JOURNAL OF CHEMICAL PHYSICS VOLUME 115, NUMBER 18 8 NOVEMBER 2001

Asymptotic analysis of state-to-state tetraatomic reactions
using row-orthonormal hyperspherical coordinates

Ken Museth and Aron Kuppermann®
Artur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering,
California Institute of Technology, Pasadena, California 91125

(Received 11 June 2001; accepted 13 August 2001

The state-to-state asymptotic analysis of tetraatomic reactions is presented. It is assumed that the
four-atom time-independent partial wave Salinger equation has been solved subject to the
condition that in the limit of very compact geometries the wave function vanishes. These solutions
are initially obtained in body-fixed row-orthonormal hyperspherical coordinates and transformed in
the asymptotic arrangement channel regions of nuclear configuration space to Jacobi body-fixed
coordinates. From the latter, compact explicit expressions for the read@pemd scatterindS)
matrices, useful for accurate numerical calculations, are obtained. The different systems of
coordinates used and their interrelations are given. The approach described is particularly well
suited for implementation on massively parallel architectures and is appropriate for the calculation
of benchmark-quality state-to-state integral and differential cross sections on currently available
computers. ©2001 American Institute of Physic§DOI: 10.1063/1.1408288

I. INTRODUCTION of the physical solutions of the Sclinger equation, and

_ _ derive the body-fixed partial wavR- and S-matrices. Fi-
Let us consider the scattering between two moleculegally, a summary is given in Sec. IV.

comprising a tetraatomic system. Once the motion of the
center-of-masgCM) of the system is removed, the corre-
sponding scattering process takes place in a ninel-l' THE HYPERSPHERICAL COORDINATE APPROACH
dimensional configuration space. Three of these nine degrees Since the definition of symmetrized hyperspherical coor-
of freedom are taken to be external Euler angles that descrilinates for three-dimensional tri-atomic reactions was intro-
the overall rotation of the system around its CM in aduced in 1975, the hyperspherical coordinate approach has
laboratory-fixed frame. By means of a partial wave expanproven to offer a very convenient and effective numerical
sion involving the Wigner rotation functiohsf these angles  scheme for solving the time-independent Sdimger equa-
one can easily and rigorously reduce the corresponding ningion for triatomic system&:-3? Recently, Clary and co-
dimensional time-independent Sctioger equation to a set workers have suggested an extension of this approach to
of coupled six-dimensional partial differential equations intetraatomic systems involving different hyperspherical coor-
the six remaining internal coordinates, one set for each totalinates in different arrangement channel regithk this
angular momentum quantum numbér However, solving  method, super-completeness problems between basis sets in
these equations constitutes a major numerical task which tthe different coordinates must be overcome. Alternatively,
this date has not been performadcuratelyenough to yield  the availability of the Hamiltonian for tetraatomic systems in
benchmark quality fully state-resolved state-to-state differenrow-orthonormal hyperspherical coordinates, which are es-
tial cross sections. sentially invariant under arrangement channel transforma-
A scheme based on the use of row-orthonormal hypertions, and of massively parallel high performance computers
spherical coordinatésfor the strong interaction region, of should permit the calculation of state-to-state differential
arrangement channel hyperspherical coordinates in the sep@oss sections for a large number of tetraatomic reactions,
rated or nearly separated arrangement channel re@i@ including four center ones, for which two bonds are broken
weak interaction region and of Jacobi coordinates in the and two new bonds concurrently formed.
asymptotic regions, makes such a benchmark-quality solu- The hyperspherical coordinates for Bratom system is
tion possible. We shall briefly discuss this scheme and theomposed of a set of three external angles describing the
associated asymptotic analysis. overall orientation of the system in space, a hyperradius
This paper is organized as follows: In Sec. Il we givewhich is a measure of the size of the system am+3F
explicit definitions of the different coordinate systems em-internal hyperangles that describe the distances between the
ployed in the different regions of configuration space, andN atoms. It is possible to define many different kinds of
derive some important expressions for the transformationgyperspherical coordinates for any given system, but com-
between them. In Sec. Ill we discuss the asymptotic behaviamon to all is the hyperradiug, which is kinematically in-
variant, i.e., is the same for all the system’s arrangement

dAuthor to whom correspondence should be addressed; electronic maiﬁhannels_- ThiS_iS of_great_importance when ?tUdying 5y5ter_n5
aron@caltech.edu of high dimensionality as it allows one to define a local basis
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into a strong interaction regiofor low values ofp) and a
weak interaction regiofffor large values ofp). In addition,

we will consider the asymptotic regions in which Jacobi co-
ordinates will be used. This explicit description of the coor-
dinates is necessary for the derivations described in the
asymptotic analysis, which is eventually done in body-fixed
Jacobi coordinates, also defined in this section. Finally, this
section concludes by deriving an important relation between
the principal axis of inertia Euler angles and the body-fixed
Jacobi Euler angles.

r’é” r’éa) \rlgz)

A D D . . . . .
A=3 A A=6 A =7 D A. Coordinates in the strong interaction region
AB+CD AC+BD AD+BC

In the strong interaction region we shall use row-
orthonormal hyperspherical coordinates. They and the corre-
sponding Hamiltonian operator were presented in detail
previously and we shall restrict ourself to outlining the
properties of these coordinates needed for the rest of this

paper.

FIG. 1. Cluster arrangement channel coordinaf@satom-triatom clusters;
(b) diatom—diatom clusters.

set for a constanp which samples all of the different ar-
rangement channels of interest. Thus in the hyperspheric . . .
coordinate approach, the system’s wave function is expande iy Fpr a given tetraatomic clusten_ng scheMwe_ label by
in local hyperspherical surface functiofisHSF) which de- v’ (i=1,2,3) the unscaled Jacobi vectdsee Fig. 1 and
pend on the internal hyperangles and parametrically on thé€fine the corresponding mass-scaled veatftsy
hyperradius. These LHSF, for each valueppform a com- () (D) \L2e() 5

plete orthonormaland therefore linearly independgtiasis =l w7 s, =123, @)
set in these hyperangles, and @ss varied they span all hereu{) and u are the usual Delves reduced mas¥et.

arrangement channel region_s. . ~ From these mass-scaled Jacobi vectors we define3aa-
For a general tetraatomic system comprised of the disgobi matrix¥ as

tinct nuclei ABCD we can form the following seven

asymptotic arrangement channel&BC+D, DAB+C, P ox? x®

CDA+B, BCD+A, AB+CD, AC+BD, AD+BC. Of st (1),.(2),.(3)y — (1 @2 3

: ] ) pr=(rnnon)=1 YW YW oy |, 2
these, four are atom-triatom and three are diatom—diatom D 42 )
two-body arrangements. We assume that three-body channels o L Ly

(such asAB+C+ D) as well as the fully dissociative chan- here the superscript “sf” denotes that the Jacobi vectors

nel (A+B+C+D) are energetically closed. The hyper- re gefined in a space-fixed frame of reference, with

Epher;cal dfo(;rrgal!srr;, (ljncludmgt:]he ?syn;)ptgtm 2”61%%’95;} canx® yi 70y peing the associated Cartesian coordinates of
e extended to include more than two-body chan 0y /i -

this case will not be considered here. IIIustr;/tions of the cor-r(x;l.(I :tl,%gc)).HI:?e tenzr?)v}/-orzthor;ormg(ll?y;g)rsg(g;erlcal .

responding seven cluster arrangement channel coordinatoéf;ggdez the relit)i((;ﬁw xoCxop 0,6, 007, 07, 67} are

are shown in Fig. 3 of Ref. 35, and are repeated in Fig. 1 o? y

the present paper for convenience. Throughout this paper we  ps'= (- l)XEl(af,bI chHpN(8, ¢)§(5§1) 82 53,

will use the symboh=1,2,... to label the different arrange- 3

ment channels. In the case of identical nuclei we shall fur- ~ )

thermore use the symbdl to denote the irreducible repre- WhereR denotes the transposed of the usual proper rotation

sentation of the corresponding permutation group. Generall{ﬁatr'x

speaking, we can have four different kinds of systefns cosc sinc O

AsB, A,B,, A,BC, and ABCD for which I', respectively,

represents the irreducible representations of the permutation

(or symmetri¢ groupsS,, Sz, S,©S,, S, or S;.%¢ Thus 0 0 1

arbitrary solutions of the time-independent Schinger

equation will contain\ and I labels. As just mentioned one

R(a,b,c)=| —sinc cosc 0

cosb 0 —sinb

can define many different sets of hyperspherical coordinates x| 0 1 0

for a given system, and in the rest of this section we shall sinb 0O cosb

briefly outline a calculation scheme which employs two such )

sets. Each of these sets of coordinates has distinct advantages cosa sina 0

in different regions of configuration space where the interac- x| —sina cosa O |, (4)
tions between the atoms have different strengths. To facilitate 0 0 1

the introduction of these different sets, we shall first assume
that the full(nucleaj configuration space can be subdivided andN is the simple diagonal matrix
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sinf cos¢ 0 0 TABLE I. Relation between Cartesian frames.
_ i i (¢x 16x.0) (0,04))
N(6,¢)= 2 S|n003|n¢ 036 ' ©) oy —— oy Ox2y)22)"
. : o ° i 1®ene)  (1000) (r$.0,0)

The chirality coordinatey=0, 1 is defined by r (r@ 423 ) (r@ 4230

(—1)¥=sign detpf\f). (6) r{d (r? 2.8
p is the usual hyperradius defined bf=33 ,(r{)? and
{=(al bl cl i - bf b, ,.bfy _bf .
a,=(ay ,by ,cy) denotes the external Euler angles which ro afi=(al%, b P 1)5(%’%0):“&3)’0)' (78

tate the space-fixed frame of reference topheacipal-axes-
o;—inertia body-fixzed frame, and are in the rangeisﬁ)Z , abfzz(aifz,bgfz,cifz)z((bh,gx,wh)_ (7b)
cy<2m and O<b,=<. The two angles & §<arcsiri1/(1 i) 0 0 )

+co€ ¢)V2 and O< <4 determine the system’s principal The anglesy)"”’ betweenry’ andry’ are all in the 0 tom
moments of inertia and finally,= (5,5, 5%), where range and are related by the simple expression

0=4{",8Y<m and 0=5{)<m, are three internal hyper- cosy (12 = cosy(1 cosy(2?
angles which describe the relative arrangements of the four
atoms for a given set of those moments. Equati®n to- +siny\"¥ siny{?? cos¢, , (8)

gether with these ranges, uniquely defines the ten ROHC. where¢, was defined in the last row of Table | and is in the

These hyperspherical coo_rdlnates have many advant_?énge[O,ZTr]. As a result, we can consider either the variables
geous features for the dynamics of the system, but for this 23y (1,3 (L2) (13) . (23)

) ) . . , , or , , ,x) to describe the
discussion we shall only stress two important ones. First; "* ) or (L) 7’*(1,2))()

= (1,3) .,[(2,3)
four of the ten coordinatey,p,,¢) are arrangement-channel Sy(sztg)m.(lys')l'o go from % =(n""7n".n") o

. . : o , ,&€\), requires consideration of the chirality co-
independenti.e., are independent of). Second, the princi- 7% 7\ g”). .
pal axes of inertia associated wita(,b?,cl) have direc- ordinatey as discussed in E¢5.74 of Ref. 35. The(body-

tions which are-independent: the senses of either two Orf|xed—2) Jacobi coordinates are, by definition, the ten coordi-

none of these axis may changenas changed. In addition, nates

associated with the angles{{),5?),5%) there is a set of (r(V) r(® (¥ ,aﬁfz

internal mathematical axis which have properties similar to

those of the physical space principal axes of inertia, i.e., have =", r®.r¥, o000 A2 A 122 0. 9
directions which aren-independent but senses such that two|, these coordinates the Hamiltonian is independen afd
of them may change with. As a result, this set of row- 55 the simple form

orthonormal coordinates is especially well suited for the de-

scription of the dynamics in the very strong interaction re- ~ 72 2
gion. Furthermore, an analysis of the form of the Hy=- ﬂE
corresponding Hamiltonian operator reveals that the

Va0 X)

2 F(i)y2
i ‘9 r(i)+ (])\ )
i (ar)? N (r

i=1

permutation-symmetry of the system can be introduced very h2l 1 e (3) 1 9 (2)
. =—— |5 —msh = — 5!
simply. 20| 1P (ar P2 TP (ar2y2
LA L
. . . . + - ry |+ +

B. Coordinates in the asymptotic region r (arM2 ™ | 2u(r®)2 7 2u(rl?)?

Let us now define the Jacobi coordinates in the %2 (1)
asymptotic region. Using the mass-scaled Jacobi vectors T, (1) (1) ((2) (3
M 1@ (BN give : : Tz T TRTRT ), (10
(ry’,r?,ry”), given by Eq.(1), we can uniquely define the 2u(ry”)

- i i ) @) ,(23) (1) . . _ _
"% Jacobi coordma'ltesrx('* "9”(’3%’““ T where [y(7®) =] is the space-fixed orbital angular mo-
v, €\) in the following way: 5,6, ,¢,) are the polar . (3) T~ 0(2)

_ 3) ) mentum operator associated wrtﬁ s b, (R) =), is the
coordinates ofry”’ in the space-fixed frame of reference 1
(2) FoorrWy=7(1) _fi - -
in the body-fixed frameriflygflz:fl which is obtained by ry™ andjp,(ry )_“\_ IS th? I‘?;)dy fixed-2 ar'1gular mom.en
the rotation 0fOxSyS'z' by the Euler anglesd, , 6,,0); and tum operator associated witly’, the angles involved being
(1.3)

i 1) ) (3 i i -
fixed framerifzygfzzt;f2 which is obtained by rotation of the potential energy/(ry™".ry ’fr’\ ). 1S nelther.a fung
0x’1y i tion of the three Euler anglﬁz, nor of the chirality vari-

NN TN

. . bfy bf, . ..
rized |n. Table . f;}s) a resu:tz,)th@z- -andOzx g?as co;fr;chze course stems from the fact that the intra-molecular forces are
and point along}”’, andr}™ lies is in the positiveDx, *z, independent of the orientation of the tetraatomic system in
half-plane, withOz '=0z 2.
the following compact notations for the corresponding Eulerfunction is particularly simple in these coordinates, as shown

Ox}s\fy)s\fzif, (r(xz),y(kz,a),%) are the polar coordinates 0;2) body-fixed-1 angular momentum operator associated with
sf, ,sf_sf
(rg\l),,y)\ &) are the polar coordinates Dﬁl) in the body- those given in the rightmost column of Table I. Note also that
Pl b1 Zbh by (0,04/,). These transformations are summa- . . .
able y but only of the intra-molecular coordinates. This of
A\
of P2 For convenience we define space or of its chirality. The asymptotic form of the wave
angles in Sec. Il B.
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C. Coordinates in the weak interaction region Because of the orthogonal nature of the transformation de-
Hned by Eq.(11), it can easily be shown that under that

The boundary between the strong and weak interactio ;
y 9 transformation Eq(10) becomes

regions is specified by a valug, of p. The criterion for

deterrr'unmgptJ is that thg matrix ele'ments Qf the interaction - Y g Ei(m)ﬂli(m)
potential between all pairs of weak interaction LHSF belong- H,=-— b0 90 52
ing to different arrangement channels be sufficiently small mp-op-op mp

(but not necessarily zeroln an actual calculatiomy, should ’|‘2(F(3)) ]gf (72 ]gf (F0)y
be treated as a convergence parameter. sf (*3) 5 - =z + 2 T
In the weak interaction region a set of ten Delves hyper- 2p(ry)e 2p(r\™) 2u(ry”)

spherical coordinates are employed which are closely related

(1 (2 (12 (L3 (23
to the Jacobi coordinates introduced in the previous VAP T YT ), (13
section®® They consist of three Euler anglés be specified where hyperangular momentum operatfiﬁsandﬁg are de-
laten, the chirality coordinatey, the three internal hyper- finaq by

anglesy, defined after Eq(8), the usual clustering-scheme-
independent hyper-radiys and the two internal hyperangles

. 2 29
2 — 2
m=(7",7?)) defined by the relations Lilm)=—h (sinn(f) sin 277&”) a(23D)

(D) i (D) ain (2) d
rx =psinpcsing”, (11a o (132
X (sin27\") , (143
M anl)
r(®=pcospt siny\?, (11b)
Ly(m)=—h? = ’
m)=—h*—
r(®=pcosp?, (110 2 (sinp?)°(cosn\?)? a(n?)
where the ranges of the angles are §{*), 7{?)<#/2. Thus X (sin7{2))%(cos7?)? (9(2) _ (14b)
in going from the asymptotic region, discussed in the previ- (™)

ous subsection, to the weak interaction region, we use the ~ - . .
same geometrical angular coordinates but t%e Jacobi coord? E9- (13). jur, andjy, are still referring to the hfand bp
nates (ﬁ”,rf%rf’) are replaced by, ﬂ(xl),ﬂ(xz))- How-  axes, respectively. The transformation of principal axis of
ever, it is very important to stress that we have a freedom ofertia axes to the bfaxes and their associates Euler angles
choice for the three externalEulen hyperangles; even IS the topic of the next subsection.

though thea;’f?-‘ of Eq. (7b) uniquely defined the Euler angles
for the Jacobi coordinates—which in turn defined a subset of

the Delves hyperspherical coordinates, BEd.)—the Jacobi D. Transformation between the Euler angles

distances r(§\l),r§2),r§\3)) apd the corresponding angleg As the asymptotic analysis will be conducted in the
between them are totally independent of any frame of referbody—fixed-Z frame, defined in Sec. 1B, and the scattering

ence. Consequently we shall choose the external hyperanglﬁﬁave functions in the adjacent weak interaction region is

\II:Vh'Ch tlﬁad fo the ovetr)all n:_ost convlf nlen;chnlimerlc_;]l Sc‘hegq?expressed in the principal-axis-of-inertia frame, we need to
rom the previous subsections we know that on either 'SId€ oo ish  the relation between the corresponding Euler

of the weak mtgracnon region dlﬁerept fram(_as of referenceangles_ For reasons that will be clarified in the actual projec-
are employed; in the strong interaction region we use th

fion of the wave function onto its asymptotic form, it is de-
principal-axis-of-inertia frame of reference defined aﬁl ymp '

h i th ot . the bodv-fixed irable to express this frame transformation in terms of the
whereas |n” € asy[,‘f‘p otic region wg use the body-fixed- interna) Delves hyperspherical coordinates. This subsection
frame specified bya, . A transformation between one of

outlines the derivation of such a relation, but for economy of

these frames and the other will have to be done either at thehace most of the lengthy details and explicit expressions
boundary between the strong and weak interaction regioniave been left out. We emphasize, however, that all of the

or between the latter and the asymptotic region. Hence, §mitted derivations involve straightforwattut tedious al-
would be convenient to use one of these two sets of Eulegepraic manipulations.

angles in the intermediate weak interaction region. Since the | terms of the %3 Jacobi matrix notation introduced in

al angles asymptotically approach taf? angles, it is nu-  Sec. Il A, we can conveniently express the relation between

merically most convenient to employ the principal-axes-of-the three frames involved as

inertia frame of reference in the strong and in the weak in- ~ _

teraction regions. This leads to the following choice for the pS=R(al)pl= R(at;fz)pifz, (15

Delves hyperspherical coordinates in the weak interaction ; ) o _ _

region: where p;' denotes the Jacobi matrix in space-fixed coordi-
nates, defined in Eq2). pf and pffz are the corresponding

(p,a;‘f,m,n X) Jacobi matrices expressed respectively in the principal-axis-

of-inertia and the body-fixed-2 frames of references. By defi-

1,2) 1,3 2,3 ..
29922 0. (120 ition,

_ 7 Wl ~T 1 2
=(p.a; by .c{, 7V 7@ A2 ATy
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pr=(—1)XpN(0, H)R(8,). (16)  cally outlined in Table I, and the transformations in £t
we furthermore have the following expression for the body-
fixed-2 Jacobi matrix expressed in Delves hyperspherical co-
From the definitions of the body-fixed-2 frame, schemati-ordinates

sinn\Y sin{? siny\'*¥ cos¢,  cosp\M sin7\? siny{*? 0
p2=p| sinp sinp® siny\t sing, 0 0 : 17
sin\Y sin{? cosy\*? cosp\M sin\? cosy\®*?  cosy?
|
Left multiplying Eq. (15) by R(a;’b) we obtain ll. THE R,S ASYMPTOTIC ANALYSIS
bf bf,\ = As mentioned in the Introduction, a tetraatomic colli-
py?=R(a,)R(&)p=R(a)p;, (18)

sional system with a total energy below that required for the

where we have introduced the three angiesvhich by defi- system to dissociate into three or four bodies involves
nition rotate the principal-axis-of-inertia frame into the body- 2Symptotic arrangement channels that can be characterized
fixed-2 frame. Right multiplying this expression by the in- either asatom-triatomor diatom-diatomchannels. The wave

verse of pf (which is nonsingular for nonplanar fu_nctions in these two kinds of asymptotic channels are very
configurationg we arrive at the following expression: d|ffere_nt from each _other and hence we s.haII treat thgm sepa-
rately in the otherwise general tetraatomic asymptotic analy-
R(ax)=p:ff2[pf]_l=(—1)ngf2R(®)[N(6,¢)]_l (19  Sis to follow. However, to save space, we will, whenever
possible, adopt a common notation for the two cases. As a
which relates the 3 anglas, to the 11 internal coordinates result, notational conventions are especially important for
X 7. %, 6, 8andé (p cancels out First we note that the this analysis.
anglesa, are indeed independent of the Euler angtfsnd The general asymptotic form of a time-independent tet-
aifz. Second, we note that the five internal row-orthonormakaatomicphysicalscattering wave functioﬂﬂ;”w is
hyperangless, , 6, and ¢ can be expressed in terms of the prys

five Delves hyperanglesy, and 9, . Indeed, by left- NI,
e : ' S RPN
multiplying Eq. (15) by its transpose, we get W hys ~EXHIKy, ¢y M(3) €OSOy Dy (1)01)
~sf sf_~bfy bfy_~7 T , ikye 12
PAPX= P\ P, "= P\PX (20 N, oagy, €M 1) (2
"‘)\EM f)\nxx (F) (e (D)\n)\(rg\ )

where the third term, and therefore the first and second also,
is independent of. Substituting Eq(16) and Eq.(17) into (23

Eq. (20) makes it clear that one can derive closed expres- o )

sions for 8, , 6, and ¢ in terms of %, and y, which can in which corresponds to the collision of two isolated reactants
turn be used to eliminate the former from EG9). These {M1:A2}=\" to form the two product§r;,Ao}=\. In this

derivations are straightforward but very lengthy and throughexpressionb, , , ®, ., andfk'“i' denote, respectively, the
out the remaining of this paper we shall simply note that » N A

can be expressed exclusively in termsigfand y, and we . ) ;
b y R M scattering amplitudes which depend on the angﬂ@i

will write it as a, (g, , %) - . ) . ‘
As a last au)\xiliary texpression let us note that from theE(HA #)) defined in Table |. The far asymptotic behavior of

relation between the thre® matrices in Eq(18) the corre- the physical wave functiofiexpressed as the symbel in

. . . . . . Eq. (23)] is composed of two distinct parts: the incident part
sponding Wigner rotation matricesatisfy the relation which is the product of an incoming plane watabitrarily

DJ(abfZ):DJ(aI) D’(ay) 1) assigned to be traveling in the space-fixedirection and
A » » the reactant wave function, and the scattered part which is a
Inverting this matrix expression and rewriting it in terms of SUM OVer all possible product state wave functions multiplied

the individual matrix elements we arrive at the final impor- Py corresponding outgoing spherical waves and weighted by
tant expression the associated scattering amplitudes. Whenlabels a

diatom(—)dia(tc;m or an atom-triatom arrangement channel,
Oho(a)= 3 DE DA m) 2D i wave unctions or & witor wave funcion, The
K .
corresponding quantum numbexs, for these two cases
This concludes the prelude to the explicit asymptotic analyare, respectively, defined by the following compact nota-
sis to be presented in the next section. tions:

product and reactant wave functions and the corresponding
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two diatoms: physical scattering amplitudefsi‘,nn%’, can next be calculated
A
A ={\; N0 0@V, )2, mE, mi2y directly from partial wave sums over the corresponding
0 D m(z)} (243 S-matrices. _ .
=he My, My Ty Thus the key feature of thR,S-matrix approach is to

decouplethe mathematical and physical parts of the scatter-

atom-triatom: ) . . L )
ing process(i.e., the solution of the Schdinger equation

A=A A, WY miby and imposition of the asymptotic conditioris such a way
D that the proper physical solutions are expressed as linear
={Nex. m} (24D combinations of an arbitrary complete set of linearly inde-

We have, for convenience, introduced the subset of quamu,{,:;,endent mathematical solutions through the introduction of
numbers\e, on which the asymptotic molecules internal the R- andS-matrices. In the following we outline the steps
energies depend. Similar definitions are used for the twd1volved in computing thes&k- and S-matrices from the
cases of reactants arrangement chankél§hese quantum Mathematical solutions of the Schifoger equation.

numbers are associated with internal vibratiof’) and ro-

tation ({7, m{") degrees of freedom. Thug® andv{? re-

fer to the vibrational quantum number of each of the twoA. Definition of the reactance and scattering matrices
diatomic fragments whereas the s&t) is associated with . IMIT _

the three vibrational degrees of freedom for a triatom. Simi- L€t the wave funCt'OnSwa;, constitute a complete set
larly, " and j{?) in Eq. (24a correspond to the angular of simultaneous solutions of the following eigenvalue-
momentum of each of the two diatoms, gl in Eq.(24b)  eigenfunction equations

is the total angular momentum quantum number of the tria- . .

tom (no spatial nuclear motion angular momentum is of ~ HW¥, . =EW¥, ., (253
course defined for an isolated atpnfror the reactants the N N

corresponding quantization axis for tae&omponent of the 22 JMITT 2.3, JMIIT

angular momentam)'\(,'), is chosen to be the direction of the J ‘P“’if I+ Dh \P”’i’ ' (259
incident relative velocity, i.e., thepace-fixed-axis. As was A IMIT IMIIT

done for triatomic systemsS,we chose for the quantization Jst, Wy =MAW (250)
axis of j{) the product Jacobi body-fixed-2 axi®z. (see ! !

Table ). This is called a helicity representation and leads to M= (— 1)1y ™I (250)
the most compact and computationally convenient expres- oy Moy

sions for the state-to-state differential and integral cross sec- TV n . ,
. . where H, J°, Ji, and | are, respectively, the system’s
tions. It should be emphasized that the sum over product sf, P Y Y

states in the last term of Eq23) includes(in principle) all nuclear motion Hamiltonian, the square of its total angular

possible states, i.e., both open and closed ones. This ensu@gmentumppergtq, the space-fixed componen.t o, and
the mathematical completeness of the expansion, and can &€ operatot which inverts thez system throughlljts center of
understood when realizing that asymptotically closed state®ass- In additiong, J(J+1)2°, M#, and (—1)" are the
might well be energetically accessible in the inner parts of°rresponding eigenvalues. These wave functions are re-
the configuration space. quired furthgzrmore to transform. according to the' irreducible
Whereas it might seem reasonable from the discussior§Presentations of the permutation group of identical atoms
above to attempt to explicitly look for solutions of the Schro ©f the tetraatomic system. Such a set of simultaneous eigen-
dinger equation which satisfy E¢3), it should be stressed functions does indeed exist since the corresponding operators
that this type of approach is not usually numerically conve-commute. Finally, the subscript'by, labels the different
nient as it can in fact only be done by some kind of “trial and linearly independent solutions and spans the same range as
error” recursive scheme. Thus instead of directly solving thethe indices defined by Eqé33) and(35) and associated with

Schralinger equation subject to thghysicalboundary con- the isolated molecular products. These solutions are of the
“mathematical” type, i.e., are not required to satisfy the

\ physical asymptotic conditions of ER3). We assume that
matrix” approach®*!where one first solves the Schlinger  this set of solutions has been computed by the hyperspherical
equation for generamathematicalsolutions (i.e., without  coordinate approach as follows. We start in the strong inter-
imposing the physical asymptotic conditign8y a subse- action region at a sufficiently small hyperradius for the wave
guent asymptotic analysis of these mathematical solutionfinction to be close to zero, and expand the wave function in
the so-calledR-matrix is obtained. Whereas the nonphysicalLHSFs expressed in the row-orthonormal hyperspherical co-
solutions themselves are not unique, Bvenatrix for a given  ordinates. The coefficients of this expansion dependpon
partial J, parity IT (with respect to inversion through the only, and satisfy a set of coupled second order differential
system’s center of magdrreducible representatioll of the  equations. These are propagated outwards for incregsing
permutation group of identical atoms, and eneEyis in-  until the boundary with the weak interaction region is
deedunique The partial waves-matrix is then obtained in a reached. We then switch to the weak interaction Delves hy-
simple manner from the correspondifymatrix, and the perspherical coordinates and surface functions and continue

ditions, in order to obtairiinnk’, we use the standardR.S-
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propagating in thep variable until the boundary with the ~ 12 h2 92 " h2 92 @
asymptotic region is reached. In the weak interaction region Hy"“=— @ 7 M2 N @ T @n2h
. 2ur\ (ary) 2\ (ar”)
these solutions can be expressed as (293
" (1) (Y2 F(2)r(2)y72
IMIIT g JUTA'by =] 7 ()1 ()]
Vi =P Zb Co, (pip)Dig, (&) + Dot 2
N by 2,LL(I’)\ ) 2p(ry )
LHSF TN
XD jiira, (7 Y3 P)- (26) +VEA(r(L r(2) (L2 (29b)
In this expansion,Dﬂ,IQA are the usual Wigner rotation ~int h? 9 3) Ef(f(f))
. . . . =— ——= —5 —ms
matrices; ®jiiry, are the LHSF(displaying a parametric Moo2ur® (ar()2 N 2u(r(3)?
dependence on the hyperradiyd, and Ciﬂfk °\' are FVIMr D (2 3 ), (290
p-dependent coefficients determined by the solution of Eq. vit=y(r (D (2 (3 —yL2 ) (@ (12
(25a. (p~* is a convenient multiplication factor which = VIR ) T VTR R )'(29d)

eliminates the first derivative with respect gacontained in 12) ; ) ) _ ) ]
the hyperradial kinetic energy operajoklore specifically, ~Where Vi~ in Eq. (29 is the triatomic potential which

. . . H H 2 1,2
the ®5i>, are defined as eigenfunctions of some convedepends on the three internal coordinateg)(r{?), »{*?).

niently chosen weak-interaction reference Hamiltonian tha>0™mon to both the diatom—diatom and atom-triatom cases
contains differential operators in the coordinaigsandy, 1S the fact that the Hamiltoniahi)™ (which describes the
but notp.*° The explicit definition of this LHSF reference 'elative motion of the two re_act;ants or the two products
Hamiltonian is outside the scope of this paper and we justicludes an interaction potentiz™ and the orbital angular
noticed that it is obtained from Eq13) after the analytical Momentum operatdg({*) associated with the relative mo-

elimination of the Euler angless’, by means of a partial- tion of these species.

. . : : nr :
wave expansion of id and the freezing of the hyperradips We now expand the\Ifi',V'b, of Eg. (26) in the
e’ N’
Because of the rotational invariance of space (ﬂigm oy asymptotic region according to
A
and ®5i, are irﬁependent ofM, and the entire Umrwb;,(r;@)
, IMIIT B T Ab .
M-dependence o‘lfh,b,, is expressed by thByq q,}\,b,, Ngb‘l #@i'ﬁt(rﬁl) RGN
The R and "' matrices(which are also indepen- g A (30)
dent of M) are determined from a knowledge of the matrix )
ST \whose elements are the coefficieﬁl%nn’b;’ of Eq Whereuign "\ denotes a set dtill undetermineiradial
b ' A
(26). To that effect we rewrite Eq10) in the form functions and the molecular basis functioth;%'t\,"A are simul-
L N taneous solutions of a set of arrangement-channel-dependent
Hy=H®M(rM r@)+ HIM D 12 3 g0, (27)  eigenvalue-eigenfunction equations. THedependence of
JIA'b) . _JIN'b),
where for the diatom—diatom arrangement channels the U,, = ' stems from that inC, =~ ™' of Eq. (26),
R R ~ which itself resulted from thél dependence of the LHSF in
HM2=HM(rM)+ R (r?), (289 the strong interaction region. The latter is imposed in order
o to achieve decoupling between thie=0 andII=1 solutions
“ n2 2 [WVaEM which is extremely important as it decreases the computation
H=_ i g i +V(')(r(')) . . . .
Y ONFROIVAR M2 ), time for the partial wave scattering equations by a factor of
2ury’ (ary’) 2u(ry”) ) . :
4. In the diatom—diatom case these equations are
=12, (280 T2 IM _ 22 IM
J (D)\bk—ﬁ J(J+ 1)(1)7\'%’ (319
2 2 12(73 ~
e 7@t ) 3@ =AM (31b)
2ur () 2u(r¥)? o N
SV 2 ), sy T I n TAD (319
RHIM _z2 IM
V=V r2 ) =P ) = 2. AP, TR, 31
(289 (V2o a2 0G0+ Doy, =12, (319
In Eq. (280 V{)(r{") (i=1,2) are the diatomic potentials, (124 IM _ M
andV(r{?,r® r(® 4,) in Eq. (280 is the total tetraatomic HX @3, = Bae, o, - (319
potential that depends on the six internal coordinates of thghere
system. For the atom-triatom arrangement channels the terms ., DL T2
in Eq. (27) are defined as Ih=h" T+ (32
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and we have used the compact quantum number notation

Aby={\e\,d\ . 0}

(2)

0@ W

2
g (2)

vj)\

It should be noticed that th@zbfl

_{)\11)\21 1 JXIQ)\}' (33)

and Oz;ffz axes and the

associated components of the total angular momentum vector

operator are the same, as indicated in 4.9. In the atom-

triatom case the eigenvalue equations are the same except

that Egs.(31d), (318, and (32 are replaced by the single
equation

[P0 =42 M0+ 1o (34)

K. Museth and A. Kuppermann

bf.
@IV )=(Dho, [0 (@8 VIO ),

(38a

=8, ,(Dha |DMQ DR V@ ),

(38b)

8 2
T 2J+1

bf2

bfy [y sint
8o, 0/ (¢ |V |q>)\b,

(380

where Eq.(38b) follows from the fact that the body-fixed
molecular wave functions are localized in the arrangement

with the corresponding compact quantum number indice§N@nnels and Eq380 is a simple consequence of the or-

now being

Aby={hey, 0 ={Ay N WY, 0,0 (35)

Equation(31) and its atom-triatom counterpart will clearly

be satisfied if we express the dependencebgf on the
Euler angles as

O (1P 1 i) =Dy, (MO (Y r?) (364
o, (@D (1 r ),
(36h)

bf;
wherefl) b

be specmed later. To explicitly define the radial expansion

JITN'b!

coefficientsU *" "'(r{*)), we next substitute E¢30) into

Eq. (25a), multlply the result bycpi'k\)": and finally integrate

over all coordinates excepf‘). Using the definitions in Eq.
(27), Eq. (31, and Eq.(36) this can be shown to give the

thogonality of the Wigner rotation matrices. Thus we con-
clude that in the body-fixed total angular momentum repre-
sentation of Eq(30) the potential energy matrix is diagonal
in ), and independent of bothandM, whereas the kinetic
energy part is tri-diagonal if2, and diagonal in the remain-
ing quantum numbers {¢{",0®,jM,j® .3} or
(v i} depending on the arrangement channel consid-
ered.

The next important step in determiniiy"'" is to con-
sider the asymptotic limit of Eq.37) for which the interac-
tion potential can be assumed to have vanished and then

JITN'b!

express theseodyfixed U, A’(r(s)) in terms of linear

are the body-fixed molecular wave functions, to combinations of the known analyt|cal solutions to the corre-

spondlngspaceflxed equation(also in the absence of the
potential coupling term However, it will not be assumed
\'b), .
N

Eq. (37) have become negligible. These analyucal solutions
of the asymptotic form of Eq(37) are obtained in the Ap-
pendix. Since one can express them as real standing waves or

that the Coriolis coupling terms representedLJb>yb

following coupled system of ordinary differential equations as complex propagating spherical waves, two different ap-

in UJHF)\ b)\ ( (3))
h2
->—U,
2

JIINL L B2 (34 1) 43, (dy+ 1)

JITN' b

+ZQ)\]U JITN' b

—h207 (3,008 (00U,

JITN'b.,
_h2§+(‘J1Q)\)§+(J)\ 1Q)\)U)\b)\+1 A

JIT'b!,
+ 2 (DY »

n
N"b),

| Vlnt| (I) > u

"
N,

JIITA' b

(E E)\e}\)u ) (37)

- JIITN b
where U '

respect tor(3) Ab, =1={\¢, ,J, ,Q, =1} and £*(J,Q,)
=J(J+1)—Q,(Q,*1). Furthermore, since the interac-
tion potential, VI™(r(",r(® r(® 5.), is invariant under

A denotes the second order derivative with

proaches can be adopted at this point. Throughout the re-
maining of this paper we shall outline both in parallel since
they are related in a simple manner, and finally choose one
for convenience in the numerical implementations. In the
asymptotic limit of Eq.(37) we expand the linearly indepen-
dent solutions as

JHI‘A b \'b, JITN'b!,
Ul V)~ Vi 23 1S w“))A ;o

e, NG
IN'D” 3 JICN b
+C V(B 39
o, By (393
JHF)\'b \'b, JICN' b
Unp " V)=o) [T, M),
A A
)\Hb)\”
D" JITA'b,
N (r(3) A
O)\b}\ (r)\ )ID)\Hb:" ]’ (39b)

space rotationé.e., is independent cﬂffz) the potential cou- WwhereV, are the channel velocitiesd™'", B7'", ¢!l

pling terms in Eq(37) simplify to

D' are the constar(p-independentexpansion coefficient
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®5h%,  defined in different spherical sections. Both deriva-
N

tions have been worked out, but we shall restrict ourself to
,\”( r(3), f* bw'(r(3)) andO by (r(3)) derived in the the compact fixegh- version. Before this can be done, how-
, it is necessary to switch from the principal moment of
Appendlx Eq.(A15). ever, | . . .
The pairs of square matrices, A", BT} and :cnergaZCarteman daerS u(s)edﬂl]r_l H@o) to th? .?]a%olgl body-
(¢ DI introduced in Eq(39), depend on the choice ''<c0 < 8XES USEd N 430). This is accomplished by means

A o . . - . f the transformation relations derived in Sec. IID. From
of initial conditions adopted in the solution of the differential © . .
equation satisfied by pthe matric’'™ defined by the Egs. (22), (26), (30), and (36) we obtain the following

matrices for the analytical functions&'] A”(r(3))

equalities:
il,jbr,n * coefficients in Eq(26). The<I> |n the Lh.s. of |

N
that equation are obtained by mtegratmg the Sdimger i')ﬂbm—p"‘E CJHD‘ 5% (p: p)
equation starting with small values pfas indicated prior to Aby
Eq. (26). Other than requiring thai)AbA approach zero as XDM())\(a)\)q)\Iiltllls"'):\bx(m")’)\ D), (423
p~0, arbitrary initial conditions regarding its derivatives
are used. However, as a result of the linearity of that Schro 4 JICN'b!, LHSE —
dinger equation the “ratios” between those two pairs of ma- —P 2 Co, (PP PSiiEss, (770 0p)
trices, namely,

S (408 x 2 Dik, (8D, (@ (m 1)), (420

A
SJHF:DJHF . [cJHF]*l’ (40b) /
o , - , Ul ey )

are unique, i.e., are independent of thdsH)’L initial condi- > N 3 b1y g 2
tions. Throughout the remaining of this paper we shall refer v r(® Ding, (8P,
to the standing wave basis set of EG&10) and(Al1l) [ap- O 2
pearing in Eq(393] as theR-matrix representation and the X7 (429
spherical waves of.Eq$A12) and.(A13) [appearing in Eq. We next multiply Egs. (420 and (420 by
(39b)] as theS-matrix representation. PLHSF*

bf

Whereas theS-matrix representation with spherical in- JH“‘Djmén’p)D Q{a ?), use Eq.{11) to expand
coming and outgoing waves is far more intuitive physically (r$?,r{,r{*) in terms of @, 7,) and finally integrate the
than the formally equivaler®-matrix standing wave repre- refsultlng expression over all eight hyperangigs v, , and
sentation, the latter does offer a more attractive formulatlorii,\ with p set equal tg. After the substitution of Eq(39)
due to the numerical convenience thtis real. The state- into Eq. (420 and performing some straightforward but
to-state cross sections depend only on the open-row, opetengthy algebraic manipulations we arrive at the matrix
column part of thes-matrix, denoted bysih' . Its relation to  equations

i r .
g:\tjecr:]otr)r;ispondmg open—open pRAL" of the R-matrix is O’ = g7 AT _ @Iggdlil’ (43
She" =[1+iR3e 17 [1-iRJ" . (41) oI =P - DT, (43b)

The overlap matrice®’ and A’={8’,¢’,Z°,®’} which

In the rest of this paper we obtain expressions forRhend
appear in these expressions are defined by

S-matrices in terms of any complete set of linearly indepen-
dent solutions to the time-independent Sclinger equation. ka

)\b, 55[ d’?)\f d?’xq)JAbl\ (7%, 7x:p)

B. Calculation of the reactance and scattering XCI)J)\b By, viip)D ;;1—),(%*( ”m,.vy), (443
matrices
. - . kax e
We now derive explicit expressions for the reactatiRe ( )

( )

and scatterlngiS) matrices in terms of the expansion coeffi- [ Aby _ 42 S )\f dypr———
}\bf
V)\ n.n rf

C|entsC Y deflned by Eq(26). The strategy is simply

to equatelf b glven by that equation atfaedlarge value

b, ¥ de < DLHSF (o _.—)(I,Hz DD
of the hyperrad|u3p, with its value given by Eq(30) with by WY ABDT AT M)
JICNb!

Uxb M expressed by Eq39), followed by an integration (44b)

over all angles. It should be noted that it is equally possiblan which (r(%,r(?) r(®)) are the functions off, 5,) defined

to make this projection at a fixed valuerdf’ (as opposed to by Eq. (11), and the integrals are over the five internal

p), but this strategy is complicated by the fact that the cor-Delves hyperangles, ,v,). Note also that the symbat in

responding wave function cuts across several valueg, of Eq. (44b) is identical to the one in E§A15) and can assume

i.e., the flxedF(s) values of\I’ " have contributions from  the valuesS, C, Z, or O corresponding to the two sets of
)\
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asymptotic radial functions in respectively tReor Smatrix  submatrix depends only oR2", it is clear that the calcu-
representation. In addition, singeis sufficiently large for |ation can be simplified somewhat by only computing the left
the potential coupling matrix elements between different arhand block column oR™" in the I.h.s. of Eq.(49). This
rangement channel regions to have vanished, the correspongdads to the following matrix equation for the open-column

ing d)'jrbsf* are independent of bothl andI" as they are submatrix of theR-matrix:

completely localized in those regions. As a result,@eand

nr J Il I _ \IIT B -1
XY are also independent &f andT. Rgo _ Coo_Yoo_ Coo Yg Cgc
Left-multiplying Eq. (43) by [0’]"! and taking the RIIT _yArEd @l s
derivative of the resulting expression with respectptave —r
now get (sgo:Yoo_ Sg)o) (50)
Yo Soo

i[CJHI‘]ECJHF:[OJ]—l(SJ_CJRJHF)AJHI‘, (459 . o .
dp The inverse matrix in Eq(50) can next be expressed in
- . terms of its submatrices which after some algebraic manipu-
— J1-1/ 49 _ JQIIIT JIT
=[O (T -osTHeT, (45D lations leads to the following equation for the open—open
where the dot above the matrices denptderivatives. We submatrix of the reactance matrix:
now right-multiply this expression byC’"'']~* to get .
. Rio' =[M3g' 17 (S50~ Yoo Soo)~[Mgo 17*
Yl = CINT CINr -1 U o o
JIT »J J _ T A -1\ JIT
:[OJ]—l(SJ_'CJRJHF)(SJ_CJRJHF)—loJ (463 XYoc Cod Coc— Yoo Ceol Yoo Sg)ov (51
. ) where
:[OJ]fl(IJ_OJsJHF)(IJ_oJS\]HF)floJ, (46b)

T ; . . . . . MJHFECJ _?]HF'CJ
where Y is by definition the logarithmic derivative of 00 oo oo oo

JIT Thi ; : s s =
tance andl seattering matrioes: ST e -V VITE,. (52
RIIT _ (@) YIIIT &)1 g 1T &) @73 In these expressiong”!" is given by Eq.(46), whereC'''"

is obtained from the propagation of the Safirmer equation
SJHF:(OJ_?]HI‘(})J)fl(IJ_?]HI‘i-J)’ (471 which they satisfy, from the inner to the asymptotic region,
andO’, defined in Eq(44a, can be computed numerically
where we have defined the similarity-transformed logarithfrom a knowledge of the LHSF and of the Euler angles
mic derivative matrix,y ' by a, (7, ,7,) obtained in Sec. IID. It should be noticed that
VI = oy O] 1, (48) CJ'Hr and cnr are not needed se?r?rrately; it suffices to ob-
tain their logarithmic derivativeY>"". As a result, the
As mentioned in Sec. Il A, th&-matrix real standing wave p-dependent coefficient matrices obtained from the LHSF
representation offers a more attractive formulation than thexpansion in the strong and weak interaction regions can be
formally equivalentS-matrix complex propagating spherical propagated by logarithmic derivative methods.
wave representation due to the numerical convenience of be- To evaluate the five-dimensional integrals in E44b)
ing calculable using redhs opposed to complgarithmetic.  which defineX”’, we first have to give explicit expressions
However, to compute state-to-state differential cross-sectionr the asymptotic molecular wave functioﬁs:\)fé)\_ For a

the open—optilqrsubmatrlséo , IS needed, a“d.c"?‘” be _Ob' tetraatomic system these functions describe either an atom
o by means of Eq(41). To optimize this

tained fromR, . . and a triatom or two diatoms. For tlagom-triatomcase this
approach we partition Eq(47a into open—open, open— anction assumes the general form

closed, closed—open, and closed—closed submatrices accor
i icahbh (1) (2
ing to the closed and open nature of the local hyperspherlc@,ﬂi(r(A ) 'ri )1%)

surface function 51>, which appear in Ec(44), accord-
ing to B B =S DX (0429 )M L (r(D) p(2) (12
(Rfﬁ&r Rffc“) ChmYarey,  —varel, | 25 Do O AR, i (050,
Rz:]lc_)[F RE:H(;[F - _?glc;lrcgo cgc_v‘r]:grégc (63
— . — . triatom . i . . .
mr 1nr
sgo_Ygo 330 _ch S(J;c Wheretbxlé(hl)K(kl) is theinternal triatomic wave function for
Vg gl g | the quantum numbergel? KM ={v(V B Ky with

v{Y) denoting the quantum numbers associated with the three
(49 vibrational degrees of freedom. Hejé"(j(¥+1)%? and
where we have used the fact that the matrica® K(xl)ﬁ are the eigenvalues of the square of the triatom’s total
=8¢’ 7°,®’ are block-diagonal in the open/closed label- angular momentum operatf”) and of its body-fixed com-

ing which follows form the definitions in the Appendjsee  ponentj (Xl’. In Eq. (53) the body-fixed frame for the triatom
Egs. (A10)—(A15)]. Since, by virtue of Eq(41), the SXI"  has been chosen such thi? points along the-axis andr (!

Downloaded 24 Jan 2002 to 131.215.129.96. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 115, No. 18, 8 November 2001 Tetraatomic reaction coordinates 8295

lies in the positivexz half-plane. As a result, the transforma- tion) are done simultaneously. Although they could be done
tion from the tetraatomic body-fixed-2 frame, defined in Secindependently of one another, it is more efficient to do them
IIA, to this body-fixed triatomic frame is accomplished together. This leads to explicit matrix equations relating the

through a rotation defined by the Euler anglesy{®?,4,), logarithmic derivative solutions of the hyperradial equations
where the hyperanglé, can be shown to be related to the to the reactance and scattering matrices that are detailed
anglesy{*?, (>3 and¢, , defined in Table I, by enough to permit a calculation of the latter. Given the favor-

able kinematic-invariance properties of the row-orthonormal
hyperspherical coordinates, the associated ease with which
in (1.3 (23 _ (13 ajn (29" : . . ) - .
siny,~? cosy,”? cosé, — cosy, " sinyy different parity and irreducible representation wave functions
(54 can be decoupled, and the ease of parallelization of the re-
lated numerical algorithms, this approach should permit
benchmark-quality calculations of state-to-state integral and

siny\"? siné&,

tang, =

In the diatom-diatom cased)';fgx is given by

bf. diat diat I i i i i i i
D02 (rd r@ '7)\):q))\la:{?(rg\l))(b)\lajzr?(rg\z))y'()\l)')(\Z)(77\)’ differential cross sections using available massively parallel
A 16 26\ NI computers.
(55 A candidate for a first application of this methodology is

wherecbgiat(?{“ denotes the internal wave function of diatom the OHtH, reaction. A preliminary analysis of this system
N indicates that after a decoupling of the different irreducible

representations of the permutation group of three identical
Dalgarno spherical harmonics which are defined by theéttoms and of the two inversion symmetry parities, the di-

\; with quantum numbergo {j{)}. yjjg?g are Arthurs—
1 P2

Clebsch—Gordan expansion mensionN of the square matrices to be propagated is 5000.
We estimate the total time for calculating benchmark-quality
J,Q . . A . . . .
Via(rm= > C(G®,j®,3,:m» m? q,) state-to-state differential cross sections for this system at 20
N m{Dm(? total energies between 0.8 eV and 1.2 &Weasured with

W 2 respect to the bottom of the diatomic potential energy curves
j ] i i
XY x{l)(%kzs),o)y »(2)(3,&1,3) £)). (56) for the isolated H and OI—_| molecule_sto be approximately
M\ my 550 h on a computer having a sustained speed of 100 Gflops
Using Eqs.(53—(56) in combination with the definitions of for these kinds of calculations, such as the HP V2500 parallel

Egs.(A10)—(A15) we can now computé’” by means of Eq. computer a_t Caltech. Oth(_ar computer; having sustaingd
(44b), which finally allows us to obtaiiR}1" from Eq. (51) SETedS 3(;0 times or Tt‘ci:]e thT_ler thant.thls are glreatdﬁla;/an—
nr able, and as a result the , reaction can be studie
and thensgo from Eq. (41). comfortably using such machines. The feasibility of perform-
ing calculations of similar quality for more complicated tet-

V. SUMMARY raatomic reactions is determined mainly by the correspond-
A detailed prescription is outlined for calculating state- "9 values Oﬂ_\l’ as the qomputer time scales . The

to-state scattering matrices for tetraatomic systems. Thgmount of m;aun memory is not expected to be a problem, as

nine-dimensional configuration space is divided into strong]t scales asN® only.

interaction, weak interaction, and asymptotic regions. In the
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perradius. This avoids any super-completeness problems. Adwship.

each hyperradius these functions are arrangement-channel-

independent, span all eight hyperangles and are linearly irAPPENDIX: SPACE-FIXED RADIAL ASYMPTOTIC

dependent, complete, and orthonormal in this hyperangulgeONDITIONS

space. The weak interaction region is divided into different o

nearly nonoverlapping arrangement channel regions in each ../, _ . . _

. . 10(3)

of which a different set of arrangement-channel-dependertd,, ~ (") radial functions, defined in Sec. lllA, are

Delves”* hyperangular coordinates are used. In both kindgjerived from an analysis of the corresponding space-fixed

of interaction regions the same principal axes of inertia Euler ) TN W

angles are part of the corresponding coordinate sets. Couplddnctionsu,

hyperradial equations are propagated across these regions dig. Let us define the space-fixed equivalent of E3f) as

to an asymptotic hyperradius where potential energy cou-

asymptotic conditions for the body-fixed

!

V' (r(®), which is the topic of this appen-

!

JITNu

pling (but not Coriolis couplingvanishes. At this boundary a U, M)
switch to body-fixed Jacobi axes is performed and a detailed WJMUF,IF~ —— oW (Y 12 7P,
prescription is given for projecting, at a constant value of the N AUy rx §

hyperradius, the scattering wave function onto the separated (AD)
molecule(diatom—diatom or atom-triatonwave functions. where the space-fixed molecular basis functions of the tetra-
These two step&he change in Euler angles and the projec-atomic system,@{[}"x, are defined to be simultaneous solu-
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tions of a set of arrangement channel-dependent eigenvalue 72 d? L(h+D] ey
equations. For diatom—diatom arrangement channels thesezlu (dr<3))2 (rd)2 G, A
equations are A

J&piﬁ’; 2J(J+1)CD>\U, (A2a) + > <‘bw|V'm|¢’w, > il:://x'u;,
m," NG
4 DU =AM (A2b) o o
2o =72, (1, + DD (A20) TETRIUL, (A7)
RO =h2,G+ @ (A2d)

which should be compared to the body-fixed counterpart of
[J(l ]2(1);1[\14 =#2j! )(J +1)q)m =12, (A2¢) Eq. (37). It is important to note that EQA7), as opposed to

A Eq. (37), does not contain any Coriolis coupling terms, be-
(A2f)y  causedyy by definition is an eigenfunctions of the orbital

(1,2 3 IM JM
HM 20 =Ep e, @ 3
angular momentum operatcbi. The only coupling term in

AU, !

where this equation is the interaction potential coupling which van-
3 Ej‘(l)ﬂf@) (A3)  ishes asymptotically. Consequently, the far asymptotic be-
JITA U
We have introduced in these equations the compact spacBavior of the space-fixed radial functiotf , = " is de-
fixed quantum number notation fined from the simple decoupled second order differential
)\UKE{)\E)\1‘-]7\vl)\}:{)\ly)\Zyvg\l)avg\Z)yJ(l) ] )\,I}\}. equatlons
(Ad)
For atom-triatom arrangement channels the set of simulta- K2 d? L+l I,
neous eigenvalue equations are the same a$/A2).except - Z_Mx (dr(3))2_ (r(3))2 N UM,A M=0,
that Eqs.(A2d), (A2e), and(A3) are now substituted by the A A (A8)
single expression
(1728 IM 2:(1) /(1) M
[N 17@5, =A% U3+ DDy, (A5) where
with the corresponding quantum numbers being
A ={he L= WL (A6) kY, =2m(E—Ey)/h?. (A9)

Using these definitions, it is stralghtforward to show that the

JIT . . . . . .
corresponding radial equations fu N must satisfy  The analytical solutions to this equation, which we will col-
the coupled equations lectively denoted by(iux(rf)), can be expressed as

Y1, (Kne TSI+ 35— 1) 7/2) + ) (Kye 1) cos (3+3,=1,)7/2)  open

(3)) = (3)
r Ky A10
Si” () =g I3 [2|| (Ikne I1S¥)  closed, (AL0)
and
=¥, (Kne, [0 (I+ 3, = 1) 7/2) + ] (Ky e, 1E)sIN((I+3,~1,)7/2)  open
C‘)]\u (r(3) _|k>\e | 2 (3) (All)
A 2k, (|kM [ri”)  closed
for the real standing wave formulation, and
, , exl +i(J+3,— 1) m/2]hi (k. 1) open
TN (r( ) )=[Kye ITX r® (3) (A12)
A 2i; ([kye 1)) closed,
and
exif —i(3+ 3y~ 1)m/2]h{ (k1Y) open
0}, (r®) =k, |r® A13
()=l [y 2k (Jkye 1Y) closed (AL3)
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