
Generalization of the multiconfigurational time-dependent Hartree method
to nonadiabatic systems

Ken Museth and Gert Due Billing
H.C. O” rsted Institute, University of Copenhagen, 2100 Copenhagen, Denmark

~Received 9 July 1996; accepted 25 July 1996!

We present a generalization of the multiconfigurational time-dependent Hartree~MCTDH! scheme,
originally introduced by Meyer, Manthe and Cederbaum@Chem. Phys. Lett.165, 73 ~1990!#, to a
general nonadiabatic system. In the course of deriving the extended working equations a new
compact notation is introduced. Subsequently the equations of motion are applied to a
one-dimensional two-surface model system. Calculated energy-resolved transition probabilities for
the model system, treated in the MCTDH framework, are shown to be in exact agreement with
direct numerically ‘‘exact’’ calculations, using a Split-operator propagation scheme. Finally a
comparison is made between the convergence and the consumed CPU-time for the two methods.
The two numerical formulations of the scattering problem employ, respectively, a DVR~discrete
variable representations! and a FFT~fast Fourier transform! collocation scheme. We also comment
on the use of negative imaginary potentials to remove artificial boundary effects in the two schemes.
© 1996 American Institute of Physics.@S0021-9606~96!01441-9#

I. INTRODUCTION

The quantum dynamical treatment of multidimensional
problems is one of the major challenges in theoretical chem-
istry. The underlying problem is that most methods scale
with the dimension and the number of degrees of freedom, in
an unfortunate fashion. For state-expansion methods it is
typically asNs

3 whereNs is the number of quantum states
necessary for obtaining convergence. This number usually
includes the energetically open states and a good deal of
closed ones as well. In order to reduce the number of states
one can relax on the amount of information needed so as to
obtain just total, i.e., state summed, reaction cross sections or
total reaction rates.1–5 Another avenue is to introduce an ap-
proximate description using approximate wave functions as
the Hartree type product wave function, mixed quantum-
classical methods6–10 or reduced dimensionality
calculations.11–14

At present exact methods are restricted to treat 3–4
atomic systems and single-surface problems. However, many
chemical reactions, such as those involving ions or open-
shell systems, are inherently multisurface problems. Even
apparent single surface problems due to the geometric phase
effects15–18turned out to involve the effect of more than one
electronic potential energy surface, even for neutral reac-
tions. Considering this complexity, it is obvious that one in
most cases has to introduce approximate descriptions where
only part of the system is described using ‘‘exact’’ methods.
We have already mentioned several of such approximate
methods above. Other approaches, which introduce methods
for rotational averaged cross sections and approximate dy-
namics for part of the system, combined with exact dynamics
for the reaction center, have been suggested recently.19,20

However, one very interesting recent suggestion is con-
nected to the multiconfigurational time-dependent Hartree
~MCTDH! method21–23 in which one can optimize the basis
set as a function of time and vary the number of basis func-
tions according to the coupling. Thus, the method has

enough flexibility for dealing with the many different situa-
tions encountered in collision theory. In the limit of many
basis functions it is furthermore exact. However, whether it
in this limit is more advantageous to use than other exact
methods involving, e.g., grid, or state-expansion is an open
question. In the present paper the method is generalized to
multisurface problems and its performance on a simple
model system is investigated.

This article is organized as follows. In Sec. II we derive
the equations of motion for the generalized MCTDH scheme,
using a compact notation. Some of the details for this deri-
vation have been moved to the Appendix. In Sec. III we then
present a numerical study of a simple model system. In Sec.
III A the numerical scheme for the generalized MCTDH
method is presented, and in Sec. III B a numerically exact
solution of the nonadiabatic problem is outlined. The nu-
merical results are then reported in Sec. III C, and a compari-
son of the two methods is subsequently made. Finally in Sec.
IV, we conclude and sum up the most important features of
the generalized MCTDH method, as compared to the direct
method.

II. EQUATIONS OF MOTION FOR THE GENERALIZED
MCTDH SCHEME

In this section we will derive the nuclear equations of
motion for a general nonadiabatic system treated in the
MCTDH framework. The single-surface MCTDH scheme
originates from Cederbaumet al.,21–23and using this work as
a starting point we are able to derive a new set of extended
multisurface working equations. Formally speaking the equa-
tions of motion are obtained using the Dirac–Frenkel–
McLachlan variational principle,̂ dCu i ]/]t2ĤuC&50,24

and to subsequently simplify the equations we go somewhat
along the same lines as Cederbaumet al.However, we use a
different motivation and an improved notation. Finally the
numerical scheme is commented upon, and we especially

9191J. Chem. Phys. 105 (20), 22 November 1996 0021-9606/96/105(20)/9191/9/$10.00 © 1996 American Institute of Physics



emphasize some important differences compared to the origi-
nal MCTDH scheme.

Let us consider a general system with the time-
independent Hamiltonian

Ĥ tot~Q,X!5T̂Q1T̂X1V̂~Q,X![T̂Q1Ĥ~Q,X!, ~1!

whereQ andX collectively denote, respectively, the nuclear
and the electronic coordinates. The total wave function is
next expressed as the direct product sum

C~Q,X,t !5(
s

Qs
0~X!Cs~Q,t !, ~2!

whereQs
0(X) are the usual diabatic electronic states defined

as eigenfunction ofĤ, introduced in Eq.~1!, with the nuclear
reference configurationQ0. To define the time-dependent
nuclear wave functions,Cs(Q,t), we project the total time-
dependent Schro¨dinger equation onto the diabatic electronic
states. Thus, we insert the expansion, Eq.~2!, into the time-
dependent Schro¨dinger equation with the Hamiltonian given

by Eq. ~1!, and multiply it byQs
0* (X) followed by an inte-

grating over all the electronic degrees of freedom. The re-
sulting coupled equations read as

i\Ċs~Q,t !5@ T̂Q1^Qs
0uĤuQs

0&#Cs~Q,t !

1 (
s8Þs

^Qs
0uĤuQs8

0 &Cs8~Q,t !

[ĤsCs~Q,t !1 (
s8Þs

Ŵs,s8~Q!Cs8~Q,t !, ~3!

where we have defined the effective nuclear HamiltonianĤs,
on the electronically diabatic surfaces, and the coupling el-
ementsŴs,s8.

Now, let us assume that the system hasN nuclear de-
grees of freedom, i.e.,Q[(Q1 ,...,QN), and thatĤs, in Eq.
~3!, can be separated into an uncorrelated part, given byĥk

s ,
and a residual correlated partĤcorr

s

Ĥs~Q!5 (
k51

N

ĥk
s~Qk!1Ĥcorr

s ~Q!. ~4!

The fundamental ansatz in the multiconfiguration time-
dependent Hartree scheme is to assume that the total wave
function, on a given electronic surfaces, can be expressed in
the direct product form21

Cs~Q,t !5 (
j 151

M1

••• (
j N51

MN

Aj 1 ,...,j N
s ~ t ! )

k51

Nk

f j k
s ~Qk ,t !

[(
J
AJ
sFJ

s , ~5!

where Aj 1 ,...,j N
s (t) denote the expansion coefficients, and

f j k
s (Qk ,t) are the so-called single-particle functions. The

Mk dimensions correspond to the number of configurations
included in the expansion ofCs for the different nuclear
degrees of freedom,k. To simplify the notation considerably
we have also introduced the multi-indexJ5$ j 1 , j 2 ,...,j N%

and the many-particle configurationsFJ
s [ Pf j k

s (Qk ,t), in

Eq. ~5!. It is important to note that both the expansion coef-
ficients and the single-particle functions are time dependent.
To remove this redundancy from Eq.~5! the following con-
straints are put on the single-particle functions:

i\^f ik
s ~ t !uḟ j k

s ~ t !&5^f ik
s ~ t !uĥk

s uf j k
s ~ t !&

⇒ i\^F I
suḞJ

s&5^F I
su(

k
ĥk
s uFJ

s&, ~6!

where hk
s is defined in Eq. ~4!. By expanding (]/]t)

3^f ik
s (t)uf j k

s (t)& and using the fact thathk
s is Hermitian, it

can easily be shown that Eq.~6! implies that the single-
particle functions have a constant norm. Hence, if we further
assume that the single-particle functions are initially normal-
ized, the following normalization applies at all times:

^f ik
s ~ t !uf j k

s ~ t !&5d ik , j k⇒^F I
suFJ

s&5d I ,J . ~7!

To derive the equations of motion for the expansion co-
efficients AI

s, we substitute Eqs.~4! and ~5! into Eq. ~3!,

multiply by F I
s* followed by an integration over all the

nuclear coordinates,Q, and finally make use of Eq.~7!. The
result is

i\ȦI
s5^F I

su H Ĥcorr
s uCs&1 (

s8Þs

Ŵs,s8UCs8J
5(

J
^F I

suĤcorr
s uFJ

s&AJ
s

1 (
s8Þs

(
J

^F I
suŴs,s8uFJ

s8&AJ
s8 . ~8!

We will comment on this equation later when we have de-
rived the equations of motion for the single-particle func-
tions. However, before we do so, we will introduce a useful
notation that will help us simplify the equations referring to
multiple electronic surfaces, configurations and coordinates.
Consider the so-called single-hole functions,22

C ik
s ~Q$k” % ,t !5 (

j 151

M1

••• (
j k2151

Mk21

3 (
j k1151

Mk11

••• (
j N51

MN

Aj 1 ,...,j k21,ik , j k11 ,...,j N
~ t !

3 )
k851
k8Þk

nk8

f j k8

s ~Qk8 ,t ![(
J$k” %

Aik ,J$k” %
s FJ$k” %

s , ~9!

where we have introduced the new multi-index
J$k” %[$ j 1 ,...,j k21, j k11,...,j N%. Thus, throughout the rest
of this paper the$k” %-single-hole-index collectively denotes
all the nuclear degrees of freedom exceptk. Using the new
notation,Cs can be expressed as

Cs5(
j k

C j k
s f j k

s 5(
j k

(
J$k” %

Aik ,J$k” %
s FJ$k” %

s . ~10!
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Next we make use of this relation, in addition to Eqs.~4! and
~5!, to rewrite Eq.~3! as

i\Ċs5 i\(
J
ȦJ
sFJ

s1 i\(
j k

H C j k
s ḟ j k

s 1(
J$k” %

Aj k ,J$k” %ḞJ$k” %
s f j k

s J
5(

j k
H C j k

s ĥk
s1(

J$k” %
Aj k ,J$k” %
s

3S (
k8Þk

ĥk8
s DFJ$k” %

s J f j k
s 1Ĥcorr

s Cs1 (
s8Þs

Ŵs,s8Cs8 .

~11!

To derive the equations of motion for the single-particle
functionsf j k

s we project Eq.~11! onto the single-hole func-

tions ^C ik
s u. The explicit derivation, using the notations in-

troduced in this section, is shown in the Appendix. Thus,
from Eq. ~A7! we conclude

i\ḟk
s5ĥk

sfk
s1~12Pk

s !^1s&$k” %
21S ^Ĥcorr

s &$k” %fI k
s

1 (
s8Þs

^Ŵs,s8&$k” %fk
s8D , ~12!

where we have adopted a vector/matrix notation and defined
the projection operatorsP̂k

s [ ( j k
uf j k

s &^f j k
s u @see Eq.~A6!#.

Along the same lines as Cederbaumet al. we have further
more introduced the time-dependent mean-field operators,

@^Ôs,s8&$k” %# ik , j k [ ^C ik
s uÔs,s8uC j k

s8&, where the bracket nota-
tion is to be understood as an integration over all the degrees
of freedom exceptk. Note especially that the unit mean-field
‘‘operator,’’ appearing in Eq.~12!, simply reads as

@^1s&$k” %# ik , j k5 (
I $k” %,J$k” %

Aik ,I $k” %
s* Aj k ,J$k” %

s . ~13!

Equations~8! and ~12! make up the total working equations
for the presented generalized MCTDH scheme. In the equa-
tion of motion for theA-coefficients, Eq.~8!, only the cor-
relation part of the Hamiltonian and the nonadiabatic cou-
pling terms enter.Ĥcorr

s describes the correlation among the
different configurations on a single electronic surface and
Ŵs,s8 contains the nonadiabatic coupling terms which are
responsible for the transitions from the one diabatic potential
surface to another. Equation~12! further contains the single-
particle Hamiltonians,ĥk

s , that propagates the single-particle
functions into the same Hilbert space as time evolves. The
~12P̂k

s! operator in front of the second term of Eq.~12!
assures that the correction to the single particle functions,
due to correlation and nonadiabatic coupling, is added from
the Hilbert space which is orthogonal to this space. It should
also be emphasized that in the MCTDH scheme the non-
correlated single-particle Hamiltonians, first introduced in
Eq. ~4!, are chosen somewhat arbitrarily. This adds a very
important technical degree of freedom to the scheme, corre-
sponding to a ‘‘restricted freedom’’ when choosing the ini-
tial single-particle functions. Thus, in general the single-

particle functions do not have any physical significance, and
consequently single particle properties cannot directly be cal-
culated. However, by diagonalizing Eq.~13! one can
uniquely define a set of single-particle functions. These, so-
called natural single-particle functions, have physical signifi-
cance and can be used to evaluate the overall convergence
with respect to a given number of natural single-particle
function employed in the scheme. Finally, we note that if we
especially chooseĥk

s50 and employ a large enough basis set,
i.e. P̂k

s [ ( j k
uf j k

s &^f j k
s u 5 1, the single-particle functions be-

come time independent, while Eq.~8! stays unchanged~ex-
cept that nowĤcorr

s 5 Ĥs!. This is precisely the equations of
motion for the numerically exact solution of the non-
adiabatic problem using a conventional time-independent
state-expansion. Thus we make the very important observa-
tion that the given generalized MCTDH scheme includes the
exact solution as a limited case. For a more thorough discus-
sion of the natural single-particle functions and other de-
tailed aspects of the single-surface MCTDH scheme we refer
to Refs. 21–23.

Finally we comment on the multidimensional integrals
entering Eqs. ~8! and ~12! as, respectively, the time-
dependent mean-field operators and matrix elements over
Ĥcorr
s andŴs,s8. The normal procedure for evaluating multi-

dimensional integrals of these types would be as follows:25

First one defines a set of orthonormalad hocbasis sets in
each of the nuclear degrees of freedom~e.g., particle-in-a-
box basis sets!. These basis functions definead hocdiscrete
variable representations~DVR! in each dimension in the
usual way. However, since they are chosen somewhat arbi-
trarily they do not reflect the physics of the system. In other
words we would like to construct a set of DVR grids, in each
dimension, that reflects the topology of the involved poten-
tial energy surfaces, such that the grids are dense in regions
where the de Broglie wavelength is small and more sparse
elsewhere. For a simple single-surface problem, as consid-
ered by Cederbaumet al.,21–23 one would normally employ
an optimizing scheme26 based on the work of Harris, Enger-
holm, and Gwinn~HEG!.27 In this scheme one first con-
structs sets of eigenfunctions of zeroth-order Hamiltonians,
which in this case would be the single-particle operators.
Each of these basis sets, expressed in thead hocbasis, are
then truncated according to the collision energy. The result-
ing compact basis sets are then used to construct new
‘‘physically meaningful’’ DVR basis sets by diagonalizing
the position operator. The eigenfunctions define sets of com-
pact DVR basis sets where the corresponding eigenvalues are
the optimized grid points. This is a very powerful scheme for
constructing optimized compact DVR basis sets.25 However,
since the single-particle operators,ĥk

s , defined in the gener-
alized MCTDH scheme, refer to different potential energy
surfaces, a naive application of the HEG scheme would re-
sult in many different DVR grids in each coordinate. Conse-
quently, the nonadiabatic coupling elements, entering Eqs.

9193K. Museth and G. D. Billing: Nonadiabatic systems in the MCTDH framework

J. Chem. Phys., Vol. 105, No. 20, 22 November 1996



~8! and ~12!, could not be handled numerically within the
same DVR scheme. Thus, it is not clear how one should
construct a unique optimized DVR scheme in each of the
nuclear degrees of freedom. All this is of course not an arti-
fact of the generalized MCTDH scheme itself, but simply a
consequence of the complexity of multisurface systems.
However, it means that a great computational/numerical ad-
vantage of the MCTDH scheme has been lost in the course
of generalizing it to nonadiabatic systems.

III. NUMERICAL CALCULATIONS ON A MODEL
SYSTEM

In this section we present a numerical study of a simple
nonadiabatic model system conducted in the framework of
the generalized MCTDH approach presented in the previous
section. The results are subsequently compared to numeri-
cally exact calculations employing a split-operator propaga-
tion scheme. Finally convergence and consumed CPU time
for the two schemes are compared.

The system of choice is a simple one-dimensional two-
surface model that can easily be solved numerically exact.
The coupled nuclear equations, Eq.~3!, read as

i\F Ċ1~x,t !

Ċ2~x,t !
G5F T̂1V1~x! W~x!

W~x! T̂1V2~x!
G•FC1~x,t !

C2~x,t !G ,
~14!

where T̂52(\2/2m)(]2/]x2) and the potential energy
curves and the nonadiabatic coupling term are taken to be

V1~x!5V0
1 exp@22~x2xcross!#,

V2~x!5V0
2 exp@22~x2xcross!#1DE,

W~x!5W0 exp@2DW~x2xcross!
2#, ~15!

xcrossdenotes the crossing point of the two diabatic potential
energy curves,DE is the asymptotic splitting of the curves
and $V0

1 ,V0
2 ,W0 ,DW% are parameters of, respectively, the

two surfaces and the nonadiabatic Gaussian coupling term,
W. @See Fig. 2 for a plot ofV1(x), V2(x) andW(x).# In both
of the numerical schemes we adapt the usual wavepacket
formulation of a scattering experiment.28 Thus, the system is
started on the lowest electronic surface,V1(x), by initiating
the wave function as

C1~x,t50!5F 2x1
p~x1

21x2
2!G

1/4

expF2
~x2x0!

2

x12 ix2
2 ik0xG ,

~16!

C2~x,t50!50, ~17!

where we have defined the constantsx15(2Dx0)
2 and

x252~x02xfoc!/k0. Equation~16! is nothing but a normal-
ized Gaussian wavepacket, centered aroundk0, with the ad-
ditional property that it has its minimum width,Dx0, at xfoc ,
different from the initial starting pointx0.

28,29 If we then fix
xfoc as the classical turning point onV1(x), we have reduced
the interference problems that occur where part of the wave-
packet reaches the end of the grid while a significant part of
the wave function is still in the reaction zone. However, the

use of a focusing wave packet, alone, is not sufficient to
avoid artificial boundary effects in most computationally re-
alistic calculations. Consequently we will have to use addi-
tional numerical techniques to further minimize the artifacts
inevitably following the use of a finite basis expansion of the
wave function. Thus, both schemes make use of absorbing
boundary conditions, in the form of a negative imaginary
potential~NIP!, but as we shall see the two implementations
are very different.

A. Model study of the generalized MCTDH

First we note that because the considered system is one-
dimensional there is no residual correlation term in the
Hamiltonian, i.e.,Ĥcorr

s 5 0 in Eq.~4!. Second, the mean-field
operators, entering Eq.~12!, vanish, thereby simplifying the
equations of motion for the single-particle functions. Thus,
Eq. ~8! for the model system reduces to

i\
d

dt
Ai
1~ t !5(

j
^f i

1uWuf j
2&Aj

2~ t !,

i\
d

dt
Ai
2~ t !5(

j
^f i

2uWuf j
1&Aj

1~ t !, ~18!

and Eq.~12! simplifies to

i\
]

]t
f i
s~x,t !5ĥsf i

s~x,t ! ~s51,2!. ~19!

Next we define the single-particle Hamiltonians as

ĥs5T̂1Vs~x! ~s51,2!. ~20!

Now, if we initiate the single-particle functions as eigenfunc-
tions of, respectively,ĥ1 and ĥ2, the single-particle con-
straint, Eqs.~6! and ~7! is trivially fulfilled and the solution
to Eq. ~19! simply reads as

f i
s~x,t !5e2 iEi

st/\f i
s~x,0! ~s51,2!, ~21!

whereEi
1 andEi

2 are eigenvalue numberi of, respectively,
ĥ1 and ĥ2. Thus, the propagation of the single-particle func-
tions is now trivial, and we are left with Eq.~18! as the
working equation. To numerically integrate this equation we
next employ anad hocbasis. We use the following normal-
ized particle-in-a-box basis set:25

H wn~x![A 2

xmax
sinS npx

xmax
D , n51,...,NJ , ~22!

where the domain of interest for the coordinate is assumed to
be scaled to the intervalxP#0;xmax@. This FBR is isomorphic
to a DVR basis-set,$uxp&, p51,N%, with the underlying uni-
form grid $xp5pDx p51,N% and the constant weight
v5Dx5xmax/~N11!. On this grid Eq.~18! takes the form

d

dt
Ai
1~ t !52

iDx

\ (
j ,p

f i
1* ~xp ,t !W~xp!f j

2~xp ,t !Ai
2~ t !,

d

dt
Ai
2~ t !52

iDx

\ (
j ,p

f i
2* ~xp ,t !W~xp!f j

1~xp ,t !Ai
1~ t !.

~23!
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As mentioned above$fi
1% and$fi

2% are defined as eigenfunc-
tions of the single-particle Hamiltonians. Hence, the single-
particle functions, Eq.~21!, are initialized on the grid as

f i
s~xp,0!5

Up,i
s

ADx
~s51,2!, ~24!

where the unitaryU-matrices, respectively, diagonalizeĥ1

and ĥ2 expressed in the DVR,$uxp&, p51,N%. The initializa-
tion of theA-coefficients follow immediately from the initial
conditions of the wave packet discussed in the previous sub-
section@Eqs.~16! and ~17!#. Thus, we write

Ai
1~0!5ADx(

p
C1~xp,0!Up,i

1 and Ai
2~0!50, ~25!

whereC1~xp ,0! is defined in Eq.~16!. The numerical values
of Ai

1~0! can also be used to truncate$fi
1%, which is then used

to define the number of single-particle functions included for
both surfaces. Equation~23! can now be integrated in time
using, e.g., a predictor–corrector scheme. However, as some
of the wave packet reaches the end of the grid it is reflected
back into the reaction region, thus causing significant inac-
curacies. The reason for this is of course that in the present
formulation the wave function is assumed to be zero at the
boundary, i.e., we have effectively placed an infinite wall at
xmax. The standard way of treating this difficulty is to em-
ploy an absorbing boundary condition by adding to the
Hamiltonian a negative imaginary short-range potential in
the asymptotic region of the grid.30 Many different types of
NIP’s have been suggested in the literature,31–33but common
to all of them is that they are not perfect absorbers in the
whole energy domain represented by the wave packet. We
choose a simple linear ‘‘ramp-potential,’’

Vnip~x!5H 2 iVmax

x2xnip
xmax2xnip

,

0,

xnip<x<xmax,
otherwise, ~26!

wherexnip andVmax are parameters to be fitted to the scat-
tering experiment at hand. It is important to note that we
cannot simply redefine the single-particle Hamiltonians to
include the NIP, as this will produce single-particle functions
that grow exponentially with time, because of complex ei-
genvalues entering Eq.~21!. Thus, instead we will have to
redefine theA-coefficients after each time step to include the
damping factor of the NIP. Using the well-known second-
order different~SOD! scheme this amounts to multiplying
the wave function by exp@2iDtVnip/\#, thus redefining the
A-coefficients as

Ai
s~ t !→Dx(

j ,p
Aj
s~ t !f i

s* ~xp ,t !

3e2 iDtVnip~xp!/\f j
s~xp ,t ! ~s51,2!, ~27!

after each successful propagation of Eq.~23! by the time-step
Dt.

B. Numerically exact calculations

To obtain a numerically exact solve to the coupled time-
dependent Schro¨dinger equation, Eq.~14!, we employ the
split operator method,34 where the wave function is propa-
gated a time-stepDt by the operator matrix equation

CI ~x,t1Dt !5exp@2 iV= Dt/2\#exp@2 iT=̂Dt/\#

3exp@2 iV= Dt/2\#CI ~x,t !. ~28!

In this equationCI is a column vector,@C1,C2#
T, T=̂ is a 232

diagonal matrix with the kinetic energy operator in the diag-
onal andV= is defined as

V= ~x!5FV1~x!2 iVnip~x! W~x!

W~x! V2~x!2 iVnip~x!
G , ~29!

where the individual potentials are given in Eq.~15! and Eq.
~26!. Note that in this scheme we have simply included the
NIP in the definition of the two potential energy surfaces. To
evaluate the action of exp@2iV= Dt/2\#, operating on the
wave function, it is necessary to make a unitary transforma-
tion to the adiabatic representation in which Eq.~29! is di-
agonal. At first sight this might seem impossible sinceV= is
not strictly Hermitian, and thus the spectral theorem can not
directly be applied. However, given that we add the same
NIP to the two surfaces, it is easy to see that any unitary
matrix that diagonalizes the potential energy matrix without
the NIP’s will also diagonalize Eq.~29!. Hence, if we dis-
cretize Eqs.~28! and ~29! on an equidistant grid$xp5pDx,
p51,N%, we can for each grid point,xp , construct a sym-

metric matrixU= (xp) such thatV=̃ 5 U= TVU= , whereV=̃ is diag-

onal with the elementsṼ1 andṼ2. Then the effect of apply-
ing the potential operator, entering Eq.~28!, is evaluated
according to the expression

exp@2 iV= Dt/2\#

5U= Fexp@2 iṼ1Dt/2\# 0

0 exp@2 iṼ2Dt/2\#
GU= T. ~30!

After the action of this operator onto the wave function, we
have to apply the kinetic energy operator exp@ 2 iT=̂Dt/\#, see
Eq. ~28!. The effect of applying this differential operator is
easily calculated by transforming the wave function from the
coordinate grid representation to a momentum grid represen-
tation by means of a Fourier transformation. To return to the
coordinate representation we next perform an inverse Fourier
transformation of the wave function, and finally to complete
the split propagation byDt we act the potential energy op-
erator, Eq.~30!, once more onto the result.

C. Numerical results for the two schemes

The numerical schemes presented in the two previous
subsections were implemented inFORTRAN 77on a Cray C92.
The integration of Eq.~23! was carried out by employing a
predictor–corrector scheme of variable order~up to 11th or-
der!, and the action of the kinetic energy operator on the
discretized wave function was calculated using a FFT~fast
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Fourier transform! algorithm. To extract information from
the calculations on the transition probabilities among the two
surfaces we evaluated the flux,F, of the wave functions

Fs~k,t !5
\ks
m

uCs
1~k,t !u2 ~s51,2!, ~31!

wherek15k, k2 5 Ak222mDE/\2 and

Cs
1~k,t !5

1

A2p
E

2`

`

dx exp@ ikx#Cs~x,t !. ~32!

The transition probability from the initial state was then ob-
tained as the ratio between the outgoing fluxes and the initial
incoming flux

Ps~k!5
Fs~k,t* !

F0~k,0!
~s51,2!, ~33!

where the initial incoming flux,F0(k,0), can be obtained
analytically by inserting Eq.~16! into Eq. ~32!

F0~k,0!5
\kDx0

m
A2

p
exp@22Dx0

2~k2k0!
2#. ~34!

However, to directly calculateFs(k,t* ) in Eq. ~33!, we
would have to use a grid large enough that at a certain time,
t* , all of the wavepacket was well outside the region of
reaction and the domain of definition of the NIP. The solu-
tion is to use the time/energy Fourier transform,Cs

1(x,E),
defined as

Cs
1~x,E!5

1

A2p
E

2`

`

dt expF iEt\ GCs~x,t !, ~35!

rather than the space/momentum transform,Cs
1(k,t). One

can then show the simple relation~see the appendix in Ref.
35!

Cs
1~x,E!5

m

\k
e2 ikxeiEt* /\Cs

1~k,t* !. ~36!

Inserting this expression and Eq.~34! into Eq.~33! we finally
obtain

Ps~k!5
\2kksuCs

1~x* ,\2k2/2m!u2

Dx0m
2 exp@22Dx0

2~k2k0!
2#
. ~37!

We then choosex*,xnip and calculate the time/energy trans-
form of the wave functions, Eq.~35!, as a discrete sampling
after each time-stepDt. The conservation of flux then gives
that P1(k)1P2(k)51, which can be used as a measure of
convergence as a function ofk ~in the neighborhood ofk0!.
The total transition probabilities are obtained from the ratio
between the total fluxes, i.e.,

Ptot
s ~k0!5

\2*2`
` dkk2ksuCs

1~x* ,\2k2/2m!u2

k0m
2 , ~38!

where we have used that the total flux of the Gaussian wave
packet is given by\k0/m. Again the sum from the two sur-
faces should give unity. As yet another measure of the over-
all convergence we use the fact that both numerical schemes
are energy conserving.~This follows formally from the

Dirac–Frenkel–McLachlan variational principle and the fact
that the Split operator is unitary outside the NIP.! From Eq.
~16! we obtain^k2&5k0

211/x1 which immediately leads to
the following expression for the time-independent mean-
energy:

^E&5
\2

2m
^k2&5

\2

2m S k021 1

4Dx2D . ~39!

This number was then compared tôC1uh1uC1&
1^C2uh2uC2&12R@^C1uWuC2&# as a function of time for the
two schemes.

In Table I we have listed the values of the parameters
that were fixed throughout the calculation presented in this
section.

In Fig. 1 the transition probability,P2(k), is shown as a
function of the wave vector,k5A2mE/\. These probabili-
ties were obtained by 7 MCTDH calculations with 400 grid
points and different values ofk05~30,35,40,45,50,55,60!.
The convergence was of the order of 1025 with the split-
operator method employing 750 grid points. Figure 1 shows
Stückelberg oscillations36 above the threshold energy,
DE51.5•100 kJ/mol; k527 Å21, and a very narrow peak
at k545 Å21 corresponding toE54•100 kJ/mol. The oscil-
lations occur because the system has a turning point and thus

TABLE I. Numerical values of the parameters fixed in the calculations. The
numbers are reported in molecular units~see appendix A in Reference 37!.

Parameters

Common parameters

Generalized MCTDH
Split operator
propagation

m ~a.u.! 1.0
xmin ~Å! 0.0
xmax ~Å! 18.0
Propagation:
x* ~Å!a 10.0
Dt~10214 s! 0.005b 0.002b

Time-steps 4000b 15000b

Precision 1026 c •••d

Gaussian wave packet:
x0 ~Å! 10.0
xfoc ~Å! 3.0
Dx0 ~Å! 0.25
Potentials:
xcross ~Å! 3.0
V0
1 ~100 kJ/mol! 2.0

V0
2 ~100 kJ/mol! 0.5

DE ~100 kJ/mol! 1.5
W0 ~100 kJ/mol! 2.0
DW ~Å22! 11.09
xnip ~Å! 13.5e

Vmax ~100 kJ/mol! 0.30b

aThe time sampling of the wave function at this grid point@see Eq.~35!, Eq.
~36! and Eq.~37!# was not started before the wavepacket was moving out of
the reaction region.
bThis parameter is actually a function ofk0, but the listed value was typical
for most calculations.
cInput-parameter to the variable-order predictor–corrector routine.
dThe Split-operator method does not offer any control over the precision in
the time-propagation.
eThis corresponds to a NIP which is defined on the last 25% of the grid-
points.
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interference will take place when the system follows the dif-
ferent possible paths leading to the upper surface. The peak
at E54 is an interesting indication of a resonance, and a
closer inspection of the adiabatic potential energy curves, see
Fig. 2, exactly shows a well on the upper surface at this
value of the energy. Thus, the system is trapped on the upper
adiabatic surface for a short time before it tunnels out, i.e. a
shape resonance is formed. The exact position and life-time
of the resonance can be calculated using the ‘‘complex scal-
ing of a DVR’’-method, suggested recently by Museth
et al.25

In Tables II and III we have listed the convergence for
the total transition probabilities for, respectively, the Split-
operator and the MCTDH methods. In all the calculationsk0,
in Eq. ~38!, was fixed to 35 Å21 and the remaining param-
eters as listed in Table I. Due to the fact that the NIP was not
a perfect absorber in all of the energy domain represented by
the wave packet, reflection was inevitable and consequently
convergence below 1025 could not be obtained as a result of
merely increasing the grid size. Table II shows that the split-
operator method needs more than 750 grid points to ensure a

convergence of the order of 1025. Given that the most time-
consuming step in the split-operator scheme is the one-
dimensional FFT call, we would expect the CPU time to
scale asN logN, whereN denotes the size of the grid. If we
take an initialization time into account, this characteristic
time dependence is confirmed by the second column in Table
II.

Table III clearly shows that the MCTDH method needs
much less points, than the direct method, to achieve the same
convergence, which is due to the fact that in the MCTDH
method the basis sets are optimized as a function of time,
i.e., they follow the dynamics of the system as time evolves.
The full convergence is obtained with only 400 grid points
and single-particle functions, and an acceptable precision re-
mains when the former is truncated by a factor of 2/3. How-
ever, it is equally clear from Table III that the MCTDH
scheme is approximately 10 times slower than the simple
split-operator method, even though the code ran 4–5 times
faster on the same vector computer. This was of course a bit
disappointing, but considering the complexity of the
MCTDH approximation—even for an as simple problem as
the considered—it was not surprising. It is difficult to make
any conclusive remarks on the large difference in the
MFLOP performances of the two codes. However, it appears
that the predictor–corrector algorithm is more vectorized
than the FFT. Finally we note that the MCTDH method
scales almost quadratically with the dimensions, if we take a

FIG. 1. The probability for transition from the initial state on the lower
surface to a final state on the upper surface is shown as a function of the
wavenumber. The results were obtained by the generalized MCTDH
scheme, using seven different values ofk0.

FIG. 2. Plot of the different potential energy curves mentioned in the text.

TABLE II. Convergence of the total transition probabilities in the split-
operator method. In all the tabulated calculations the initial Gaussian wave
packet was centered atk0535 ~Å21!.

Grid size
(N) P1(k0) P2(k0) P1(k0)1P2(k0)

CPU time
~s! MFLOPa

200 0.54052 0.09937 0.63989 9.0 117
300 0.86115 0.13876 0.99991 12.3 119
400 0.86138 0.13857 0.99996 15.6 116
500 0.86139 0.13858 0.99997 19.5 120
750 0.86140 0.13858 0.99998 32.2 111
1000 0.86140 0.13858 1.00000 37.9 121

aMillion floating point operations pr. second on a single CPU of a Cray C92
~peak performance is 900 MFLOP!.

TABLE III. Convergence of the total transition probabilities in the general-
ized MCTDH scheme. In all the tabulated calculations the initial Gaussian
wavepacket was centered atk0535 ~Å21!.

Grid size
(N) Ma P1(k0) P2(k0) P1(k0)1P2(k0)

CPU time
~s! MFLOPb

200 200 0.15772 0.01767 0.17536 196 468
250 250 0.87679 0.12320 0.99998 227 490
300 300 0.86122 0.13879 1.00000 303 476
400 200 0.85919 0.14067 0.99986 142 455
400 267 0.86113 0.13887 0.99999 247 438
400 400 0.86140 0.13858 1.00000 505 477

aNumber of single-particle functions included in the calculation.
bMillion floating point operations pr. second on a single CPU of a Cray C92
~peak performance is 900 MFLOP!.
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certain initialization time for the scheme into account. How-
ever, if we allow for a smaller convergence by truncating the
single-particle basis sets, Table III shows an almost linear
dependence of the CPU time.

IV. CONCLUSIONS

It is evident from the results presented in the previous
section that for simple nonadiabatic systems the generalized
MCTDH method is not the method of choice—especially not
when one seeks numerically exact results. As expected from
the equations of motion for the MCTDH scheme, it is per-
fectly capable of producing these exact results with a rela-
tively small grid, but the cost in terms of CPU time is very
large. Even in the approximate domain, the direct split-
operator method converges much faster—in spite of the fact
that it uses twice as many grid points and 2–3 times as many
time steps. One major drawback of the generalized MCTDH
scheme was pointed out in Sec. II: the presented numerical
scheme, unlike the original MCTDH scheme, does not allow
for the direct construction of an optimized DVR, using the
HEG scheme. Consequently the definition of thead hocba-
sis set is very critical for the overall numerical performance
of the scheme. In the calculations presented in the previous
section we used a basis set of particles in a box functions,
i.e., we used a uniform DVR grid that does not reflect the
underlying physics of the problem. It is possible that we
could have chosen a betterad hoc basis for this concrete
study, but the general problem of optimizing and truncating
the basis sets and grids still remains to be solved for multi-
surface systems.

However, it is very important to emphasize that the con-
sidered model-system is very simple, and therefore the use of
an approximate method like the generalized MCTDH may
not prove advantageous as compared to more direct numeri-
cally exact methods. The conclusion is clear for very simple
nonadiabatic systems, but it is likely that the picture will
change when more complexity is added to the system. The
distinct advantage of the MCTDH scheme is exactly con-
nected with the large flexibility of the scheme to deal with
complicated situations encountered in complex collision ex-
periments. One can vary the number of basis functions ac-
cording to the correlation and nonadiabatic coupling as time
evolves, and the numerical scheme scales almost linearly
with the number of surfaces and degrees of freedom~see
Ref. 22!—and these feature have not yet been exploited.
Thus, a study a multisurface system with many degrees of
freedom is probably required to give any conclusive evalua-
tion of the presented generalized MCTDH scheme. Such
work is in progress.
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APPENDIX: EQUATION OF MOTION FOR THE
SINGLE-PARTICLE FUNCTIONS

We start out by showing a set of important auxiliary
relations for the configuration functionsFJ

s andFJ$k” %
s adapt-

ing the notation introduced in Sec. II. Using the simple rela-
tion betweenFJ

s andFJ$k” %
s it immediately follows that

FJ
s5f j k

s FJ$k” %
s ⇒ḞJ

s5(
k

ḟ j k
s FJ$k” %

s . ~A1!

This relation can be used to show the last version of the
single-particle constraint in Eq.~6!,

i\^F I
suḞJ

s&5 i\(
k

^F I $k” %
s uFJ$k” %

s &^f ik
s uḟ j k

s &

5(
k

^F I $k” %
s uFJ$k” %

s &^f ik
s uĥk

s uf j k
s &

5^F I
su(

k
ĥk
s uFJ

s&. ~A2!

Next we note that equivalent relations exist for the single-
hole configuration functionsFJ$k” %

s , thus

^F I $k” %
s uFJ$k” %

s &5d I $k” %,J$k” %⇒ i\^F I $k” %
s uḞJ$k” %

s &

5^F I $k” %
s u (

k8Þk

ĥk8
s uFJ$k” %

s &. ~A3!

To derive the equation of motion for the single-particle func-
tions,f j k

s , we project Eq.~11! onto the single-hole functions

^C ik
s u, i.e., multiply it by Eq.~9! and integrate over all the

nuclear coordinates exceptk

i\(
j k

H ^C ik
s uC j k

s &ḟ j k
s 1 (

I $k” %,J$k” %
Aik ,I $k” %Aj k ,J$k” %

3^F I $k” %
s uḞJ$k” %

s &f j k
s J

5(
j k

H ^C ik
s uC j k

s &hk
s1 (

I $k” %,J$k” %
Aik ,I $k” %Aj k ,J$k” %

s

3^C ik
s u (

k8Þk

ĥk8
s uFJ$k” %

s &J f j k
s 2^C ik

s u H $Ĥcorr
s uCs&

1 (
s8Þs

Ŵs,s8uCs8&J 2 i\(
J
ȦJ
s^C ik

s uFJ
s&. ~A4!

Next we substituteȦJ
s in the last term by Eq.~8! and make

use of Eq.~A3! to reduce it. The results read as
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i\(
j k

^C ik
s uC j k

s &f j k
s 5(

j k
^C ik

s uC j k
s &ĥk

sf j k
s 1^C ik

s u H Ĥcorr
s uCs&1 (

s8Þs

Ŵs,s8uCs8&J 2H(
J

^C ik
s uFJ

s&^FJ
suJ H Ĥcorr

s uCs&

1 (
s8Þs

Ŵs,s8uCs8&J [(
j k

^C ik
s uC j k

s &ĥk
sf j k

s 1{ ^C ik
s u2Ôik

s %H Ĥcorr
s uCs&1 (

s8Þs

Ŵs,s8uCs8&J , ~A5!

where we have definedÔik
s [ (J^C ik

s uFJ
s&^FJ

su. Using Eqs.
~5!, ~9! and ~A3!, Ôik

s can next be simplified to

Ôik
[(

j k
(
J$k” %

(
I $k” %

Aik ,I $k” %
s ^F I $k” %

s uFJ$k” %
s &uf j k

s &^f j k
s u^FJ$k” %

s u

5H(
j k

uf j k
s &^f j k

s uJ H (
J$k” %

Aik ,J$k” %
s ^FJ$k” %

s uJ
5H(

j k
uf j k

s &^f j k
s uJ ^C ik

s u[ P̂k
s^C ik

s u, ~A6!

whereP̂k
s [ ( jkuf jk

s &^f jk
s u is the time-dependent projection

operator onto the space spanned by the single-particle func-
tions in the coordinatek on the electronic surfaces. If we
finally back-substitute Eq.~A6! into Eq. ~A5! we obtain the
following equation of motion for the single-particle func-
tions:

i\(
j k

^C ik
s uC j k

s &ḟ j k
s 5(

j k
^C ik

s uC j k
s &ĥk

sf j k
s 1$12 P̂k

s%

3(
j k

H ^C ik
s uĤcorr

s uC j
k
s&f j k

s

1 (
s8Þs

^C ik
s uŴs,s8uC j k

s8&f j k
s8J .

~A7!
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