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We present an extension of a method initially proposed by Moiseyev and Coidthigs. Rev. A

20, 814 (1978] to a direct continuation of the matrix elements of a real Hamiltonian operator
expressed in a contracted, discrete variable representation type basis set. It is based on the identity
which relates the matrix elements of a complex scaled potential between real basis set functions to
those of thaunscaledpotential between backward scaled basis functions. The method is first applied
to the study of the resonances of a one dimensional model by means of complex scaling. It is shown
that the resulting matrix elements of the scaled potential are no longer diagonal in the DVR. This
paradox is discussed and shown to be of no practical consequence in the formulation. The scheme
is then extended to the direct complex scaling of a two dimensional Hamiltonian operator expressed
in a contracted basis set built through the successive adiabatic reduction methoitafrigbicight.

Results show that, due to the use of a numerical continuation, slightly larger grids have to be used
as compared to the case of an analytic continuation where the potential is availablE9960
American Institute of Physic§S0021-960606)01616-§

I. INTRODUCTION Ar—N,. In the same line, Ryabov and Moiseyenecently
. . . . proposed a method aimed at directly providing the complex
The problem of analytic continuation of a potential en- ¢5jed matrix elements of a real potentiéix) determined
ergy functionV(q) is of central importance when using the y jts values on a grifix,}. This procedure was successfully
method of complex scaling for the calculation of jhpjieq to the determination of the predissociation reso-
resonances:” This requirement has mainly limited its use so nances of the three dimensional HCO and DCO radicals.
far to analytic functions such as Coulomb, pairwise or LEPS\Jsing a discrete variable representatfo? (DVR) for the
potentials. In order to apply the method with arbitrary mo-j5.4p; angler, they first computed the matrix elements of
lecular potentials, such as those coming out ofaéninitio 4 complex scaled potential(Re’,r,«) at fixed values

calculation, one needs a systematic_ procedure. Differen&y' (R corresponds here to the H—CO dissociation coordi-
methods have been proposed, essentially based on the cqfiye) By diagonalization of the resulting complex scaled
tinuation of the potential matrix elements evaluated in SOM&yamiltonianH(RE’,r,a.), they were able to obtaipredi-

L 1 ‘)/ 1 —_—

convenient basis sef Amongst these latter methods, the agonalizedcomplex scaled ray-eigenstatésby,(«,))} in

identity order to reduce the size of the overall basis set
_ : {|(I)m(a )>|a )
— 4 Y Y
Vij—f dxei(x)V(x€") o;(X) In this paper we adopt a different point of view, and
show how one can directly obtain the complex scaled matrix
:e—ief dxei(xe  H)V(x) oi(xe 17 (1) elements, starting only fromnscaledones,
i j ,
was first applied by Moiseyev and Corcofda the study of (Rol{Pm(Rp)H|® i (Ry))|Rpr) (2
molecular resonances of,Hand H, . This equation relates
the matrix elementsv;; of the complex scaled potential il
V(x)=V(x€'’) betweenunscaledbasis functions{¢;} to _
those of the unscaled potential potentigk) between back- (Rl{® m(Rp) [H|P (Ry)) Ry ).

ward scaledbasis functiongg;(x)= ¢;(xe '%)]. It is based
on the assumption that an exact molecular potential is dilaThe main difference with respect to Ryabov and Moiseyev's
tion analytic. In the following, we will use a bar to denote approach stems from the fact that ours is equivalent to a
forward scaling, such ag(x)=V(x€'?%), and a tilde for the numerical continuation of multidimensional elements as
backward scaling, as it;(x)=¢;(xe '?). shown by Eq.(2). Also, it allows one to choose, if needed,
Equation(1) is of central importance as it shifts the scal- the dissociation coordinate as the discrete variable. It has
ing from the potential to the basis functiofig;} which are  been recently showf that the adiabatic energy curves
known analytically. This procedure was later successfully E,(R) provide a very good zero order description of the
applied by Datta and CHio the rotational predissociation of resonances. Our whole approach is still based onto the iden-

7008 J. Chem. Phys. 104 (18), 8 May 1996 0021-9606/96/104(18)/7008/7/$10.00 © 1996 American Institute of Physics



K. Museth and C. Leforestier: Complex scaling of a DVR 7009

tity relation as given by Eql1). We will also show that such Because we explicitely consider in this paper the case where
a numerical continuation can be performed for an arbitraryno analytic expression is available for the potential, the
DVR. (enlVIe;) integrals have to be performed numerically. The

The outline of the paper is as follows. In Sec. I, we first most convenient way to compute such integrals consists in
show how one can numerically continue matrix elementasing a related quadrature schefpeeferably of Gaussian
(Rp|VIRy) expressed in a DVR, and give a one-dimensionalccuracy

example. This formulation is then used in Sec. Il in order to M
obtain numerically continued multidimensional matrix ele- ~ I\~ ~ ~
.. . V 1) = R,V(R (R y
ments[Eq. (2)]. The method is illustrated on a two dimen- (@nlVIen) % n(Rq)V(Rg) @qen'(Ry) ®

sional model first introduced by Eastes and Martifs.Fi-

nally, Sec. IV concludes. whereR, and w, correspond, respectively, to the quadrature

abscissas and weights.
If one uses forM the same value as the number N of
Il. ONE DIMENSIONAL FORMULATION basis functionsp,, i.e., if the quadrature abciss@R,} co-
_ _ _ incidate with the DVR point$.7,}, one would obtain erro-
We suppose that the system is to be described in termgeous matrix elements. The reason is that the quadrature of
of a DVR{|.7Z,),p=1N}, related to a finite basis represen- gq_ (8) would be exact for nonrotated functiogs as long as
tation (FBR) {¢n(R),n=1N} through the unitary transfor- the relationn+n’+d°[V]<2M+1 is satisfied. One has

mation thus to use a quadrature schefi®} of dimension higher
N than that of the DVR.7%,}.
Top)= > Upnl@n)- ©) At this point, it might be necessary to discuss somewhat
p=1 about one feature of the DVR method. The basic relation

The goal of this section is to show how one can obtain thd(EQ. (4)] is a direct consequence of the definition of the

(,|V|%,) matrix elements of the rotated potential {”’p} DVR as the transform of the FBRp,} given by Eq.
V=V(Ré? from the real ones (3). In fact, the(¢,|V|@,/) matrix elements computed from
the associated quadrature scheme

<.%p|V|.7€pr>:V(Rp)5ppr. (4) N
One will first derive the formulation in the case of an arbi- (¢, IV|@/)=> UpnV(Rp)U ppy
trary FBR-DVR scheme. The cases of both a uniform grid p

?ﬂd i.n otpumlzed g;'d W|Ikljthen be ftgd'led.tm morel deta'ls'are not exact for the same reason as discussed previously.
‘e Kinelic energy term being ana ytical, its Lcompiex C(_)n'However, by the use of the unitary transformation, they lead
tinuation is straightforward, and does not require any partlcuback to Eq(4)

lar treatment. For example, in the case of
Tr=—#%2/2ud?/dR?, the complex scaled kinetic operator
displays matrix elements given by

By using a higher order quadrature schefig}, one
can thus achieve an exact evaluation of thg|V|¢,) ma-
trix elements of Eq(8). Defining the rectangular complex

(%p|T_R|,%?p,>= e 2% 7| Trl Zp1) matrix U,
=e 2 U.T.U,p, Ugn=(Rq@n). (€)

whereT is the unscaled kinetic energy matrix expressed irEquation (8) can be recast into the equivalent DVR type
the{¢,} basis set. expression,
A. General formulation M

Use of identity[Eq. (1)] allows us to write (¢n|V|¢’n’):% UgnV(Rg)Ugn', (10

(Z2p|V| 25 =€ U 72| V| Zpy1), (5 which leads to the following relation for the/,|V|.%,:)
where the (--|---) notation means that the Hermitian con- matrix:
jugation is not used(see the discussion on using the (%, V_L/g?p/):e’”’[uﬂ-v(d)- Ot. Ut]pp’y (11)

c-product rather than the scalar product in Ref). 16

The backward rotateld2,) vectors are naturally defined V(@ being the real diagonal matrix
from Eq. (3) as

. Vie =V(Ry) dqqr- (12
| Z2p)= Z Upnl @n), (6)  But consequently, theg,|V|.%2,) matrix elements as de-
n=1 fined by Eq.(7) are no longer diagonal. This departure from
leading to the expression usual DVR properties causes no real problem in the formu-
lation as will be shown in the next subsections. In the case of
(.%p|v—|,%2p,)=e*‘62 Upn(@nlV[@n ) Uprnr (7) ~ a one dimensional system, one can question the utility of
nn such a DVR scheme as it does not lead to any advantage
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compared to a direct FBR formulation. Its actual interest will
appear in Sec. lll when dealing with multidimensional sys-

tems.

B. One dimensional test case

K. Museth and C. Leforestier: Complex scaling of a DVR

TABLE |. Results for the first two odd resonances of the one dimensional Hamiltonian fitemi€ll3)]. The
first column corresponds to an analytic continuation of the potential, the following ones to a numerical con-
tinuation by a quadrature using M points. In column 3, a diagonal definition of the DVR was enforced.

Numerical continuation

DVR size Analytical continuation M=2N+1 M=2N+1 (diagonal M=N
N=18 1.42-i8.86(— 6) 1.42-i4.43(-5) .2 1.42-i5.77(-5)
2.60-i1.83(—1) 2.53-i1.98(—1) 2.645-i0.61(—1) .2
N=24 1.42-5.84(—4) 1.42-i5.87(-4) 1.37-i1.63(-3) 1.42-i6.23(- 4)
2.59-i1.74(-1) 2.59-i1.79(- 1) 2.60-i0.41(-1) 2.65-i1.04(—1)
N=29 1.42-i5.83(— 4) 1.42-15.83(-4) 1.37-11.35(-3) 1.42-16.21(-4)
2.58-11.74(-1) 2.58-i1.74(— 1) 2.61-i0.42(— 1) 2.66-i1.71(-1)

#Resonance position unassignable.

» 4| % 1 —2i60) d?
(,,%p|H|y8p,)=—§e </L)p|d—Rz|./’8p;>

+V(Ry€'") 8, (17)

The next three columns display results obtained from a nu-
merical continuation of the potentidl by means of Eg.

As a first application of the above formulation, we con- (7,10, with
sider the case of an equidistant grid

{R,=p.AR, p=1N}.

|;A system can always be translated such that its dqmain atolumn 2 corresponds to using a quadrature gﬂﬁi} twice
interest lies between 0 ar}.,=(N+1)AR ] The associated as dense as thg.72,)} DVR, explicitly retaining in the cal-
DVR {%,,p=1N} is the conjugate representation of the culation thenondiagonalterms (7,|V|.Z,). Column 3 dif-

sine basis sefp,,n=1N}7"1®

| 2 .
el R= NN+ DaR ®

eigenstates of the0R,,,,] box. These two representations
are related through the unitary transformation B).where

n7R

NINT1DAR

n7R,

[ 2
Yon™ VIN¥ 1) S"(NTD)AR®

In order to test our formulation, we present now a simplet0 better results than those using the dense quadrature grid
calculation aimed at determining the resonances of the modéM =2N+1) but a diagonaV definition. As will be shown

Hamiltonian

H=T+V=

2

2d

1 d
-z —Rz+(R2—0.8)e‘°'1R2+ 0.8

_ [ 2 naRe '’
(13 (quﬁpn): M+1 sin . (18

Rmax

fers from column 2 in that these off diagonal terms were

discarded in the calculation. Finally, column 4 also corre-
(14 sponds to retaining the non diagonal terms but using a
quadrature grid identical to that of the initial DVR.

The main conclusion which emerges from these calcula-
tions is that the proposed numerical continuation scheme is
able to reproduce the correct results, provided the off diago-
(15  nal terms (7,|V|.%,/) are explicitly retained in the formu-

lation. In fact, theM =N calculations with these terms lead

in Sec. lll, these off diagonal terms pose no problem and still
allow one to use the DVR formulation in conjunction with an
(16) adiabatic reduction of the basis.

already studied by Moiseyeat al® and Korschet al?° This

system displays a single bound state aro&0.5 and a
m=1,2,..}. In order to obtain
the odd ones, one can restrict the domaifGee[ and use a

string of resonance$E("

C. Optimization of the DVR scheme

As shown above, a sine-based DVR allows for an easy
primary description of a complex scaled potential. This is

basis set of functiongp,(R)} which all satisfy the boundary equivalent to the very general role played by the plane wave

condition¢,(0)=0, such as the sine basis of Egj). In this
study, we will focus on the lowest two odd resonanE&l
Two series of calculations, presented in Table I,the one associated to the two-dimensional model studied in

and EG)

res*

have been performed. In each case, the dimenNSiaf the

basis set for time dependent wave packets, due to the under-
lying FFT schemé! However, for a Morse potential such as

Sec. lll, it constitutes a poor representation in terms of effi-

{725} DVR has been varied while the box size was kept atciency. The reason is that the spacing between grid points is
the valueR,,,,=15. In the first series, used as a reference andlictated by the maximum kinetic energy allowed, which cor-

shown in column 1, we employed tlamalytic expression of

responds to the bottom of the well. In the asymptotic region,

the potential and defined the scaled Hamiltonian matrix elewhere the de Broglie wavelength can be considerably larger,
ments in the DVR as

one could use in principle a much broader mesh size.
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A solution to this problem was proposed 30 yearsagoby —
Harris, Engerholm, and GwinfHEG).22 They showed that if (-7l TRl-Zp/) = 2 Upn(@nl Trl@n)Uprns
{en} is some basis set, one can use the eigenvdRgs of nn
the position matrix(e,|R|¢,) in order to numerically g
evaluate the matrix elements of any functitiiR), —€ 2 UpnTmn(Sm|TR|Sm)Tmn’Up’n"

(25)
<<pn|f<R>|sonf>=§ Upnf(Rp)U s (19)

D. Discussion

where U is the associated eigenvector matrix. It was later  \yith the use of Eq(10), Eq. (5) can be cast into the
shown by Dickinson and Certdihthat this method was DVR type expression,
equivalent to a quadrature scheme of Gaussian accuracy. The
HEG method thus provides a way to define a numerical
guadrature when no analytic expression is known for the
eigenfunctiong ¢}, or when it is too cumbersome to deal _
with. X(Rg| VIR (Rq|-Zp1). (26)
Analyzed in terms of the DVR formulation, the HEG
method allows for the definition of a DVI).%2,)}, conju-
gate to the{¢,} FBR,

M

(72o|V] Zp) =71 25|V ,%p,)ze*“’% (%,

Rq)

As discussed in Sec. Il A, the quadratuievolving the R,
points is performed on a gridienserthat the one{.72,} of
final interest. This equation shows that the complex scaled
matrix elements in a DVR can be obtained from the unscaled
| 20)=2 Upnlen), (200  elements computed in a relatédenser DVR. The method

n we developed previously allowed us to compute the
(Rq|.,'f7¢2p) guantities by using some intermediate basis set

which satisfies the basic relation
{QDn}!

F(R)|7p) = F(Rp)|. 7). (21) R
q

%p):; Upn(Rq|5n) (27)

This property was later used by Leforestfeand Echave and
Clary”® in order to define an adapted DVR to some zero-
order HamiltonianH®, the eigenfunctions of which being
precisely the{¢,} basis set.

The (7,|V|.2,/) matrix elements appearing in the HEG
formulation can be numerically continued by means of Eq.
(7,10, provided one can express tfﬁq(?,En) terms. This can

in which the backward rotation can be carried out. In the case
of an equidistant DVR|.72,)}, the{¢,} correspond to sine
functions. In the HEG case, tHe,} correspond to numeri-
cal eigenstates of some zero order Hamiltortith and one
has to perform one more step

be realized, for example, by first computing the,} eigen- (Rq|%p)=%1 UpnTmn(RglSm) (28)
states of interest in the primary sine basis set o _
{ISm),m=1M} conjugate to the deng¢R,)} DVR, in order to reach the analytic sine basis £8t}.

|<Pn>: % Toorl Su). (22) IIl. MULTIDIMENSIONAL FORMULATION

Badc and Light! have shown that a basis, supposed
Iélere to depend only on the two variabR@&ndr for sake of

(In order to carry on the HEG procedure, one has to truncat lari b Hicientl tracted as d bed
the {¢,} basis set, otherwise the HEG representatior](iar'w' can be very efliciently contracted as described now.
et us write the total Hamiltonian as

{|.#2,)} would be strictly identical to the primary DVR

{IRg)}.) The Rq|¢n) terms can then be explicited as H=Tg+h, (29
whereh=T,+V(R,r) displays no differential operator with
(Ryl®n) =2 TRyl S, (23) respect to R. One defines an adiabatic basis
m {|®m(Rp)),m=1M_}, solution of the fixedR Hamiltonian
. h(Rp),
with )
h(Rp)|q)m( Rp)> =l Rp)|q)m( Rp))- (30)
RIZ )= [ 2 meqe‘”’ o4 By using a DVR{|.%2,),p=1,N} for the R variable, one can
(Rel@m) = Mt+1o" Roax (24 contract the initial basis set into the new one

{|Pm(R))|Zp)=|®® . 72,)}. [From now on, we will use
Similarly, the scaled kinetic matrix elements in the HEGthe notatiod(l)ﬁr’]’))z|<bm(Rp)>.] In this contracted basis set,
DVR can be computed from those in the primitive sinethe Hamiltonian operatoH displays the following matrix
{S} basis set elements:

J. Chem. Phys., Vol. 104, No. 18, 8 May 1996
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(2 DR HIOE ) = Fol Tal 2 ORI

N ) =77 (Tl Ry @) A
mgq

+ 20 8t Sppr- (32) B

. _ o X(DP|(Rel Zp). (35

Lipkin et al® have used this formulation in order to re- i i ) —.
duce as much as possible the basis set size prior to diagon%—n?p)ﬂn/a"y obtains for the matrix elements bf in the
ization of the complex scaled Hamiltonian matrix. In the {|®m »7p)} basis set
contracted basis set, the complex scaled Hamiltonian opera-, NGO

. . P P2, , P [h[@P) 2,
tor displays matrix elements given by

mn

— ' — / —aid > P D\ 2 (@D /(D[P
(A OPIHIOR ) = (2 Tel A NP D2 e 2 IR £ (Pl b )

+(®P[h(Ry)[DP )5, X(Rq|- Zp).- (36)

(32 The above equation is quite general, and demonstrates that
multidimensional matrix elements expressed in a contracted
This formulation explicitly relied on an analytical expression basis set can be numerically continued for complex scaling
of the potentiaM(R,r) enteringh. calculations. As emphasized before, the off diagonal terms of
Recently, this approach was extended by Ryaboy an@l have to be explicitly retained in the formulation. It should
Moiseyev to the case of a nondilation analytic potential.he noted that the actual definition of the DVR chosen for the
Analyzed in terms of the above two dimensional formula-dissociation coordinateR only appears through the
tion, their approach would consist in first computing the = _
complex scaled Hamiltonian(r,R,) at fixedR using a sine (Rql-7p) terms[see Eq(27)~(28)]
basis set for, r being the dissociation coordinate. The cor-
responding matrix elements were obtained by means of th
identity relation (1) using backward scaled sine functions
ei(re % and a quadrature rule. Diagonalization of the re-
sulting matrix lead to complex scaled ray-eigenstate

We shortly discuss now the computational cost of this
formulation. The overlap termsb(?|® () appearing in Eq.
&%6) are also required in the original formulation, associated
to the kinetic operator matrix elemerftsee Eq.(32)]. As a
consequence, they do not lead to any new calculation. The
. X ®xtra cost comes uniquely from the necessity to use a denser
{|®m(Rp))}, to be used as the basis set_(f?r theariable. iy {R,} in order to perform the numerical continuation.
The overall basis set was then def'ne(ﬂ@gﬁ ) 72p)}- The  This in turn implies to perform the ray-eigenstate calculation
formulation we propose aims at obtaining the complexy, this dense grid associated to the adiabatic varigblas
scaled matrix elements in terms of the unscaled ones &g pe shown in Sec. Il B, it typically increases by a factor
given by Eq.(31). It will focus on theh term of Eq.(32), as 1 5 apout this preconditionning step, as compared to the hy-

the kinetic energy operatdir poses no problem, and can be pothetical case where an analytic expression of the potential
treated as shown in Sec. Il. is available.

A. General formulation

Starting from the expressidisee Eq.(30)], B. Application to the Eastes—Marcus model

As a way to check the new formulation in a multidimen-
sional case, we applied it to the well studied Eastes—Marcus

h:% PR Zm( R Pm(R)], 33 model®15 It can be viewed as representing a dissociative
colinear triatomic molecule
one can write [ABC]* —A+BC(v),

and consists in an harmonic oscillatdB €) coupled to a

(Fplhl. 72 ) =71, |h|20) Morse potential A—BC),

- = o 1 g2 92
=e % ('//jp|{|q)m(R)>C’/m(R) H:_;W_a_yz_k[)[e*a(xfy)_l]Z_,_yZ_D,
X(D (R} 7). (34) w=0.2, «=0.05 D=1.5. 37

According to Ba& and Light!! one first preconditions
the basis set by computing the adiabatic solutions at fixed
X, values

In the above expression, the terms between brackets$
can be considered as a functionRf As discussed in Sec.
Il A, one should evaluate the integral ovB by using a )
quadrature scheme defined on a gfRl,,q=1M} denser d e

than the DVR{.7Z, ,p=1,N} of interestﬁqhis can be realized | ~ gy2 " D[e” o Y =1]2-D+y? dP(y)

by using twice the closure relation=1S | Rq)(Rg|, leading

to the equivalent form =ZRDR(y). (38)

J. Chem. Phys., Vol. 104, No. 18, 8 May 1996
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TABLE II. Comparison of the characteristics of the first two resonances oftion. One thus avoids the need of global analytical

the Eastes—Marcus model, as obtained by either an analytic or numeric@xpression of the potential, and can use instead a piecewise
continuation of the potential. ’

one, such as the spline interpolation method. When applied

HEG grid HEG grid to the multidimensional case, one can first precondition the
DVR size (anal. cont, (num. cont) basis set, using Bacand Light SAR methott with the real
N=30 16390 12.2(-7) 1,639 0L 11.7(~7) potential, and then numerically continue the resulting_mgtrix
1.887 03-i1.2(— 6) 1.88703-16.9(- 7) elements. It constitutes an extension of the method initially
N=40 1.639 0+i2.0(—7) 1.639 01i1.9(—7) proposed by Moiseyev and Corcofan a multidimensional
1.88703-i11.0(—6) 1.88703-i9.7(=7) DVR type basis set. Its interest stems from the fact that the
N=50 1.6390+-i2.0(-7) 1.63901-i2.0(-7) SAR method produces an optimum contracted basis set in
1.887 03-i1.0(—6) 1.887 03-19.8(—7) : )
N=60 1.639 01 i2.0(~7) 1,639 0L-12.0(—7) order to handle molecular systems. Also, it allows the disso-

1.887 03-i1.0(— 6)

1.887 03-i1.0(-6)

ciation coordinate to be treated by a grid adapted to the

variation of the de Broglie wavelength, by means of the HEG
method??

We now address the accuracy achieved by our numerical
This first step has been realized using a DVRprocedure on the Eastes—Marcus model. Considering the
{lys),s=—S,S} for the BC-oscillator, minimal basis set sizeN=40) which leads to converged
results when using an analytical continuation of the potential,
the resonance positions come outtwa 6 digit accuracy
through numerical continuation. However, the associated
This procedure allows for a simplified calculation of the widths display a relative error 0£0.5%. We would first
overlap terms{(l)gﬂ’,’)kbfﬁ,)} entering Eq.(36) as like to point out that in most cases, such a precision is amply
sufficient for numerical molecular potentials, as those ob-
tained fromab initio calculations. In fact, the intrinsic errors
due to such potentials can be expected to overwhelm those

The final two dimensional basis set reads asadssociated to the numerical continuation procedure. A sec-
{|q)§]?) ,Xp)}, where{|Xp>} stands for the HEG representa- ond point concerns the f_act that this numerlqal scheme is
tion. As discussed in Sec. Il C, it was obtained by diagonalV€!l behaved. By increasing the number of points used, the
izing the X operator in the truncated basis set of the eigen!€Sults eventually converge onto the exact ones.
states{ ¢,(x)} of the following zero order Hamiltonian:
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