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Figure 1: 3D level set model of a griffin derived from two non-uniform laser scan reconstruction volume datasets. The two input
models with resolution 294×312×24 and 294×52×144 show severe aliasing effects from insufficient sampling, especially in the
wings. Our method merges information from both of the datasets to produce a high resolution 294×312×144 level set model. All
models throughout this paper are flat-shaded to highlight details.

ABSTRACT

Typically 3-D MR and CT scans have a relatively high resolution in
the scanning X−Y plane, but much lower resolution in the axial Z
direction. This non-uniform sampling of an object can miss small
or thin structures. One way to address this problem is to scan the
same object from multiple directions. In this paper we describe a
method for deforming a level set model using velocity information
derived from multiple volume datasets with non-uniform resolution
in order to produce a single high-resolution 3D model. The method
locally approximates the values of the multiple datasets by fitting
a distance-weighted polynomial using moving least-squares. The
proposed method has several advantageous properties: its compu-
tational cost is proportional to the object surface area, it is stable
with respect to noise, imperfect registrations and abrupt changes
in the data, it provides gain-correction, and it employs a distance-
based weighting to ensures that the contributions from each scan
are properly merged into the final result. We have demonstrated the
effectiveness of our approach on four multi-scan datasets, a griffin
laser scan reconstruction, a CT scan of a teapot and MR scans of a
mouse embryo and a zucchini.
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1 INTRODUCTION

Many of today’s volumetric datasets are generated by medical MR,
CT and other scanners. A typical 3-D scan has a relatively high res-
olution in the scanning X − Y plane, but much lower resolution in
the axial Z direction. The difference in resolution between the in-
plane and out-of-plane samplings can easily range between a factor
of 5 to 10, see figure 1. This occurs both because of physical con-
straints on the thickness of the tissue to be excited during scanning
(MR), total tissue irradiation (CT), and scanning time restrictions.
Even when time is not an issue, most scanners are by design inca-
pable of sampling with high resolution in the out-of-plane direction,
producing anisotropic “brick-like” voxels.

The non-uniform sampling of an object or a patient can create
certain problems. The inadequate resolution in the Z direction im-
plies that small or thin structures will not be properly sampled, mak-
ing it difficult to capture them during surface reconstruction and ob-
ject segmentation. One way to address this problem is to scan the
same object from multiple directions, with the hope that the small
structures will be adequately sampled in one of the scans. Generat-
ing several scans of the same object then raises the question of how
to properly combine the information contained in these multiple
datasets. Simply merging the individual scans does not necessarily
assemble enough samples to produce a high resolution volumet-
ric model. Normally a technique for filling in between samples is
needed.

We have previously developed a framework for extracting 3D
models from volume datasets [23] based on level set methods [13].
In this paper we describe a method for deforming a level set model
using velocity information derived from multiple volume datasets
with non-uniform resolution in order to produce a single high-
resolution 3D model. The method locally approximates the values
of the multiple datasets by fitting a distance-weighted polynomial



using moving least-squares (MLS) [19, 8]. Directional 3D edge in-
formation that may be used during a level set segmentation process
is readily derived from MLS.

The proposed method has several advantageous properties. In-
stead of merging all of the input volumes by global resampling (in-
terpolation), we locally approximate the derivatives of the intensity
values by MLS. This local versus global approach is feasible be-
cause the segmentation process is implemented with a deformable
level set model that requires only edge information in a narrow band
around the surface. Consequently the MLS calculation is only per-
formed in a small region of the volume, rather than throughout the
whole volume, making the computational cost proportional to the
object surface area [25]. As opposed to many interpolation schemes
the MLS method is stable with respect to noise and imperfect reg-
istrations [5]. Our implementation also allows for small intensity
attenuation artifacts between the multiple scans thereby providing
gain-correction. The distance-based weighting employed in our
method ensures that the contributions from each scan is properly
merged into the final result. If a slice of data from one scan is
closer to a point of interest on the model, the information from this
scan will contribute more heavily to determining the location of the
point.

To the best of our knowledge there is no previous work on cre-
ating deformable models directly from multiple volume datasets.
While there has been previous work on 3D level set segmentation
and reconstruction[24, 10, 9, 20, 26], it has not been based on mul-
tiple volume datasets. However, 3D models have been generated
from multiple range maps [22, 4, 25, 16], but the 2D nature of these
approaches is significantly different from the 3D problem being ad-
dressed in this paper. The most relevant related projects involve
merging multiple volumes to produce a single high-resolution vol-
ume dataset [21, 6], and extracting edge information from a single
non-uniform volume [2]. Our work does not attempt to produce a
high-resolution merging of the input data. Instead, our contribution
stands apart from previous work because it deforms a model based
on local edge information derived from multiple non-uniform vol-
ume datasets.

We have demonstrated the effectiveness of our approach on four
multi-scan datasets. The first three examples are derived from sin-
gle high resolution volume datasets that have been sub-sampled in
the X , Y and Z directions respectively. Since the non-uniform
scans are extracted from a single dataset they are therefore perfectly
aligned. The first example is a volumetric laser scan reconstruc-
tion of a griffin model. The second example is a high resolution
MR scan of a 12-day-old mouse embryo, which has already had its
outer skin isolated with a previous segmentation process. The third
example is a preprocessed high resolution CT scan of a teapot, that
also only contains an outer surface. The final example consists of
multiple MR scans of a zucchini that have been imperfectly aligned
by hand. The first three examples show that our method is able to
perform level set segmentation from multiple non-uniform scans of
an object, picking up and merging features only found in one of
the scans. The final example demonstrates that our method gener-
ates satisfactory results, even when there are misalignments in the
registration.

The remainder of the paper has the following structure. In
Section 2 we outline the details of our method, and in section 3
we present the results obtained with this method. We close with
conclusions and an appendix describing the moving least-squares
method.

2 METHOD DESCRIPTION

We formulate our approach to 3D reconstruction of geometric mod-
els from multiple non-uniform volumetric datasets within a level-
set segmentation framework [23]. The level set models utilized

within this framework are deformable implicit surfaces whose de-
formation is controlled by a speed function in the level set partial
differential equation (PDE). The speed function describes the ve-
locity at each point on the evolving surface in the direction of the
local surface normal. All of the information needed to deform a
surface is encapsulated in the speed function, providing a simple,
unified computational framework. In this section we briefly de-
scribe our level set segmentation framework, review the fundamen-
tal level set PDE, and define speed functions that allow us to solve
the multiple-data segmentation problem. The key to constructing
suitable speed terms is 3D directional edge information derived
from the multiple datasets. This problem is solved using a mov-
ing least-squares scheme that extracts edge information by locally
fitting sampling points to high-order polynomials. This section con-
cludes by outlining the overall algorithm of the method.

2.1 Level Set Segmentation Framework
Level set segmentation relies on a surface-fitting strategy that cre-
ates a new volume from the input data by solving a partial differ-
ential equation (PDE) with user-defined feature-extracting terms.
Because the deformable models move using gradient descent, they
seek local solutions, and therefore the results are strongly depen-
dent on the starting position of the surface. Thus, level set deforma-
tions alone are not sufficient, they must be combined with powerful
initialization techniques in order to produce successful segmenta-
tions. Our level set segmentation framework consists of a set of
suitable pre-processing techniques for initialization, which are then
followed by the selection and tuning of different feature-extracting
terms in the level set algorithm, as seen in Figure 2 [23]. Once these
terms are defined the level set deformation proceeds to produce the
final result.

Each stage in this two-step process is equally important for gen-
erating a correct segmentation. A user must “mix-and-match” these
operations in order to produce the desired result. The operators
available for creating the initial model include high and low thresh-
olding, flood-filling, as well as CSG and morphological (opening
and closing) operators. These operators provide a rough initial es-
timate of the desired model. The level set surface deformation pro-
cess then moves the model toward specific features in the data while
balancing this movement with a regularizing smoothing term, in or-
der to prevent the surface from fitting too closely to noise-corrupted
data. The smoothing term utilizes a local mean curvature measure
in order to remove regions of high curvature. The inclusion of such
a regularization term is also a well known technique in most im-
plicit snake algorithms. Concurrently, the level set model may be
attracted to “Canny” edges [3], iso-surfaces and regions of maxi-
mum gradient magnitude in the input data.

2.2 The Level Set Method
The Level Set Method [13] is a mathematical tool for modeling
surface deformations. A deformable (i.e. time-dependent) surface,
S(t), is implicitly represented as an iso-surface of a time-varying
scalar function φ(x, t) embedded in 3D,1 i.e.

S(t) = {x(t) | φ(x(t), t) = k} , (1)

where k ∈ < is the iso-value, t ∈ <+ is time, and x(t) ∈ <3

is a point in space on the iso-surface. It might seem inefficient
to implicitly represent a surface with a 3D scalar function; how-
ever the higher dimensionality of the representation provides one

1Our work uses the dynamic level set equation, which is more flexible
than the corresponding stationary equation, φ(x) = k(t), see [18] for more
details.



Figure 2: Level set segmentation stages – initialization and surface deformation.

of the major advantages of the LS method: the flexible handling of
changes in the topological genus of the deformable surface. This
implies that LS surfaces can easily represent complicated surface
shapes that can form holes, split to form multiple objects, or merge
with other objects to form a single structure. This is an important
property when segmenting complex models with an unknown topo-
logical genus.

The fundamental level set equation of motion for φ(x(t), t) is
derived by differentiating Eq. (1) with respect to time t, and apply-
ing the chain rule giving:

∂φ

∂t
= −∇φ ·

dx

dt
= ‖∇φ‖ F(x, n, φ) (2a)

F(x, n, φ) ≡ n ·
dx

dt
, (2b)

where dx/dt and n ≡ −∇φ/‖∇φ‖ are the velocity and normal
vectors at x on the surface. We assume a positive-inside/negative-
outside sign convention for φ(x, t), i.e. n points outward. Eq. (2b)
introduces the speed function F , which is a user-defined scalar
function that can depend on any number of variables including x,
n, φ and its derivatives evaluated at x, as well as a variety of input
data. F() is a signed scalar function that defines the motion (i.e.
speed) of the level set surface in the direction of the local normal n

at x.
A number of numerical techniques [13, 1] make the initial value

problem of Eq. (2) computationally feasible. A complete discussion
of the details of the level set method is beyond the scope of this pa-
per. We instead refer the interested reader to [18, 12, 17]. However,
we will briefly mention two of the most important techniques: the
first is the so called “up-wind scheme” which addresses the problem
of overshooting when trying to integrate Eq. (2) in time by finite dif-
ferences. Specifically the upwind scheme is used to compute first
order partial derivatives by a single-sided finite difference which is
up-wind with respect to the motion of the level set surface. The sec-
ond important technique is related to the fact that one is typically
only interested in a single solution to Eq. (2), say the k = 0 level
set. This implies that the evaluation of φ is important only in the
vicinity of a particular level set. This forms the basis for “narrow-
band” schemes [1, 25, 14] that solve Eq. (2) in a narrow band of
voxels near the surface. The “up-wind scheme” makes the level set
method numerically robust, and the “narrow-band scheme” makes
its computational complexity proportional to the level set’s surface
area rather than the size of the volume in which it is embedded.

2.3 Level Set Speed Function for Seg-
mentation

Many different speed functions have been proposed over the years
for segmentation of a single volume dataset [24, 10, 9, 20]. Typ-
ically such speed functions consist of a (3D) image-based feature

attraction term and a smoothing term which serves as a regular-
ization term that lowers the curvature and suppresses noise in the
input data. From computer vision it is well known that features, i.e.
significant changes in the intensity function, are conveniently de-
scribed by an edge-detector [7]. There exists a very large body of
work devoted to the problem of designing optimal edge detectors
for 2D images [11, 3], most of which are readily generalized to 3D.
For the work presented in this paper we found it convenient to use
speed functions with the 3D directional edge term

Fedge(x, n, φ) = αn · ∇‖∇Vg‖ (3)

where α is a scaling factor for the image-based feature attraction
term ∇‖∇Vg‖. Vg symbolizes some global uniform merging of
the multiple non-uniform input volumes. This feature term is effec-
tively a 3D directional edge-detector of Vg . However there are two
problems associated with using this speed function exclusively. The
first is related to the fact that we cannot expect to compute reliable
3D directional edge information in all regions of space simply be-
cause of the nature of the non-uniform multiple volumes that serves
as input for our segmentation process. In other words Vg cannot be
interpolated reliably in regions of space where there are no nearby
sampling points. Hence the level set surface will not experience
any image-based forces in these regions. In other words the surface
fitting is an ill-posed problem in regions of space with no image-
based information. The solution is to use a regularization term that
imposes constraints on the mean curvature of the deforming level-
set surface. We include the following smoothing term in the speed
function in order to smooth the regions where no edge information
exists as well as suppress noise in the remaining regions thereby
preventing excessive aliasing;

Fsmooth(x, n, φ) = β∇ · [∇φ/‖∇φ‖] (4)

where β is a scaling factor for the mean curvature,∇· [∇φ/‖∇φ‖],
on the level set surface defined from φ.

However, one problem remains. Normally the feature attraction
term, ∇‖∇Vg‖, creates only a narrow range of influence. In other
words, this feature attraction term will only reliably move the por-
tion of the level set surface that is in close proximity to the actual
edges in Vg . Thus, a good initialization of the level set surface is
needed before solving Eq. (3). A reasonable initialization of the
level set surface may be obtained by computing the CSG union
of the multiple input volumes, which are first tri-linearly resam-
pled to give a uniform sampling. However, if the input volumes
are strongly non-uniform their union produces a poor initial model.
This occurs when the input volumes are severely undersampled in
one or more directions, as seen in Figure 3. Consequently we attract
the CSG union surface to the distance transform of the Canny edges
[3] computed from Vg . Canny edges are non-directional edges de-
fined from the zero-crossing of the second derivative of the image



Figure 3: The union of the first three teapot datasets from Figure 6.

in the direction of the local normal. In 3D this is

∂2

∂n2
g

Vg = 0 (5)

where ng ≡ ∇Vg/‖∇Vg‖ is the local normal vector of Vg . Using
the expressions ∂/∂ng = ng · ∇ we can rewrite Eq. (5) as

∂2

∂n2
g

Vg = ng · ∇ [ng · ∇Vg] = ng · ∇‖∇Vg‖. (6)

This expression highlights the relationship between the Canny edge
detector and the 3D directional edge detector defined in Eq. (3).
The initialization procedure is then completed by pulling the CSG
union of the multiple input volumes to the distance transform of the
zero-crossing scalar Canny edge detector defined in Eq. (6).

The next section focuses on the methods needed to reliably com-
pute the vectors ng and ∇‖∇Vg‖. In preparation, the latter may
be explicitly expressed in terms of the derivatives of the merged
volume Vg

∇‖∇Vg‖ =
∇Vg ĤVg

‖∇Vg‖
(7)

where we have defined the gradient vector and the Hessian matrix,

∇̂Vg = (
∂Vg

∂x
,
∂Vg

∂y
,
∂Vg

∂z
) (8a)

ĤVg =




∂2Vg

∂x2

∂2Vg

∂y∂x

∂2Vg

∂z∂x

∂2Vg

∂x∂y

∂2Vg

∂y2

∂2Vg

∂z∂y

∂2Vg

∂x∂z

∂2Vg

∂y∂z

∂2Vg

∂z2


 . (8b)

Thus, in closing we note that the level set propagation needed for
segmentation only needs information about the first and second or-
der partial derivatives of the input volumes, not the interpolated
intensity values themselves.

2.4 Computing Partial Derivatives
As outlined above the speed function F in the level-set equation,
Eq. (2), is based on edge information derived from the input vol-
umes. This requires estimating first and second order partial deriva-
tives from the multiple non-uniform input volumes. We do this by
means of moving least-squares (MLS), which is an effective and
well established numerical technique for computing derivatives of
functions whose values are known only on irregularly spaced points
[19, 8, 5].

Let us assume we are given the input volumes V̂d, d = 1, 2, .., D
which are volumetric samplings of an object on the non-uniform
grids {x̂d}. We shall also assume that the local coordinate frames
of {x̂d} are scaled, rotated and translated with respect to each other.
Hence, we define a world coordinate frame (typically one of the
local frames) in which we solve the level set equation. Now, let us
define the world sampling points {xd} as

xd ≡ T
(d)[x̂d] (9)

where T
(d) is the coordinate transformation from a local frame d to

the world frame. Next we locally approximate the intensity values
from the input volumes V̂d with a 3D polynomial expansion. Thus,
we define the N-order polynomials

V
(d)

N (x) = C
(d)
000 +

N∑

i+j+k=1

C
(0)
ijkxiyjzk, d = 1, 2, . . . , D (10)

where the C coefficients are unknown. Note that these local ap-
proximations to the intensity values share coefficients C

(0)
ijk of or-

der higher than zero, i.e. all of the functions V
(d)

N , d = 1, 2, .., D
have the same edges. The fact that the zero-order term in Eq. (10)
is input volume dependent means we allow for local constant off-
sets between the input volumes V̂d. This effectively provides built-
in gain-correction in the scheme, since it can handle small inten-
sity attenuation artifacts between the multiple scans. The details of
deriving a set of linear equations for the coefficients C by means
of the moving least-squares method is described in the Appendix.
The resulting system of linear equations can be solved using stan-
dard techniques from numerical analysis. Summarizing the results
from the Appendix, Eq. (18a) and Eq. (18b) can be conveniently
expressed as ∑

q

Ap,q cq = bp (11)

where A is a diagonal matrix, and b, c are vectors. In this equa-
tion we have also introduced the compact index notations p ≡
(i, j, k, r) and q ≡ (l, m, n, s) defined as

p ∈
{

i, j, k, r ∈ N+
∣∣ i = j = k = 0, 1≤r≤D

}

∪
{

i, j, k, r ∈ N+
∣∣ 1 ≤ i+j+k≤N, r = 0

}
(12a)

q ∈
{

l, m, n, s ∈ N+
∣∣ l = m = n = 0, 1≤s≤D

}

∪
{

l, m, n, s ∈ N+
∣∣ 1 ≤ l+m+n≤N, s = 0

}
. (12b)

The diagonal matrix A, and the vectors b, c in Eq. (11) are defined
as

Ap,q ≡
∑

d

(δr,d + δr,0) (δs,d + δs,0)
∑

xd

wd(xd−x0)

× (xd − x0)
i(yd − y0)

j(zd − z0)
k (13a)

× (xd − x0)
l(yd − y0)

m(zd − z0)
n

bp ≡
∑

d

(δr,d + δr,0) wd(xd−x0)V̂d(xd)

× (xd − x0)
i(yd − y0)

j(zd − z0)
k (13b)

cp ≡ C
(r)
ijk. (13c)

Next the matrix equation Ac = b must be solved for the vector c

of dimension
(

N+3
3

)
+D−1, where N is the order of the expansion

in Eq. (10) and D is the number of non-uniform input volumes. As
is well known for many moving least-square problems it is possi-
ble for the condition number of the matrix A to become very large.



Any matrix is singular if its condition number is infinite and can be
defined as ill-conditioned if the reciprocal of its condition number
approaches the computer’s floating-point precision. This can occur
if the problem is over-determined (number of sampling points, xd

greater than number of coefficients C) and under-determined (am-
biguous combinations of the coefficients C work equally well or
equally bad). To avoid such numerical problems, a singular value
decomposition (SVD) linear equation solver is recommended for
use in combination with the moving least-squares method. The
SVD solver identifies equations in the matrix A that are, within
a specified tolerance, redundant (i.e. linear combinations of the re-
maining equations) and eliminates them thereby improving the con-
dition number of the matrix. We refer the reader to reference [15]
for a helpful discussion of SVD pertinent to linear least-squares
problems.

Once we have the expansion coefficients c we can readily ex-
press the Hessian matrix and the gradient vector of the combined
input volumes as

∇V = (C
(0)
100, C

(0)
010, C

(0)
001) (14a)

HV =




2C
(0)
200 C

(0)
110 C

(0)
101

C
(0)
110 2C

(0)
020 C

(0)
011

C
(0)
101 C

(0)
011 2C

(0)
002


 (14b)

evaluated at the moving expansion point x0. This in turn is used in
Eq. (7) to compute the edge information needed to drive the level
set surface.

2.5 Algorithm Overview

The level set segmentation algorithm used in this paper is outlined
below. Algorithm 2.1 describes the main steps of our approach. The
initialization routine, Algorithm 2.2, is called for all of the multiple
non-uniform input volumes, Vd. Each non-uniform input dataset is
uniformly resampled using tri-linear interpolation. Edge informa-
tion and the union, V0, of the Vd’s is then computed. Algorithm 2.2
calculates Canny and 3D directional edge information using mov-
ing least-squares in a narrow band in each of the resampled input
volumes, Vd, and buffers this in Vedge and V edge. Next Algorithm
2.1 computes the distance transform of the zero-crossings of the
Canny edges and takes the gradient of this scalar volume to pro-
duce a vector field V F , which pulls the initial level set model to
the Canny edges. Finally the level set model is attracted to the
3D directional edges of the multiple input volumes, V edge, and a
Marching Cubes mesh is extracted for visualization. The level set
solver, described in Algorithm 2.3, solves Eq. (2) using the “up-
wind scheme” (not explicitly defined) and the sparse-field narrow-
band method of [25], with V0 as the initialization and V F as the
force field in the speed function.

Algorithm 2.1: MAIN(V1, . . . , VD)

comment: V1, . . . , VD are non-uniform samplings of object V

global Vedge, V edge

do





V0 ← uniform sampling of empty space
for d← 1 to D

do V0 ← V0 ∪ INITIALIZATION(Vd)
V F ←∇[distance transform[zero-crossing[Vedge]]]
V0 ← SOLVELEVELSETEQ(V0, V F , α, 0)
V0 ← SOLVELEVELSETEQ(V0, V edge, α, β)

return (Marching Cubes mesh of V0)

Algorithm 2.2: INITIALIZATION(Vd)

comment: Pre-processing to produce good LS initialization

do





Vd ← Uniform tri-linear resampling of Vd

Γd ← Set of voxels in narrow band of iso-surface of Vd

for each x0 ∈ Γd

do





Solve moving least-squares problem at x0

Vedge(x0)← scalar Canny edge, cf. Eq. (6)
V edge(x0)← 3D directional edge, cf. Eq. (7)

return (Vd)

Algorithm 2.3: SOLVELEVELSETEQ(V0, V F , α, β)

comment: Solve Eq. (2) with initial condition φ(t=0) = V0

do





φ← V0

repeat



Γ← Set of voxels in narrow band of iso-surface of φ
∆t← γ/ supx∈Γ ‖V F (x)‖, γ ≤ 1
for each x ∈ Γ

do





n← upwind scheme[−∇φ(x)/‖∇φ(x)‖]
φ̇(x)← ‖∇φ(x)‖(αV F (x) · n + β∇ · n)

φ(x)← φ(x) + φ̇(x)∆t

until supx∈Γ ‖φ̇(x)‖ ≤ ε
return (φ)

3 RESULTS

We have applied our segmentation method to several multi-scan
non-uniform datasets to produce high resolution level set models.
The parameters used for these segmentations are listed in Table 1.
α and β are weights that the user adjusts to balance attraction to
edges with curvature-based smoothing during the level set defor-
mation process.

Table 1: Maximum in-plane to out-of-plane sampling ratios of non-
uniform input datasets, and parameters for the two level set speed
terms defined in Eq. (3) and Eq. (4).

Model Origin Ratio α β
Griffin Laser scan 10:1 1.0 0.5
Mouse MR scan 10:1 1.0 0.5
Teapot CT scan 9:1 0.5 1.0
Zucchini MR scan 10:1 1.0 0.5

3.1 Griffin Dataset
The griffin dataset was created with a volumetric laser scan recon-
struction algorithm [4]. This algorithm creates a high resolution
volumetric representation of an object by merging multiple depth
maps produced via a laser scan. The original griffin dataset has a
resolution of 312×294×144. We have extracted three non-uniform
datasets from this high resolution representation by copying every
sixth plane of data in the X and Y directions and every tenth plane
of data in the Z direction. The three derived non-uniform griffin
datasets have the following resolution: 52×294×144, 312×30×144
and 312×294×24. Iso-surfaces have been extracted from these
datasets, appropriately scaled in the low resolution direction, and
are presented in the first three images in Figure 4. Each low resolu-
tion scan inadequately captures some important geometric feature
of the griffin. In the first scan the wing on the right contains numer-
ous holes. In the second scan the horns on the head are not prop-
erly represented, and in the third image the wing on the left con-
tains significant notches. Additionally, all three scans are severely



Figure 4: Three non-uniform samplings of a high resolution laser scan reconstruction of a griffin figurine, followed by a level set model
derived from the first three scans. Each input model is missing a particular feature - first: holes in right wing, second: jagged edges of both
wings, third: right horn not connected to wing (as it should be). The level set reconstruction contains all of these missing features.

Figure 5: Three non-uniform samplings of a high resolution MR scan of a mouse embryo, followed by a level set model derived from the first
three scans.

Figure 6: Three non-uniform samplings of a high resolution CT scan of a teapot, followed by a level set model derived from the first three
scans.



aliased. We have performed two reconstructions from the under-
sampled non-uniform scans. In Figure 1 a reconstruction produced
from just the first two scans is presented. The final image in Figure
4 presents the results of applying our segmentation method to all
three low resolution scans. The method produces high resolution
(312×294×144) level set models that contain all of the features
mentioned above and do not exhibit the aliasing seen in the low
resolution scans. Adding the third scan provides more information
around the edges of the wings. It should also be noted that the wing
on the right is connected to the right horn in the initial high resolu-
tion dataset.

3.2 Mouse Embryo Dataset
The first three scans in Figure 5 are derived from a high resolution
MR scan of a mouse embryo. They are subsampled versions of a
256×128×128 volume dataset, and have the following resolutions:
26×128×128, 256×16×128 and 256×128×13. The last image
in Figure 5 presents the result produced by our multi-scan segmen-
tation method. The information in the first three scans has been
successfully used to create a level set model of the embryo with
a resolution of 256×128×130. The finer features of the mouse
embryo, namely its hands and feet, have been reconstructed.

3.3 Teapot Dataset
The first three scans in Figure 6 are derived from a CT scan of a
teapot. They are subsampled versions of a 244×218×188 volume
dataset, and have the following resolutions: 28×218×188, 244×
25×188 and 244×218×21. The last image in Figure 6 presents
the result produced by our multi-scan segmentation method. The
information in the first three scans has been successfully used to
create a level set model of the original teapot with a resolution of
244×218×189. The finer features of the teapot, namely the handle
and the spout, have been reconstructed.

3.4 Zucchini Dataset
The zucchini dataset consists of three individual MRI scans of an
actual zucchini. The separate scans have been registered manually
and are presented on the left side of Figure 7, each with a differ-
ent color to demonstrate their imperfect alignment. The resolutions
of the individual scans are 28× 218× 188, 244× 25× 188 and
244×218×21. This image highlights the rough alignment of the
scans. The right side of Figure 7 presents the result of our level
set segmentation. It demonstrates that our approach is able to ex-
tract a reasonable model from multiple datasets that are imperfectly
aligned.

4 CONCLUSIONS

In this paper we have proposed a method that uses multiple vol-
ume datasets with non-uniform resolution acquired in different lo-
cal coordinate frames, but with known relative transformations, to
deform a level set model on a uniform grid. As described in section
2.4, the contribution from each of the datasets to the velocity of the
evolving level set model is weighted according to the quality (res-
olution) of the dataset near the propagating front. We obtain this
result by employing a moving least-squares (MLS) method. Our
method only performs the MLS calculation in the neighborhood of
the propagating front and thus has O(N 2) computational complex-
ity. Additionally, it is stable with respect to noise, imperfect regis-
tration and abrupt changes in the data, it provides gain-correction,
and employs a distance-based weighting to ensures that the contri-
butions from each scan are properly merged into the final result. We

Figure 7: Three low resolution MR scans of a zucchini that have
been individually colored and overlaid to demonstrate their imper-
fect alignment. The level set model on the right is derived from the
three low resolution scans.

have demonstrated the effectiveness of our approach on four multi-
scan datasets, a griffin laser scan reconstruction, a CT scan of a
teapot and MR scans of a mouse embryo and a zucchini. As future
work we plan to explore other integration techniques in the moving
least-squares method that might allow us to reduce the amount of
smoothing needed during segmentation.
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A MOVING LEAST-SQUARES

To solve for the expansion coefficients C in Eq. (10) we define the
moving least-squares functional

E(x0) =
D∑

d=1

∑

xd

wd(xd−x0)
[
V

(d)
N (xd−x0)− Vd(xd)

]2

(15)

where x0 is the expansion point from where we are seeking edge
information, Vd(xd) ≡ V̂d(x̂d) and where

w(x) ≡





1− 2(‖x‖/∆)2 for 0 ≤ ‖x‖ ≤ ∆/2

2(‖x‖/∆− 1)2 for ∆/2 < ‖x‖ < ∆

0 for ‖x‖ ≥ ∆

(16)

is a “moving filter” that weights the contribution of different sam-
pling points, xd, according to their Euclidean distance, ‖xd−x0‖,
to the expansion point, x0. Other expressions for this weighting
function could of course be used, but Eq. (16) is fast to compute,
has finite support (by the window parameter ∆), and its tangent is
zero at the endpoints. After substitution of Eq. (10) into Eq. (15)
we obtain the functional

E(x0) =

D∑

d=1

∑

xd

wd(xd − x0)
[
C

(d)
000 − V̂d(xd) (17)

+

N∑

i+j+k=1

C
(0)
ijk(xd − x0)

i(yd − y0)
j(zd − z0)

k
]2

.

The minimization of this moving least-squares functional with re-
spect to the expansion coefficients C requires the partial derivatives
to vanish, i.e.

∂Ê(x0)

∂C
(d)
000

= 0 = 2
∑

xd

wd(xd−x0)
[
C

(d)
000 − V̂d(xd) (18a)

+

N∑

i+j+k=1

C
(0)
ijk(xd − x0)

i(yd − y0)
j(zd − z0)

k
]

∂Ê(x0)

∂C
(0)
lnm

= 0 = 2

D∑

d=1

∑

xd

wd(xd − x0)
[
C

(d)
000 − V̂d(xd)

+
N∑

i+j+k=1

C
(0)
ijk(xd − x0)

i(yd − y0)
j(zd − z0)

k
]

× (xd − x0)
l(yd − y0)

m(zd − z0)
n. (18b)

This defines a system of linear equations in the expansion coef-
ficients C

(r)
ijk, that can be solved using standard techniques from

numerical analysis, see Eq. (11) and Eq. (13).


