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The optical potential method is reviewed here with special emphasis
on the available techniques used to isolate and verify molecular resonances.
We next present calculations of Feshbach resonances in the framework of the
Infinite-Order Sudden approximation of the electronically elastic HT 40, col-
lision. In this approximation the relative angle between the oxygen molecule
and the incoming proton is kept fixed thereby reducing the problem to a two
dimensional one. The investigated energy domain of the resonances is below
the channel energy for the first vibrational excitation (0.2eV). The opti-
cal potential method, used to characterize the resonances, applies a negative
imaginary potential (NIP) in the asymptotic region of the electronic poten-
tial energy surface. The positions and widths of the resonances are given as
respectively the real and imaginary part of the stationary complex energies
with respect to variations of the amplitude of the NIP. The overall numerical
scheme is an optimized discrete variable representation of the complex inte-
grals involved. The calculated resonances are finally compared to previous
two dimensional calculations obtained by Grimbert et al., Chem. Phys. Lett.

230,(1994), p. 47-53.



I. INTRODUCTION

When colliding particles temporarily stick together to form complexes we have what is
known as a “resonance state” in the time-independent picture. This is a state of the system
that has enough energy to break up into smaller parts as e.g. in indirect photodissocia-
tion. The formation of such resonances owes to the existence of an attractive well in the
interaction potential, and ion-molecule systems like HY 4+ O, are good candidates for this.
Quantum mechanically, we distinguish between two different kinds of resonances owing to
the underlying mechanisms. The simplest are the so-called shape or elastic resonances where
the wave function is trapped in the well behind a barrier. As illustrated in Fig. 1 this could
be the result of an non-adiabatic coupling between respectively an attractive and a repulsive
diabatic potential energy surface, or it could simply be a centrifugal barrier (see second
term in Eq. (10)). Recently Museth et al. [1] also found evidence of a shape resonance in
a model system of two purely repulsive diabatic surfaces, see Fig. 2. For energies above
the threshold of the barrier and near eigenenergies of the “binding” part of the Hamiltonian
(e.g. the zero-order Hamiltonian in the absence of non-adiabatic coupling), the system forms
standing waves in the well and leaks out through the barrier via a tunneling mechanism.

Thus shape resonances can occur in a simple one dimensional system.
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FIG. 1. Shape resonances correspond to
standing waves of the system that tun-
nel out through a barrier. The barrier is
the result of an non-adiabatic coupling be-
tween the two diabatic surfaces (the dashed

curves)
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FIG. 2. Museth et al. [1] recently found
this model system of two purely repulsive di-
abatic surfaces to support a shape resonance
at 400 kJ/mol. The resonanse is formed in
the small well on the upper adiabatic poten-

tial.

Feshbach or inelastic resonances, on the other hand, are associated with energy transfer

from translational motion to some internal degree of freedom. In Fig. 3, a continuum state

is coupled to some bound state of the vibrational motion, and by this redistribution of

the collision energy the system is trapped. Energy then flows back from the vibrational

to the translational mode, and eventually enough energy is accumulated in the dissociative

coordinate to enable the system to escape.
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FIG. 3. When continuum states in the translational motion couple to bound states of

some internal degree of motion (e.g. vibration) Feshbach resonances are formed.

The existence of such resonance states in many molecular reactions show up as com-
plicated structures in the cross sections (cf. Fig. 1 in Ref. [1] and Fig. 3 in Ref. [2]) and
thus constitutes an important physical phenomenon that must be taken into account when
rationalizing anomalous behaviors in scattering data. However, the amount of work associ-
ated with the locations of the energy positions and life-times of the resonances have been
a serious problem to theoreticians for many years. One way to efficiently characterize such
resonances 1s through the use of so-called complex methods, as will be discussed later on.

The objective of this paper is twofold: First we want to re-examine the resonances of the
H* + O, system, employing a different method than the close coupling approach previously
used by Grimbert et al. [2]. The method of choice is the so-called “optical potential method”
(OPM). The second objective is to evaluate this method against the close coupling approach,
hoping to be able to set up a computational scheme which is more general and effective in
the sense that it enables us to calculate and subsequently isolate all the resonances in one
step.

Thus this paper reviews the OPM, summarize some techniques and tools to isolate and
verify the resonances and subsequently reports calculations of resonance energies and widths
for the electronically elastic HY + Oy collision described in the framework of the Infinite-

Order Sudden (IOS) approximation. The positions are shown to be in reasonable agreement



with previous results obtained for the system using close coupling equations [2]. However,
we also observe very long-lived resonances that were not reported before.

The paper is organized as follows. Sec. II gives a short introduction to the methodology
used in the description of resonance states and briefly mentions some of the most important
methods that have been used in the past to characterize resonances. Focus is especially
given to the complex methods on which this work is based. This brief introduction is meant
as a “conceptual tool box” for many of the discussions in the forthcoming sections. Sec. 111
presents the overall numerical scheme in which a negative imaginary potential is added to
the asymptotic part of the electronic potential energy surface. In Sec. IV we present the
numerical results obtained using this optical potential method and compare the resonance
positions and widths with previous results for this system in the framework of the 105
approximation. Finally Sec. V concludes and sums up the most important features of the

optical potential method.



II. CHARACTERIZING RESONANCES

In quantum mechanics we solve the Schrodinger equation subject to boundary conditions
to ensure that certain physical requirements are met. In the case of a simple scattering

problem we write the asymptotic form of the wave function as

U (kr) —— e — S (k) e*r (1)

r—r00

where k? = 2uF /h? > 0 and the ratio between the incoming and outgoing components of
the continuum wave function is given by the celebrated S-matrix, S (k). When dealing with
bound problems the physics require that the solution is square integrable, i.e. the solutions
are in the Hermitian domain of the Hamiltonian, and the energy is real negative. Hence we

can write the boundary condition as

kr) = e (2)

r—r00

where £ > 0. Comparing this expression to the general boundary conditions listed in Eq. (1),
it is easy to see that stationary states correspond to solutions to a scattering problem with a
negative imaginary wave number, k = —ix, at a node of the S-matrix, S (k) = 0. Resonances
on the other hand, are on physical grounds defined as wave functions with pure outgoing

(Siegert state [3]) boundary conditions

¢(kr) N eikr — eiﬁoTeﬁlr (3)

r—r00

where kg > 0 and k1 > 0, i.e. k = kg — ik1. If we again compare this expression to Eq. (1),
we see that resonance states have S (—k) = 0 for complex k. Noting the simple relation [4]
S (k) = S(—k)~', we arrive at the well known characteristics that resonance states are

associated with poles of the S-matrix for complex values of the energy. The explanation

of this divergence property of the resonance wave function in Eq. (3), (|¢ (r — oo)|> =

251r)

e and a simple physical interpretation of the complex energy, emerge if we consider a

stationary solution to the time-dependent Schrodinger equation. If 9 (r) is a solution to



the time-independent Schrodinger equation, satisfying Eq. (3), the solution to the time-
dependent problem reads as W (r,t) = ¢ (r) exp(—iet/R), where the energy is a complex
number € = FE — i['/2. Consequently the probability density of the resonance state is not

time-independent in contrast to a bound state, but rather it leaks in time as

U (r, 7f)|2 = |¢ (r)|26:np(—i (e—€))t/h

= |4 (r)|"exp(~Tt/h) (4)

and I' = 2kor1h?/p > 0 can now be identified as the rate constant (or width) of the
exponentially decaying state. Noting that the lifetime is 7 = h/T', we conclude that the
negative imaginary energy of a resonance is associated to the inverse lifetime, and the real
part of the energy, £ = (ko® — £1?) h?/ (2u), is referred to as the position of the resonance.
We also note that the divergent property of Eq. (3) is a consequence of the conservation law
of the number of particles in coordinate and time space [5] (|¥ (r — oo, — oo)|* = Const.).
Finally we point out yet another very interesting and important consequence of the definition
of a resonance state. Let us first assume that we are investigating resonances in a narrow

energy window (i.e. k2 — ki o E' &~ Const.). In this case the width will be a growing function

of the negative imaginary part of the momentum (cf. T' o x11/Const. + k7). It next follows
directly from Eq. (3) that the more broad (i.e. short-lived) a resonance is, the more divergent
is the asymptotic part of the wave function, when compared to other resonances with the
approximate same energy position. We especially note that sharp (or long-lived) resonances
have a very small asymptotic amplitude as compared to broad resonances (or continuum
states) in the small energy domain of interest. This is an important feature of quasi-bound
states that we will refer to many times in the preceding sections of the paper.

Actually, decaying states, as defined in Eq. (4), were already introduced into quantum
mechanics in 1928 by Gamow [6], and hence they are some times referred to as Gamow states
in the literature. At this point we would like to quote Landau [7]: “Although decaying states
may appear as just an academic exercise, they are probably more realistic than conventional

quantum mechanics; if we wait long enough many (if not all) particles, nuclei and atoms do



decay in time and thus must be described as a type of Gamow state.”

Two important consequences follow immediately from the simple characterization of
a resonance state given above. Since the energy must be real positive in any scattering
experiment, one can never have a system which is only decaying. Hence resonances are
always accompanied by, often numerous discretized, continuum states. Furthermore, from
a “methodical” point of view, the complex value of the resonance energy and the divergent
property of ¢ (r) mean that we can not obtain resonance states simply by solving the Hermi-
tian Schrodinger equation subject to real boundary conditions. In other words the numerical
methods developed for bound problems are not directly applicable to the treatment of reso-
nance states. This is a complicating aspect in the theoretical study of resonances, and have
lead to many different numerical methods.

One “brute force” way to locate resonances is of course to solve the coupled (vibrational)
set of equations with the Siegert state asymptotic boundary conditions given in Eq. (3).
Alternatively one can also solve the coupled equations subject to the general boundary
conditions listed in Eq. (1), and then look for poles in the S-matrix [2] (i.e. rapid jumps
of the resonance part of the phase shift through 7/2 modulo 7 [7]). However both these
direct approaches are very demanding in terms of computational time, as the calculation
has to be repeated for many different collision energies. Especially if the system displays
very sharp resonances (i.e. long-lived) one needs a very fine grid in the collision energy.
Also the existence of short-lived resonances can give rise to problems when using these
methods, since the exact position and width can be difficult to assign for very broad lines.
Another method is the so-called stabilization method [8] where the system is placed in a
box of slightly varying size. The resonance states are then found as the solutions to the L?
problem that are stable with respect to small variations of the box-size. This is a very easy
scheme to implement, but it inherits some of the problems associated to the more direct
methods mentioned above. A way to overcome these problems more generally is to extend

the quantum mechanics to non-Hermitian Hamiltonians, which lead us to what we shall

refer to as the complex methods (CCM and OPM).



In the complex coordinate method [5] (CCM), the reaction coordinate (e.g. R) in the
total Hamiltonian is complex scaled, and the resulting non-Hermitian eigenvalue problem is
solved using standard complex eigenvalue routines. Formally one encloses the system in a

box (L? method) and transforms the Hamiltonian, ﬁ(ﬁ’), according to
H(R)— H (Re') = H (5)

The resonances correspond [9-11] to the complex eigenvalues, ¢, , of H? which are stable with
respect to variation of the parameter 6, i.e. IR[¢,]/00=03¢,]/00=0. The computational
advantage of this variational complex method is that it isolates, in principle, all the resonance
states from the continuum states as stationary points in the complex energy plane of 6-
trajectories. Also, as this is an L? method it enables us to use numerical techniques developed
for bound state problems. The CCM has been applied successfully to many different physical
systems [12-15], but it should be clear from Eq. (5), that the analytical complex continuation
of the Hamiltonian can only be accomplished when one has an analytical expression for the
potential energy function. In other words the CCM has for many years mainly been restricted

to simple model systems. However by using the identity

= [ ar {0, (R)H (¢R) o, (R)}
= R {0 (O R) T (R0 (R)) ©

the complex scaling is shifted from the Hamiltonian to the (real) basis functions, ®,, (R),
which are in turn known analytically. This method of “backward scaling” the basis func-
tions as opposed to “forward scaling the Hamiltonian”, was first applied by Moiseyev and
Corcoran [16,17] and Museth et al. [18] have recently presented a numerical scheme where
matrix elements expressed in a multi dimensional discrete variable representation (DVR)
are backward scaled to give the equivalent of Eq. (6).

The other complex method, which was initially proposed by Jolicard and Austin [19],
consist of adding a local optical potential (OP) in the asymptotic region of the potential

energy function. This optical potential method (OPM) is an L? method where one of the

10



tasks of the OP is to prevent reflection and transmission from the artificial box boundaries.
By varying the amplitude of the OP the system is slightly perturbed and resonances show up
as stable eigenfunctions of the non-Hermitian Hamiltonian, i.e. 9R[e,]/0A=0Se,]/0A =0,
where A is the amplitude parameter in the OP. Naively one could say that this method
resembles the stabilization method mentioned above where the system is perturbed at the
boundary. However it is important to emphasize that the OPM is an extension of quantum
mechanics to the non-Hermitian domain of the Hamiltonian much like the CCM. Actually
Rom, Lipkin and Moiseyev [20] have shown that by a specific choice of the local optical
potential (a complex potential) the CCM can be shown to be identical to an optical poten-
tial method. In practice, however, the optical potential is often chosen as a simple negative
imaginary potential (NIP) know from time-dependent molecular dynamics [21-23]. Con-
sequently, the OPM with an arbitrary optical potential may shift the actual position and
width of the resonances. The CCM on the other hand is based on rigorous mathematics, and
hence the complex scaling expressed in Eq. (5) or Eq. (6) is guaranteed to give the correct
resonances (within the framework of a finite basis set). Another drawback of the OPM is
that in principle the NIP should be perfectly absorbing in the whole energy range of interest,
which is practically unattainable as the amplitude of the NIP is a variational parameter in
this scheme. Hence boundary effects created by the finite nature of the basis set can be
significant. However, when all this has been said about the OPM it should be stressed that
this method has important advantages over the CCM. First, the overall numerical scheme
is very simple, and we need not worry about the analytical nature of the potential energy
term. Secondly, there exist good candidates in the literature for almost perfectly absorbing
NIP’s [24,25], and finally the OPM allows for a self-correcting scheme. Using the generalized
Hellman-Feynman theorem, Jolicard and Humbert [26] have shown that for two successive
calculations of the complex resonance energy, made for the two values Ay and Aj of the
amplitude parameter in the NIP, a corrected energy is given by

T (7)

€res = €A, + 1 7 7
- 6A1/6A2

11



where €}, = de/OA = <<I)R |0Vt /OA| CI)A>. The associated corrected resonance eigenfunction

reads as

1

0= By, ®
Ay /€A,

The existence of such a self-correcting scheme combined with the overall ease of the nu-
merical implementation of the OPM made us choose this method for the study of resonances
in the electronically elastic HT + O, collision to be presented in this paper. However, as will
be clarified in the conclusion, this is not to say that we expect this method to give the final

conclusive results, and at this point we can not rule out the necessity of future studies using

the exact CCM.
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III. METHOD OF CALCULATION

In this section we present the overall numerical scheme for our implementation of the
optical potential method outlined in Sec. II. The Infinite-Order Sudden approximation (I0S)
and its limitations will not be explained in great detail, we instead refer to a review paper
by Baer [27] and the references mentioned therein. The numerical scheme is formulated in
terms of an optimized discrete variable representation (DVR) of the two dimensional wave
function. Some of the details of the DVR-scheme have been moved to the appendix, but for
more information on the DVR/FBR-scheme and other applications of it see Ref. [28,18,29].

An important objective of the work presented in this paper is to reproduce the positions
and widths of the resonances in the H* + O, system calculated by Grimbert et al. [2]. Thus
we are going to make the same approximations for the collision, i.e. the study is carried
out in the framework of the I0S approximation [27] where the relative angle v is fixed to
45°, cf. Fig. 4. Ton-molecule systems usually differ significantly from atom-molecule systems
because the potential is more attractive and less dependent on the orientation angle v [30,31].
Grimbert et al. [2] further argue that since the lifetimes of the resonances in HT + O,, with
the exception of two, are found to be small compared to the characteristic rotation time of
an Oz molecule (of the order of 107! s), the IOS approximation is justifiable. Thus except if
mentioned otherwise, the parametrical v dependence is omitted throughout the rest of this

section.

FIG. 4. Definition of the translational coordinates R, the vibrational coordinate r and the fixed

relative angle ~.
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A. The I0S Hamiltonian

In the TOS approximation the Hamiltonian for the system under consideration reads as

— L R 92 R+ 1)
H(r,R) = — — Vir,R 9
(T’, ) 2,“7}07} aRQ 2/102 87“2 —I_ 2,utotR2 —I_ (T’, ) ( )
LORA(L41)
=Tph+ —F—~+h(r,R 10
Rt ThR) (10)

where £ is the relative orbital angular momentum and }AL(T, R) = T, + V(r,R) is an O,
Hamiltonian depending parametrically on R. The definition of the two Jacobi coordinates
r and R is illustrated in Fig. 4. We further define the zero order translational Hamiltonian

R4 1)

Hy(R) = Tr + T Vers (R) (11)

where the effective potential, V.; (R), is defined as the minimum of V (r, R) with respect
to the vibrational coordinate r. In the next two subsections we will define a complete
basis set in r and R, which shall serve as the working basis set when we later set up the
non-Hermitian Hamiltonian, and subsequently diagonalize it. To obtain an optimized basis
set we will use a scheme with “preconditioning in the zero-order Hamiltonians” defined
above, and subsequently truncate the basis set according to some fictive total translational
energy (Fyy), so that we end up with a compact basis set. However, it is very important
to emphasize that this collision energy does not explicitly enter the overall scheme for the
optical potential method - only when we design the basis set. This is exactly one of the
advantages of the complex methods as mentioned in the previous section. Thus, when E;,;
is mentioned in the preceding subsections it should be interpreted as some sort of truncation

parameter rather than an actual total translational energy.

B. Definition of FBR and DVR in the translational coordinate

In the translational coordinate R, we use a primitive FBR basis set of particle-in-a-box
(PIB) sin-functions. These basis functions are simple periodical L* functions that define

a DVR basis set in a very simple way, see the appendix. We start by defining the box
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for the translational coordinate. As this coordinate is clearly not “bounded” we will have
to provide the box parameters R,,;, and R,,,, by some means of guessing, based on the
topology of the potential energy surface, V.sf (R) in Eq. (11), and subsequently test for
convergence. It should be noted that the presence of long-range multipolar interactions in
ion-molecule systems, like H* 4+ O,, results in a much larger value of R, than for the
corresponding neutral atom-molecule system. Next we shift the domain of R to go from
zero to Ryae — Royin and define the size of the FBR and the associated DVR basis set,
by specifying the underlying grid. As mentioned in the appendix, the PIB-DVR has an
equidistant or uniform grid, and a simple classical analysis of the de Broglie wavelength
gives a grid spacing of

Amin h

AR = =
277 T]\/Q (Etot - szn) Htot

(12)

where 7 is a parameter larger than unity. The primitive normalized FBR basis set is thus

defined as

2 R
{S‘Qn(R)E R sin <;ﬂ- >7 n:1727"' 7NR 7R€ [OaRmar_Rmm]}

(13)
where Ngp = (Ruaz — Rmin)/AR — 1, and as discussed in the appendix, it is isomorphic to
a DVR basis set, {|R,), p =1, Ngr}, cf. Eq. (A2). This DVR and the underlying uniform
grid, {R,, p =1, Ng}, will constitute the “lowest-level” basis set in the R coordinate, and
we shall not give any further reference to the explicit FBR in Eq. (13). It should be clear
from the context that so far the working basis set has not been optimized for the numerical
problem at hand — or to use a DVR terminology — the grid points have not been chosen as
to reflect the physics of the problem. In other words we would like to have a DVR grid that
reflects the topology of the potential energy surface such that the grid is dense in regions
where the de Broglie wavelength (cf. Eq. (12)) is small and more sparse elsewhere. To obtain
this we employ an optimizing scheme [32,33,18] based on the work of Harris, Engerholm and
Gwinn (HEG) [34]. Using the basic property of the PIB-DVR (see Eq. (A4) and Eq. (A5))
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we first construct a set of eigenfunctions of the zero-order Hamiltonian defined in Eq. (11)

o~ Nr
Holg) = Ejla), o) = >_ (Ryla)Ry) (14)
p=1
This basis set, {|¢), ¢ = 1, Ng}, is then truncated according to a given collision energy Fi..

NHEG

The resulting compact basis set, {|q>, g=1,Ng"" < NR}, is then used to construct a new

DVR basis set by diagonalizing the position operator
o~ Nr
RIRy) = Ry|Ry), [Ry) = Z (Rp|Ry)|Ry) (15)
p=1

This set of eigenvalue equations thus defines a compact DVR basis set, {|Rq>, qg=1, NgEG},
with the optimized grid points given as the eigenvalues. Note that the new HEG grid,
{Rq, g=1, NgEG}, as opposed to the original PIB grid, {R,, p =1, Ng}, is not uniform.
This optimized HEG-DVR basis set will constitute the working basis set in the coordinate
R. As it is a DVR, the potential energy function is simply diagonal in this basis (Eq. (A4)),
and the kinetic energy term is easily constructed by transforming back to the PIB-DVR
(Eq. (15)) and then using the analytical expression of the FBR (Eq. (A5) or Eq. (A6)).

C. Definition of FBR and DVR in the vibrational coordinate

For the vibrational coordinate r we also use a primitive FBR basis set of PIB sin-
functions. Hence we proceed in an analogous way to the previous section, except in this case
the size of the r-box is determined from the fact that the system is bound in this degree of
freedom. Thus r,,;, and r,,,, are given as the classical turning points for the potential energy
surface at the energy Fi,;. Consequently Eq. (12), Eq. (13) and the appendix also apply for
the vibrational coordinate when the substitution R — r has been made, but it is important
to emphasize that the constructed FBR/DVR scheme is of much smaller dimensionality than
for the unbound R coordinate (i.e. N, < NHEY < Ng). In the PIB-DVR for r, we next setup

a set of eigenvalue equations for the fixed R Hamiltonian, h (R,), defined in Eq. (10).
h(Ry) Im,q) = En (Ry) |m, q) (16)
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This defines a set of adiabatic vibrational states in each of the HEG grid points obtained
through Eq. (15). At each individual grid point, R,, the constructed adiabatic basis set,
{|m,q), m =1, N, }, is then truncated at E;,; ~ F, (RNII%IEG) corresponding to the energy in
the lowest vibrationally closed channel HT + Oy(v). That is, for each HEG grid point, R,,

we define a truncation parameter N¢ such that
Exs(R,) < B,(Ryure) & B < Enoga(R,) (17)

We can then contract this compact adiabatic basis into a new complete direct product basis

set with the HEG-DVR defined in Eq. (15). Thus we finally define the working basis set as

{lm.Ry), m=12... N q=1.2... NI} (18)

where |m, R,) = |m, q)|R,) is a basis function of both coordinates r and R.

D. Addition of the optical potential

As mentioned in Sec. II the OPM is essentially a non-Hermitian variational method in
the amplitude parameter of a NIP added to the asymptotic part of the potential energy
function. Many different kinds of NIPs have been proposed in the literature [21-24], and we
choose an exponential form whose absorbing properties have been investigated thoroughly

by Vibék and Balint-Kurti [25]. Thus the NIP, V,;(R), read as

0 for Rpin < R < Ro
Vopt (R) = (19)
—iANexp (—2fmazho) for Ry < R < Ry

where A is a premultiplier used to minimize the reflection and transmission from the potential
and N is a normalization constant found numerically to be 13.22 [25]. For a given energy
domain Vibok et al. [25] provide optimized tabulated values for the parameter A and the
range of definition, AR,,; = Ry,00 — Rmin. However in the present application of the optical

potential to locate resonances, the premultiplier A is not a fixed parameter, but rather a
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variational amplitude parameter. Thus, we cannot simply followed the guidelines given in
Ref. [25] to assign {A, AR,,:}. Instead we have to used many different values of AR, to test
for convergence. This clearly emphasizes yet another drawback of the OPM, as compared to
the CCM; the added optical potential introduces new parameters into the numerical scheme.
This usually means a lot of additional convergence tests to determine these parameters.
The optical potential, Eq. (19), is added to the total Hamiltonian, Eq. (9), and for dif-
ferent values of the parameter A a matrix representation of this non-Hermitian Hamiltonian
is then computed in the basis set derived above, Eq. (18). It is important to note that since
the optical potential is only a function of R, and the complete basis set is a DVR in this
coordinate, the addition of the NIP just adds complex values of V,,; (at the HEG grid points)
to the diagonal. Thus the DVR in the translational coordinate, makes the implementation
of the optical potential method very easy. The computed complex symmetric matrix is next
diagonalized for many different values of A, and for successive calculations in A the produced
complex eigenvalues are connected using a maximum-overlap scheme for the associated com-
plex eigenvectors. Finally the A-trajectories are plotted in the complex energy plane with
the real part (i.e. energy position) along the positive z-axis and the imaginary part (i.e.
half width) along the negative y-axis. A visual inspection of each trajectory next follow
in order to determine which ones correspond to ether a bound, continuum or resonance
state. The bound states are not affected by the presence of the NIP placed in the asymp-
totic region, and hence they show up as coinciding dots on the real energy axis below the
value of the threshold energy, i.e. the zero-order vibrational energy in the entrance channel.
(Bound states have in principle an infinitely large lifetime corresponding to zero width, i.e.
no imaginary energy component). The resonance and continuum states, on the other hand,
are only found above this value of the threshold energy. The later have amplitude in the
whole coordinate space and hence they are very sensitive to small changes in the NIP. Conse-
quently the continuum states correspond to trajectories which are continuously rotated into
the negative imaginary energy plane as the amplitude parameter, A, increases. From the

theory of resonances by complex methods it follows that resonance, or quasi-bound states,
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are visually identified as stagnation points or cusps in the complex energy plane. However,
it is very important to emphasize that these simple characteristics of the three different
types of states are not generally sufficient as a guideline to isolate resonance states when
using the optical potential method. The reason for this complicating aspect of the optical
potential method is of course that this is an approximate method as pointed out in Sec. II.
The presence of the NIP slightly perturbs the system in a non-physical way, thereby casing
it to change its characteristic behavior under the complex scaling, i.e. variation of A. This
means that some times continuum trajectories can behave as resonance trajectories and vice
versa. FEspecially for large values of A, i.e. for large perturbations from the NIP, can one
observe spurious behaviors of the complex trajectories. All in all this means that one has
to be a little careful before a final identification of a resonance state can be made. In other
words we need additional techniques or tools to verify the existence of a resonance after it

has been isolated. We have come up with the following simple tests

1. Perform a convergence test by slightly chancing the remaining parameters entering the
definition of the negative imaginary potential. We found it to be especially useful to
repeat the calculations with different values of the domain of definition for the NIP.
Trajectories corresponding to a real physical resonance will show very little effect on
these changes in the domain of A where the quasi-bound states are formed. “Ghost-
trajectories”, on the other hand, will not show the same invariance with respect to
these variations, and often one observes dramatic changes of the trajectory for all

values of A. (See Fig. 6 and Fig. 7 in the next section for an illustration).

2. Alternatively one can graphically plot the amplitude of the state vector calculated
at the value of A where the stagnation point is observed. As pointed out in Sec. II
the divergent property of the asymptotic part of a resonance wave function increases
with the width (assuming F & Const.). Resonances will show a large amplitude in the
interaction region (with vibrational excitation for Feshbach resonances) and a relatively

small periodic amplitude in the entrance channel corresponding to the pure outgoing

19



boundary condition mentioned in Sec. II Eq. (3). Continuum states (i.e. . I' — 00)
on the other hand will display a relatively large amplitude in the asymptotic regions
of the channel. For very sharp resonances it can actually be difficult the distinguish
a resonance state from a bound state since it has almost negligible amplitude at the
boundary. Thus, if one first filters off all the bound states by truncating the trajectories
below the threshold energy this test is very useful - although a bit time consuming.
This technique can of course also be used when applying the complex coordinate
method [18], although this is in principle an exact method, and should therefore not
give rise to spurious behavior of the trajectories. (See Fig. 8 and Fig. 9 in the next

section for an illustration).

Finally we comment on the the self-correcting scheme by Jolicard, Eq. (7), as a tool to decide
whether or not a trajectory corresponds to a resonance. We have not included this scheme
in the list above for the following reason: We found that Eq. (7) only produces meaningful
corrections to the resonance positions when the successive values of the variational param-
eters A; are close to a resonance. Outside this domain of A, and for non-resonant states,
Eq. (7) gives arbitrary complex values, which makes the visual tracking of the new chaotic
A-trajectories in the complex energy plane extremely difficult. Thus in order to use this
self-correcting scheme efficiently, the computer implementation should be able to separate
the resonance trajectories from the continuum trajectories, and further choose the correct
domain of A values for each resonance trajectories. However, as this is exactly the problem
that we hoped to address by employing this scheme, we did not find it useful as a tool to
verify a resonance, but rather to check for convergence when the verification was made by

ether (1) or (2).
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IV. NUMERICAL RESULTS

In all the reported calculations we have used the same collision conditions as Grimbert
el al. [2], in order to compare with their results. Thus, a single value of the relative angle,
v = 45° in Fig. 4, and an orbital angular momentum value, / = 0 in Eq. (9), are considered.
The later implies that the barrier produced from the centrifugal term in Eq. (9) can be
neglected, and consequently the system will only display Feshbach resonances under these
circumstances. Further the collision energy is restricted to E;,; < 0.2eV as measured from
the Ht + O, v = 0 dissociation threshold. As in Ref. [2] we are also going to disregard
the charge transfer channel, H + OF (X?I1,), which leave us with an electronically elastic
collision problem. All in all this implies that only the v = 0 channel is open (vibrational
elastic scattering), such that F,—; in Eq. (17). Thus the calculated Feshbach resonances are

of the type
[HOF|" — HY + 0, (X°%;,v=0) (20)

The diabatic electronic potential energy surface correlating with H* 4+ O, <X3E;) is that of
Grimbert et al. [35]. Numerical values of the corresponding potential on the HEG and PIB

grid, defined in Sec. I1I, are obtained by a two dimensional spline interpolation in r and R,

see Fig. 5. The box parameters in the two Jacobi coordinates are fixed to

R,.;r, = 0au Riur = 20 au
(21)

Tmin = L.Dau 7. = 2.9au

Since no data points are available in the interval going from R = 15au to R = 30au
we used the value of the potential at £ = 30au in this interval. This produces a slight
discontinuity at R = 15au of the order of 0.02mHartree. However, this approximation is
made in order to reserve some additional space for the domain of definition of the NIP.
Perhaps a somewhat more disturbing feature is the cut-off of the surface of Ref. [35] at
Fmaz = 2.9au, see Fig. 5. At this value of the vibrational coordinate (and R ~ 2 — 3au)

the potential energy is far below the maximal collision energy of 0.2eV & 7.3 mHartree.
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Consequently the potential energy surface we use in the calculations has an infinite wall
at r = 2.9au. In the closed coupled calculations by Grimbert et al. [2] this caused no
problems since they used vibrational eigenstates of O, (XBE;) as the basis-set in the r
coordinate. Thus they employed a vibronic diabatic basis-set which has negligible amplitude
at rmar = 2.9au. However, as explained in Sec. II1 C Eq. (16) we employ a vibronic adiabatic
basis-set in r, which depend parametrically on the HEG grid points defined in Sec. [II B. As
mentioned before this makes it possible to construct a very optimized and compact basis-
set, cf. Eq. (18), which so to speak follows the dynamics as the collision takes place. The
problem, however, is that this adiabatic basis-set does not have the “built-in” boundary
conditions that makes it ignore the presents of the infinite wall at large values of r. This is

probably the most significant difference in the “physical setup” of the two calculations.
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FIG. 5. Plot of the spline interpolated electronically diabatic potential energy surface correlating
with HT + O, (XSE;) [35]. The definition of the two Jacobi coordinates r and R are illustrated
in Fig. 4 and the relative angle v is fixed at 45°. The origin of energies is the vibronic zero-point

channel energy. (Note also the cut-off of the surface for large values of r).
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Using the numerical method explained in Sec. III and the “physical setup” mentioned
above we next performed calculations of resonances in the electronically elastic HT 4+ O,
collision. In these calculations we used 40 particle-in-a-box functions in r, and 350 in
R. Using the HEG scheme the later basis set was truncated to 100 DVR functions. The
truncation of the adiabatic states in r (Eq. (17)) gave 2 to 19 basis functions depending
on R. Thus N, = 40, N? = 2 — 19, Ng = 350, and NZEY = 100 in Sec. III, and the
dimension of the contracted direct product basis, defined in Eq. (18), was in the order
of 550. This was sufficient to obtain convergence for almost all of the resonances. The
convergence was tested by employing the first of the techniques discussed in Sec. [IID. Thus,
we performed successive calculations with 5 different values for the domain of definition for
the NIP. R,.. in Eq. (19) was fixed as listed in Eq. (21) and Ry was successively given
values corresponding to AR,y = Rpae — Ro = 3,4,5,6 and 7au. For each calculation,
corresponding to a fixed AR, the variational A parameter in Eq. (19) was changed from
zero to 8 x 1072 in 40 steps of 0.2 x 1072, This turned out to be sufficient to isolate all
the resonances. In Fig. 6 and Fig. 7 we have plotted A-trajectories with different values
of AR, corresponding to two characteristic situations. The trajectories are plotted in the
complex energy plane with the real part (i.e. energy position) along the positive z-axis and
the imaginary part (i.e. half width) along the negative y-axis. Fig. 6 shows an example
of a typical continuum state which is very sensitive to small changes in the NIP. Note the
spurious behavior of the trajectories with small values of AR,,;. They actually behave
as a resonance state in the sense that they have stagnation points - although at different
positions in the complex energy plane. However, this is not a “true resonance state”, but
rather a continuum state which is perturbed by an imperfect NIP. This is clearly seen from
the trajectories obtained from calculations with a more perfect NIP (i.e. AR,,; > Hau)
where the trajectories are continuously rotated into the negative imaginary energy plane
as the amplitude parameter, A, increases. Thus, Fig. 6 clearly illustrates the need and
importance of additional convergence/verification tests as discussed in Sec. ITI D; with only

one calculation (e.g. AR,,; = 3au) one could erroneously confuse the continuum state in
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Fig. 6 with a “true resonance state” as shown in Fig. 7. In the later situation (Fig. 7)
the trajectories show very small changes with variations of AR, which is exactly what
characterizes a resonance state. A close-up of the trajectories actually shows that for A
and AR,, large enough the calculated complex data points almost coincide. Thus, the
true resonances state is only formed for specific values of both A and AR,,. All the 5
trajectories in Fig. 7 show the characteristic behavior of a resonance state (i.e. a stagnation
point), but only 3 of them actually correspond to a “true resonance”. Again this emphasizes
the importance of a convergence test; with only one calculation (e.g. R, = 4au) one
would obtain incorrect values of the resonance position and width. The variation of R,

corresponds to changing the energy domain in which the NIP is an almost perfect absorber.

-T12 (10”°au) -T12 (10”°au)
0.0 T T 0.00 0 T T
C—0OBR,=7au ) C—0OLBR,=7au
______ B—80R,=6au -0.05 |- ) B—84R,=6au
SR — AR, =5au ) — AR, =5au
-10 F (opY) 4 )i (opY)
5—ANAR,=4au
_ -0.10 -
. omy=3aU
-2.0 . ] -0.15 i
-0.20
30 -0.25
-0.30 -
-4.0
-0.35
_50 Il Il Il _040 L L L L L
15 2.0 25 3.0 35 4.0 1.65 1.70 1.75 1.80 1.85 1.90 1.95
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FIG. 6. Plots of complex energy trajectories for a continuum state, obtained from
calculations with 5 different values of AR,y = R4 — Ro in Eq. (19). Each of the 5
trajectories are made up by 40 connected points corresponding to the different values of
the variational A parameter entering Eq. (19). For almost all values of A the trajectories
are clearly very sensitive to the changes in the optical potential. Note the different
stagnation points for the R,,; = 3 and 4au trajectories in the right close-up plot. See

also Fig. 8 for a 3D-plot of the amplitude of this continuum state.
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FIG. 7. Plots of complex energy trajectories for resonance state number 10 in Table I

and Table II, obtained from calculations with 5 different values of AR, = Ry0 — Ro in

Eq. (19). Each of the 5 trajectories are made up by 40 connected points corresponding

to the different values of the variational A parameter entering Eq. (19). For the last

20-30 values of A the trajectories are clearly very insensitive to the changes in the optical

potential. Note the slight drifting of the stagnation points for the R,,; = 3 and 4 au

trajectories in the right close-up plot caused by the imperfect NIP. See also Fig. 9 for a

3D-plot of the amplitude of this resonance state.

Finally we have shown a 3-dimensional plot of the wave function for the two characteristic
situations illustrated in Fig. 6 and Fig. 7. Fig. 8 shows the divergent property of the
continuum state in the asymptotic region of the configuration space (cf. Eq. (3) with large
k1). As we do not impose any boundary conditions on the wave function (corresponding to
the incoming part in Eq. (1)) continuum states show up as extremely broad resonances in the
OPM formulation. The large amplitude in the entrance channel explains for the dramatic
changes observed in Fig. 6 as the NIP (i.e. perturbation) is varied. Fig. 9 shows the resonance
state with its characteristic shapes; large rapidly changing amplitude in the r-direction of the
interaction region, corresponding to the vibrational excitation of a Feshbach resonance, and
the small R-periodic amplitude in the asymptotic region of the channel which correspond to

the purely outgoing boundary condition of a resonance (cf. Eq. (3)) as discussed in Sec. II.
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Thus both of the techniques mentioned in Sec

subsequently check for convergence.

FIG. 8. Plot of the norm square of the
amplitude for the continuum state shown in
Fig. 6. In this calculation AR,,; and A, en-
tering Eq. (19), were fixed at respectively
7au and 4x 1073, corresponding to the 20'th
point on the AR,,; = Tau trajectory in
Fig. 6. Note the divergent property of the
continuum wave function in the asymptotic

region of the configuration space.

. [II D were used to verify the resonances and

TRl

V‘\\ My““ il
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FIG. 9. Plot of the norm square of the
amplitude for the resonance state shown in
Fig. 7, and listed in Table I and Table II as
number 10. In this calculation AR,,; and
A, entering Eq. (19), were fixed at respec-
tively 7au and 4 x 1073, corresponding to
the 20'th point on the AR,,; = 7au trajec-
tory in Fig. 7. Note that the characteristic
resonance wave function has large amplitude
in the interaction region of the coordinate

space and a very small amplitude in the en-

trance channel.

In Table I we have listed the calculated energy positions and associated widths for reso-
nances below a collision energy of 7.3 x 1072 Hartree, which is the energy domain investigated
by Grimbert et al. [2]. The table reports the results form 5 different calculations correspond-
ing to AR,y = 3,4,5,6 and 7au. It should be evident from this table that all the listed
states are indeed resonances and not just “ghost-states”, i.e. perturbated continuum states

that merely behave as quasi-bound states (cf. Fig. 6). Actually, with the exception of res-
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onance number 1,2.3,5.7,9,11,21 and 25, they all show complete invariance with respect to
the changes in the NIP. However, of the sensitive resonances, some of them (cf. 3,5,7,9 and
11) even loose the characteristic stagnation point as AR,, decreases, and thus start be-
having as continuum states. A closer inspection of Table I furthermore shows that these
sensitive states are all broad (i.e. short-lived) resonances. The reason for this behavior is
easily explained when we recall the very definition and characteristic of a resonance state
discussed in the introduction of Sec. II (cf. paragraphs below Eq. (3) and Eq. (4)). The
amplitude in the asymptotic region of the entrance channel increase rapidly with the width
of the resonance, and consequently the range needed to absorb the wave functions associated
with narrow resonances is much less than for the broad ones. This is clearly reflected in
Table I. However, increasing AR,,; eventually also means extending the R-box which can
be very costly in terms of CPU-time. Also, the NIP is in practice only perfect in a very
narrow energy-window, i.e. the NIP is almost always accompanied by some reflections from
the boundary. This generally leads to shifting of the true energy positions and widths, but
we expect these perturbations from the NIP to be predominant for the broad resonances
where the asymptotic amplitude is large. All in all we conclude that the optical potential
method seems best suited to study sharp resonances.

Table II shows a comparison of the converted resonances listed in Table I and earlier
results obtained by Grimbert et al. [2] solving the coupled equations. The table shows 25
resonances, 18 of which correspond to the resonances located by Grimbert et al. For the large
majority of the resonances, the positions are in acceptable agreement (i.e. |AE| < 0.15 x
1073 Hartree) with the previous calculations, but the widths are some times off by a factor as
much as 10. It is however reassuring to see that there is a clear match in the variations of the
widths in the two columns, but the deviations do not seem to follow any particular pattern.
It is difficult to give a clear cut explanation for the deviations, but one could probably
argue that we did not reproduce the exact collision conditions under which the study by
Grimbert et al. was conducted. Resonances are widely known to be extremely sensitive to

the curvature of the potential energy surface, and the extension of the surface beyond 15 au
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might have influenced the calculations. However, as mentioned before we believe that the
most significant difference in the “physical setup” of the two calculations is related to the
different basis-set approaches. In the optical potential calculations presented in this article
we employed a vibronic adiabatic basis-set of the order of 500 whereas Grimbert et al. used
14 vibronic diabatic basis functions to solve the coupled equations. Apart from the obvious
difference in the sizes of the employed basis-sets, which is definitely in favor of the OPM, it
should also be stressed that the underlying physical description of the collision differs in the
two cases. The diabatic basis-set deals with the somewhat disturbing cut-off of the surface
at rmar = 2.9au (cf. Fig. 5) in an ad hoc way, whereas the adiabatic basis-set does not.
Consequently the surface exhibits a wall in the presented calculations which is not present
in the previous studies by Grimbert et al. This clearly makes the comparison difficult. Finally
we note that disagreements between the two compared methods have been observed before
in the literature; Monnerville et al. [36] exactly finds a disagreement for broad resonances in
the one-dimensional study of predissociation of CO. They argue that this is primarily due to
the fact that close coupling approaches are generally not capable of correctly reproduce very
broad resonances. The shape of the found resonances are not Lorentzian (i.e. asymmetric)
which can give significant error-bars when assigning the resonance position and width. We
can go along with this argument, but finds it equally important to emphasis that the OPM
also has problems in this limit as pointed out above.

Table II also shows 7 new resonances, 4 (cf. 4,6,8 and 12) of which being very long-lived
(i.e. 7> 1071%s). Tt is interesting to see that the only new relatively short-lived resonances
(cf. 13,14 and 20) are located in the most dense parts of the spectra which is also where
the largest deviations are found (e.g. 16). Thus it seems plausible that Grimbert et al. [2]
overlooked or simply missed these resonances because they overlapped. The finding of the
new very sharp resonances is not very surprising considering the fact that the close coupling
approach, used by Grimbert et al., exactly has a problem isolating very sharp resonances

unless the energy grid is equally very dense.
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V. CONCLUSION

All the resonances found by Grimbert et al. [2] are confirmed, although the widths of
some resonances are off by a factor of 10. In the previous section we have discussed some
important issues that should provide arguments to explain the disagreement between the
two approaches. We especially drew attention to the different basis-sets employed in the
two calculations and further pointed out that both methods show weaknesses in the limit
of very broad resonances. Given these facts we find the agreement acceptable, but stress
that it is difficult to make a final conclusive evaluation of the found resonances relative to
the previous results. However, it is striking that we found 7 new resonances, 4 of which
were very long-lived, 7 > 107''s. First of all this clearly shows what we expected from
the very beginning, namely that the method of close coupled equations is not well suited
to isolate sharp resonances, unless of course the energy grid is made very dense at the cost
of computational time. We also note that the existence of these very long-lived resonances
could well signify that the use of the [0S approximation, on this system, might be called
in question. Grimbert et al. [2] argue that since they found no resonances with lifetimes
comparable to the characteristic rotation time of the O3 molecule (of the order of 107!!s), the
IOS approximation was justifiable. Given the discovery of the new resonances we question
this justification, but at the same time we acknowledge that this is by no means a definitive
proof of the invalidity of the IOS approximation applied to the HY + O, system - it merely
invalidates the way it has been justified in Ref. [2].

The present study also gives an examination of the optical potential method as an alter-
native to the close-coupled approach. We believe the OPM to be more accurate and general
in the sense that it in principle isolates all the resonances in the complex energy plane in one
step, i.e. we do not have to scan the real energy axis. The subsequent visual inspection of the
complex trajectories is however rather tedious. This inconvenience of the OPM was further
intensified by the present discovery of spurious behavior of the trajectories. This forced us

to introduce additional techniques to isolate and verify the existence of a resonance state; we
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especially focused on the convergence tests where we made small variations in the domain
of definition of the NIP, and the 3-dimensional plotting of the corresponding wave function.
To "routinely” overcome these problems discovered with the isolation of the resonances in
the complex energy plane, and further in order to give a conclusive evaluation of the found

results we will have to employ the “exact” complex coordinate method [18] mentioned in

Sec. 11.
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APPENDIX A: PARTICLE IN A BOX DVR

Consider a one-dimensional quantum system, with coordinate R restricted to an arbitrary
but fixed box. First we note that any physical box can always be shifted without loss of
generality. Thus for a given box in the coordinate R - going from zero to R,.; - we can
define a FBR basis set of normalized particle-in-a-box (PIB) sin-functions, see Eq. (13). The

Np roots of pn,+1(R) in the interval |0; R0 |

Rmaz
R =
P Np+1

p=ARp, p=1,2,...,Ngp (A1)

are exactly the abscissas for the DVR associated with this FBR, and the corresponding
weights, w,, can easily be shown to be the constant AR. The transformation from the DVR,
{IR,), p =1, Nr}, to the FBR, reads as
Nr
R = 3 Unle) (A2)

where the unitary matrix U, is given by

2 ) nm R
U = (Rylin) = 57 sin (52) (A3)

It is important to note that the endpoints of the box (i.e. 0 and R,,,;) are excluded in the
definition of the grid points, see figure 10. The reason for this is that every member of the
FBR basis set is zero at these points, resulting in zero-columns in U . Thus the matrix
expressing the basis set transformation would not be unitary i.e. the defined DVR and FBR

are not isomorphic.

1 2 3 4 5 Ngl Ny Nl
I
I

e

I
Ri Ro R Ry Rs Ry.a Ry Rmax

O -4 O

FIG. 10. Definition of the points in the uniform particle-in-a-box grid. Note that the endpoints

are not included in the definition of the points.
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Within the approximation of the associated quadrature the defined DVR satisfy the

following basic relation
(Rn [V (R)| Br) = 6nprV (Ry) (A4)

and consequently the potential energy term in the Hamiltonian is simply diagonal in the
DVR basis set. Using the analytical expression for the FBR (Eq. (13)) it is easy to show

that the matrix representation of the kinetic energy operator in the DVR basis set reads as

r=-5U.

1=

U (A35)

where N,,,,, = —(nﬂ/RmaI)25nn/ and U is defined in eq A3. The evaluation of the matrix
elements, T,, in Eq. (A5), thus involve a sum over products of two sin-functions with the
premultiplier n?. After some tedious calculations (see footnote 20 in reference [29]) one can

obtain the following analytical expression for the sum

Pe = T P2
4p Rz - (2(NR_|_1)2_|_1) /3—F(p—|—q) forp=gq

where F(n) = sin~? (2(]\’&“)).
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TABLE 1. Convergence of positions, F, and widths, I', for resonances in the HT 4+ O,
(¢ = 0,7 = 45°) collisional system, described in the 10S approximation and using the OPM
described in Sec. I and Sec. III D. The table lists results from 5 different OPM calculations with
AR,y = 3,4,5,6 and 7au arranged in the 5 pairs of columns. The results are reported in atomic
units and relative to the zero-point vibrational energy (3.508 x 10~2 Hartree as measured from the
bottom of the potential in the entrance channel, cf. Fig. 5). As an illustration to this table see

Fig. 7 where the resonance state number 10 is plotted.

Nr. EP re Eb re Eb re EPb re Eb re

ARgp = Tau AR,p = 6au AR,p = 5aun AR,y = 4au AR, = 3au

1 0814 1.8(—3) 0814 1.8(—3) 0.813 1.6(=3) 0815 2.0(=2) 0815 2.0(-2)
2 1489 1.5(—2) 1.489 1.5(=2) 1489 1.5(=2) 1.490 1.6(—2) 1.489 1.4(-2)
32,042 1.8(—1) 2.042 1.8(-1) 2,042 1.8(-1) ...* ...2 LA
42215 4.0(=7) 2215 4.0(=7) 2215 4.0(=7) 2215 4.0(=7) 2215 4.0(-7)
502492 7.2(—1) 2492 T.4(-1) ...* ...° LA LA
6 2.869 2.8(—4) 2.869 2.8(—4) 2.869 2.8(—4) 2.869 2.8(—4) 2.869 2.8(—4)
7 3.092 82(—1) 3.092 8.2(-1) 3.064 80(-1) 3.110 7.0(-1) ...» ... =2
8 3.186 1.3(—6) 3.186 1.3(—6) 3.186 1.3(—6) 3.186 1.3(—6) 3.186 1.3(—6)
9 3.616 2.4(—1) 3.616 2.4(—1) 3.616 24(—1) 3.615 22(-1) ...» ... =
10 3.780 4.0(—=2) 3.780 4.0(=2) 3.780 4.0(-2) 3.780 4.0(—=2) 3.780 4.0(-2)
11 3818 84(—1) 3.817 8.4(—1) 3.824 8.6(-1) ...» ... =2 LA
12 4.017 24(—4) 4.017 2.4(—4) 4.017 2.4(—4) 4.017 24(—4) 4.017 2.6(—4)
13 4.256 5.4(—3) 4.256 5.4(—3) 4.256 5.4(—3) 4.256 5.4(—3) 4.256 5.4(—3)
14 4436 3.2(—2) 4.436 3.2(—2) 4.436 3.2(-2) 4.436 3.2(—2) 4.436 3.2(-2)
15 4.665 3.4(—2) 4.665 3.4(—2) 4.665 3.4(—2) 4.665 3.4(—2) 4.665 3.4(—2)
16 4.707 1.3(—=2) 4.707 1.3(=2) 4.707 1.3(=2) 4.707 1.3(-2) 4.707 1.3(-2)
17 5144 1.3(=2) 5144 1.3(=2) 5.144 1.3(=2) 5.144 1.3(-2) 5.144 1.3(-2)
) )

18 5416 1.1(-2) 5416 1.1(-2) 5416 1.1(=2) 5.416 1.1(-2) 5.416 1.1(-2
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19 5910 3.2(-2) 5.910 3.2(-2) 5910 3.2(-2) 5910 3.2(-2) 5910 3.2(-2)
20 5.965 1.3(—4) 5.965 1.3(-4) 5.965 1.3(—4) 5.965 1.3(—4) 5.965 1.3(—4)
21 6.096 1.2(-2) 6.095 1.2(-2) 6.094 1.2(-2) 6.082 1.2(-2) ...2* ... =2

22 6.358 6.8(—2) 6.358 6.8(—2) 6.358 6.8(—2) 6.358 6.8(—2) 6.358 6.8(—2)
23 6.464 1.6(—3) 6.464 1.6(-3) 6.464 1.6(—3) 6.464 1.6(-3) 6.464 1.6(—3)
24 6.660 4.6(—2) 6.660 4.6(—2) 6.660 4.6(—2) 6.660 4.6(-2) 6.660 4.6(—2)

25 6.856 7.4(—2) 6.856 6.6(—2) 6.856 6.2(—2) 6.856 6.0(-2) 6.856 6.0(—2)

aDifficult to assign, i.e. no clear stagnation-point was found for this particular choice of the optical
potential.

PThe positions of the resonances are listed in units of 1072 Hartree.

°The width of the resonances are listed in units of 1073 au. We have further used the short notation

(—z) for 1077, i.e. a value of e.g. 8.4(—1) correspond to a width of 8.4 x 10~*au.
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TABLE II. Comparison of positions, F, widths, I', and lifetimes, 7, for resonances in the

H* + O3(¢ = 0,7 = 45°) collisional system, described in the IOS approximation. The first three

columns correspond to the converted results from Table I obtained using the optical potential

method. The last three columns correspond to previous results found by Grimbert et al. [2] solving

the closed coupled set of equations. The results are reported in atomic units and relative to the

zero-point vibrational energy (3.508 x 107> Hartree as measured from the bottom of the potential

in the entrance channel, cf. Fig. 5).

Optical potential method

Solving coupled equations [2]

Nr. E(107%au) T (107%au)¢ 7 (s)°

F (10%au) T (107%au) ¢ 7 (s)°

1 081 1.8(=3) b 1.3(-11) P
2 1.49 1.5(—2) 1.6(—12)
3 2.04 1.8(—1) 1.3(—13)
4 222 4.0(=7) 6.0(—8)
5 249P 7(-1)P 3(—14) P
6  2.87 2.8(—4) 8.6(—11)
7 3.01 8.2(—1) P 2.9(—14) b
8 3.19 1.3(—6) 1.9(-8)
9 3.62 2.4(—1) 1.0(—13)
10 3.78 4.0(-2) 6.0(—13)
11 3.82P 8.4(—1)"b 2.9(—14) P
12 4.02 2.4(—4) 1.0(—10)
13 4.26 5.4(—3) 4.5(-12)
14 4.44 3.2(-2) 7.6(—13)
15 4.67 3.4(—2) 7.1(—13)
16 4.71 1.3(-2) 1.9(-12)
17 5.14 1.3(-2) 1.9(-12)
18 5.42 1.1(-2) 2.2(—12)

0.80 1.4(-3) 1.7(~11)
1.49 5.8(—3) 4.1(-12)
1.85 1.2(~1) 1.9(—13)
2.36 8.6(—2) 2.8(—13)
2.93 1.3(-2) 1.8(—12)
3.72 1.9(-1) 1.3(—13)
3.89 1.5(—3) 1.7(—11)
3.99 1.3(-1) 1.9(—13)
4.55 4.8(-2) 5.0(—13)
5.08 7.5(—3) 3.2(—12)
5.21 4.1(-2) 6.0(—13)
5.58 1.4(-2) 1.7(-12)



19

20

21

22

23

24

25

5.91

5.97

6.09

6.36

6.46

6.66

6.86

7.6(—13)
1.9(—-10)
2.0(—12)
3.6(—13)
1.5(—11)
5.3(—13)

3(-13) b

5.87

6.04

6.44

6.70

6.81

6.95

6.8(—3)

3.1(-2)
6.5(—2)
5.8(—3)
5.2(-2)

7.4(-2)

3.5(—12)

8.0(—13)
3.7(—13)
4.1(-12)
4.7(—13)

3.3(—13)

2No previous resonance reported in Ref. [2].

PDifficult to assign, see Table 1.

“In this column we have used the short notation (—z) for 107",
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