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We present an extension of a method initially proposed by Moiseyev and Corcoran@Phys. Rev. A
20, 814 ~1978!# to a direct continuation of the matrix elements of a real Hamiltonian operator
expressed in a contracted, discrete variable representation type basis set. It is based on the identity
which relates the matrix elements of a complex scaled potential between real basis set functions to
those of theunscaledpotential between backward scaled basis functions. The method is first applied
to the study of the resonances of a one dimensional model by means of complex scaling. It is shown
that the resulting matrix elements of the scaled potential are no longer diagonal in the DVR. This
paradox is discussed and shown to be of no practical consequence in the formulation. The scheme
is then extended to the direct complex scaling of a two dimensional Hamiltonian operator expressed
in a contracted basis set built through the successive adiabatic reduction method of Bac˘ić and Light.
Results show that, due to the use of a numerical continuation, slightly larger grids have to be used
as compared to the case of an analytic continuation where the potential is available. ©1996
American Institute of Physics.@S0021-9606~96!01616-8#

I. INTRODUCTION

The problem of analytic continuation of a potential en-
ergy functionV(q) is of central importance when using the
method of complex scaling for the calculation of
resonances.1–4This requirement has mainly limited its use so
far to analytic functions such as Coulomb, pairwise or LEPS
potentials. In order to apply the method with arbitrary mo-
lecular potentials, such as those coming out of anab initio
calculation, one needs a systematic procedure. Different
methods have been proposed, essentially based on the con-
tinuation of the potential matrix elements evaluated in some
convenient basis set.5,6 Amongst these latter methods, the
identity

Vi j5E dxw i~x!V~xeiu!w j~x!

5e2 iuE dxw i~xe
2 iu!V~x!w j~xe

2 iu!, ~1!

was first applied by Moiseyev and Corcoran7 to the study of
molecular resonances of H2 and H2

2 . This equation relates
the matrix elementsVi j of the complex scaled potential
V(x)[V(xeiu) betweenunscaledbasis functions$w i% to
those of the unscaled potential potentialV(x) between back-
ward scaledbasis functions@w̃ i(x)[w i(xe

2 iu)]. It is based
on the assumption that an exact molecular potential is dila-
tion analytic. In the following, we will use a bar to denote
forward scaling, such asV̄(x)[V(xeiu), and a tilde for the
backward scaling, as inw̃ i(x)[w i(xe

2 iu).
Equation~1! is of central importance as it shifts the scal-

ing from the potential to the basis functions$w i% which are
known analytically. This procedure was later successfully
applied by Datta and Chu8 to the rotational predissociation of

Ar–N2. In the same line, Ryabov and Moiseyev9 recently
proposed a method aimed at directly providing the complex
scaled matrix elements of a real potentialV(x) determined
by its values on a grid$xp%. This procedure was successfully
applied to the determination of the predissociation reso-
nances of the three dimensional HCO and DCO radicals.
Using a discrete variable representation10–12 ~DVR! for the
Jacobi anglea, they first computed the matrix elements of
the complex scaled potentialV(Reiu,r ,a) at fixed values
ag . (R corresponds here to the H–CO dissociation coordi-
nate.! By diagonalization of the resulting complex scaled
HamiltonianH(Reiu,r ,ag), they were able to obtainpredi-
agonalizedcomplex scaled ray-eigenstates$uF̄m(ag)&% in
order to reduce the size of the overall basis set
$uF̄m(ag)&uag&%.

In this paper we adopt a different point of view, and
show how one can directly obtain the complex scaled matrix
elements, starting only fromunscaledones,

^Rpu^Fm~Rp!uHuFm8~Rp8!&uRp8& ~2!

⇓

^Rpu^Fm~Rp!uH̄uFm8~Rp8!&uRp8&.

The main difference with respect to Ryabov and Moiseyev’s
approach stems from the fact that ours is equivalent to a
numerical continuation of multidimensional elements as
shown by Eq.~2!. Also, it allows one to choose, if needed,
the dissociation coordinate as the discrete variable. It has
been recently shown13 that the adiabatic energy curves
Em(R) provide a very good zero order description of the
resonances. Our whole approach is still based onto the iden-
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tity relation as given by Eq.~1!. We will also show that such
a numerical continuation can be performed for an arbitrary
DVR.

The outline of the paper is as follows. In Sec. II, we first
show how one can numerically continue matrix elements
^RpuVuRp8& expressed in a DVR, and give a one-dimensional
example. This formulation is then used in Sec. III in order to
obtain numerically continued multidimensional matrix ele-
ments@Eq. ~2!#. The method is illustrated on a two dimen-
sional model first introduced by Eastes and Marcus.14,15 Fi-
nally, Sec. IV concludes.

II. ONE DIMENSIONAL FORMULATION

We suppose that the system is to be described in terms
of a DVR $uRp&,p51,N%, related to a finite basis represen-
tation ~FBR! $wn(R),n51,N% through the unitary transfor-
mation

uRp&5 (
p51

N

Upnuwn&. ~3!

The goal of this section is to show how one can obtain the
^RpuV̄uRp8& matrix elements of the rotated potential
V[V(Reiu) from the real ones

^RpuVuRp8&5V~Rp!dpp8. ~4!

One will first derive the formulation in the case of an arbi-
trary FBR-DVR scheme. The cases of both a uniform grid
and an optimized grid will then be studied in more details.
The kinetic energy term being analytical, its complex con-
tinuation is straightforward, and does not require any particu-
lar treatment. For example, in the case of
TR52\2/2md2/dR2, the complex scaled kinetic operator
displays matrix elements given by

^RpuT̄RuRp8&5e22iu^RpuTRuRp8&

5e22iu@U.T.Ut#pp8,

whereT is the unscaled kinetic energy matrix expressed in
the $wn% basis set.

A. General formulation

Use of identity@Eq. ~1!# allows us to write

~RpuV̄uRp8!5e2 iu~R̃puVuR̃p8!, ~5!

where the (•••u•••) notation means that the Hermitian con-
jugation is not used~see the discussion on using the
c-product rather than the scalar product in Ref. 16!.

The backward rotateduR̃p& vectors are naturally defined
from Eq. ~3! as

uR̃p&5 (
n51

N

Upnuw̃n&, ~6!

leading to the expression

~RpuV̄uRp8!5e2 iu(
nn8

Upn~ w̃nuVuw̃n8!Up8n8. ~7!

Because we explicitely consider in this paper the case where
no analytic expression is available for the potential, the
(w̃nuVuw̃n8) integrals have to be performed numerically. The
most convenient way to compute such integrals consists in
using a related quadrature scheme~preferably of Gaussian
accuracy!

~ w̃nuVuw̃n8!5(
q

M

w̃n~Rq!V~Rq!vqw̃n8~Rq!, ~8!

whereRq andvq correspond, respectively, to the quadrature
abscissas and weights.

If one uses forM the same value as the number N of
basis functionswn , i.e., if the quadrature abcissae$Rq% co-
incidate with the DVR points$Rp%, one would obtain erro-
neous matrix elements. The reason is that the quadrature of
Eq. ~8! would be exact for nonrotated functionswn as long as
the relationn1n81do@V#<2M11 is satisfied. One has
thus to use a quadrature scheme$Rq% of dimension higher
than that of the DVR$Rp%.

At this point, it might be necessary to discuss somewhat
about one feature of the DVR method. The basic relation
@~Eq. ~4!# is a direct consequence of the definition of the
$Rp% DVR as the transform of the FBR$wn% given by Eq.
~3!. In fact, the^wnuVuwn8& matrix elements computed from
the associated quadrature scheme

^wnuVuwn8&5(
p

N

UpnV~Rp!Upn8

are not exact for the same reason as discussed previously.
However, by the use of the unitary transformation, they lead
back to Eq.~4!.

By using a higher order quadrature scheme$Rq%, one
can thus achieve an exact evaluation of the (w̃nuVuw̃n8) ma-
trix elements of Eq.~8!. Defining the rectangular complex
matrix Ũ,

Ũqn5~Rquw̃n!. ~9!

Equation ~8! can be recast into the equivalent DVR type
expression,

~ w̃nuVuw̃n8!5(
q

M

ŨqnV~Rq!Ũqn8, ~10!

which leads to the following relation for the (RpuV̄uRp8)
matrix:

~RpuV̄uRp8!5e2 iu@U•Ũ•V~d!
•Ũt

•Ut#pp8, ~11!

V(d) being the real diagonal matrix

Vqq8
~d!

5V~Rq!dqq8. ~12!

But consequently, the (RpuV̄uRp8) matrix elements as de-
fined by Eq.~7! are no longer diagonal. This departure from
usual DVR properties causes no real problem in the formu-
lation as will be shown in the next subsections. In the case of
a one dimensional system, one can question the utility of
such a DVR scheme as it does not lead to any advantage
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compared to a direct FBR formulation. Its actual interest will
appear in Sec. III when dealing with multidimensional sys-
tems.

B. One dimensional test case

As a first application of the above formulation, we con-
sider the case of an equidistant grid

$Rp[p.DR, p51,N%. ~13!

@A system can always be translated such that its domain of
interest lies between 0 andRmax5(N11)DR.# The associated
DVR $Rp ,p51,N% is the conjugate representation of the
sine basis set$wn ,n51,N%,17,18

wn~R!5A 2

~N11!DR
sin

npR

~N11!DR
~14!

eigenstates of the@0,Rmax# box. These two representations
are related through the unitary transformation Eq.~3! where

Upn5A 2

~N11!
sin

npRp

~N11!DR
. ~15!

In order to test our formulation, we present now a simple
calculation aimed at determining the resonances of the model
Hamiltonian

H5T1V52
1

2

d2

dR2
1~R220.8!e20.1R210.8 ~16!

already studied by Moiseyevet al.19 and Korschet al.20 This
system displays a single bound state aroundE50.5 and a
string of resonances$Eres

(m) ,m51,2,...%. In order to obtain
the odd ones, one can restrict the domain to@0,̀ @ and use a
basis set of functions$wn(R)% which all satisfy the boundary
conditionwn(0)50, such as the sine basis of Eq~14!. In this
study, we will focus on the lowest two odd resonancesEres

(1)

andEres
(3) . Two series of calculations, presented in Table I,

have been performed. In each case, the dimensionN of the
$Rp% DVR has been varied while the box size was kept at
the valueRmax515. In the first series, used as a reference and
shown in column 1, we employed theanalyticexpression of
the potential and defined the scaled Hamiltonian matrix ele-
ments in the DVR as

~RpuH̄uRp8!52
1

2
e22iu^Rpu

d2

dR2
uRp8&

1V~Rpe
iu!dpp8. ~17!

The next three columns display results obtained from a nu-
merical continuation of the potentialV by means of Eq.
~7,10!, with

~Rquw̃n!5A 2

M11
sin

npRqe
2 iu

Rmax
. ~18!

Column 2 corresponds to using a quadrature grid$Rq% twice
as dense as the$uRp&% DVR, explicitly retaining in the cal-
culation thenondiagonalterms (RpuV̄uRp8). Column 3 dif-
fers from column 2 in that these off diagonal terms were
discarded in the calculation. Finally, column 4 also corre-
sponds to retaining the non diagonal terms but using a
quadrature grid identical to that of the initial DVR.

The main conclusion which emerges from these calcula-
tions is that the proposed numerical continuation scheme is
able to reproduce the correct results, provided the off diago-
nal terms (RpuV̄uRp8) are explicitly retained in the formu-
lation. In fact, theM5N calculations with these terms lead
to better results than those using the dense quadrature grid
(M52N11) but a diagonalV̄ definition. As will be shown
in Sec. III, these off diagonal terms pose no problem and still
allow one to use the DVR formulation in conjunction with an
adiabatic reduction of the basis.

C. Optimization of the DVR scheme

As shown above, a sine-based DVR allows for an easy
primary description of a complex scaled potential. This is
equivalent to the very general role played by the plane wave
basis set for time dependent wave packets, due to the under-
lying FFT scheme.21 However, for a Morse potential such as
the one associated to the two-dimensional model studied in
Sec. III, it constitutes a poor representation in terms of effi-
ciency. The reason is that the spacing between grid points is
dictated by the maximum kinetic energy allowed, which cor-
responds to the bottom of the well. In the asymptotic region,
where the de Broglie wavelength can be considerably larger,
one could use in principle a much broader mesh size.

TABLE I. Results for the first two odd resonances of the one dimensional Hamiltonian model@Eq. ~13!#. The
first column corresponds to an analytic continuation of the potential, the following ones to a numerical con-
tinuation by a quadrature using M points. In column 3, a diagonal definition of the DVR was enforced.

DVR size Analytical continuation

Numerical continuation

M52N11 M52N11 ~diagonal! M5N

N518 1.422 i8.86(26) 1.422 i4.43(25) •••a 1.422 i5.77(25)
2.602 i1.83(21) 2.532 i1.98(21) 2.6452 i0.61(21) •••a

N524 1.422 i5.84(24) 1.422 i5.87(24) 1.372 i1.63(23) 1.422 i6.23(24)
2.592 i1.74(21) 2.592 i1.79(21) 2.602 i0.41(21) 2.652 i1.04(21)

N529 1.422 i5.83(24) 1.422 i5.83(24) 1.372 i1.35(23) 1.422 i6.21(24)
2.582 i1.74(21) 2.582 i1.74(21) 2.612 i0.42(21) 2.662 i1.71(21)

aResonance position unassignable.
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A solution to this problem was proposed 30 years ago by
Harris, Engerholm, and Gwinn~HEG!.22 They showed that if
$wn% is some basis set, one can use the eigenvalues$Rp% of
the position matrix ^wnuR̂uwn8& in order to numerically
evaluate the matrix elements of any functionf (R),

^wnu f ~R!uwn8&5(
p
Upnf ~Rp!Upn8, ~19!

whereU is the associated eigenvector matrix. It was later
shown by Dickinson and Certain23 that this method was
equivalent to a quadrature scheme of Gaussian accuracy. The
HEG method thus provides a way to define a numerical
quadrature when no analytic expression is known for the
eigenfunctions$wn%, or when it is too cumbersome to deal
with.

Analyzed in terms of the DVR formulation, the HEG
method allows for the definition of a DVR$uRp&%, conju-
gate to the$wn% FBR,

uRp&5(
n

Upnuwn&, ~20!

which satisfies the basic relation

f ~R!uRp&5 f ~Rp!uRp&. ~21!

This property was later used by Leforestier24 and Echave and
Clary25 in order to define an adapted DVR to some zero-
order HamiltonianH0, the eigenfunctions of which being
precisely the$wn% basis set.

The (RpuVuRp8) matrix elements appearing in the HEG
formulation can be numerically continued by means of Eq.
~7,10!, provided one can express the (Rquw̃n) terms. This can
be realized, for example, by first computing the$wn% eigen-
states of interest in the primary sine basis set
$uSm&,m51,M % conjugate to the dense$uRq&% DVR,

uwn&5(
m

TmnuSm&. ~22!

~In order to carry on the HEG procedure, one has to truncate
the $wn% basis set, otherwise the HEG representation
$uRp&% would be strictly identical to the primary DVR
$uRq&%.) The (Rquw̃n) terms can then be explicited as

~Rquw̃n!5(
m

Tmn~RquS̃m!, ~23!

with

~Rquw̃m!5A 2

M11
sin

mpRqe
2 iu

Rmax
. ~24!

Similarly, the scaled kinetic matrix elements in the HEG
DVR can be computed from those in the primitive sine
$Sm% basis set

~RpuT̄RuRp8!5(
nn8

Upn~wnuT̄Ruwn8!Up8n8

5e22iu (
nmn8

UpnTmn~SmuTRuSm!Tmn8Up8n8.

~25!

D. Discussion

With the use of Eq.~10!, Eq. ~5! can be cast into the
DVR type expression,

~RpuV̄uRp8!5e2 iu~R̃puVuR̃p8!5e2 iu(
q

M

~R̃puRq!

3~RquVuRq!~RquR̃p8!. ~26!

As discussed in Sec. II A, the quadrature~involving theRq

points! is performed on a griddenserthat the one$Rp% of
final interest. This equation shows that the complex scaled
matrix elements in a DVR can be obtained from the unscaled
elements computed in a related~denser! DVR. The method
we developed previously allowed us to compute the
(RquR̃p) quantities by using some intermediate basis set
$wn%,

~RquR̃p!5(
n

Upn~Rquw̃n! ~27!

in which the backward rotation can be carried out. In the case
of an equidistant DVR$uRp&%, the $wn% correspond to sine
functions. In the HEG case, the$wn% correspond to numeri-
cal eigenstates of some zero order HamiltonianH0, and one
has to perform one more step

~RquR̃p!5(
nm

UpnTmn~RquS̃m! ~28!

in order to reach the analytic sine basis set$Sm%.

III. MULTIDIMENSIONAL FORMULATION

Bac̆ić and Light11 have shown that a basis, supposed
here to depend only on the two variablesR andr for sake of
clarity, can be very efficiently contracted as described now.
Let us write the total Hamiltonian as

H5TR1h, ~29!

whereh5Tr1V(R,r ) displays no differential operator with
respect to R. One defines an adiabatic basis
$uFm(Rp)&,m51,Mp%, solution of the fixedR Hamiltonian
h(Rp),

h~Rp!uFm~Rp!&5Em~Rp!uFm~Rp!&. ~30!

By using a DVR$uRp&,p51,N% for theR variable, one can
contract the initial basis set into the new one
$uFm(Rp)&uRp&[uFm

(p) ,Rp&%. @From now on, we will use
the notationuFm

(p)&[uFm(Rp)&.# In this contracted basis set,
the Hamiltonian operatorH displays the following matrix
elements:

7011K. Museth and C. Leforestier: Complex scaling of a DVR

J. Chem. Phys., Vol. 104, No. 18, 8 May 1996



^Rp ,Fm
~p!uHuFm8

~p8! ,Rp8&5^RpuTRuRp8&^Fm
~p!uFm8

~p8!&

1Em
~p!dmm8dpp8. ~31!

Lipkin et al.6 have used this formulation in order to re-
duce as much as possible the basis set size prior to diagonal-
ization of the complex scaled Hamiltonian matrix. In the
contracted basis set, the complex scaled Hamiltonian opera-
tor displays matrix elements given by

^Rp ,Fm
~p!uH̄uFm8

~p8! ,Rp8&5^RpuT̄RuRp8&^Fm
~p!uFm8

~p8!&

1^Fm
~p!uh̄~Rp!uFm8

~p8!&dpp8.

~32!

This formulation explicitly relied on an analytical expression
of the potentialV(R,r ) enteringh.

Recently, this approach was extended by Ryaboy and
Moiseyev to the case of a nondilation analytic potential.
Analyzed in terms of the above two dimensional formula-
tion, their approach would consist in first computing the
complex scaled Hamiltonianh( r̄ ,Rp) at fixedR using a sine
basis set forr , r being the dissociation coordinate. The cor-
responding matrix elements were obtained by means of the
identity relation ~1! using backward scaled sine functions
w i(re

2 iu) and a quadrature rule. Diagonalization of the re-
sulting matrix lead to complex scaled ray-eigenstates
$uF̄m(Rp)&%, to be used as the basis set for ther variable.
The overall basis set was then defined as$uF̄m

(p)&uRp&%. The
formulation we propose aims at obtaining the complex
scaled matrix elements in terms of the unscaled ones as
given by Eq.~31!. It will focus on theh̄ term of Eq.~32!, as
the kinetic energy operatorTR poses no problem, and can be
treated as shown in Sec. II.

A. General formulation

Starting from the expression@see Eq.~30!#,

h5(
m

uFm~R!&Em~R!^Fm~R!u, ~33!

one can write

~Rpuh̄uRp8!5e2 iu~R̃puhuR̃p8!

5e2 iu(
m

~R̃pu$uFm~R!&Em~R!

3^Fm~R!u%uR̃p8!. ~34!

In the above expression, the terms between brackets$•••%
can be considered as a function ofR. As discussed in Sec.
II A, one should evaluate the integral overR by using a
quadrature scheme defined on a grid$Rq ,q51,M % denser
than the DVR$Rp ,p51,N% of interest. This can be realized
by using twice the closure relation 15(q

MuRq&^Rqu, leading
to the equivalent form

~Rpuh̄uRp8!5e2 iu(
mq

~R̃puRq!uFm
~q!&Em

~q!

3^Fm
~q!u~RquR̃p8!. ~35!

One finally obtains for the matrix elements ofh̄ in the
$uFm

(p) ,Rp&% basis set

~Rp ,Fm
~p!uh̄uFm8

~p8! ,Rp8!

5e2 iu(
m9q

~R̃puRq!^Fm
~p!uFm9

~q!&Em9
~q!^Fm9

~q!uFm8
~p8!&

3~RquR̃p8!. ~36!

The above equation is quite general, and demonstrates that
multidimensional matrix elements expressed in a contracted
basis set can be numerically continued for complex scaling
calculations. As emphasized before, the off diagonal terms of
h have to be explicitly retained in the formulation. It should
be noted that the actual definition of the DVR chosen for the
dissociation coordinateR only appears through the

(RquR̃p) terms@see Eq.~27!–~28!#.
We shortly discuss now the computational cost of this

formulation. The overlap termŝFm
(p)uFm9

(q)& appearing in Eq.
~36! are also required in the original formulation, associated
to the kinetic operator matrix elements@see Eq.~32!#. As a
consequence, they do not lead to any new calculation. The
extra cost comes uniquely from the necessity to use a denser
grid $Rq% in order to perform the numerical continuation.
This in turn implies to perform the ray-eigenstate calculation
on this dense grid associated to the adiabatic variableR. As
will be shown in Sec. III B, it typically increases by a factor
1.5 about this preconditionning step, as compared to the hy-
pothetical case where an analytic expression of the potential
is available.

B. Application to the Eastes–Marcus model

As a way to check the new formulation in a multidimen-
sional case, we applied it to the well studied Eastes–Marcus
model.14,15 It can be viewed as representing a dissociative
colinear triatomic molecule

@ABC#*→A1BC~v !,

and consists in an harmonic oscillator (BC) coupled to a
Morse potential (A2BC),

H52
1

m

]2

]x2
2

]2

]y2
1D@e2a~x2y!21#21y22D,

~37!
m50.2, a50.05, D51.5.

According to Bac˘ić and Light,11 one first preconditions
the basis set by computing the adiabatic solutions at fixed
xp values

H 2
]2

]y2
1D@e2a~xp2y!21#22D1y2J Fm

~p!~y!

5Em
~p!Fm

~p!~y!. ~38!
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This first step has been realized using a DVR
$uys&,s52S,S% for theBC-oscillator,

uFm
~p!&5(

s
Tsm

~p!uys&. ~39!

This procedure allows for a simplified calculation of the
overlap termŝFm

(p)uFm8
(q)& entering Eq.~36! as

^Fm
~p!uFm8

~q!&5(
s
Tsm

~p!Tsm8
~q! . ~40!

The final two dimensional basis set reads as
$uFm

(p) ,Xp&%, where$uXp&% stands for the HEG representa-
tion. As discussed in Sec. II C, it was obtained by diagonal-
izing the x̂ operator in the truncated basis set of the eigen-
states$fn(x)% of the following zero order Hamiltonian:

ĥ052
1

m

]2

]x2
1D$e2ax21%22D. ~41!

We also made use of a uniform DVR$uxq&%, as the working
basis set to express the eigenstates$fn(x)%, as well as the
dense DVR appearing in Eq.~36!.

We present in Table II a comparison of the first two
resonances as computed either by analytic or numerical con-
tinuation of the potential. While using always the same box
size (220→150) forx, different grid dimensions have been
used, corresponding to an increasing accuracy on the reso-
nance widths. First, one can remark that the resonance posi-
tions are fully converged to a 6 digit accuracy in both sets of
calculations. As could be expected, the widths obtained by
analytic continuation converge first (N540), but the results
coming out of the numerical scheme display a relative error
of only 5% for the same grid size. The important point is
that by increasing the dimension of the scheme, the numeri-
cal results eventually converge onto the exact ones, as shown
in the table. The accuracy needed in the calculations of mo-
lecular resonances will be further addressed below, in the
Conclusions.

IV. CONCLUSION

We have presented a procedure which allows one to nu-
merically continue the matrix elements of any real Hamil-
tonian operator expressed in a discrete variable representa-

tion. One thus avoids the need of aglobal analytical
expression of the potential, and can use instead a piecewise
one, such as the spline interpolation method. When applied
to the multidimensional case, one can first precondition the
basis set, using Bac˘ić and Light SAR method11 with the real
potential, and then numerically continue the resulting matrix
elements. It constitutes an extension of the method initially
proposed by Moiseyev and Corcoran7 to a multidimensional
DVR type basis set. Its interest stems from the fact that the
SAR method produces an optimum contracted basis set in
order to handle molecular systems. Also, it allows the disso-
ciation coordinate to be treated by a grid adapted to the
variation of the de Broglie wavelength, by means of the HEG
method.22

We now address the accuracy achieved by our numerical
procedure on the Eastes–Marcus model. Considering the
minimal basis set size (N540) which leads to converged
results when using an analytical continuation of the potential,
the resonance positions come out with a 6 digit accuracy
through numerical continuation. However, the associated
widths display a relative error of;0.5%. We would first
like to point out that in most cases, such a precision is amply
sufficient for numericalmolecular potentials, as those ob-
tained fromab initio calculations. In fact, the intrinsic errors
due to such potentials can be expected to overwhelm those
associated to the numerical continuation procedure. A sec-
ond point concerns the fact that this numerical scheme is
well behaved. By increasing the number of points used, the
results eventually converge onto the exact ones.
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12Z. Bacić and J.C .Light, J. Chem. Phys.87, 4008~1987!.
13C. Leforestier, K. Yamashita, and N. Moiseyev, J. Chem. Phys.103, 8468

~1995!.
14W. Eastes and R.A. Marcus, J. Chem. Phys.59, 4757~1973!.
15K.M. Christoffel and J.M. Bowman, J. Chem. Phys.78, 3952~1983!.
16N. Moiseyev, Isr. J. Chem.31, 311 ~1991!.
17C. Leforestier, J. Chem. Phys.94, 6388~1991!.
18D.T. Colbert and W.H. Miller, J. Chem. Phys.96, 1982~1992!.

TABLE II. Comparison of the characteristics of the first two resonances of
the Eastes–Marcus model, as obtained by either an analytic or numerical
continuation of the potential.

DVR size
HEG grid

~anal. cont.!
HEG grid

~num. cont.!

N530 1.639 012 i2.2(27) 1.639 012 i1.7(27)
1.887 032 i1.2(26) 1.887 032 i6.9(27)

N540 1.639 012 i2.0(27) 1.639 012 i1.9(27)
1.887 032 i1.0(26) 1.887 032 i9.7(27)

N550 1.639 012 i2.0(27) 1.639 012 i2.0(27)
1.887 032 i1.0(26) 1.887 032 i9.8(27)

N560 1.639 012 i2.0(27) 1.639 012 i2.0(27)
1.887 032 i1.0(26) 1.887 032 i1.0(26)

7013K. Museth and C. Leforestier: Complex scaling of a DVR

J. Chem. Phys., Vol. 104, No. 18, 8 May 1996



19N. Moiseyev, P.R. Certain, and F. Weinhold, Mol. Phys.36, 1613~1978!.
20H.J. Korsch, H. Laurent, and R. Mo¨hlenkamp, Phys. Rev. A26, 1802

~1982!.
21R. Kosloff, J. Phys. Chem.92, 2087~1988!.
22D.O. Harris, G.G. Engerholm, and W.D. Gwinn, J. Chem. Phys.43, 1515

~1965!.
23A.S. Dickinson and P.R. Certain, J. Chem. Phys.49, 4209~1968!.
24C. Leforestier, inProceedings of the 4th Topsoe Summer School on Time
Dependent Methods in Quantum Mechanics~Billing, Copenhagen, 1991!.

25J. Echave and D.C. Clary, Chem. Phys. Lett.190, 225 ~1992!.

7014 K. Museth and C. Leforestier: Complex scaling of a DVR

J. Chem. Phys., Vol. 104, No. 18, 8 May 1996


