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Asymptotic analysis of state-to-state tetraatomic reactions
using row-orthonormal hyperspherical coordinates
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The state-to-state asymptotic analysis of tetraatomic reactions is presented. It is assumed that the
four-atom time-independent partial wave Schro¨dinger equation has been solved subject to the
condition that in the limit of very compact geometries the wave function vanishes. These solutions
are initially obtained in body-fixed row-orthonormal hyperspherical coordinates and transformed in
the asymptotic arrangement channel regions of nuclear configuration space to Jacobi body-fixed
coordinates. From the latter, compact explicit expressions for the reactance~R! and scattering~S!
matrices, useful for accurate numerical calculations, are obtained. The different systems of
coordinates used and their interrelations are given. The approach described is particularly well
suited for implementation on massively parallel architectures and is appropriate for the calculation
of benchmark-quality state-to-state integral and differential cross sections on currently available
computers. ©2001 American Institute of Physics.@DOI: 10.1063/1.1408288#
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I. INTRODUCTION

Let us consider the scattering between two molecu
comprising a tetraatomic system. Once the motion of
center-of-mass~CM! of the system is removed, the corr
sponding scattering process takes place in a n
dimensional configuration space. Three of these nine deg
of freedom are taken to be external Euler angles that desc
the overall rotation of the system around its CM in
laboratory-fixed frame. By means of a partial wave exp
sion involving the Wigner rotation functions1 of these angles
one can easily and rigorously reduce the corresponding n
dimensional time-independent Schro¨dinger equation to a se
of coupled six-dimensional partial differential equations
the six remaining internal coordinates, one set for each t
angular momentum quantum numberJ. However, solving
these equations constitutes a major numerical task whic
this date has not been performedaccuratelyenough to yield
benchmark quality fully state-resolved state-to-state differ
tial cross sections.

A scheme based on the use of row-orthonormal hyp
spherical coordinates2 for the strong interaction region, o
arrangement channel hyperspherical coordinates in the s
rated or nearly separated arrangement channel region~the
weak interaction region!, and of Jacobi coordinates in th
asymptotic regions, makes such a benchmark-quality s
tion possible. We shall briefly discuss this scheme and
associated asymptotic analysis.

This paper is organized as follows: In Sec. II we gi
explicit definitions of the different coordinate systems e
ployed in the different regions of configuration space, a
derive some important expressions for the transformati
between them. In Sec. III we discuss the asymptotic beha

a!Author to whom correspondence should be addressed; electronic
aron@caltech.edu
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of the physical solutions of the Schro¨dinger equation, and
derive the body-fixed partial waveR- and S-matrices. Fi-
nally, a summary is given in Sec. IV.

II. THE HYPERSPHERICAL COORDINATE APPROACH

Since the definition of symmetrized hyperspherical co
dinates for three-dimensional tri-atomic reactions was int
duced in 1975,3 the hyperspherical coordinate approach h
proven to offer a very convenient and effective numeri
scheme for solving the time-independent Schro¨dinger equa-
tion for triatomic systems.4–32 Recently, Clary and co-
workers have suggested an extension of this approac
tetraatomic systems involving different hyperspherical co
dinates in different arrangement channel regions.33 In this
method, super-completeness problems between basis se
the different coordinates must be overcome. Alternative
the availability of the Hamiltonian for tetraatomic systems
row-orthonormal hyperspherical coordinates, which are
sentially invariant under arrangement channel transform
tions, and of massively parallel high performance comput
should permit the calculation of state-to-state differen
cross sections for a large number of tetraatomic reactio
including four center ones, for which two bonds are brok
and two new bonds concurrently formed.

The hyperspherical coordinates for anN atom system is
composed of a set of three external angles describing
overall orientation of the system in space, a hyperrad
which is a measure of the size of the system and 3N27
internal hyperangles that describe the distances between
N atoms. It is possible to define many different kinds
hyperspherical coordinates for any given system, but co
mon to all is the hyperradius,r, which is kinematically in-
variant, i.e., is the same for all the system’s arrangem
channels. This is of great importance when studying syste
of high dimensionality as it allows one to define a local ba
il:
5 © 2001 American Institute of Physics
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set for a constantr which samples all of the different ar
rangement channels of interest. Thus in the hypersphe
coordinate approach, the system’s wave function is expan
in local hyperspherical surface functions~LHSF! which de-
pend on the internal hyperangles and parametrically on
hyperradius. These LHSF, for each value ofr, form a com-
plete orthonormal~and therefore linearly independent! basis
set in these hyperangles, and asr is varied they span al
arrangement channel regions.

For a general tetraatomic system comprised of the
tinct nuclei ABCD we can form the following seven
asymptotic arrangement channels:ABC1D, DAB1C,
CDA1B, BCD1A, AB1CD, AC1BD, AD1BC. Of
these, four are atom-triatom and three are diatom–dia
two-body arrangements. We assume that three-body chan
~such asAB1C1D) as well as the fully dissociative chan
nel (A1B1C1D) are energetically closed. The hype
spherical formalism, including the asymptotic analysis, c
be extended to include more than two-body channels,34 but
this case will not be considered here. Illustrations of the c
responding seven cluster arrangement channel coordin
are shown in Fig. 3 of Ref. 35, and are repeated in Fig. 1
the present paper for convenience. Throughout this pape
will use the symboll51,2,... to label the different arrange
ment channels. In the case of identical nuclei we shall
thermore use the symbolG to denote the irreducible repre
sentation of the corresponding permutation group. Gener
speaking, we can have four different kinds of systemsA4 ,
A3B, A2B2 , A2BC, andABCD for which G, respectively,
represents the irreducible representations of the permuta
~or symmetric! groupsS4 , S3 , S2^ S2 , S2 or S1 .36 Thus
arbitrary solutions of the time-independent Schro¨dinger
equation will containl andG labels. As just mentioned on
can define many different sets of hyperspherical coordin
for a given system, and in the rest of this section we sh
briefly outline a calculation scheme which employs two su
sets. Each of these sets of coordinates has distinct advan
in different regions of configuration space where the inter
tions between the atoms have different strengths. To facili
the introduction of these different sets, we shall first assu
that the full ~nuclear! configuration space can be subdivid

FIG. 1. Cluster arrangement channel coordinates:~a! atom-triatom clusters;
~b! diatom–diatom clusters.
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into a strong interaction region~for low values ofr! and a
weak interaction region~for large values ofr!. In addition,
we will consider the asymptotic regions in which Jacobi c
ordinates will be used. This explicit description of the coo
dinates is necessary for the derivations described in
asymptotic analysis, which is eventually done in body-fix
Jacobi coordinates, also defined in this section. Finally,
section concludes by deriving an important relation betwe
the principal axis of inertia Euler angles and the body-fix
Jacobi Euler angles.

A. Coordinates in the strong interaction region

In the strong interaction region we shall use ro
orthonormal hyperspherical coordinates. They and the co
sponding Hamiltonian operator were presented in de
previously2 and we shall restrict ourself to outlining th
properties of these coordinates needed for the rest of
paper.

For a given tetraatomic clustering schemel we label by

rl
( i )8 ( i 51,2,3) the unscaled Jacobi vectors~see Fig. 1! and

define the corresponding mass-scaled vectorsrl
( i ) by

rl
~ i ![~ml

~ i !/m!1/2rl
~ i !8 , i 51,2,3, ~1!

whereml
( i ) and m are the usual Delves reduced masses.37,38

From these mass-scaled Jacobi vectors we define a 333 Ja-
cobi matrix2 as

rl
sf[~rl

~1!rl
~2!rl

~3!!5S xl
~1! xl

~2! xl
~3!

yl
~1! yl

~2! yl
~3!

zl
~1! zl

~2! zl
~3!
D , ~2!

where the superscript ‘‘sf’’ denotes that the Jacobi vect
are defined in a space-fixed frame of reference, w
(xl

( i ) ,yl
( i ) ,zl

( i )) being the associated Cartesian coordinates
r l

( i ) ( i 51,2,3). The ten row-orthonormal hyperspherical c
ordinates~ROHC! $x,al

I ,bl
I ,cl

I ,r,u,f,dl
(1) ,dl

(2) ,dl
(3)% are

defined by the relation

rl
sf5~21!xR̃~al

I ,bl
I ,cl

I!rN~u,f!R̃~dl
~1! ,dl

~2! ,dl
~3!!,

~3!

whereR̃ denotes the transposed of the usual proper rota
matrix

R~a,b,c![S cosc sinc 0

2sinc cosc 0

0 0 1
D

3S cosb 0 2sinb

0 1 0

sinb 0 cosb
D

3S cosa sina 0

2sina cosa 0

0 0 1
D , ~4!

andN is the simple diagonal matrix
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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8287J. Chem. Phys., Vol. 115, No. 18, 8 November 2001 Tetraatomic reaction coordinates
N~u,f!5S sinu cosf 0 0

0 sinu sinf 0

0 0 cosu
D . ~5!

The chirality coordinatex[0, 1 is defined by

~21!x5sign~detrl
sf!. ~6!

r is the usual hyperradius defined byr2[( i 51
3 (r l

( i ))2 and
al

I[(al
I ,bl

I ,cl
I) denotes the external Euler angles which

tate the space-fixed frame of reference to theprincipal-axes-
of-inertia body-fixed frame, and are in the ranges 0<al

I ,
cl

I,2p and 0<bl
I<p. The two angles 0<u<arcsin@1/(1

1cos2 f)#1/2 and 0<f<p/4 determine the system’s principa
moments of inertia and finallydl[(dl

(1) ,dl
(2) ,dl

(3)), where
0<dl

(1) ,dl
(3),p and 0<dl

(2)<p, are three internal hyper
angles which describe the relative arrangements of the
atoms for a given set of those moments. Equation~3!, to-
gether with these ranges, uniquely defines the ten ROHC2

These hyperspherical coordinates have many adva
geous features for the dynamics of the system, but for
discussion we shall only stress two important ones. F
four of the ten coordinates~x,r,u,f! are arrangement-chann
independent~i.e., are independent ofl!. Second, the princi-
pal axes of inertia associated with (al

I ,bl
I ,cl

I) have direc-
tions which arel-independent; the senses of either two
none of these axis may change asl is changed. In addition
associated with the angles (dl

(1) ,dl
(2) ,dl

(3)) there is a set of
internal mathematical axis which have properties similar
those of the physical space principal axes of inertia, i.e., h
directions which arel-independent but senses such that t
of them may change withl. As a result, this set of row
orthonormal coordinates is especially well suited for the
scription of the dynamics in the very strong interaction
gion. Furthermore, an analysis of the form of t
corresponding Hamiltonian operator reveals that
permutation-symmetry of the system can be introduced v
simply.

B. Coordinates in the asymptotic region

Let us now define the Jacobi coordinates in t
asymptotic region. Using the mass-scaled Jacobi vec
(rl

(1) ,rl
(2) ,rl

(3)), given by Eq.~1!, we can uniquely define the
nine Jacobi coordinates (r l

(3) ,ul ,fl ,r l
(2) ,gl

(2,3) ,cl ,r l
(1) ,

gl
(1,3) ,jl) in the following way: (r l

(3) ,ul ,fl) are the polar
coordinates ofrl

(3) in the space-fixed frame of referenc
Oxl

sfyl
sfzl

sf , (r l
(2) ,gl

(2,3) ,cl) are the polar coordinates ofrl
(2)

in the body-fixed frameOxl
bf1yl

bf1zl
bf1 which is obtained by

the rotation ofOxl
sfyl

sfzl
sf by the Euler angles (fl ,ul,0); and

(r l
(1) ,gl

(1,3) ,jl) are the polar coordinates ofrl
(1) in the body-

fixed frameOxl
bf2yl

bf2zl
bf2 which is obtained by rotation o

Oxl
bf1yl

bf1zl
bf1 by (0,0,cl). These transformations are summ

rized in Table I. As a result, theOzl
bf1 andOzl

bf2 axis coincide

and point alongrl
(3) , andrl

(2) lies is in the positiveOxl
bf2zl

bf2

half-plane, withOzl
bf1[Ozl

bf2. For convenience we defin
the following compact notations for the corresponding Eu
angles
Downloaded 24 Jan 2002 to 131.215.129.96. Redistribution subject to A
-

ur

ta-
is
t,

r

o
e

-
-

e
ry

rs

-

r

al
bf15~al

bf1,bl
bf1,cl

bf1![~fl ,ul,0!5~ r̂l
~3!,0!, ~7a!

al
bf25~al

bf2,bl
bf2,cl

bf2![~fl ,ul ,vl!. ~7b!

The anglesgl
( i , j ) betweenr l

( i ) and r l
( j ) are all in the 0 top

range and are related by the simple expression

cosgl
~1,2!5cosgl

~1,3! cosgl
~2,3!

1singl
~1,3! singl

~2,3! cosjl , ~8!

wherejl was defined in the last row of Table I and is in th
range@0,2p#. As a result, we can consider either the variab
(gl

(2,3) ,gl
(1,3) ,jl) or (gl

(1,2) ,gl
(1,3) ,gl

(2,3) ,x) to describe the
system. To go from gl[(gl

(1,2) ,gl
(1,3) ,gl

(2,3)) to
(gl

(2,3) ,gl
(1,3) ,jl), requires consideration of the chirality co

ordinatex, as discussed in Eq.~5.74! of Ref. 35. The~body-
fixed-2! Jacobi coordinates are, by definition, the ten coor
nates

~r l
~1! ,r l

~2! ,r l
~3! ,al

bf2,gl ,x!

[~r l
~1! ,r l

~2! ,r l
~3! ,fl ,ul ,cl ,gl

~1,2! ,gl
~1,3! ,gl

~2,3! ,x!. ~9!

In these coordinates the Hamiltonian is independent ofx and
has the simple form

Ĥl52
\2

2m (
i 51

3 F 1

r l
~ i !

]2

~]r l
~ i !!2 r l

~ i !1
~ ĵ l

~ i !!2

~r l
~ i !!2G1Vl

[2
\2

2m F 1

r l
~3!

]2

~]r l
~3!!2 r l

~3!1
1

r l
~2!

]2

~]r l
~2!!2 r l

~2!

1
1

r l
~1!

]2

~]r l
~1!!2 r l

~1!G1
l̂ sf
2 ~ r̂l

~3!!

2m~r l
~3!!2 1

ĵ bf1
2 ~ r̂l

~2!!

2m~r l
~2!!2

1
ĵ bf2
2 ~ r̂l

~1!!

2m~r l
~1!!2 1Vl~r l

~1! ,r l
~2! ,r l

~3! ,gl!, ~10!

where l̂sf( r̂l
(3))[ ĵl

(3) is the space-fixed orbital angular mo
mentum operator associated withrl

(3) , ĵbf1
( r̂l

(2))[ ĵl
(2) is the

body-fixed-1 angular momentum operator associated w
rl

(2) and ĵbf2
( r̂l

(1))[ ĵl
(1) is the body-fixed-2 angular momen

tum operator associated withrl
(1) , the angles involved being

those given in the rightmost column of Table I. Note also th
the potential energy,V(r l

(1) ,r l
(2) ,r l

(3) ,gl), is neither a func-
tion of the three Euler anglesal

bf2, nor of the chirality vari-
able x but only of the intra-molecular coordinates. This
course stems from the fact that the intra-molecular forces
independent of the orientation of the tetraatomic system
space or of its chirality. The asymptotic form of the wa
function is particularly simple in these coordinates, as sho
in Sec. III B.

TABLE I. Relation between Cartesian frames.

Oxl
sfyl

sfzl
sf ——→

(fl ,ul,0)

Oxl
bf1yl

bf1zl
bf1 ——→

(0,0,cl)
Oxl

bf2yl
bf2zl

bf2

rl
(3) (r l

(3) ,ul ,fl) (r l
(3),0,0) (r l

(3),0,0)
rl

(2) (r l
(2) ,gl

(2,3) ,cl) (r l
(2) ,gl

(2,3),0)
rl

(1) (r l
(1) ,gl

(1,3) ,jl)
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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C. Coordinates in the weak interaction region

The boundary between the strong and weak interac
regions is specified by a valuerb of r. The criterion for
determiningrb is that the matrix elements of the interactio
potential between all pairs of weak interaction LHSF belon
ing to different arrangement channels be sufficiently sm
~but not necessarily zero!. In an actual calculation,rb should
be treated as a convergence parameter.

In the weak interaction region a set of ten Delves hyp
spherical coordinates are employed which are closely rel
to the Jacobi coordinates introduced in the previo
section.35 They consist of three Euler angles~to be specified
later!, the chirality coordinatex, the three internal hyper
anglesgl defined after Eq.~8!, the usual clustering-scheme
independent hyper-radiusr, and the two internal hyperangle
hl5(hl

(1) ,hl
(2)) defined by the relations

r l
~1!5r sinhl

~1! sinhl
~2! , ~11a!

r l
~2!5r coshl

~1! sinhl
~2! , ~11b!

r l
~3!5r coshl

~2! , ~11c!

where the ranges of the angles are 0<hl
(1) , hl

(2)<p/2. Thus
in going from the asymptotic region, discussed in the pre
ous subsection, to the weak interaction region, we use
same geometrical angular coordinates but the Jacobi co
nates (r l

(1) ,r l
(2) ,r l

(3)) are replaced by (r,hl
(1) ,hl

(2)). How-
ever, it is very important to stress that we have a freedom
choice for the three external~Euler! hyperangles; even
though theal

bf2 of Eq. ~7b! uniquely defined the Euler angle
for the Jacobi coordinates—which in turn defined a subse
the Delves hyperspherical coordinates, Eq.~11!—the Jacobi
distances (r l

(1) ,r l
(2) ,r l

(3)) and the corresponding anglesgl

between them are totally independent of any frame of re
ence. Consequently we shall choose the external hyperan
which lead to the overall most convenient numerical sche
From the previous subsections we know that on either ‘‘sid
of the weak interaction region different frames of referen
are employed; in the strong interaction region we use
principal-axis-of-inertia frame of reference defined byal

I ,
whereas in the asymptotic region we use the body-fixe
frame specified byal

bf2. A transformation between one o
these frames and the other will have to be done either at
boundary between the strong and weak interaction regi
or between the latter and the asymptotic region. Hence
would be convenient to use one of these two sets of E
angles in the intermediate weak interaction region. Since
al

I angles asymptotically approach theal
bf2 angles, it is nu-

merically most convenient to employ the principal-axes-
inertia frame of reference in the strong and in the weak
teraction regions. This leads to the following choice for t
Delves hyperspherical coordinates in the weak interac
region:

~r,al
I ,hl ,gl ,x!

[~r,al
I ,bl

I ,cl
I ,hl

~1! ,hl
~2! ,gl

~1,2! ,gl
~1,3! ,gl

~2,3! ,x!. ~12!
Downloaded 24 Jan 2002 to 131.215.129.96. Redistribution subject to A
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Because of the orthogonal nature of the transformation
fined by Eq. ~11!, it can easily be shown that under th
transformation Eq.~10! becomes

Ĥl[2
\2

2mr8

]

]r
r8

]

]r
1

L1
2~hl!1L2

2~hl!

2mr2

1
l̂ sf
2 ~ r̂l

~3!!

2m~r l
~3!!2 1

ĵ bf1
2 ~ r̂l

~2!!

2m~r l
~2!!2 1

ĵ bf2
2 ~ r̂l

~1!!

2m~r l
~1!!2

1Vl~r,hl
~1! ,hl

~2! ,gl
~1,2! ,gl

~1,3! ,gl
~2,3!!, ~13!

where hyperangular momentum operatorsL̂1
2 andL̂2

2 are de-
fined by

L̂1
2~hl![2\2S 2

sinhl
~2! sin 2hl

~1!D 2 ]

]~2hl
~1!!

3~sin 2hl
~1!!2

]

]~2hl
~1!!

, ~14a!

L̂2
2~hl![2\2

1

~sinhl
~2!!5~coshl

~2!!2

]

]~hl
~2!!

3~sinhl
~2!!5~coshl

~2!!2
]

]~hl
~2!!

. ~14b!

In Eq. ~13!, ĵbf1
and ĵbf2

are still referring to the bf1 and bf2
axes, respectively. The transformation of principal axis
inertia axes to the bf2 axes and their associates Euler ang
is the topic of the next subsection.

D. Transformation between the Euler angles

As the asymptotic analysis will be conducted in t
body-fixed-2 frame, defined in Sec. II B, and the scatter
wave functions in the adjacent weak interaction region
expressed in the principal-axis-of-inertia frame, we need
establish the relation between the corresponding E
angles. For reasons that will be clarified in the actual proj
tion of the wave function onto its asymptotic form, it is d
sirable to express this frame transformation in terms of
~internal! Delves hyperspherical coordinates. This subsect
outlines the derivation of such a relation, but for economy
space most of the lengthy details and explicit expressi
have been left out. We emphasize, however, that all of
omitted derivations involve straightforward~but tedious! al-
gebraic manipulations.

In terms of the 333 Jacobi matrix notation introduced i
Sec. II A, we can conveniently express the relation betw
the three frames involved as

rl
sf5R̃~al

I!rl
I5R̃~al

bf2!rl
bf2, ~15!

where rl
sf denotes the Jacobi matrix in space-fixed coor

nates, defined in Eq.~2!. rl
I and rl

bf2 are the corresponding
Jacobi matrices expressed respectively in the principal-a
of-inertia and the body-fixed-2 frames of references. By d
nition,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rl
I5~21!xrN~u,f!R̃~dl!. ~16!
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-

cally outlined in Table I, and the transformations in Eq.~11!
we furthermore have the following expression for the bod
fixed-2 Jacobi matrix expressed in Delves hyperspherical
ordinates
rl
bf25rS sinhl

~1! sinhl
~2! singl

~1,3! cosjl coshl
~1! sinhl

~2! singl
~2,3! 0

sinhl
~1! sinhl

~2! singl
~1,3! sinjl 0 0

sinhl
~1! sinhl

~2! cosgl
~1,3! coshl

~1! sinhl
~2! cosgl

~2,3! coshl
~2!
D . ~17!
li-
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Left multiplying Eq. ~15! by R(al
bf2) we obtain

rl
bf25R~al

bf2!R̃~al
I!rl

I[R~al!rl
I , ~18!

where we have introduced the three anglesal which by defi-
nition rotate the principal-axis-of-inertia frame into the bod
fixed-2 frame. Right multiplying this expression by the i
verse of rl

I ~which is nonsingular for nonplana
configurations! we arrive at the following expression:

R~al!5rl
bf2@rl

I#215~21!xrl
bf2R~dl!@N~u,f!#21 ~19!

which relates the 3 anglesal to the 11 internal coordinate
x, hl , gl , dl , u andf ~r cancels out!. First we note that the
anglesal are indeed independent of the Euler anglesal

I and
al

bf2. Second, we note that the five internal row-orthonorm
hyperanglesdl , u, andf can be expressed in terms of th
five Delves hyperangleshl and gl . Indeed, by left-
multiplying Eq. ~15! by its transpose, we get

r̃l
sfrl

sf5r̃l
bf2rl

bf25r̃l
Irl

I , ~20!

where the third term, and therefore the first and second a
is independent ofx. Substituting Eq.~16! and Eq.~17! into
Eq. ~20! makes it clear that one can derive closed expr
sions fordl , u, andf in terms ofhl andgl which can in
turn be used to eliminate the former from Eq.~19!. These
derivations are straightforward but very lengthy and throu
out the remaining of this paper we shall simply note thatal

can be expressed exclusively in terms ofhl andgl and we
will write it as al(hl ,gl).

As a last auxiliary expression let us note that from t
relation between the threeR matrices in Eq.~18! the corre-
sponding Wigner rotation matrices1 satisfy the relation

DJ~al
bf2!5DJ~al

I!DJ~al!. ~21!

Inverting this matrix expression and rewriting it in terms
the individual matrix elements we arrive at the final impo
tant expression

DMV
J ~al

I!5(
K

DMK
J ~al

bf2!DVK
J* ~al~hl ,gl!!. ~22!

This concludes the prelude to the explicit asymptotic ana
sis to be presented in the next section.
l

o,

-

-

-

III. THE R,S ASYMPTOTIC ANALYSIS

As mentioned in the Introduction, a tetraatomic col
sional system with a total energy below that required for
system to dissociate into three or four bodies involv
asymptotic arrangement channels that can be characte
either asatom-triatomor diatom–diatomchannels. The wave
functions in these two kinds of asymptotic channels are v
different from each other and hence we shall treat them se
rately in the otherwise general tetraatomic asymptotic an
sis to follow. However, to save space, we will, whenev
possible, adopt a common notation for the two cases. A
result, notational conventions are especially important
this analysis.

The general asymptotic form of a time-independent t

raatomicphysicalscattering wave functionC
phys

l8n
l8
8

is

C
phys

l8n
l8
8

;exp@ ikl8e8l8
r l8~3! cosul8Fl8n

l8
8 ~rl8

~1! ,rl8
~2!

!

1(
lnl

f
lnl

l8n
l8
8

~ r̂l
~3!!

eiklel
r l
~3!

r l
~3! Flnl

~rl
~1! ,rl

~2!!

~23!

which corresponds to the collision of two isolated reacta
$l18 ,l28%[l8 to form the two products$l1 ,l2%[l. In this

expressionFlnl
, Fl8n

l8
8 and f

lnl

l8n
l8
8

denote, respectively, the

product and reactant wave functions and the correspon
scattering amplitudes which depend on the anglesr̂l

(3)

[(ul ,fl) defined in Table I. The far asymptotic behavior
the physical wave function@expressed as the symbol; in
Eq. ~23!# is composed of two distinct parts: the incident pa
which is the product of an incoming plane wave~arbitrarily
assigned to be traveling in the space-fixedz-direction! and
the reactant wave function, and the scattered part which
sum over all possible product state wave functions multipl
by corresponding outgoing spherical waves and weighted
the associated scattering amplitudes. Whenl labels a
diatom–diatom or an atom-triatom arrangement chan
Flnl

(rl
(1) ,rl

(2)) is, respectively, the product of the two d
atomic wave functions or a triatomic wave function. Th
corresponding quantum numberslnl for these two cases
are, respectively, defined by the following compact no
tions:
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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two diatoms:

lnl[$l1 ,l2 ,vl
~1! ,vl

~2! , j l
~1! , j l

~2! ,ml
~1! ,ml

~2!%

5$lel ,ml
~1! ,ml

~2!%, ~24a!

atom-triatom:

lnl[$l1 ,l2 ,vl
~1! , j l

~1! ,ml
~1!%

5$lel ,ml
~1!%. ~24b!

We have, for convenience, introduced the subset of quan
numberslel on which the asymptotic molecules intern
energies depend. Similar definitions are used for the
cases of reactants arrangement channelsl8. These quantum
numbers are associated with internal vibration (vl

( i )) and ro-
tation (j l

( i ) ,ml
( i )) degrees of freedom. Thusvl

(1) andvl
(2) re-

fer to the vibrational quantum number of each of the t
diatomic fragments whereas the setvl

(1) is associated with
the three vibrational degrees of freedom for a triatom. Si
larly, j l

(1) and j l
(2) in Eq. ~24a! correspond to the angula

momentum of each of the two diatoms, andj l
(1) in Eq. ~24b!

is the total angular momentum quantum number of the t
tom ~no spatial nuclear motion angular momentum is
course defined for an isolated atom!. For the reactants the
corresponding quantization axis for thez-component of the
angular momenta,ml8

8( i ) , is chosen to be the direction of th
incident relative velocity, i.e., thespace-fixed z-axis. As was
done for triatomic systems,39 we chose for the quantizatio
axis of j l

( i ) the product Jacobi body-fixed-2 axis,Ozl
bf2 ~see

Table I!. This is called a helicity representation and leads
the most compact and computationally convenient exp
sions for the state-to-state differential and integral cross
tions. It should be emphasized that the sum over prod
states in the last term of Eq.~23! includes~in principle! all
possible states, i.e., both open and closed ones. This en
the mathematical completeness of the expansion, and ca
understood when realizing that asymptotically closed sta
might well be energetically accessible in the inner parts
the configuration space.

Whereas it might seem reasonable from the discuss
above to attempt to explicitly look for solutions of the Schr¨-
dinger equation which satisfy Eq.~23!, it should be stressed
that this type of approach is not usually numerically con
nient as it can in fact only be done by some kind of ‘‘trial a
error’’ recursive scheme. Thus instead of directly solving
Schrödinger equation subject to thephysicalboundary con-

ditions, in order to obtainf
lnl

l8n
l8
8

, we use the standard ‘‘R,S-

matrix’’ approach,40,41where one first solves the Schro¨dinger
equation for generalmathematicalsolutions ~i.e., without
imposing the physical asymptotic conditions!. By a subse-
quent asymptotic analysis of these mathematical solut
the so-calledR-matrix is obtained. Whereas the nonphysic
solutions themselves are not unique, theR-matrix for a given
partial J, parity P ~with respect to inversion through th
system’s center of mass!, irreducible representationG of the
permutation group of identical atoms, and energyE, is in-
deedunique. The partial waveS-matrix is then obtained in a
simple manner from the correspondingR-matrix, and the
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m

o

i-

-
f

o
s-
c-
ct

res
be
s
f

ns

-

e

s
l

physical scattering amplitudes,f
lnl

l8n
l8
8

, can next be calculated

directly from partial wave sums over the correspondi
S-matrices.

Thus the key feature of theR,S-matrix approach is to
decouplethe mathematical and physical parts of the scat
ing process~i.e., the solution of the Schro¨dinger equation
and imposition of the asymptotic conditions! in such a way
that the proper physical solutions are expressed as lin
combinations of an arbitrary complete set of linearly ind
pendent mathematical solutions through the introduction
the R- andS-matrices. In the following we outline the step
involved in computing theseR- and S-matrices from the
mathematical solutions of the Schro¨dinger equation.

A. Definition of the reactance and scattering matrices

Let the wave functionsC
l8b

l8
8

JMPG
constitute a complete se

of simultaneous solutions of the following eigenvalu
eigenfunction equations

ĤC
l8b

l8
8

JMPG
5EC

l8b
l8
8

JMPG
, ~25a!

Ĵ2C
l8b

l8
8

JMPG
5J~J11!\2C

l8b
l8
8

JMPG
, ~25b!

Ĵsfz
C

l8b
l8
8

JMPG
5M\C

l8b
l8
8

JMPG
, ~25c!

ÎC
l8b

l8
8

JMPG
5~21!PC

l8b
l8
8

JMPG
, ~25d!

where Ĥ, Ĵ2, Ĵsfz
, and Î are, respectively, the system

nuclear motion Hamiltonian, the square of its total angu
momentum operatorĴ, the space-fixedz component ofĴ, and
the operatorÎ which inverts the system through its center
mass. In addition,E, J(J11)\2, M\, and (21)P are the
corresponding eigenvalues. These wave functions are
quired furthermore to transform according to the irreduci
representationsG of the permutation group of identical atom
of the tetraatomic system. Such a set of simultaneous eig
functions does indeed exist since the corresponding opera
commute. Finally, the subscriptl8bl8

8 labels the different
linearly independent solutions and spans the same rang
the indices defined by Eqs.~33! and~35! and associated with
the isolated molecular products. These solutions are of
‘‘mathematical’’ type, i.e., are not required to satisfy th
physical asymptotic conditions of Eq.~23!. We assume tha
this set of solutions has been computed by the hypersphe
coordinate approach as follows. We start in the strong in
action region at a sufficiently small hyperradius for the wa
function to be close to zero, and expand the wave function
LHSFs expressed in the row-orthonormal hyperspherical
ordinates. The coefficients of this expansion depend or
only, and satisfy a set of coupled second order differen
equations. These are propagated outwards for increasinr,
until the boundary with the weak interaction region
reached. We then switch to the weak interaction Delves
perspherical coordinates and surface functions and cont
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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propagating in ther variable until the boundary with the
asymptotic region is reached. In the weak interaction reg
these solutions can be expressed as

C
l8b

l8
8

JMPG
5r24(

lbl

C
lbl

JPGl8b
l8
8

~r; r̄ !DMVl

J ~al
I!

3FJPGlbl

LHSF ~hl ,gl ; r̄ !. ~26!

In this expansion,DMVl

J are the usual Wigner rotatio

matrices,1 FJPGlbl

LHSF are the LHSF~displaying a parametric

dependence on the hyperradiusr̄), and C
lbl

JPGl8b
l8
8

are

r-dependent coefficients determined by the solution of
~25a!. (r24 is a convenient multiplication factor whic
eliminates the first derivative with respect tor contained in
the hyperradial kinetic energy operator.! More specifically,
the FJPGlbl

LHSF are defined as eigenfunctions of some con

niently chosen weak-interaction reference Hamiltonian t
contains differential operators in the coordinateshl and gl

but not r̄.4,9 The explicit definition of this LHSF referenc
Hamiltonian is outside the scope of this paper and we
noticed that it is obtained from Eq.~13! after the analytical
elimination of the Euler angles,al

I , by means of a partial-
wave expansion of inJ and the freezing of the hyperradiusr.

Because of the rotational invariance of space theC
lbl

JPGl8b
l8
8

and FJPGlbl

LHSF are independent ofM, and the entire

M-dependence ofC
l8b

l8
8

JMPG
is expressed by theDMVl

J .

The RJPG and SJPG matrices~which are also indepen
dent of M! are determined from a knowledge of the mat

CJPG whose elements are the coefficientsC
lbl

JPGl8b
l8
8

of Eq.

~26!. To that effect we rewrite Eq.~10! in the form

Ĥl5Ĥl
~1,2!~rl

~1! ,rl
~2!!1Ĥl

int~r l
~1! ,r l

~2! ,rl
~3! ,gl!, ~27!

where for the diatom–diatom arrangement channels

Ĥl
~1,2![Ĥl

~1!~rl
~1!!1Ĥl

~2!~rl
~2!!, ~28a!

Ĥl
~ i ![2

\2

2mr l
~ i !

]2

~]r l
~ i !!2 r l

~ i !1
@ ĵ l

~ i !~ r̂l
~ i !!#2

2m~r l
~ i !!2 1Vl

~ i !~r l
~ i !!,

i 51,2, ~28b!

Ĥl
int[2

\2

2mr l
~3!

]2

~]r l
~3!!2 r l

~3!1
l̂ sf
2 ~ r̂l

~3!!

2m~r l
~3!!2

1Vl
int~r l

~1! ,r l
~2! ,r l

~3! ,gl!, ~28c!

Vl
int[V~r l

~1! ,r l
~2! ,r l

~3! ,gl!2Vl
~1!~r l

~1!!2Vl
~2!~r l

~2!!.
~28d!

In Eq. ~28b! Vl
( i )(r l

( i )) ( i 51,2) are the diatomic potentials
andV(r l

(1) ,r l
(2) ,r l

(3) ,gl) in Eq. ~28d! is the total tetraatomic
potential that depends on the six internal coordinates of
system. For the atom-triatom arrangement channels the te
in Eq. ~27! are defined as
Downloaded 24 Jan 2002 to 131.215.129.96. Redistribution subject to A
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Ĥl
~1,2![2

\2

2mr l
~1!

]2

~]r l
~1!!2 r l

~1!2
\2

2mr l
~2!

]2

~]r l
~2!!2 r l

~2!

~29a!

1
@ ĵ l

~1!~ r̂l
~1!!#2

2m~r l
~1!!2 1

@ ĵ l
~2!~ r̂l

~2!!#2

2m~r l
~2!!2

1Vl
~1,2!~r l

~1! ,r l
~2! ,gl

~1,2!!, ~29b!

Ĥl
int[2

\2

2mr l
~3!

]2

~]r l
~3!!2 r l

~3!1
l̂ sf
2 ~ r̂l

~3!!

2m~r l
~3!!2

1Vl
int~r l

~1! ,r l
~2! ,r l

~3! ,gl!, ~29c!

Vl
int[V~r l

~1! ,r l
~2! ,r l

~3! ,gl!2Vl
~1,2!~r l

~1! ,r l
~2! ,gl

~1,2!!,
~29d!

where Vl
(1,2) in Eq. ~29b! is the triatomic potential which

depends on the three internal coordinates (r l
(1) ,r l

(2) ,gl
(1,2)).

Common to both the diatom–diatom and atom-triatom ca
is the fact that the HamiltonianĤl

int ~which describes the
relative motion of the two reactants or the two produc!
includes an interaction potentialVl

int and the orbital angular
momentum operatorl̂ sf

2 ( r̂l
(3)) associated with the relative mo

tion of these species.
We now expand theC

l8b
l8
8

JMPG
of Eq. ~26! in the

asymptotic region according to

C
l8b

l8
8

JMPG
;(

lbl

U
lbl

JPGl8b
l8
8

~r l
~3!!

r l
~3! Flbl

JM ~rl
~1! ,rl

~2! , r̂l
~3!!,

~30!

whereU
lbl

JPGl8b
l8
8

denotes a set of~still undetermined! radial

functions and the molecular basis functionsFlbl

JM are simul-

taneous solutions of a set of arrangement-channel-depen
eigenvalue-eigenfunction equations. TheP dependence of

the U
lbl

JPGl8b
l8
8

stems from that inC
lbl

JPGl8b
l8
8

of Eq. ~26!,

which itself resulted from theP dependence of the LHSF in
the strong interaction region. The latter is imposed in or
to achieve decoupling between theP50 andP51 solutions
which is extremely important as it decreases the computa
time for the partial wave scattering equations by a factor
4. In the diatom–diatom case these equations are

Ĵ2Flbl

JM 5\2J~J11!Flbl

JM , ~31a!

Ĵsfz
Flbl

JM 5\MFlbl

JM , ~31b!

Ĵbf1z
Flbl

JM 5 Ĵbf2z
Flbl

JM 5\VlFlbl

JM , ~31c!

Ĵl
2Flbl

JM 5\2Jl~Jl11!Flbl

JM , ~31d!

@ ĵl
~ i !#2Flbl

JM 5\2 j l
~ i !~ j l

~ i !11!Flbl

JM , i 51,2, ~31e!

Ĥl
~1,2!Flbl

JM 5Elel
Flbl

JM , ~31f!

where

Ĵl[ ĵl
~1!1 ĵl

~2! ~32!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and we have used the compact quantum number notatio

lbl[$lel ,Jl ,Vl%

5$l1 ,l2 ,vl
~1! ,vl

~2! , j l
~1! , j l

~2! ,Jl ,Vl%. ~33!

It should be noticed that theOzl
bf1 and Ozl

bf2 axes and the
associated components of the total angular momentum ve
operator are the same, as indicated in Eq.~31c!. In the atom-
triatom case the eigenvalue equations are the same ex
that Eqs.~31d!, ~31e!, and ~32! are replaced by the singl
equation

@ ĵl
~1!#2Flbl

JM 5\2 j l
~1!~ j l

~1!11!Flbl

JM ~34!

with the corresponding compact quantum number indi
now being

lbl[$lel ,Vl%5$l1 ,l2 ,vl
~1! , j l

~1! ,Vl%. ~35!

Equation~31! and its atom-triatom counterpart will clearl
be satisfied if we express the dependence ofFlbl

JM on the

Euler angles as

Flbl

JM ~rl
~1! ,rl

~2! , r̂l
~3!![DMVl

J ~al
bf1!Flbl

bf1 ~rl
~1! ,rl

~2!! ~36a!

[DMVl

J ~al
bf2!Flbl

bf2 ~r l
~1! ,r l

~2! ,gl!,

~36b!

whereFlbl

bfi are the body-fixed molecular wave functions,

be specified later. To explicitly define the radial expans

coefficientsU
lbl

JPGl8b
l8
8

(r l
(3)), we next substitute Eq.~30! into

Eq. ~25a!, multiply the result byFlbl

JM* and finally integrate

over all coordinates exceptr l
(3) . Using the definitions in Eq

~27!, Eq. ~31!, and Eq.~36! this can be shown to give th
following coupled system of ordinary differential equatio

in U
lbl

JPGl8b
l8
8

(r l
(3))

2
\2

2ml
Ü

lbl

JPGl8b
l8
8

1\2@J~J11!1Jl~Jl11!

12Vl
2#U

lbl

JPGl8b
l8
8

2\2z2~J,Vl!z2~Jl ,Vl!U
lbl21

JPGl8b
l8
8

2\2z1~J,Vl!z1~Jl ,Vl!U
lbl11

JPGl8b
l8
8

1 (
l9b

l9
9

^Flbl

JM uVl
intuF

l9b
l9
9

JM
&U

l9b
l9
9

JPGl8b
l8
8

;~E2Elel
!U

lbl

JPGl8b
l8
8

, ~37!

where Ü
lbl

JPGl8b
l8
8

denotes the second order derivative w

respect tor l
(3) , lbl61[$lel ,Jl ,Vl61% and z6(J,Vl)

[AJ(J11)2Vl(Vl61). Furthermore, since the intera
tion potential, Vl

int(r l
(1) ,r l

(2) ,r l
(3) ,gl), is invariant under

space rotations~i.e., is independent ofal
bf2) the potential cou-

pling terms in Eq.~37! simplify to
Downloaded 24 Jan 2002 to 131.215.129.96. Redistribution subject to A
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^Flbl

JM uVl
intuF

l8b
l8
8

JM
&5^DMVl

J uD
MV

l8
8

J
&^Flbl

bf2 uVl
intuF

l8b
l8
8

bf2 &,

~38a!

5dl,l8^DMVl

J uD
MV

l
8

J
&^Flbl

bf2 uVl
intuF

lb
l8
8

bf2 &,

~38b!

5
8p2

2J11
dVl ,V

l8
^Flbl

bf2 uVl
intuF

lb
l8

bf2 &, ~38c!

where Eq.~38b! follows from the fact that the body-fixed
molecular wave functions are localized in the arrangem
channels and Eq.~38c! is a simple consequence of the o
thogonality of the Wigner rotation matrices. Thus we co
clude that in the body-fixed total angular momentum rep
sentation of Eq.~30! the potential energy matrix is diagona
in Vl and independent of bothJ andM, whereas the kinetic
energy part is tri-diagonal inVl and diagonal in the remain
ing quantum numbers ($vl

(1) ,vl
(2) , j l

(1) , j l
(2) ,Jl% or

$vl
(1) , j l

(1)% depending on the arrangement channel cons
ered!.

The next important step in determiningRJPG is to con-
sider the asymptotic limit of Eq.~37! for which the interac-
tion potential can be assumed to have vanished and

express thesebody-fixed U
lbl

JPGl8b
l8
8

(r l
(3)) in terms of linear

combinations of the known analytical solutions to the cor
spondingspace-fixed equation~also in the absence of th
potential coupling term!. However, it will not be assumed

that the Coriolis coupling terms represented byU
lbl61

JPGl8b
l8
8

in

Eq. ~37! have become negligible. These analytical solutio
of the asymptotic form of Eq.~37! are obtained in the Ap-
pendix. Since one can express them as real standing wav
as complex propagating spherical waves, two different
proaches can be adopted at this point. Throughout the
maining of this paper we shall outline both in parallel sin
they are related in a simple manner, and finally choose
for convenience in the numerical implementations. In t
asymptotic limit of Eq.~37! we expand the linearly indepen
dent solutions as

U
lbl

JPGl8b
l8
8

~r l
~3!!;uVlel

u21/2 (
l9b

l9
9

@S
lbl

Jl9b
l9
9

~r l
~3!!A

l9b
l9
9

JPGl8b
l8
8

1C
lbl

Jl9b
l9
9

~r l
~3!!B

l9b
l9
9

JPGl8b
l8
8

#, ~39a!

U
lbl

JPGl8b
l8
8

~r l
~3!!;uVlel

u21/2 (
l9b

l9
9

@I
lbl

Jl9b
l9
9

~r l
~3!!C

l9b
l9
9

JPGl8b
l8
8

2O
lbl

Jl9b
l9
9

~r l
~3!!D

l9b
l9
9

JPGl8b
l8
8

#, ~39b!

whereVlel
are the channel velocities,AJPG, BJPG, CJPG,

DJPG are the constant~r-independent! expansion coefficient
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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matrices for the analytical functionsS
lbl

Jl9b
l9
9

(r l
(3)),

C
lbl

Jl9b
l9
9

(r l
(3)), I

lbl

Jl9b
l9
9

(r l
(3)) and O

lbl

Jl9b
l9
9

(r l
(3)) derived in the

Appendix, Eq.~A15!.
The pairs of square matrices,$AJPG,BJPG% and

$CJPG,DJPG%, introduced in Eq.~39!, depend on the choice
of initial conditions adopted in the solution of the differenti
equation satisfied by the matrixCJPGl defined by the

C
l8b

l8
8

JPGllbl coefficients in Eq.~26!. The Flbl

JM in the l.h.s. of

that equation are obtained by integrating the Schro¨dinger
equation starting with small values ofr as indicated prior to
Eq. ~26!. Other than requiring thatFlbl

JM approach zero as

r;0, arbitrary initial conditions regarding itsr derivatives
are used. However, as a result of the linearity of that Sch¨-
dinger equation the ‘‘ratios’’ between those two pairs of m
trices, namely,

RJPG5BJPG
•@AJPG#21, ~40a!

SJPG5DJPG
•@CJPG#21, ~40b!

are unique, i.e., are independent of thoseFlbl

JM initial condi-

tions. Throughout the remaining of this paper we shall re
to the standing wave basis set of Eqs.~A10! and ~A11! @ap-
pearing in Eq.~39a!# as theR-matrix representation and th
spherical waves of Eqs.~A12! and ~A13! @appearing in Eq.
~39b!# as theS-matrix representation.

Whereas theS-matrix representation with spherical in
coming and outgoing waves is far more intuitive physica
than the formally equivalentR-matrix standing wave repre
sentation, the latter does offer a more attractive formulat
due to the numerical convenience thatR is real. The state-
to-state cross sections depend only on the open-row, o
column part of theS-matrix, denoted bySoo

JPG . Its relation to
the corresponding open–open partRoo

JPG of the R-matrix is
given by41

Soo
JPG5@ I1 iRoo

JPG#21
•@ I2 iRoo

JPG#. ~41!

In the rest of this paper we obtain expressions for theR- and
S-matrices in terms of any complete set of linearly indep
dent solutions to the time-independent Schro¨dinger equation.

B. Calculation of the reactance and scattering
matrices

We now derive explicit expressions for the reactance~R!
and scattering~S! matrices in terms of the expansion coef

cientsC
lbl

JPGl8b
l8
8

defined by Eq.~26!. The strategy is simply

to equateC
l8b

l8
8

JMPG
given by that equation at afixedlarge value

of the hyperradius,r̄, with its value given by Eq.~30! with

U
lbl

JPGl8b
l8
8

expressed by Eq.~39!, followed by an integration

over all angles. It should be noted that it is equally possi
to make this projection at a fixed value ofr l

(3) ~as opposed to
r!, but this strategy is complicated by the fact that the c
responding wave function cuts across several values or̄,
i.e., the fixed-r l

(3) values ofC
l8b8
JMPG

have contributions from

l8
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FJPGlbl

LHSF defined in different spherical sections. Both deriv

tions have been worked out, but we shall restrict oursel
the compact fixed-r̄ version. Before this can be done, how
ever, it is necessary to switch from the principal moment
inertia Cartesian axes used in Eq.~26! to the Jacobi body-
fixed-2 axes used in Eq.~30!. This is accomplished by mean
of the transformation relations derived in Sec. II D. Fro
Eqs. ~22!, ~26!, ~30!, and ~36! we obtain the following
equalities:

C
l8b

l8
8

JMPG
5r24(

lbl

C
lbl

JPGl8b
l8
8

~r; r̄ !

3DMVl

J ~al
t !FJPGlbl

LHSF ~hl ,gl ; r̄ !, ~42a!

5r24(
lbl

C
lbl

JPGl8b
l8
8

~r; r̄ !FJPGlbl

LHSF ~hl ,gl ; r̄ !

3(
Kl

DMKl

J ~al
bf2!DVlKl

J ~al~hl ,gl!!, ~42b!

5(
lbl

U
lbl

JPGl8b
l8
8

~r l
~3!!

r l
~3! DMVl

J ~al
bf2!Flbl

bf2

3~r l
~1! ,r l

~2! ,gl!. ~42c!

We next multiply Eqs. ~42b! and ~42c! by

FJPGlbl̄

LHSF* (hl̄ ,gl̄ ; r̄)DMVl̄

J* (al
bf2), use Eq. ~11! to expand

(r l
(1) ,r l

(2) ,r l
(3)) in terms of (r,hl) and finally integrate the

resulting expression over all eight hyperangleshl , gl , and
al

bf2 with r set equal tor̄. After the substitution of Eq.~39!
into Eq. ~42c! and performing some straightforward b
lengthy algebraic manipulations we arrive at the mat
equations

OJCJPG5SJAJPG2CJBJPG, ~43a!

OJCJPG5IJCJPG2OJDJPG. ~43b!

The overlap matricesOJ andXJ[$SJ,CJ,IJ,OJ% which
appear in these expressions are defined by

@OJ#
lbl̄

lbl5dl̄
lE dh l̄E dg l̄FJlbl̄

LHSF* ~h l̄ ,g l̄ ; r̄ !

3FJlbl̄

LHSF~h l̄ ,gl̄ ; r̄ !DVl̄V̄ l̄

J*
~al̄~h l̄ ,gl̄!!, ~44a!

@X J#
lbl̄

lbl5r4(
b

l̄
9

d
V̄l̄

V
l̄
9E dh l̄

X
l̄ b

l̄
9

Jlbl
~r l̄

~3!
!

AuVl̄v
l̄
9 j

l̄
9ur l̄

~3!

3E dgl̄FJlbl̄

LHSF* ~h l̄ ,g l̄ ; r̄ !F
l̄ b

l̄
9

bf2
~r l̄

~1! ,r l̄
~2! ,gl̄!,

~44b!

in which (r l
(1) ,r l

(2) ,r l
(3)) are the functions of (r,hl) defined

by Eq. ~11!, and the integrals are over the five intern
Delves hyperangles (hl ,gl). Note also that the symbolX in
Eq. ~44b! is identical to the one in Eq.~A15! and can assume
the valuesS, C, I, or O corresponding to the two sets o
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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asymptotic radial functions in respectively theR- or S-matrix
representation. In addition, sincer̄ is sufficiently large for
the potential coupling matrix elements between different
rangement channel regions to have vanished, the corresp

ing FJlbl̄

LHSF* are independent of bothP and G as they are

completely localized in those regions. As a result, theOJ and
XJ are also independent ofP andG.

Left-multiplying Eq. ~43! by @OJ#21 and taking the
derivative of the resulting expression with respect tor we
now get

d

dr
@CJPG#[ĊJPG5@OJ#21~ṠJ2ĊJRJPG!AJPG, ~45a!

5@OJ#21~İJ2ȮJSJPG!CJPG, ~45b!

where the dot above the matrices denoter-derivatives. We
now right-multiply this expression by@CJPG#21 to get

YJPG[ĊJPG@CJPG#21

5@OJ#21~ṠJ2ĊJRJPG!~SJ2CJRJPG!21OJ, ~46a!

5@OJ#21~İJ2ȮJSJPG!~IJ2OJSJPG!21OJ, ~46b!

where YJPG is by definition the logarithmic derivative o
CJPG. This leads to the following expressions for the rea
tance and scattering matrices:

RJPG5~CJ2ȲJPGĊJ!21~SJ2ȲJPGṠJ!, ~47a!

SJPG5~OJ2ȲJPGȮJ!21~IJ2ȲJPGİJ!, ~47b!

where we have defined the similarity-transformed logar
mic derivative matrix,ȲJPG, by

ȲJPG[OJYJPG@OJ#21. ~48!

As mentioned in Sec. III A, theR-matrix real standing wave
representation offers a more attractive formulation than
formally equivalentS-matrix complex propagating spheric
wave representation due to the numerical convenience o
ing calculable using real~as opposed to complex! arithmetic.
However, to compute state-to-state differential cross-sect
the open–open submatrix,Soo

JPG , is needed, and can be ob
tained fromRoo

JPG by means of Eq.~41!. To optimize this
approach we partition Eq.~47a! into open–open, open–
closed, closed–open, and closed–closed submatrices ac
ing to the closed and open nature of the local hypersphe
surface functionsFJPGlbl

LHSF which appear in Eq.~44!, accord-

ing to

S Roo
JPG Roc

JPG

Rco
JPG Rcc

JPGD 5S Coo
J 2Ȳoo

JPGĊoo
J 2Ȳoc

JPGĊcc
J

2Ȳco
JPGĊoo

J Ccc
J 2Ȳcc

JPGĊcc
J D 21

3SSoo
J 2Ȳoo

JPGṠoo
J 2Ȳoc

JPGṠcc
J

2Ȳco
JPGṠoo

J Scc
J 2Ȳcc

JPGṠcc
J D ,

~49!

where we have used the fact that the matricesXJ

[SJ,CJ,IJ,OJ are block-diagonal in the open/closed lab
ing which follows form the definitions in the Appendix@see
Eqs. ~A10!–~A15!#. Since, by virtue of Eq.~41!, the Soo

JPG
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submatrix depends only onRoo
JPG , it is clear that the calcu-

lation can be simplified somewhat by only computing the l
hand block column ofRJPG in the l.h.s. of Eq.~49!. This
leads to the following matrix equation for the open-colum
submatrix of theR-matrix:

S Roo
JPG

Rco
JPGD 5S Coo

J 2Ȳoo
JPGĊoo

J 2Ȳoc
JPGĊcc

J

2Ȳco
JPGĊoo

J Ccc
J 2Ȳcc

JPGĊco
J D 21

3SSoo
J 2Ȳoo

JPGṠoo
J

2Ȳco
JPGṠoo

J D . ~50!

The inverse matrix in Eq.~50! can next be expressed i
terms of its submatrices which after some algebraic man
lations leads to the following equation for the open–op
submatrix of the reactance matrix:

Roo
JPG5@Moo

JPG#21~Soo
J 2Ȳoo

JPGṠoo
J !2@Moo

JPG#21

3Ȳoc
JPGĊcc

J @Ccc
J 2Ȳcc

JPGĊco
J #21Ȳco

JPGṠoo
J , ~51!

where

Moo
JPG[Coo

J 2Ȳoo
JPGĊoo

J

2Ȳoc
JPGĊcc

J @Ccc
J 2Ȳcc

JPGĊcc
J #21Ȳco

JPGĊcc
J . ~52!

In these expressionsYJPG is given by Eq.~46!, whereCJPG

is obtained from the propagation of the Schro¨dinger equation
which they satisfy, from the inner to the asymptotic regio
andOJ, defined in Eq.~44a!, can be computed numericall
from a knowledge of the LHSF and of the Euler angl
al(hl ,gl) obtained in Sec. II D. It should be noticed th
CJPG and ĊJPG are not needed separately; it suffices to o
tain their logarithmic derivativeYJPG. As a result, the
r-dependent coefficient matrices obtained from the LH
expansion in the strong and weak interaction regions can
propagated by logarithmic derivative methods.

To evaluate the five-dimensional integrals in Eq.~44b!
which defineXJ, we first have to give explicit expression
for the asymptotic molecular wave functionsFlbl

bf2 . For a

tetraatomic system these functions describe either an a
and a triatom or two diatoms. For theatom-triatomcase this
function assumes the general form

Flbl

bf2 ~r l
~1! ,r l

~2! ,gl!

5(
Kl

~1!
D

VlK
l
~1!

Jl ~0,gl
~2,3! ,fl!F

l1e
l
~1!K

l
~1!

triatom
~r l

~1! ,r l
~2! ,gl

~1,2!!,

~53!

whereF
l1e

l
(1)K

l
(1)

triatom
is the internal triatomic wave function for

the quantum numbers$el
(1) ,Kl

(1)%[$vl
(1) , j l

(1) ,Kl
(1)%, with

vl
(1) denoting the quantum numbers associated with the th

vibrational degrees of freedom. Herej l
(1)( j l

(1)11)\2 and
Kl

(1)\ are the eigenvalues of the square of the triatom’s to
angular momentum operatorĵl

(1) and of its body-fixed com-
ponentĵ l

(1) . In Eq. ~53! the body-fixed frame for the triatom
has been chosen such thatrl

(2) points along thez-axis andrl
(1)
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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lies in the positivexz half-plane. As a result, the transform
tion from the tetraatomic body-fixed-2 frame, defined in S
II A, to this body-fixed triatomic frame is accomplishe
through a rotation defined by the Euler angles (0,gl

(2,3) ,fl),
where the hyperanglefl can be shown to be related to th
anglesgl

(1,3) , gl
(2,3) andjl , defined in Table I, by

tanfl[
singl

~1,3! sinjl

singl
~1,3! cosgl

~2,3! cosjl2cosgl
~1,3! singl

~2,3!.

~54!

In the diatom–diatomcaseFlbl

bf2 is given by

Flbl

bf2 ~r l
~1! ,r l

~2! ,gl!5F
l1e

l
~1!

diatom
~r l

~1!!F
l2e

l
~2!

diatom
~r l

~2!!Y
j
l
~1! j

l
~2!

JlVl ~gl!,

~55!

whereF
l iel

( i )
diatom

denotes the internal wave function of diato

l i with quantum numbers$vl
( i ) j l

( i )%. Y j b1
j b2

JbVb are Arthurs–

Dalgarno spherical harmonics which are defined by
Clebsch–Gordan expansion

Y
j
l
~1! j

l
~2!

JlVl ~gl![ (
ml

~1!ml
~2!

C~ j l
~1! , j l

~2! ,Jl ;ml
~1! ,ml

~2! ,Vl!

3Y
m

l
~1!

j l
~1!

~gl
~2,3!,0!Y

m
l
~2!

j l
~2!

~gl
~1,3! ,jl!. ~56!

Using Eqs.~53!–~56! in combination with the definitions o
Eqs.~A10!–~A15! we can now computeX J by means of Eq.
~44b!, which finally allows us to obtainRoo

JPG from Eq. ~51!
and thenSoo

JPG from Eq. ~41!.

IV. SUMMARY

A detailed prescription is outlined for calculating stat
to-state scattering matrices for tetraatomic systems.
nine-dimensional configuration space is divided into stro
interaction, weak interaction, and asymptotic regions. In
strong interaction region, row-orthonormal coordinates2 are
used which permit a description of the system’s wave fu
tion in this entire region in terms of single sets of local h
perspherical surface functions at constant values of the
perradius. This avoids any super-completeness problem
each hyperradius these functions are arrangement-cha
independent, span all eight hyperangles and are linearly
dependent, complete, and orthonormal in this hyperang
space. The weak interaction region is divided into differe
nearly nonoverlapping arrangement channel regions in e
of which a different set of arrangement-channel-depend
Delves37,38 hyperangular coordinates are used. In both kin
of interaction regions the same principal axes of inertia Eu
angles are part of the corresponding coordinate sets. Cou
hyperradial equations are propagated across these regio
to an asymptotic hyperradius where potential energy c
pling ~but not Coriolis coupling! vanishes. At this boundary
switch to body-fixed Jacobi axes is performed and a deta
prescription is given for projecting, at a constant value of
hyperradius, the scattering wave function onto the separ
molecule~diatom–diatom or atom-triatom! wave functions.
These two steps~the change in Euler angles and the proje
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tion! are done simultaneously. Although they could be do
independently of one another, it is more efficient to do th
together. This leads to explicit matrix equations relating
logarithmic derivative solutions of the hyperradial equatio
to the reactance and scattering matrices that are deta
enough to permit a calculation of the latter. Given the fav
able kinematic-invariance properties of the row-orthonorm
hyperspherical coordinates, the associated ease with w
different parity and irreducible representation wave functio
can be decoupled, and the ease of parallelization of the
lated numerical algorithms, this approach should per
benchmark-quality calculations of state-to-state integral
differential cross sections using available massively para
computers.

A candidate for a first application of this methodology
the OH1H2 reaction. A preliminary analysis of this syste
indicates that after a decoupling of the different irreducib
representations of the permutation group of three ident
atoms and of the two inversion symmetry parities, the
mensionN of the square matrices to be propagated is 50
We estimate the total time for calculating benchmark-qua
state-to-state differential cross sections for this system a
total energies between 0.8 eV and 1.2 eV~measured with
respect to the bottom of the diatomic potential energy cur
for the isolated H2 and OH molecules! to be approximately
550 h on a computer having a sustained speed of 100 Gfl
for these kinds of calculations, such as the HP V2500 para
computer at Caltech. Other computers having sustai
speeds 30 times or more higher than this are already a
able, and as a result the OH1H2 reaction can be studied
comfortably using such machines. The feasibility of perfor
ing calculations of similar quality for more complicated te
raatomic reactions is determined mainly by the correspo
ing values ofN, as the computer time scales asN3. The
amount of main memory is not expected to be a problem
it scales asN2 only.
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APPENDIX: SPACE-FIXED RADIAL ASYMPTOTIC
CONDITIONS

The asymptotic conditions for the body-fixe

U
lbl

JPGl8b
l8
8

(r l
(3)) radial functions, defined in Sec. III A, ar

derived from an analysis of the corresponding space-fi

functionsU
lul

JPGl8u
l8
8

(r l
(3)), which is the topic of this appen

dix. Let us define the space-fixed equivalent of Eq.~30! as

C
l8u

l8
8

JMPG
;(

lul

U
lul

JPGl8u
l8
8

~r l
~3!!

r l
~3! Flul

JM ~rl
~1! ,rl

~2! , r̂l
~3!!,

~A1!

where the space-fixed molecular basis functions of the te
atomic system,Flul

JM , are defined to be simultaneous sol
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tions of a set of arrangement channel-dependent eigenv
equations. For diatom–diatom arrangement channels t
equations are

Ĵ2Flul

JM 5\2J~J11!Flul

JM , ~A2a!

Ĵsfz
Flul

JM 5\MFlul

JM , ~A2b!

l̂ l
2Flul

JM 5\2l l~ l l11!Flul

JM , ~A2c!

Ĵl
2Flul

JM 5\2Jl~Jl11!Flul

JM , ~A2d!

@ ĵl
~ i !#2Flul

JM 5\2 j l
~ i !~ j l

~ i !11!Flul

JM , i 51,2, ~A2e!

Ĥl
~1,2!Flul

JM 5Elel
Flul

JM , ~A2f!

where

Ĵl[ ĵl
~1!1 ĵl

~2! . ~A3!

We have introduced in these equations the compact sp
fixed quantum number notation

lul[$lel ,Jl ,l l%5$l1 ,l2 ,vl
~1! ,vl

~2! , j l
~1! , j l

~2! ,Jl ,l l%.
~A4!

For atom-triatom arrangement channels the set of simu
neous eigenvalue equations are the same as Eq.~A2! except
that Eqs.~A2d!, ~A2e!, and~A3! are now substituted by th
single expression

@ ĵl
~1!#2Flul

JM 5\2 j l
~1!~ j l

~1!11!Flul

JM ~A5!

with the corresponding quantum numbers being

lul[$lel ,l l%5$l1 ,l2 ,vl
~1! , j l

~1! ,l l%. ~A6!

Using these definitions, it is straightforward to show that

corresponding radial equations forU
lul

JPGl8u
l8
8

must satisfy
the coupled equations
Downloaded 24 Jan 2002 to 131.215.129.96. Redistribution subject to A
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2
\2

2ml
F d2

~drl
~3!!22

l l~ l l11!

~r l
~3!!2 GUlul

JPGl8u
l8
8

1 (
l9u

l9
9

^Flul

JM uVl
intuF

l9u
l9
9

JM
&U

l9u
l9
9

JPGl8u
l8
8

;~E2Elel
!U

lul

JPGl8u
l8
8

, ~A7!

which should be compared to the body-fixed counterpar
Eq. ~37!. It is important to note that Eq.~A7!, as opposed to
Eq. ~37!, does not contain any Coriolis coupling terms, b
causeFlul

JM by definition is an eigenfunctions of the orbita

angular momentum operatorl̂ l
2. The only coupling term in

this equation is the interaction potential coupling which va
ishes asymptotically. Consequently, the far asymptotic

havior of the space-fixed radial functionsU
lul

JPGl8u
l8
8

is de-

fined from the simple decoupled second order differen
equations

2
\2

2ml
F d2

~drl
~3!!22

l l~ l l11!

~r l
~3!!2 1klel

2 GUlul

JPGl8u
l8
8

50,

~A8!

where

klel

2 [2m~E2Elel
!/\2. ~A9!

The analytical solutions to this equation, which we will co
lectively denoted byXlul

J (r l
(3)), can be expressed as
Slul

J ~r l
~3!!5uklel

ur l
~3!H yl l

~klel
r l

~3!!sin~~J1Jl2 l l!p/2!1 j l l
~klel

r l
~3!!cos~~J1Jl2 l l!p/2! open

2i l l
~ uklel

ur l
~3!! closed,

~A10!

and

Clul

J ~r l
~3!!5uklel

ur l
~3!H 2yl l

~klel
r l

~3!!cos~~J1Jl2 l l!p/2!1 j l l
~klel

r l
~3!!sin~~J1Jl2 l l!p/2! open

2kl l
~ uklel

ur l
~3!! closed

~A11!

for the real standing wave formulation, and

I lul

J ~r l
~3!!5uklel

ur l
~3!H exp@1 i ~J1Jl2 l l!p/2#hl l

~2 !~klel
r l

~3!! open

2i l l
~ uklel

ur l
~3!! closed,

~A12!

and

Olul

J ~r l
~3!!5uklel

ur l
~3!H exp@2 i ~J1Jl2 l l!p/2#hl l

~1 !~klel
r l

~3!! open

2kl l
~ uklel

ur l
~3!! closed

~A13!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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for the complex propagating spherical wave formulation. T
open and closed cases for each of the four functions refe
channels that are energetically open (E>Elel

) or closed
(E,Elel

), i.e., when the linear momentumklel
defined

from Eq.~A9! is respectively real or pure positive imaginar
hl

(6)52yl l
6 i j l l

, yl l
, j l l

, i l l
, and kl l

are the spherica
Bessel functions of Ref. 42, page 435. The angle (J1Jl

2 l l)p/2 appearing in these equations is an arbitrary
convenient phase.

The asymptotic behavior of the body-fixed counterp
of Eq. ~A8! is finally obtained through the transformatio
relation

Flbl

JM ~rl
~1! ,rl

~2! , r̂l
~3!!

5~21!Jl2Vl(
l l

C~J,Jl ,l l ;Vl ,2Vl,0!

3Flul

JM ~rl
~1! ,rl

~2! , r̂l
~3!!, ~A14!

where theC’s are the usual Clebsch–Gordan coupling co
ficients and (21)Jl2Vl is a convenient phase factor. Th
relation finally leads to the important similarity transform
tion

X
lbl

Jl9d
l9
9

~r l
~3!!5dl

l9~21!Vl2Vl9(
l l

C~J,Jl ,l l ;Vl ,2Vl,0!

3C~J,Jl ,l l ;Vl92Vl9 ,0!Xlul

J ~r l
~3!! ~A15!

for the body-fixed functionsS
lbl

Jl9b
l9
9

(r l
(3)), C

lbl

Jl9b
l9
9

(r l
(3)),

I
lbl

Jl9b
l9
9

(r l
(3)), and O

lbl

Jl9b
l9
9

(r l
(3)) entering Eq.~39!. Thus in

Eq. ~A15! $X,X% can be any of the sets$S,S%,$C,C%, $I,I %,
or $O,O%.
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