Grid
and allows for fast access to each p-column independently. As will be explained
in the next section, this structure is used extensively in most of the algorithms of
the data structure.

Figure 2 shows an example of a sphere represented in a 3D DT-Grid. The 2D
and 1D DT-Grid constituents are also included in the illustrations. The red and
green grid points are the grid points in the 3D tubular grid. The red grid points
are the start and end grid points of connected components. Figure 2.c shows p-
column number (25, 25) consisting of two connected components. The white pixel
in Figure 2.c illustrates the IndexPair that points to p-column number (25, 25).

The storage requirements of a N-dimensional DT-Grid are O(M y) (see table
1) which can be justified as follows: Clearly, the storage requirements of a 1D
DT-Grid are O(M7) since it does not contain a proj 0D constituent. The storage
requirements of a N-dimensional DT-Grid are O(M 1 + M) which by induc-
tion equals O(My).

One additional and important property of the DT-Grid can be deduced from the
definition given above. Since the DT-Grid is defined recursively, the coordinate
vectors of all grid points are explicitly stored, albeit in a compressed format. This
means that the grid points of the DT-Grid are not restricted to a particular range of

indices as is the case with the traditional full grid or tree-based methods. Hence,
the DT-Grid is in fact capable of representing unbounded, dynamically expanding
and non-convex grids. This allows for truly out-of-the-box level set simulations
which we demonstrate in section 4.3.

3 Algorithms of the Data Structure

Algorithm Time Complexity |

Push 0(1)

Access to Stencil Grid Points | O(1)

Sequential Access 0(1)

Random Access oY MogCx,)
o(

n=0
Neighbor Access in m’th 1+ Zﬁ:_% log Cx,,)
Coordinate Direction

Rebuilding the tubular grid
Dilating the tubular grid

Table 2: Key algorithms of a N-dimensional DT-Grid. The associated time com-
plexities are derived in subsequent sections.

In this section we describe in detail the key algorithms of our memory-, cache-
and time-efficient DT-Grid data structure. The DT-Grid has the exact same algo-
rithmic interface as a full grid. Furthermore, even though our data structure only
stores the values of a tubular grid, methods that provide access to any grid point
are supported. In our case these methods simply return a signed value, positive in
QF and negative in 2, with absolute value equal to the width of the tubular grid.
This design approach hides the added complexity of our improved data structure
and makes it almost trivial to integrate DT-Grid with existing level set simulation
code.

Due to the recursive nature of the storage format of the DT-Grid, many of the
operations presented here are also recursive in nature. The rest of this section is
structured as follows. Section 3.1 describes a constant time operation for inserting
grid points into the DT-Grid. In sections 3.2 and 3.3 we describe how constant
time sequential access to all grid points within a finite difference stencil can be
obtained when iterating over the grid. This is essential in obtaining a fast data
structure. Section 3.4 describes a logarithmic time algorithm for random access
to grid points based on binary search. This algorithm is used if grid points are
accessed non-sequentially or lie outside of the stencil. As will be justified in the
evaluation section, this random access algorithm, albeit asymptotically logarith-
mic, has proven to be almost as fast as random access in a full grid, due to cache
coherency. Next, section 3.5 describes how constant and logarithmic time neigh-
bor access operations can be constructed. Finally, section 3.6 describes how the
tubular grid is rebuilt. In particular, we describe a generic algorithm for rebuild-
ing the tubular grid, which can be used independently of the method employed for
re-initializing the level set function to a signed distance function. Table 2 gives an
overview of the operations and their associated time complexities.

3.1 Push - Inserting Grid Points in Constant Time

The DT-Grid supports a low-level constant time push operation to add new grid
points to the data structure. Since the grid points are stored in memory lexico-

graphically as (z1, T2, ..., zn), new grid points must be pushed in this order!. If,
on the other hand, grid points were inserted in an order different from their lexi-
cographic order, each insertion would take worst case linear time in the number of
grid points stored. Fortunately, such insertions can be avoided altogether in level
set computations.

A pop operation could be implemented similarly to the push operation, but is
not needed. This is due to the fact that the structure of the tubular grid only changes
when the tubular grid is rebuilt. In that case the new tubular grid is constructed
from scratch.

The push method updates the array constituents of the DT-Grid (defined in
section 2.1) and has to deal with the following three cases:

1. The new grid point is the first in a p-column. (As an example see grid points
{0,3,8,12,17} in figure 1.a.)

2. The new grid point is the first grid point in a connected component (and not
the first in a p-column). (See grid point 10 in figure 1.a.)

3. The new grid point is the last in an existing connected component. (See the
remaining colored grid points in figure 1.a.)

3.2 Constant Time Sequential Access Using Iterators

The DT-Grid has support for an Iterator which is a construct that provides con-
stant time sequential access to grid points in the DT-Grid. The Iterator is in effect
a wrapper around a Locator (see section 3.5) that uniquely identifies a grid point.
Note that using the Locator constituent it is possible to obtain logarithmic time ac-
cess to neighboring grid points. However, as will be described in the next section,
the Stencil Iterator provides constant time access to neighboring grid points within
a stencil.

The key method of the Iterator is the increment operation which simply
increments the associated Locator to point to the next grid point in the tubular
grid. This has time complexity O(1).

3.3 Constant Time Stencil Access Using Iterators

Most level set methods require access to a finite difference stencil of grid points
in order to compute approximations to derivatives like gradients and curvature.
Hence, fast access to all members of the stencil is a necessity to ensure optimal
performance. By shifting a stencil of Iterators over the tubular grid it is possible
to gain constant time access on average to all grid points within the stencil. This
is optimal and applies when iterating over the entire tubular grid, which is the case
e.g. when advecting, propagating or reinitializing the level set function.

To achieve the above, the DT-Grid has support for a Stencil Iterator, which
contains a stencil of Iterators, one for each grid point within the stencil.

Incrementing a Stencil Iterator is a bit more involved than incrementing a sin-
gle Iterator. Here we give an overview of the process.

1. First the Iterator corresponding to the center grid point of the stencil is in-
cremented using the i ncrement method described in the previous section.
This center Iterator dictates the movement of the entire stencil.

2. Next the remaining Iterators, corresponding to non-center stencil grid points,
are incremented until they point to the correct stencil grid point. A non-
center stencil grid point may not exist in the tubular grid. If this is the case,

lje. in 3D, push(2,2,6) should be issued before push(2,5,1).

access to that particular stencil grid point returns —+ if the grid point lies in
Q™ and ~y otherwise.

Narrow band level set algorithms typically operate on a number of concentric
tubes of increasing width centered about the interface, see [AS95, PMO199]. If
the DT-Grid is a signed distance field, the Stencil Iterator can be parameterized to
return only the grid points within a certain tube, e.g. the zero crossing, without
requiring additional storage. This is done simply by incrementing the Iterator of
the stencil center grid point until it points to a grid point with absolute value below
some threshold.

Incrementing a stencil of Iterators across the DT-Grid provides constant time
access on average to all stencil grid points in a particular tube as long as all grid
points in the tube are visited. This is the case since: a) each Iterator of the Stencil
Iterator passes over the tubular grid exactly once, which has complexity O(M),
where M is the number of grid points in the tubular grid, b) M is proportional
to the number of grid points in any tube centered about the interface, c) the number
of grid points within the stencil is a constant, d) access to a grid point through an
Iterator has time complexity O(1).

3.4 Logarithmic Time Random Access

As described above, the DT-Grid supports constant time access to grid points
within a stencil when accessing the grid sequentially. This is used in all level set
algorithms that we have considered, except for the fast marching method [Tsi94,
Tsi95, Set96], which instead uses random and neighbor access (neighbor access is
described in the next section). The DT-Grid supports fast operations for random
access, which is the mapping from an arbitrary N-dimensional grid point to its
corresponding numerical value. A full grid provides constant time random access
to all its grid points since this simply amounts to an array access. Constant time
random access to grid points is not possible in a DT-Grid. However, logarithmic
time, in the number of connected components within p-columns, can be obtained.
Note that this is optimal with respect to the storage format. Furthermore, since the
number of connected components is usually very small compared to the number of
grid points, and since the DT-Grid is very cache coherent, random access is almost
as fast as for full grids in practice (see evaluation section for details).

Random access to the grid point X on a N-dimensional DT-Grid is defined
recursively in dimensionality as follows.

1. The random access algorithm of the N-1-dimensional DT-Grid constituent is
used to determine if p-column number X _ is contained in the projection
of the tubular grid.

2. If this is the case, it is determined if the grid point’s N’th coordinate, z y,
lies between the min and max N’th coordinates in p-column number X .

3. If this is the case, binary search for x in p-column number X _; in the
nCoord array is employed to find the nearest start or end coordinate of a
connected component in the N’th coordinate direction.

4. Finally it is determined whether the grid point actually exists in the p-column
(ie. is inside the tubular grid) and if this is the case its value is returned.

Access to grid points outside the tubular grid simply return —+y if the grid point lies
in Q= and if the grid point lies in Q. The time complexity of random access
to a grid point, Xy = (21,2, ..., ZN), IS O(Zﬁz_ol log Cx,,), where Cx,, is the
number of connected components in p-column X,,.

10

Employing this random access operation it is easy to implement the following
fundamental operations: 1) an operation that determines if a grid point is inside
or outside of the interface, 2) an operation that determines if a grid point is in the
tubular grid, 3) an operation that determines the closest point on the interface to a
grid point inside the tubular grid.

3.5 Logarithmic Time Neighbor Access

This section describes how the DT-Grid implements fast neighbor access to grid
points by utilizing structural information about the grid. Constant access time to
a grid point is possible if its index into the value array constituent is known.
However, this index does not provide any structural information about the location
of the grid point in relation to neighboring grid points in the coordinate directions.
For this reason the DT-Grid supports Locator based access. A Locator points to
and provides structural information about a grid point in a DT-Grid. It allows for
constant access time to the grid point itself and faster neighbor access than can be
achieved using random access alone. Locators are not explicitly stored but can be
computed by an operation similar to a random access operation. A N-dimensional
Locator is defined recursively with respect to dimensionality as

struct LocatorND {
Locator (N-1)D loc;
unsigned int iv;
unsigned int ic;
Index Xn;

where 1oc is a N — 1-dimensional Locator. The components iv and ic point
respectively into the value and nCoord arrays of DTGridND. In particular iv,
points to the value of the grid point and ic points to the N’th coordinate of the
first grid point in the connected component in which the grid point lies. The last
component, Xn, is the N’th coordinate of the grid point.

As mentioned above, neighbor access using locators is faster than neighbor
access using random access. In fact, when doing neighbor search in the m’th coor-
dinate direction, the structural information about the original and neighboring grid
point is identical in the first m-1 coordinate directions. For the sake of simplicity
we explain this in 2D, but stress that the general N-dimensional case is similar.
Recall that the storage order of grid points in a 2D DT-Grid follows the (z,y)
lexicographic ordering. Thus, the numerical values of the neighbors in the Y co-
ordinate direction, (x,y — 1) and (x,y + 1), can be found in constant time from a
Locator using the indices iv+1, respectively. If the particular neighbor does not
exist in the tubular grid, -y is returned if the neighbor is outside the interface, and
—~ otherwise.

Neighbors in the X coordinate direction can be found in time O(log Cp11),
where C, + 1 is the number of connected components in p-column number z + 1.
This is done by first locating the neighbor in the pro j1D constituent using iv+1
of the 1D Locator constituent. Next, one can apply a binary search for Y in the
z £ 1’th column.

In general, neighbor search in the m’th coordinate direction in a N-dimensional
DT-Grid takes time O(1 + Y. log Cx.,).

3.6 Dilating and Rebuilding the Tubular Grid

To ensure numerical stability, level set methods typically apply a reinitialization
procedure (after the propagation step) to reset the level set function to a signed dis-
tance function. Existing narrow band level set methods furthermore combine this

11

reinitialization step with a method to rebuild the narrow band to ensure that it in-
cludes all grid points within a tube of a certain width. When reinitializing the level
set function using the fast marching method [Tsi194, Tsi95, Set96] the tubular grid
is rebuilt simultaneously with the reinitialization process. The remainder of this
section is organized as follows: Section 3.6.1 describes an algorithm that allows
us to dilate the tubular grid. The basic idea is simple, but leads to an inefficient
algorithm. However, by taking advantage of the storage format of the DT-Grid we
show how to construct a very efficient algorithm. Section 3.6.2 describes a generic
and efficient algorithm for rebuilding the DT-Grid. By generic we mean that the
algorithm can be applied independently of the method used to reinitialize the tubu-
lar grid (i.e. , solve the Eikonal equation, |V¢$| = 1). A main building block in this
algorithm is the tubular grid dilation algorithm described in section 3.6.1.

3.6.1 Dilating the Tubular Grid in Linear Time

In this section we present a fast algorithm for dilating a N-dimensional DT-Grid.
This algorithm is essential for obtaining feasible asymptotic and practical execu-
tion times when rebuilding the tubular grid, which is the topic of the next section.

A simple idea is to construct a new tubular grid by adding all grid points that
pass under a stencil iterated over the original tubular grid. In N-dimensions a
desired dilation of H - dx can be achieved with a stencil shaped as a hypercube
with 2H + 1 grid points along each edge. Clearly, the resulting tubular grid is a
conservative estimate of the grid points no more than a distance of H - dx away
from the original tubular grid. The estimate in 1D is exact, but for a N-dimensional
stencil, the maximal distance within the stencil measured from the stencil center is
VNH - dz.

A direct implementation of the simple idea outlined above yields a time com-
plexity of O(My - (2H + 1)V). Asymptotically, this amounts to O(M), since
(2H + 1)V is constant. However, in practice this approach is slow and grid points
are added to the tubular grid in an order that is not cache coherent (i.e. not lexico-
graphically ordered).

X—————> X— >

(T T 1] [I |

(a) (b) (©

Figure 3: a) The original DT-Grid. b) The process of computing a new p-column
(number 3) in the dilated DT-Grid (adding the red grid points) c) The final dilated
DT-Grid.

The dilation algorithm on a N-dimensional DT-Grid exploits the recursive def-
inition of the DT-Grid and, except for the 1D DT-Grid, uses the dilation algorithm
of its N — 1 dimensional DT-Grid constituent recursively. This results in a fast
dilation algorithm that ensures cache coherency for subsequent traversals.

The dilation algorithm consists of two steps: An allocation step that computes

12

and allocates the dilated tubular grid, followed by a step that copies the values of
the original tubular grid to the dilated tubular grid. The time complexity of the
allocation step is O(Cn), where Cy is the total number of connected components
in the original N-dimensional tubular grid. In most practical cases C'y is sublinear,
i.e. Cy << My, where My is the number of grid points in the original tubular
grid. The time complexity of the copying step is O(M). Note that the number of
grid points in the original and the dilated tubular grid are proportional.

Next we give an overview of the allocation step of the algorithm, omitting the
copy step, since this is trivial. We start with 1D, followed by a description in 2D
which readily generalizes to any number of dimensions.

An illustration of a tubular grid dilation in 2D is depicted in figure 3. Figure
3.a shows an initial 2D DT-Grid as well as its 1D DT-Grid constituent. Figure 3.c
shows the result of dilating the 2D tubular grid by a stencil with H = 1. Grid
points added to the DT-Grids by the dilation algorithm are colored red.

As mentioned earlier, the xCoord array of DTGrid1D stores a number of
connected components, each identified by a start and an end index. The dilation
algorithm in 1D simply amounts to dilating each of the connected components by
H grid points in both directions and merging adjacent and overlapping connected
components into a single connected component, see figure 3.

The 2D dilation algorithm starts by invoking the 1D dilation algorithm on the
1D DT-Grid constituent. Recall that the 1D DT-Grid constituent stores the projec-
tion of the 2D tubular grid onto the X axis. The result of the 1D dilation is that
the 1D DT-Grid constituent contains the dilated projection of the 2D tubular grid
which is in fact equal to the projection of the dilated 2D tubular grid, see figure
3.c.

Next, each p-column of the dilated 2D DT-Grid has to be computed. Note that
each element in the 1D DT-Grid constituent identifies a p-column in the 2D DT-
Grid. Hence, we know exactly which p-columns should be computed in the dilated
2D tubular grid. The process of computing p-column number x proceeds as fol-
lows: First dilate the original p-columns numberedz—H, .., 2—1, 2z, 2+1, .., z+H
independently in the Y direction by H grid points. Next form their union in order
to obtain p-column number z in the dilated 2D tubular grid. This is illustrated in
figure 3.b. The index pairs contained in the dilated 1D DT-Grid constituent are
computed simultaneously with the p-columns. Repeating the process above for
each new p-column completes the dilation.

To sum up, the process outlined above dilates the DT-Grid in each dimension
independently, and forms new p-columns by taking the union of the dilated original
p-columns touched by the stencil. It should be clear, that this method is equivalent
to shifting a stencil over the grid and including all grid points that pass under the
stencil.

3.6.2 Rebuilding the Tubular Grid in Linear Time

In this section we outline an algorithm to rebuild a DT-Grid, denoted T, to include
all grid points within a distance « from the interface. The algorithm devised here
assumes that the original tubular grid is a distance field and contains all grid points
in Ty, where 0 < a. The difference o — § may be equal to the maximal movement
of the interface between rebuilds. Note that if a method is not restricted by the
CFL condition [OF02], as e.g. with semi-Lagrangian integration, the maximal
movement need not be equal to dz. Rebuilding the tubular grid is composed of the
following steps

1. Remove from the original tubular grid all grid points outside T. In practice

13

this is done by constructing an intermediate tubular grid and copying all grid
points within Ty to it. This step has time complexity O(M).

2. Dilate the intermediate tubular grid by o — &, where @ — & corresponds
to the difference in width between the tubes T, and T}y, using the tubular
grid dilation algorithm of section 3.6.1. This step also has time complexity
O(Mn).

3. Initialize the values of the grid points included in the new tubular grid by the
dilation algorithm to +4 depending on whether they are interior or exterior
to the region bounded by the interface. This step also has time complexity
O(My).

Since each of the above three steps has time complexity O(M), so does re-
building of the tubular grid.

4 Evaluation and Results

In this section we present results from three different level set simulations that each
demonstrate different features of our DT-Grid. In particular, section 4.1 compares
the memory- and time-usage of the DT-Grid to existing methods. Next, section
4.2 verifies that the low memory footprint of the DT-Grid allows for very high
resolution simulations. Finally, section 4.3 shows that level set simulations can go
out-of-the-box when employed on a DT-Grid.

4.1 Memory and Time Complexity

The following comparisons use the exact same level set simulation code on top
of all narrow band approaches and the DT-Grid. Extensive effort was devoted to
optimizing implementations of all methods.

Our benchmark test is an extruded spiral evolving under volume-conserving
mean curvature flow [PMO199]

o
ot
where « is local mean curvature and & is the average mean curvature on the inter-

face. We demonstrate the efficiency of the DT-Grid with respect to two numerical
methods on a 1282 grid as shown in figure 4.

(k= &)Vl (D

4.1.1 Numerical Method 1

In the first approach we advect the level set using second order central differences
for the spatial parabolic term (k|V ¢|) and fifth order accurate HI-WENO [LOC94]
discretization for the spatial hyperbolic term (%|V ¢|). We use a third order accu-
rate TVD Runge-Kutta [SO88] time-stepping method. In the reinitialization step
we solve the PDE of Peng et al. [PMO¥99] to steady state, again using a fifth order
accurate HI-WENO discretization of the spatial terms and a third order accurate
TVD Runge-Kutta time stepping method.

In figure 5 and 7 we compare the following methods: 1) The DT-Grid (blue),
2) The method of Peng et al. [PMO199] (green), 3) The method of Peng et al. im-
proved with an O(M y) method for rebuilding the narrow band [BFM*04] (red),
4) An Octree data structure [Sam90, SK98, FP03] (cyan) storing only the grid
points inside the narrow band using a uniform resolution. We describe the Octree
implementation in more detail in appendix A.

14

Figure 4: Extruded spiral evolving under volume conserving mean curvature flow.
Benchmark test for narrow band, Octree and DT-Grid level set methods. Timings
and memory usage is given in figures 5 to 8.

15

x10
3 i
m— OT-Grid
= Peng
== Peng SR
Octree
25F
a2t
ar
(=)
o
w
2 15¢
@
E
=
U L L 1 1 1 J
0 1000 2000 3000 4000 5000 6000

lteration

Figure 5: Time usage with HI WENO RK3 for both advection and remormaliza-
tion.

Figure 5 shows the time-usage of the different methods. As can be seen, the
DT-Grid approach is faster than both the narrow band methods and the Octree
approach. In this simulation the O(M) Peng approach is slower than the original
method of Peng. This is partly due to the relatively small simulation grid and the
cache ineffectiveness of the O(M) method. For simulations on larger grids, the
original method of Peng will be slower than the improved O (M y) Peng method,
since it requires a pass through the entire full grid to rebuild the narrow band
structure. We have run a large variety of simulations on a wide range of grid sizes
and in all cases the DT-Grid has performed better than existing approaches.

In figure 7, the memory usage is depicted. The index compression scheme of
the DT-Grid makes it more memory efficient than the other approaches. The in-
dex arrays of the method of Peng, scale with the size of the interface [PMO199].
However the full grid and a mask array are stored at all times thus forming a lower
bound (shown as the black horizontal line in figure 7). The memory usage of the
Octree, scales with the size of the interface, but the storage format is not as effec-
tive as that of the DT-Grid. As a reference we have also plotted the memory usage
(computed analytically) of a non-hierarchical storage format that stores the indices
of all grid points (magenta) and the very compact linear Octree [Sam90] storage
format (yellow). Both of these are also less efficient than the DT-Grid. Note that
due to the relatively small size of the simulation grid in this particular example,
the memory savings of the DT-Grid may appear to be moderate. However, we
emphasize that the memory consumption of the DT-Grid is in fact close to optimal
as will be described below. In section 4.2 we demonstrate a simulation on a high
resolution grid, where the memory consumptions of the DT-Grid and the method

16

= OT-Grid FMM
L === Pang FMM

3500

3000

2500

Time-Usage
=]
=
[]
=

1500

1000

500

1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000
lteration

Figure 6: Time usage with HI WENO RK3 for advection and FMM for renormal-
ization.

of Peng are 67.2MB and 5.2GB respectively.

Figure 8 illustrates the efficiency of the index compression scheme of the DT-
Grid. We have plotted the total amount of memory occupied by the schemes to the
amount of memory occupied by the numerical values in the tubular grid (or narrow
band) alone. As can be seen this quantity is very close to 1 for the DT-Grid. This
is optimal with respect to schemes that store the numerical values in the narrow
band uncompressed.

To sum up: The narrow band method of Peng is fast but not memory efficient.
The memory usage of the Octree scales with the size of the interface, however our
tests indicate that the approach is relatively slow. The DT-Grid appears to be the
only approach which is both memory and time efficient. In fact it is both faster than
the narrow band method of Peng et al.[PMO7T99] and more memory efficient than
the Octree.

4.1.2 Numerical Method 2

In the second approach we advect the level set using HI-WENO and TVD Runge-
Kutta as above, but reinitialize the level set in the narrow band (or tubular grid)
using the Fast Marching method [Set99].

We compare the following methods: 1) DT-Grid (figure-label DT-Grid FMM),
2) Peng (figure-label Peng FMM).

The time usage is plotted in figure 6. In this case the DT-Grid also performs
better than the full grid Peng approach. This can be attributed to the cache co-
herency of the DT-Grid. The fast marching method employs a lot of random and

17

15
(=== Peng Lower Bound
P, Linear Octree
S m— |ndex
P S m— DT-Grid
T Peng. Peng SR
e L Octree
10
o
=
@
L=
3
w
=
=
=
E
o
=
51
u] 1 1 1 1 !
0 1000 2000 3000 4000 5000 6000

lteration

Figure 7: Memory Usage.

neighbor access operations since it does not visit a grid sequentially. Even though
these operations on the DT-Grid are asymptotically slower than in a full grid, its
cache efficiency makes the total simulation time faster than the Peng method.

4.2 High Resolution Level Sets

The DT-Grid has a very low memory footprint, hence allowing very large or equiv-
alently very high resolution level set surfaces to be represented without exceeding
the main memory limit. Enright et al.[EFFM02] introduced a test based on a three
dimensional incompressible flow field initially proposed by LeVeque [Lev96] to
demonstrate the volume conserving properties of the particle level set method.
The test was run on a 100? full grid with and without particles. The particle level
set method proved excellent in conserving the volume, however the resolution of
the computational grid was insufficient to capture the thin filaments. Later, Enright
et al.[ELF04] demonstrated that the interface could be fully resolved on an Octree
grid with an effective resolution of 5122, using a combined semi-Lagrangian and
particle level set method.

From figure 9 it can be concluded that the interface can also be fully resolved
on a DT-Grid with an effective resolution of 10243 without particles. However,
we stress that the DT-Grid should not be considered an alternative to the particle
level set approach. The setup of this simulation is identical to that of Enright et
al.[EFFMO02] which uses HI-WENO and TVD Runge-Kutta for both the advection
and reinitialization steps. This particular example clearly demonstrates that the
DT-Grid enables high resolution interfaces to be represented. To the best of our
knowledge this is the largest level set simulation to date.

18

18

Linear Octree
— ndex
—— Optimal
1 f
9 — OT-Grid
» Peng. Peng SR
Octree

14

12} J

2 |
————— ————————————

1 L L il 1 J
0 1000 2000 3000 4000 5000 6000
lteration

Figure 8: Efficiency of index compression.

At the time step where the number of grid points in the tubular grid peaks,
1.41% of the grid points in the entire full 1024% volume is occupied by the tubular
grid and hence stored by the DT-Grid. At this time, the DT-Grid uses only 67.2 MB
of storage in total. Furthermore, the memory used by the DT-Grid is only 1.64% of
the storage that the 10243 full volume would occupy alone. The additional 0.23 =
1.64—1.41% of storage used by the DT-Grid is occupied by the compressed indices
and lower dimensionality DT-Grid constituents. From the number of grid points
in the tubular grid at peak time, we computed analytically that the method of Peng
would occupy at least 5.2GB of storage. Other non-hierarchical approaches to
storing the tubular grid, such as storing the indices explicity would result in a total
memory usage of 9.86% and additionally storing pointers to the neighbors would
yield 43.68%, giving a total memory usage of 144 MB and 490 MB respectively.
The above analysis clearly illustrates the effectiveness of the index compression
scheme employed by the DT-Grid.

4.3 Out-of-the-Box Level Sets

The DT-Grid, in constrast to full grids and Octrees, is not bounded by an underly-
ing box of a fixed computational domain. In this section we illustrate this important
property by evolving the level set shown in figure 10(a) using convection-diffusion
[OF02]. In the convection-diffusion equation we combine motion by mean curva-
ture with motion by a vector field that at each point is the normalized radial di-
rection from the origin. The mean curvature term creates multiple pinch-offs at
the center of the level set surface (see the left-most image in figure 10(a)), and we
force its contribution to zero over time. The radial vector field advects the level

19

Figure 9: The DT-Grid enables high resolution grids to be represented with a very
low memory footprint. In this example the resolution was 10242 and the maxi-
mal memory usage 67.2MB. The same simulation run with the method of Peng e?
al.[PMO199] would consume 5.2GB of storage.

set surface away from the origin. This simulation is designed merely to demon-
strate the out-of-the-box feature of our DT-Grid, and as such the detail of the setup
(including the initial shape) is irrelevant.

Figure 10(b) illustrates what happens on full grids and Octrees. As the level set
moves beyond the boundary, it disappears. In contrast, the level set on the DT-Grid
(figure 10(a)) moves beyond the box as the grid is not bounded. The memory usage
in figure 10(a) is 14.0MB, 25.2MB, 39.3MB and 64.1MB, respectively, numbered
from left to right. (Note that the increase in memory is exclusively due to the fact
that surface area increases with the expansion). Effective grid sizes are approxi-
mately 2563, 3432, 4553 and 6303, while the DT-Grid in general is a non-convex
tubular grid.

This “out-of-the-box” feature is not obtainable using existing narrow band or
Octree based approaches without either compromising memory consumption or
computational efficiency: using full grids, one could progressively allocate larger
grids as the level set approaches the boundaries. However, due to memory con-
straints this becomes impossible already at relatively small grid sizes. Octrees are
more memory efficient than the full grid narrow band approach but if progressively
reallocating to larger Octrees, the depth of the tree grows, making the traversal
more inefficient. Furthermore, the Octree is not as memory efficient and fast as the
DT-Grid.

Out-of-the-box level set simulations are unique to the DT-Grid and extremely
useful since no boundary conditions are needed and the level set can move freely
without ever colliding with the boundaries of an underlying grid. A large body of
existing work could take advantage of this, e.g., the simulation of dendritic growth
in [GFCOO03].

20

(a) DT-Grid

(b) Full Grid and Octrees

Figure 10: DT-Grid level set simulations can go out-of-the-box whereas level set
simulations based on full grids and Octrees are limited to the box of the underlying
grid.

5 Conclusions and Future Work

Level set surfaces are of great importance in computational physics and chem-
istry for the tracking of interfaces. In this paper we have presented the DT-Grid, a
novel, non-hierarchical data structure and efficient algorithms for representing and
manipulating level sets. The DT-Grid is designed to provide a very low memory
footprint, making it possible to represent higher resolution interfaces than previ-
ous narrow band and tree based methods. Furthermore, both the data structure and
the algorithms have been designed to take advantage of the memory hierarchies
of modern computers, thus making the DT-Grid very fast. In fact, all evaluations
that we have performed show that the DT-Grid is both more time and memory ef-
ficient than existing narrow-band and tree-based algorithms for level set surfaces.
The most important novel feature of the DT-Grid is that it allows for level set
simulations to be out-of-the-box for the first time: the DT-Grid can expand freely
without being limited by the computational box of an underlying grid, and bound-
ary conditions can be avoided. The DT-Grid has been specifically designed for
the sequential access used in most level set algorithms and provides constant time
access to grid points within the stencil. A drawback is that random and neighbor
access times become asymptotically logarithmic if accessing grid points outside
the stencil or non-sequentially. However, all our practical experiments have shown
that due to the cache coherency of the DT-Grid, random access is almost as fast
as the constant time access on full grids in practice. This is evident from the fact
that our level set simulations based on the fast marching method - which in turn
employs random and neighbor access operations - are still faster on the DT-Grid.

The DT-Grid is not an adaptive representation in its traditional sense since the
interface is represented uniformly. However, in the future we plan to extend it to a
multi-resolution approach.

We believe that the DT-Grid will be of great importance in the area of practical
level set simulations and foresee many exciting applications of level sets that were

21

not previously possible.

6 Acknowledgements

The authors are very grateful to Ola Nilsson for raytracing images and for pro-
viding many helpful comments on drafts of this paper. The comments of Anders
Brodersen also improved the paper. KM would also like to thank Mike Giles at
Oxford University for a very stimulating discussion that took place at Caltech in
the summer of 2003. This conversation largely inspired the initial phase of the
current work.

A Octree Implementation

In section 4 we compare an Octree based level set implementation to the DT-Grid.
The Octree used stores only the grid points inside the narrow band and uses a
uniform resolution. A cell is defined as

struct OctreeCell
{
OctreeCell *parent;
union
{
OctreeCell *children([8];
float *datal[8];
}ou;

bi

The implementation uses the algorithm of Stolte ef al.[SK98] to traverse the Octree
sequentially and the neighbor access algorithms of Frisken et al.[FPO3]. Octree
cells are allocated in a memory pool [Mey97] to speed up allocation and dealloca-
tion and to increase the cache coherency. The Octree is constructed and rebuilt in
time O(Mpy). Our implementation is optimized and appropriate methods inlined.

References

[AS95] D. Adalsteinsson and J.A. Sethian. A fast level set method for prop-
agating interfaces. J. Comput. Phys., 118(2):269-277,1995.

[AS99] D. Adalsteinsson and J.A. Sethian. The fast construction of extension
velocities in level set methods. J. Computational Physics, 148:2-22,
1999.

[BEMT04] D. Breen, R. Fedkiw, K. Museth, S. Osher, G Sapiro, and
R. Whitaker. Level Sets and PDE Methods for Computer Graph-
ics. ACM SIGGRAPH 04 COURSE #27. Los Angeles, CA, August
2004. ISBN 1-58113-896-2.

[CVO1] T. Chan and L. Vese. Active contours without edges. IEEE Trans. on
Image Processing, 10:266-277,2001.

[DMRSO1] M. Droske, B. Meyer, M. Rumpf, and C. Schaller. An adaptive level
set method for medical image segmentation. Lecture Notes in Com-
puter Science, pages 412-422,2001.

[EFFMO02]

[ELF04]

[FAX99]

[FFO1]

[FPO3]

[FSJO1]

[GFCOO03]

[HWB04]

[Lev96]

[LGF04]

[LOC94]

[MBWBO02]

[Mey97]

[Min03]

[OF02]

[OPO3]

[OS88]

22

Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. A
hybrid particle level set method for improved interface capturing. J.
Comput. Phys., 183(1):83—-116,2002.

Douglas Enright, Frank Losasso, and Ronald Fedkiw. A fast and
accurate semi-lagrangian particle level set method. Computers and
Structures, 2004.

R. Fedkiw, T. Aslam, and S. Xu. The ghost fluid method for de-
flagration and detonation discontinuities. Journal of Computational
Physics, 154:393-427, 1999.

N. Foster and R. Fedkiw. Practical animation of liquids. In ACM
SIGGRAPH 01, pages 23-30. ACM Press, 2001.

S. Frisken and R. Perry. Simple and efficient traversal methods for
quadtrees and octrees. Journal of Graphics Tools, 7(3), 2003.

R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke.
In ACM SIGGRAPH 01, pages 15-22. ACM Press, 2001.

Frédéric Gibou, Ronald Fedkiw, Russel Caflisch, and Stanley Osher.
A level set approach for the numerical simulation of dendritic growth.
J. Sci. Comput., 19(1-3):183-199, 2003.

Ben Houston, Mark Wiebe, and Chris Batty. Rle sparse level sets.
In Proceedings of the SIGGRAPH 2004 conference on Sketches &
applications. ACM Press, 2004.

Randall J. Leveque. High-resolution conservative algorithms for ad-
vection in incompressible flow. 33(2):627-665, April 1996.

Frank Losasso, Frdric Gibou, and Ronald Fedkiw. Simulating water
and smoke with an octree data structure. In ACM SIGGRAPH 04,
pages 457-462. ACM Press, 2004.

X.D. Liu, S.J. Osher, and T. Chan. Weighted essentially nonoscilla-
tory schemes. J. Comput. Phys., 115:200-212, 1994.

K. Museth, D. Breen, R. Whitaker, and A. Barr. Level set surface
editing operators. ACM Trans. on Graphics (Proc. SIGGRAPH),
21(3):330-338, July 2002.

Scott Meyers. Effective C++ (2nd ed.): 50 specific ways to improve
your programs and designs. Addison-Wesley Longman Publishing
Co., Inc., 1997.

Chohong Min. Local level set method in high dimension and codi-
mension. Technical Report CAM 03-67, UCLA, November 2003.

S.J. Osher and R.P. Fedkiw. Level Set Methods and Dynamic Implicit
Surfaces. Springer, Berlin, 2002.

S. Osher and N. Paragios, editors. Geometric Level Set Methods in
Imaging, Vision and Graphics. Springer Verlag, 2003.

S. Osher and J. Sethian. Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations. Journal
of Computational Physics, 79:12-49, 1988.

[OS91]

[PMO199]

[ROF92]

[Sam90]

[Set96]

[Set99]

[SK98]

[SO88]

[SSO%4]

[Str99]

[Tsi94]

[Tsi95]

[Whi98]

[ZOMKO00]

23

S. Osher and C.W. Shu. High-order essentially nonoscillatory
schemes for hamilton-jacobi equations. SIAM J. Num. Anal., 28:907—
922, 1991.

Danping Peng, Barry Merriman, Stanley Osher, Hongkai Zhao, and
Myungjoo Kang. A pde-based fast local level set method. J. Comput.
Phys., 155(2):410-438, 1999.

L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D, 60:259-268, 1992.

H. Samet. Applications of Spatial Data Structures: Computer Graph-
ics, Image Processing, GIS. Addison-Wesley, Reading, MA, 1990.

J. A. Sethian. A fast marching level set method for monotonically
advancing fronts. Proc. of the National Academy of Sciences of the
USA, 93(4):1591-1595, February 1996.

J.A. Sethian. Level Set Methods and Fast Marching Methods. Cam-
bridge University Press, Cambridge, UK, second edition, 1999.

N. Stolte and Ari Kaufman. Parallel spatial enumeration of implicit
surfaces using interval arithmetic for octree generation and its direct
visualization. In Implicit Surfaces *98, pages 81-87, 1998.

C.W. Shu and S. Osher. Efficient implementation of essentially non-
oscillatory shock capturing schemes. J. Comput. Phys., 77:439-471,
1988.

M. Sussman, P. Smereka, and S. Osher. A level set approach to com-
puting solutions to incompressible two-flow. Journal of Computa-
tional Physics, 114:146-159, 1994.

John A. Strain. Tree methods for moving interfaces. Journal of Com-
putational Physics, 151, 1999.

J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories.
Proceedings of the 33rd Conference on Decision and Control, Lake
Buena Vista, LF, pages 1368—1373, December 1994.

J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories.
IEEE Trans. Automat. Contr., 40:1528-1538, September 1995.

R.T. Whitaker. A level-set approach to 3d reconstruction from range
data. Int. J. Comput. Vision, 29(3):203-231, 1998.

H. Zhao, S. Osher, B. Merrian, and M. Kang. Implicit and non-
parametric shape reconstruction from unorganized data using a vari-

ational level set method. Computer Vision and Image Understnading,
80:294-314, 2000.

