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We present a generalization of the multiconfigurational time-dependent HEVi(EEDH) scheme,
originally introduced by Meyer, Manthe and Cederba@hem. Phys. Lettl65 73 (1990], to a
general nonadiabatic system. In the course of deriving the extended working equations a new
compact notation is introduced. Subsequently the equations of motion are applied to a
one-dimensional two-surface model system. Calculated energy-resolved transition probabilities for
the model system, treated in the MCTDH framework, are shown to be in exact agreement with
direct numerically “exact” calculations, using a Split-operator propagation scheme. Finally a
comparison is made between the convergence and the consumed CPU-time for the two methods.
The two numerical formulations of the scattering problem employ, respectively, a [diéBrete
variable representationand a FFT(fast Fourier transforncollocation scheme. We also comment

on the use of negative imaginary potentials to remove artificial boundary effects in the two schemes.
© 1996 American Institute of Physids$0021-96006)01441-9

I. INTRODUCTION enough flexibility for dealing with the many different situa-
tions encountered in collision theory. In the limit of many
The quantum dynamical treatment of multidimensionalpasis functions it is furthermore exact. However, whether it
problems is one of the major challenges in theoretical chemy, this limit is more advantageous to use than other exact
istry. The underlying problem is that most methods scalénethods involving, e.g., grid, or state-expansion is an open
with the dimension and the number of degrees of freedom, i'&uestion. In the present paper the method is generalized to
an unfortunate fashion. For state-expansion methods it igy,itisurface problems and its performance on a simple
typically asN2 where N, is the number of quantum states model system is investigated.
necessary for obtaining convergence. This number usually Thjs article is organized as follows. In Sec. Il we derive
includes the energetically open states and a good deal @he equations of motion for the generalized MCTDH scheme,
closed ones as well. In order to reduce the number of statfsing a compact notation. Some of the details for this deri-
one can relax on the amount of information needed so as t@5tion have been moved to the Appendix. In Sec. Ill we then
obtain just total, i.e., state summed, reaction cross sections Bresent a numerical study of a simple model system. In Sec.
total reaction rate$. Another avenue is to introduce an ap- A the numerical scheme for the generalized MCTDH
proximate description using approximate wave functions ag,ethod is presented, and in Sec. Il B a numerically exact
the Hartree type product wave function, mixed quantum-so|ytion of the nonadiabatic problem is outlined. The nu-
classical ~methods™® or reduced dimensionality merical results are then reported in Sec. Il C, and a compari-
calculations:* son of the two methods is subsequently made. Finally in Sec.
At present exact methods are restricted to treat 3—4y, we conclude and sum up the most important features of

atomic systems and single-surface problems. However, manye generalized MCTDH method, as compared to the direct
chemical reactions, such as those involving ions or openmethod.

shell systems, are inherently multisurface problems. Even

apparent single surface problems due to the geometric phase

effects'lSTlgturned. out to involve the effect of more than one || o ;ATI0NS OF MOTION FOR THE GENERALIZED

electronic potential energy surface, even for neutral reacgy;cTpH SCHEME

tions. Considering this complexity, it is obvious that one in

most cases has to introduce approximate descriptions where In this section we will derive the nuclear equations of

only part of the system is described using “exact” methods.motion for a general nonadiabatic system treated in the

We have already mentioned several of such approximat®ICTDH framework. The single-surface MCTDH scheme

methods above. Other approaches, which introduce methodsiginates from Cederbaugt al,?*~?3and using this work as

for rotational averaged cross sections and approximate dya starting point we are able to derive a new set of extended

namics for part of the system, combined with exact dynamicsnultisurface working equations. Formally speaking the equa-

for the reaction center, have been suggested recEty. tions of motion are obtained using the Dirac—Frenkel—
However, one very interesting recent suggestion is conMcLachlan variational principle {5V |ia/at— H|\If>=0,24

nected to the multiconfigurational time-dependent Hartree@and to subsequently simplify the equations we go somewhat

(MCTDH) method*~2%in which one can optimize the basis along the same lines as Cederbaeinal. However, we use a

set as a function of time and vary the number of basis funcédifferent motivation and an improved notation. Finally the

tions according to the coupling. Thus, the method haswumerical scheme is commented upon, and we especially
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emphasize some important differences compared to the origand the many-particle configuratiods; = Hqﬁl (Q,, 1), in

nal MCTDH scheme. _ ~ Eq.(5). Itis important to note that both the expansion coef-
~ Let us consider a general system with the time-ficients and the single-particle functions are time dependent.
independent Hamiltonian To remove this redundancy from E¢) the following con-

" - - 9 - " straints are put on the single-particle functions:
HioQ.X) =To+ Tx+V(QX)=To+H(QX), (1) P giep

whereQ andX collectively denote, respectively, the nuclear 1A(¢7 (D[ &7 (D)=(#7 (D[hZ]¢] (1))
and the electronic coordinates. The total wave function is . ~
next expressed as the direct product sum =if(D| D5 =(P]| X hD3), (6)

V(Q,X,H)=2 0X)W(Q,t), (2)  where h is defined in Eq.(4). By expanding §/dt)

s X(q&isk(t)lqusk(t)) and using the fact thdt} is Hermitian, it
where@S(X) are the usual diabatic electronic states defineccan easily be shown that E¢6) implies that the single-
as eigenfunction offl, introduced in Eq(1), with the nuclear particle functions have a constant norm. Hence, if we further
reference configuratio°. To define the time-dependent assume that the single-particle functions are initially normal-
nuclear wave functionsy ((Q,t), we project the total time- ized, the following normalization applies at all times:
dependent Schdinger equation onto the diabatic electronic R s
states. Thus, we insert the expansion, &, into the time- <¢ix(t)|¢jK(t)>: 5i o =(P} D=3 (7)
dependent Schdinger equation ,:Nith the Hamiltonian given To derive the equations of motion for the expansion co-
by Eg. (1), and multiply it by®J” (X) followed by an inte-  efficients A?, we substitute Eqs(4) and (5) into Eq. (3),
grating over all the electronic degrees of freedom. The re-

s*
sulting coupled equations read as multiply by @} followed by an integration over all the

nuclear CoordlnateQ and finally make use of Eq7). The

ihV(Q1)=[To+(OIHIONT(Q,) result is
+ 2 (O9H|02) W (Q,t) iBAT= (D Hpd Wo + 2 Wag ‘I’s/]
s'#s s'#s
=HY QD+ 2 Wee(Q¥(QY), (3 = 2 (PIHEd P3AS
s'#s

where we have defined the effective nuclear Hamiltomidn s

on the electronically diabatic surfaseand the coupling el- +S§S 2 (P |Ws S’|q)J >AJ : ®
ementsWs ¢

Now, let us assume that the system haswuclear de- We will comment on this equation later when we have de-
grees of freedom, i.eQ=(Q,...,Qy), and thatH®, in Eq. rived the equations of motion for the single-particle func-
(3), can be separated into an uncorrelated part, givenhy tions. However, before we do so, we will introduce a useful
and a residual correlated paif, notation that will help us simplify the equations referring to
multiple electronic surfaces, configurations and coordinates.

N
~ ~ Consider the so-called single-hole functidfs,
Q)= 2 Q) +Hzr(Q). (@ N
The fundamental ansatz in the multiconfiguration time-\P (Q{k}'t)_ 2 i 21 1
dependent Hartree scheme is to assume that the total wave -
function, on a given electronic surfasecan be expressed in Mer1
the direct product fordt x X E Apd i1
Jer1=1  n=1
NK
t)= A (t H t _
Vy(Q.t) 112 E ,,,,, WO 1L Qe ><H % (Q ")ZJ{E@ A P O
K'*l
k' # K
— SHS
_EJ: As®3s ® where we have introduced the new multi-index
=1, d ket ottreei Thus, throughout the rest
where AS i (t) denote the expansion coefficients, and A= 1rd e g g

of this paper the £}- smgle -hole-index collectively denotes
b7 (QK,t) are the so-called single-particle functions. Theall the nuclear degrees of freedom excepUsing the new
M, dimensions correspond to the number of configurationgotation,¥'s can be expressed as

included in the expansion o¥; for the different nuclear

degrees of free_domq. To simplify the_z _notatior_l cc_)nside_rably \pszz qr.SK(ﬁi:Z > A ,J{k}q)i{k}' (10)
we have also introduced the multi-indd={j,j5,..-,in} T« Ie Hap -
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Next we make use of this relation, in addition to E@y.and  particle functions do not have any physical significance, and
(5), to rewrite Eq.(3) as consequently single particle properties cannot directly be cal-
_ _ _ _ culated. However, by diagonalizing Ed13) one can
ihWe=ih, ASDS+inY, [‘lff &+ 2 A P uniquely define a set of single-particle functions. These, so-
J L L S ‘ called natural single-particle functions, have physical signifi-
. cance and can be used to evaluate the overall convergence
:,E [‘I’thiJFJ{E/;} Ai,J{k} with respect to a given number of natural single-particle
“ function employed in the scheme. Finally, we note that if we
especially choosk?=0 and employ a large enough basis set,
ie.PS= 2 |45 )(#5 | = 1, the single-particle functions be-
(11) come time ingependgnt, while E(B) stays unchange(kx-
cept that nowHZ,,, = H®). This is precisely the equations of
To derive the equations of motion for the single-particle motion for the numerically exact solution of the non-
functions ¢7 _we project Eq.(11) onto the single-hole func- 4 gjianatic problem using a conventional time-independent
tions (¥ |. The explicit derivation, using the notations in- state-expansion. Thus we make the very important observa-
troduced in this section, is shown in the Appendix. Thus.tion that the given generalized MCTDH scheme includes the

X[ 2 h5 | @50t 67 FHE Pt X Weg Wy
k' #F K

s'#s

from Eq. (A7) we conclude exact solution as a limited case. For a more thorough discus-
. R sion of the natural single-particle functions and other de-
ingr=hidi+(1— Pi)(lsmi (Heom (1% tailed aspects of the single-surface MCTDH scheme we refer
- — to Refs. 21-23.
. , Finally we comment on the multidimensional integrals
+ 2# (We s )i d% ) (12 entering Egs.(8) and (12) as, respectively, the time-
S S

dependent mean-field operators and matrix elements over
where we have adopted a vector/matrix notation and definedl$,,, and Ws,s" The normal procedure for evaluating multi-
the projection operatoB; = 3; |4} }(¢] | [see Eq(A6)].  dimensional integrals of these types would be as foll&ws:
Along the same lines as Cederbawnal. we have further First one defines a set of orthonornmead hocbasis sets in
more introduced the time-dependent mean-field operatorgach of the nuclear degrees of freedéeng., particle-in-a-
[<6S’s,>{k}]iK'jK = <qffx|6s's,|xpi>, where the bracket nota- box basis sejs These basis functions defiagl hocdiscrete
tion is to be understood as an integration over all the degree§¥iable representation€DVR) in each dimension in the
of freedom excepk. Note especially that the unit mean-field usual way. However, since they are chosen somewhat arbi-

“operator,” appearing in Eq(12), simply reads as trarily they do not reflect the physics of the system. In other
words we would like to construct a set of DVR grids, in each
[(Admli j = > AiS* I{k}Ajs e (13)  dimension, that reflects the topology of the involved poten-

— A PO [ L o

tial energy surfaces, such that the grids are dense in regions
Equations(8) and (12) make up the total working equations Where the de Broglie wavelength is small and more sparse
for the presented generalized MCTDH scheme. In the equalsewhere. For a simple single-surface problem, as consid-
tion of motion for theA-coefficients, Eq(8), only the cor- ered by Cederbauret al,?*~?* one would normally employ
relation part of the Hamiltonian and the nonadiabatic cou-an optimizing schenté based on the work of Harris, Enger-
pling terms enterH,, describes the correlation among the holm, and Gwinn(HEG).?” In this scheme one first con-
different configurations on a single electronic surface andstructs sets of eigenfunctions of zeroth-order Hamiltonians,
W, contains the nonadiabatic coupling terms which arewhich in this case would be the single-particle operators.
responsible for the transitions from the one diabatic potentiagach of these basis sets, expressed inathénocbasis, are
surface to another. Equati@t?) further contains the single- hen truncated according to the collision energy. The result-
particle Hamiltonianshz, that propagates the single-particle ing compact basis sets are then used to construct new
funcygns into the.same Hilbert space as time evolves. Thephysically meaningful” DVR basis sets by diagonalizing
(1-P,) operafor in front_ of the secpnd term_of EQLZ)_ the position operator. The eigenfunctions define sets of com-
assures that the correction to the single particle functions ) . .
due to correlation and nonadiabatic coupling, is added fro act DVR basis §6t5 yvhere the'correspondmg eigenvalues are
Idhe optimized grid points. This is a very powerful scheme for

the Hilbert space which is orthogonal to this space. It shou . o ]
also be emphasized that in the MCTDH scheme the nonconstructing optimized compact DVR basis setslowever,

correlated single-particle Hamiltonians, first introduced inSince the single-particle operatots,, defined in the gener-

Eq. (4), are chosen somewhat arbitrarily. This adds a veryalized MCTDH scheme, refer to different potential energy
important technical degree of freedom to the scheme, corresurfaces, a naive application of the HEG scheme would re-
sponding to a “restricted freedom” when choosing the ini- sult in many different DVR grids in each coordinate. Conse-
tial single-particle functions. Thus, in general the single-quently, the nonadiabatic coupling elements, entering Eqs.
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(8) and (12), could not be handled numerically within the use of a focusing wave packet, alone, is not sufficient to
same DVR scheme. Thus, it is not clear how one shouldvoid artificial boundary effects in most computationally re-
construct a unique optimized DVR scheme in each of thalistic calculations. Consequently we will have to use addi-
nuclear degrees of freedom. All this is of course not an artitional numerical techniques to further minimize the artifacts
fact of the generalized MCTDH scheme itself, but simply ainevitably following the use of a finite basis expansion of the
consequence of the complexity of multisurface systemswave function. Thus, both schemes make use of absorbing
However, it means that a great computational/numerical adeoundary conditions, in the form of a negative imaginary
vantage of the MCTDH scheme has been lost in the courspotential(NIP), but as we shall see the two implementations

of generalizing it to nonadiabatic systems. are very different.
IIl. NUMERICAL CALCULATIONS ON A MODEL A. Model study of the generalized MCTDH
SYSTEM First we note that because the considered system is one-

In this section we present a numerical study Ofasimp|éjimensional there is no residual correlation term in the
nonadiabatic model system conducted in the framework oHamiltonian, i.e.Hz,, = 0 in Eq.(4). Second, the mean-field
the generalized MCTDH approach presented in the previougperators, entering E¢12), vanish, thereby simplifying the
section. The results are subsequently compared to numegquations of motion for the single-particle functions. Thus,
cally exact calculations employing a split-operator propagaEd. (8) for the model system reduces to
tion scheme. Finally convergence and consumed CPU time d
for the two schemes are compared. i7i at Al =2 ($HW] PTYAL(L),

The system of choice is a simple one-dimensional two- !
surface model that can easily be solved numerically exact. d
The coupled nuclear equations, E@), read as in 5 Af(t):; (BZIWIpPAT(D), (18

T+Vi(x)  W(X)
W(X)  T+Vy(x)

¥i(x,t)
Wo(x,t)

Wy(x,0)
W,(X,t)

_ ) and Eq.(12) simplifies to

9 .
) (14 it I =hi(x,1) (s=12). (19
where T=—(%2/2u)(6%/9x?) and the potential energy _ _ _ o

curves and the nonadiabatic coupling term are taken to be Next we define the single-particle Hamiltonians as

V1(X)=VE exy] — 2(X—Xeros9 ], h=T+Vi(x) (s=1,2. (20)

V()= V2 extf — 2(X—Xerosd ]+ AE, Now, if we initiate the §|1ngle—p§£t|cle fuqctlons as.elgenfunc—
tions of, respectivelyh® and h?, the single-particle con-

W(X) =W exfl — AW(X—Xcr0s92], (15)  straint, Eqs(6) and(7) is trivially fulfilled and the solution

Xerossdenotes the crossing point of the two diabatic potentiaf0 Eq.(19) simply reads as

energy curvesAE is the asymptotic splitting of thg curves ¢i5(xyt):e7iEiSt/ﬁ¢is(X'0) (s=1,2), (21)
and {V3,V3,W,,AW} are parameters of, respectively, the L 5 _ _ _

two surfaces and the nonadiabatic Gaussian coupling tern‘i\,’lhere Eiz andEf" are eigenvalue numbeérof, respectively,
W. [See Fig. 2 for a plot o¥/;(x), Vo(x) andW(x).] Inboth  h~andh®. Thus, the propagation of the single-particle func-
of the numerical schemes we adapt the usual wavepack&@ns is now trivial, and we are left with E¢18) as the
formulation of a scattering experimefitThus, the system is Working equation. To numerically integrate this equation we

started on the lowest electronic surfabi(x), by initiating ~ Next employ arad hocbasis. We use the following normal-
the wave function as ized particle-in-a-box basis s&t:

/ _ 2
l4exp{—w—ikox}, {%(X)E\/ 2 sin nwx), n=1,...,N], (22)
X, —iX X

max Xmax

2X4
(X2 +X5)

¥i(x,t=0)=

(16 \where the domain of interest for the coordinate is assumed to
W,(x,t=0)=0, (17)  be scaled to the intervale J0;x, . This FBR is isomorphic
) ) to a DVR basis-set|x,), p=1,N}, with the underlying uni-
\)/(vhe;(ax wex rl)a/\lie (IjE?qfl:I;?i(cj)nt(hl%) (izgnr?(;?r:)i?g: (bzu?);))norarrr:gl form grid {x,=pAx p=1N} and the constant weight

2= WX %100/ Ko - =Ax= i i

ized Gaussian wavepacket, centered ardky)dvith the ad- ® Adx Xma*/(Nin)' On this grid Eq,(18) takes the form
ditional property that it has its minimum widthx,, atX:,c, 1, 1AX 1* 2 2
different from the initial starting poink,.282°If we then fix a A= % ¢ (Xp HWOX) 7 (xp HAT(D),
Xoc @S the classical turning point an (x), we have reduced _
the interference problems that occur where part of the wave- 9 2(t)= — 1Ax S 6" (x HW(Xo) bL(xo ,HAX(H)
packet reaches the end of the grid while a significant part of dt " hof TP PIFIATR AR
the wave function is still in the reaction zone. However, the (23
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As mentioned abovép!} and{¢?} are defined as eigenfunc- B. Numerically exact calculations
tions of the single-particle Hamiltonians. Hence, the single-

; : A ) To obtain a humerically exact solve to the coupled time-
particle functions, Eq(21), are initialized on the grid as y P

dependent Schdinger equation, Eq(14), we employ the
s split operator methotft where the wave function is propa-
$3(x,,0) = Uy, (s=1,2) (24) gated a time-stept by the operator matrix equation
| pr 15

VAX

) W(x,t+At)=exf —iVAU/2% Jex] — i TAt/A]
where the unitaryU-matrices, respectively, diagonalite .
andh? expressed in the DVR|x,), p=1,N}. The initializa- XexH —IVAUZR]P(X,Y). (28)
tion of the A-coefficients follow immediately from the initial In this equation¥ is a column vector,W,,W,]", T is a 2x2
conditions of the wave packet discussed in the previous sulgiagonal matrix with the kinetic energy operator in the diag-

section[Eqgs.(16) and(17)]. Thus, we write onal andV is defined as
Vl(x) - iVnip(X) W(X)
A0 =VBXZ Wi(x, 0}, and AF(0)=0, (29 ORI W v 22

. _ _ . where the individual potentials are given in Efj5) and Eq.
Whe{e‘l’l(xp ,0) is defined in Eq(16). The numerical values (26). Note that in this scheme we have simply included the
of A(0) can also be used to truncdig'}, which is then used  NIP in the definition of the two potential energy surfaces. To
to define the number of single-particle functions included forevaluate the action of ekpiVAt/2%], operating on the
both surfaces. Equatiof23) can now be integrated in time wave function, it is necessary to make a unitary transforma-
using, e.g., a predictor—corrector scheme. However, as somgn to the adiabatic representation in which E29) is di-
of the wave packet reaches the end of the grid it is reflecteggonal. At first sight this might seem impossible siités
back into the reaction region, thus causing significant inacnot strictly Hermitian, and thus the spectral theorem can not
curacies. The reason for this is of course that in the presemfirectly be applied. However, given that we add the same
formulation the wave function is assumed to be zero at they|P to the two surfaces, it is easy to see that any unitary
boundary, i.e., we have effectively placed an infinite wall atmatrix that diagonalizes the potential energy matrix without
Xmax- The standard way of treating this difficulty is to em- the NIP’s will also diagonalize Eq29). Hence, if we dis-
ploy an absorbing boundary condition by adding to thecretize Eqs(28) and(29) on an equidistant grifx,= pAXx,
Hamiltonian a negative imaginary short-range potential inp=1 N}, we can for each grid poink,,, construct a sym-
the asymptotic region of the grid.Many different types of metric matrixJ (x,) such thaf\_7 = uTvu, where?_'/ is diag-

NIP’s have been suggested in the literatthé3but common )
to all of them is that they are not perfect absorbers in theOnal with the elementy, andV,. Then the effect of apply-

whole energy domain represented by the wave packet. Q9 thg potential operatqr, entering E(8), is evaluated
choose a simple linear “ramp-potential,” according to the expression
exd —iVAt/24]

: X— Xnip _
=iV ————,  Xnie=<X=<Xmaxs . 0
Vnip(X) = mex Xmax— Xnip mC’JJ'[heI’WiSm(:,X (26) eXF[ IVlAt/Zh]

0, 0 ex —iV,At/2#]

I
nC

ut. (30

wherex, andV,, are parameters to be fitted to the scat_Af’ter the action of f[hls.operator onto the wave function, we
tering experiment at hand. It is important to note that we@ve t0 apply the kinetic energy operator xpiTAU#], see
cannot simply redefine the single-particle Hamiltonians toEd- (28). The effect of applying this differential operator is
include the NIP, as this will produce single-particle functions€aSily calculated by transforming the wave function from the
that grow exponentially with time, because of complex ej-coordinate grid representation to a momentum grid represen-
genvalues entering Eq21). Thus, instead we will have to tation by means of a Fourier transformation. To return to the
redefine theA-coefficients after each time step to include thecoordinate representation we next perform an inverse Fourier
damping factor of the NIP. Using the well-known second-transformation of the wave function, and finally to complete
order different(SOD) scheme this amounts to multiplying the SPlit propagation bt we act the potential energy op-
the wave function by exp-iAtV, /%], thus redefining the €rator, E.(30), once more onto the result.

A-coefficients as

nip

C. Numerical results for the two schemes

AS(1)—AXD A &7 (Xp 1) The numerical schemes presented in the two previous
P subsections were implementeddoRTRAN 770n a Cray C92.
xe‘iAtVnip<Xp)’h¢js(xp b (s=1,2), (27)  The integration of Eq(23) was carried out by employing a

predictor—corrector scheme of variable ordap to 11th or-
after each successful propagation of E2p) by the time-step  der, and the action of the kinetic energy operator on the
At. discretized wave function was calculated using a FféBt
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Fourier transform algorithm. To extract information from TABLE I. Numerical values of the parameters fixed in the calculations. The
the calculations on the transition probabilities among the twd'umpers are reported in molecular uriee appendix A in Reference)37
surfaces we evaluated the flux, of the wave functions

Common parameters

Tk -
2 _ Split operator
S(k H= |\]/ (k, t)| (s=1.2), (31 Parameters Generalized MCTDH propagation
wherek; =Kk, kz = Jk’—2uAE/%? and w(@.u) 1.0
xmin (é\) 0.0
1 % Xmax (A) 18.0
YIkt)=— f dx exg ikx]W4(x,t). (32 Propagation:
® V27 )= ° x* (A) 10.0
—14
The transition probability from the initial state was then ob- %t,f}eostep)s Ofggg fé%%ﬁ,
tained as the ratio between the outgoing fluxes and the initial precision 108°¢
incoming flux Gaussian wave packet:
F(k,t) Xo (A}\) 10.0
’ Xioc ( 3.0
Pl=F g (512, AN 0.25
Potentials:
where the initial incoming fluxfy(k,0), can be obtained  Xcoss(®) 3.0
analytically by inserting Eq(16) into Eq. (32 Vg (100 kd/mo} 2.0
y y by 9 Eqc1f) a.(32 vg (100 kJ/mo) 05
hkAX 2 AE (100 kJ/mo) 15
Fo(k,0) = " 0 \/; exfd —2Ax3(k—ko)?]. (34 W, (100 kJ/mo} 2.0
AW (A7? 11.09
However, to directly calculaté4(k,t*) in Eq. (33), we Xnip (A) 135

would have to use a grid large enough that at a certain time, /max (100 kJ/mo} 0.3¢

t*, all of the wavepacket was well outside the region ofarhe time sampling of the wave function at this grid pdiste Eq(35), Eq.
reaction and the domain of definition of the NIP. The solu- (36) and Eq.(37)] was not started before the wavepacket was moving out of

tion is to use the time/energy Fourier transforint (x,E),  the reaction region.
defined ay fing ( ) bThis parameter is actually a function kf, but the listed value was typical
elined as for most calculations.
‘Input-parameter to the variable-order predictor—corrector routine.
d ; S
The Split-operator method does not offer any control over the precision in
\I’ (x.E)= \/_ f dt exr{ } (1), 35 the time-propagation.
€This corresponds to a NIP which is defined on the last 25% of the grid-

rather than the space/momentum transfofd,(k,t). One  Points.
can then show the simple relatiégsee the appendix in Ref.
35

Dirac—Frenkel-McLachlan variational principle and the fact
that the Split operator is unitary outside the NIProm Eq.
(16) we obtain(k?)=k3+ 1/x; which immediately leads to
the following expression for the time-independent mean-
energy:

Wi (x,E)= % e XQIEt g & (¢ t). (36)

Inserting this expression and E&4) into Eq.(33) we finally

obtain
2

12Kk W E (x* 5 2K22u)|2 (E)= <k2>
Pk = i 7 oA 2k T (37)
Axou® exd —2AX%g(k—Kkg)?]

K3+ 2 ! (39

4AX? )
This number was then compared tqW¥,h,|¥;)

We then choosg™ <x,;, and calculate the time/energy trans- 4 (. |h,|W,)+2R[(¥,|W|¥,)] as a function of time for the

form of the wave functions, Eq35), as a discrete sampling two schemes.

after each time-stept. The conservation of flux then gives  |n Table | we have listed the values of the parameters

that P, (k) + P,(k)=1, which can be used as a measure ofthat were fixed throughout the calculation presented in this
convergence as a function kf(in the neighborhood oky).  section.

The total transition probabilities are obtained from the ratio |y Fig. 1 the transition probabilityP,(k), is shown as a

between the total fluxes, i.e., function of the wave vectok= 2u,E/%. These probabili-
720" dkkkd W7 (x* i2k22u) 2 ties were obtained by 7 MCTDH calculations with 400 grid
P Ko) = K ;2 , (39 points and different values ok,=(30,35,40,45,50,55,60
0

The convergence was of the order of ®0with the split-
where we have used that the total flux of the Gaussian waveperator method employing 750 grid points. Figure 1 shows
packet is given byiky/u. Again the sum from the two sur- Stickelberg oscillation® above the threshold energy,
faces should give unity. As yet another measure of the overAE=1.5-100 kJ/mol~ k=27 A™%, and a very narrow peak

all convergence we use the fact that both numerical schemes k=45 A~* corresponding t&=4-100 kJ/mol. The oscil-

are energy conserving(This follows formally from the Iations occur because the system has a turning point and thus
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TABLE II. Convergence of the total transition probabilities in the split-

L0 ' ' ' ' ' ' ' ' operator method. In all the tabulated calculations the initial Gaussian wave
packet was centered k=35 (A~1).
08| i
Grid size CPU time
06 | - (N) Pi(ko)  Pa(ke)  Pi(ko)+Pa(ko) (s MFLOP*
S,'; 200 0.54052 0.09937 0.63989 9.0 117
04 T 300 0.86115 0.13876 0.99991 12.3 119
400 0.86138 0.13857 0.99996 15.6 116
0.2 - K 500 0.86139 0.13858 0.99997 195 120
750 0.86140 0.13858 0.99998 32.2 111
0.0 1 | | L 1 L 1000 0.86140 0.13858 1.00000 37.9 121

25 30 35 40 55 60 65 70

45 50
k(A1) aMillion floating point operations pr. second on a single CPU of a Cray C92

(peak performance is 900 MFLQP
FIG. 1. The probability for transition from the initial state on the lower
surface to a final state on the upper surface is shown as a function of the
wavenumber. The results were obtained by the generalized MCTD"bonvergence of the order of 18 Given that the most time-
scheme, using seven different valueskf consuming step in the split-operator scheme is the one-
dimensional FFT call, we would expect the CPU time to
scale as\ log N, whereN denotes the size of the grid. If we
_ ) . take an initialization time into account, this characteristic
interference will take place when the system follows the d|f-time dependence is confirmed by the second column in Table
ferent possible paths leading to the upper surface. The pe&”(
at E=4 is an interesting indication of a resonance, and a Table Ill clearly shows that the MCTDH method needs
closer inspection of the adiabatic potential energy curves, S&fuch less points, than the direct method, to achieve the same

Fi?' 2, fe>r<]actly showsha Wﬁ” on the upper surfacehat thiSt:onvergence, which is due to the fact that in the MCTDH
value of the energy. Thus, the system is trapped on t € UPPRiethod the basis sets are optimized as a function of time,

. ! complex scaly gingle-particle functions, and an acceptable precision re-
ing of a DVR"method, suggested recently by Museth naing when the former is truncated by a factor of 2/3. How-
etal: ever, it is equally clear from Table Il that the MCTDH

" ) - scheme is approximately 10 times slower than the simple
the total transition probabilities for, respectively, the Split- split-operator method, even though the code ran 45 times
operator and thefMCTDH m%t:q‘)ds' Ir;]all the ga!culatlb&s faster on the same vector computer. This was of course a bit
In Eq. (38,)’ was ixed to 35 and the remaining param- disappointing, but considering the complexity of the
eters as listed in Table I. Due to the fact that the NIP was nof,~tpH approximation—even for an as simple problem as
a perfect absorber in all _Of the energy domain represented b[¥1e considered—it was not surprising. It is difficult to make
the wave packet, reflection was inevitable and consequentlé{ny conclusive remarks on the large difference in the
convergence below 10 could not be obtained as a result of \1) op performances of the two codes. However, it appears
merely increasing the grid size. Table Il shows that the Sp“t'that the predictor—corrector algorithm is more vectorized
operator method needs more than 750 grid points to ensurefan the EET Finally we note that the MCTDH method

scales almost quadratically with the dimensions, if we take a

In Tables Il and Il we have listed the convergence for

8 — T . . . iy I
Diabatic potential 1(V3) — TABLE lll. Convergence of the total transition probabilities in the general-

r Diabatic potential 2(Vs) — — ] ized MCTDH scheme. In all the tabulated calculations the initial Gaussian

Nonadiabatic coupling(W) ---- wavepacket was centeredka=35 (A1),
Adiabatic potential 1 = = 7]

Adiabatic potential 2 e

'g\ 58 Grid size CPU time

5 (N) M2 Pi(ko) Pa(ko) Pi(ko)+ Pa(ko) (s MFLOP

3 200 200 0.15772 0.01767 0.17536 196 468

> 250 250 0.87679 0.12320 0.99998 227 490
300 300 0.86122 0.13879 1.00000 303 476
400 200 0.85919 0.14067 0.99986 142 455
400 267 0.86113 0.13887 0.99999 247 438
400 400 0.86140 0.13858 1.00000 505 477

aNumber of single-particle functions included in the calculation.
bMillion floating point operations pr. second on a single CPU of a Cray C92
FIG. 2. Plot of the different potential energy curves mentioned in the text. (peak performance is 900 MFLQP
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certain initialization time for the scheme into account. How-APPENDIX: EQUATION OF MOTION FOR THE
ever, if we allow for a smaller convergence by truncating theSINGLE-PARTICLE FUNCTIONS
single-particle basis sets, Table Il shows an almost linear

dependence of the CPU time. We start out by showing a set of important auxiliary

relations for the configuration functiors; and®3,, adapt-
ing the notation introduced in Sec. Il. Using the simple rela-
tion betweend3 and @3, it immediately follows that

IV. CONCLUSIONS o3 S BS i 2 o s AL
It is evident from the results presented in the previous ’ ¢J“ Hay T ¢J“ Ha (AD

section that for simple nonadiabatic systems the generalized

MCTDH method is not the method of choice—especially NOtryg rejation can be used to show the last version of the

when one seeks numerically exact results. As expected fro@ingle-particle constraint in Ed6),

the equations of motion for the MCTDH scheme, it is per-

fectly capable of producing these exact results with a rela-

tively small grid, but the cost in terms of CPU time is very

large. Even in the approximate domain, the direct split-

operator method converges much faster—in spite of the fact

that it uses twice as many grid points and 2—3 times as many _ s s S |NS| 48

time steps. One major drawback of the generalized MCTDH 2,:' (gl Psiu) oI 47

scheme was pointed out in Sec. Il: the presented numerical

scheme, unlike the original MCTDH scheme, does not allow =(D% >, ﬁi|q>§>_ (A2)

for the direct construction of an optimized DVR, using the K

HEG scheme. Consequently the definition of #tehocba-

sis set is very critical for the overall numerical performanceyayt we note that equivalent relations exist for the single-

of the scheme. In the calculations presented in the previousy e configuration function@ﬁ{k}, thus

section we used a basis set of particles in a box functions,

i.e., we used a uniform DVR grid that does not reflect the )

underlying physics of the problem. It is possible that we (@7 | P35 4) =64, 000=1A( P | P34

could have chosen a bettad hoc basis for this concrete

study, but the general problem of optimizing and truncating —(®° 2l Z ﬁS/|<DS ) (A3)

the basis sets and grids still remains to be solved for multi- ' S E e

surface systems.

However, it is very important to emphasize that the CON"14 derive the equation of motion for the single-particle func-

sidered model-system is very simple, and therefore the use (ﬁfons,q')js , we project Eq(11) onto the single-hole functions

an approximate method like the generalized MCTDH may, . " L .
not prove advantageous as compared to more direct numet@pikl’ i.e., multiply it by Eq.(9) and integrate over all the

cally exact methods. The conclusion is clear for very simplenuclear coordinates excegt
nonadiabatic systems, but it is likely that the picture will

change when more complexity is added to the system. The _

distinct advantage of the MCTDH scheme is exactly conmz {(\I’? s )} + > A WA
nected with the large flexibility of the scheme to deal with '« A R ‘
complicated situations encountered in complex collision ex- )
periments. One can vary the number of basis functions ac- X(‘I’f{kﬂq’j{A}Wi
cording to the correlation and nonadiabatic coupling as time

evolves, and the numerical scheme scales almost linearly

with the number of surfaces and degrees of freedsee ZJE [<‘I’iSK|‘I’jSK>h;S<+ 2 AiK,I{k}AjS

(@YD) =17 D (0F 4|05} |47 )

Ref. 29—and these feature have not yet been exploited. 1{£},3{k} x I

Thus, a study a multisurface system with many degrees of

freedom is probably required to give any conclusive evalua- < (S hS S s _ s (RS |
tion of the presented generalized MCTDH scheme. Such < 'K|K§K [ P5a) 1 A1~V Heod V)
work is in progress.
o3 | S AjeD. e
s’ #s
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2 (V7 V7)) =2 <\Ifilllfi>ﬁi¢i+<\lfil[

+ 2 Ws,s’|q,s’>}

s’ #s

where we have defined@® = S (¥ |dS)(d3). Using Egs.
(5), (9) and(A3), (5? can next be simplified to

0= 3

APRNTINITS

= ( JZK |¢’j K><¢jk|) { J{Ek} AiK ,J{k}(cDJ{/c}|

AL X il P |67 )87 (P

=(j2 |¢fk><¢ji|]<\Ifi|zﬁ>i<~lfi|, 1)

whereP?$

2.l ¢7)( ¥l is the time-dependent projection

operator onto the space spanned by the single-particle fun

tions in the coordinatec on the electronic surface If we
finally back-substitute Eq(A6) into Eq. (A5) we obtain the
following equation of motion for the single-particle func-
tions:

2 (VR )] =2 (W [V )RS (1P
<3 {wimzorrw@wi

> <\I’?K|\7Vs,sr|\1’i>¢i]-
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