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Abstract 
This thesis presents a novel approach for blending of level set models. The proposed 
method blends the intersection area of two models by means of anisotropic diffusion, 
i.e. anisotropic Gaussian low pass filtering. Combing different models to build new 
ones is a common and intuitive way of modeling, however merging two models tends 
to lead to C1 discontinuities and some times even aliasing artifacts along the 
intersection of the two models. This thesis will show that blending by means of 
anisotropic diffusion solves theses issues and highly reduces blending execution times 
compared to mean curvature flow based blending.  



 ii 

 
 
 
 

 

 
 
 
 

Blending of Implicit Models by Means of 
Anisotropic Diffusion 

 
Master’s Thesis in Media Technology 

 
Henrik Wrangel 

 
 
 

Supervisor: 
Prof. Ken Museth 

 
 
 
 
 
 
 
 
 
 
 
 

Department of Science and Technology 
Linköping University, Sweden  

2006 
 



 iii 

Acknowledgements 
I would like to thank Prof. Ken Museth for supervising this thesis, Anders Brodersen 
for the geo texture bunny volumes and Ola Nilsson for helping out with the pbrt level 
set plug-in.



 iv 

Table of Contents 
Abstract .................................................................................................................... i 
Acknowledgements................................................................................................. iii 
1 Introduction.......................................................................................................... 1 

1.1 Purpose and Motivation ................................................................................... 1 

1.2 Problem Description ........................................................................................ 1 
1.3 Objectives........................................................................................................ 2 

1.4 Method ............................................................................................................ 2 
1.5 Thesis Outline.................................................................................................. 2 

2 Background and Related Work ........................................................................... 3 
2.1 Level sets......................................................................................................... 3 

2.1.1 Dynamic level sets................................................................................... 4 
2.1.2 Level set model representations ............................................................... 5 
2.1.3 The DT-Grid............................................................................................ 6 

2.2 Constructive Solid Geometry ........................................................................... 7 

2.3 Blending implicit surfaces................................................................................ 7 
2.3.1 Blending of level sets............................................................................... 8 
2.3.2 Blending of analytical implicit functions.................................................. 8 

2.4 Surface smoothing ......................................................................................... 10 
2.4.1 Smoothing of level sets.......................................................................... 10 
2.4.2 Mesh smoothing .................................................................................... 11 

3 Blending and smoothing by means of Gaussian diffusion................................. 12 
3.1 Blending ........................................................................................................ 12 

3.1.1 ROI ....................................................................................................... 12 
3.1.2 Shape & Orientation of the Gaussian kernel........................................... 12 
3.1.3 Boundaries............................................................................................. 13 

3.2 Surface smoothing ......................................................................................... 13 

3.3 Gaussian diffusion ......................................................................................... 14 
3.3.1 Isotropic Gaussian low pass filtering...................................................... 15 
3.3.2 Anisotropic Gaussian Low pass filtering................................................ 16 
3.3.3 Non-orthogonal separation of the anisotropic Gaussian filter ................. 16 

3.3.3.1 Factorization .................................................................................... 17 
3.3.3.2 Separation of the convolution integral .............................................. 18 
3.3.3.3 Parameterization in 3D..................................................................... 19 
3.3.3.4 Discretization and interpolation........................................................ 20 

4 Implementation................................................................................................... 23 
4.1 Blending – Anisotropic Gauss filtering .......................................................... 23 

4.1.1 Finite impulse response filter ................................................................. 23 
4.1.2 Where to blend ...................................................................................... 24 
4.1.3 DT-Grid grid access – Random access vs. stencil access........................ 25 

4.2 Global smoothing .......................................................................................... 26 
4.2.1 Defining stencils and tubes .................................................................... 27 



 5 

5 Results................................................................................................................. 28 
5.1 Blending performance.................................................................................... 28 

5.1.1 Visual appearance.................................................................................. 28 
5.1.2 Speed..................................................................................................... 30 

5.2 Smoothing ..................................................................................................... 31 
5.3 Limitations .................................................................................................... 32 

6 Discussion............................................................................................................ 33 
6.1 Conclusion..................................................................................................... 33 

6.2 Future Work .................................................................................................. 34 
6.2.1 Parallelization........................................................................................ 34 
6.2.2 Localization with quadrics ..................................................................... 34 
6.2.3 Surface smoothing with shape preservation............................................ 34 

7 References ........................................................................................................... 37 



 1 

1 Introduction 
This thesis is the result of the work carried out at the Graphics Group of the 
Department of Science and Technology at Linköping Institute of Technology. It 
serves as a fulfillment of a Master of Science degree in Media Technology and 
Engineering. 

1.1 Purpose and Motivation 
The main purpose for this thesis has been to develop a method to blend 3D models 
represented as level set by means of anisotropic diffusion and to do it faster than 
previously known methods. It has also been an aim to incorporate the blending 
algorithm with the compact and efficient level set data structure, DT-Grid [5]. 
Secondary and as an extension of the blending algorithm it has been desired to 
evaluate the anisotropic Gaussian diffusion algorithm for global surface smoothing. 
 
There exists many algorithms today for editing polygonal meshes and parametric 
surfaces. Lately the level set representation of 3D models has gained popularity since 
more and more surface editing algorithms [1] has been developed. Level set models 
are deformable implicit surfaces uniformly sampled on a volumetric grid [2]. These 
level set models offer several benefits compared to polygonal meshes and parametric 
surfaces. 1) The surfaces are guaranteed to be closed and non-self- intersecting, which 
makes them physically realizable. 2) Level set models can very easily change 
topological genus and 3) they are free of edge connectivity and mesh quality 
problems. 
 
An easy and intuitive way to create models is to use the cut and paste operation. The 
basic idea is to create a new model by merging parts from different models. These 
operations are easy to implement for level set models. However, to make the new 
model look like a homogenous object and not a collection of objects, the transitions 
need to be smooth. Another area of interest is geometric texturing [3], where smooth 
transitions are needed to make the textures look integrated with the original model. A 
method for automatic blending of level set do already exists [1] but it is slow since it 
requires that one solve partial differential equations. 
 
The creation of detailed complex 3D models can be a cumbersome and tedious 
project. One way of creating 3D models of real world objects is 3D photography [4], 
i.e. 3D scanning. The digital representations can be converted to polygonal meshes, 
parametric surfaces or iso surfaces, i.e. level sets. The scanning process is rarely 
perfect and errors and artifacts are introduced in digital representation. Some of theses 
errors may be removed by surface smoothing. It would be interesting to see how the 
surface might be enhanced by the anisotropic Gaussian diffusion.   

1.2 Problem Description 
The following problems have been identified. 
 

• Artifacts. When merging two level set surfaces unwanted artifacts might 
arise along the intersection of the two input surfaces. These artifacts 
should be removed. 

• Sharp intersections. The CSG union operation of two level set generates 
sharp intersections between the two input surfaces. This is often an 
unwanted feature. Therefore a blending function that integrates the two 
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surfaces smoothly is sought-after. It is also desirable that the user can 
choose the amount of blending. 

• Speed. There already exist methods for automatic local blending of level 
sets. Therefore it is important that a new blending function is faster than 
any previously developed methods.  

1.3 Objectives 
From the problems identified in the previous section, the following general objectives 
have been taken upon. 
 

• Develop a method for blending surfaces, represented as level sets, by 
means of anisotropic diffusion. 

• Evaluate the use of anisotropic diffusion as means for blending of level set 
surfaces. 

• Evaluate the use of anisotropic diffusion as a mean for global surface 
smoothing. 

 
The following requirement has been established for the proposed level set blending 
system. 
 

• Full integration with the efficient level set data structure, DT-Grid [5]. 

1.4 Method 
The method for blending was decided from the start and this thesis thereby also serves 
as an evaluation of anisotropic diffusion as means for blending level set surfaces. Two 
types of level set data structures have been used during the development of this thesis’ 
blending function; full grid level sets [2] and the very compact and efficient DT-Grid 
level set data structure [5]. Initially all methods have been implemented and tested 
using the full grid data structure. Finally they have been ported to the DT-Grid data 
structure.  
 
The development process has been of the incremental kind. First a blending function 
using isotropic diffusion was implemented. The implementation of the isotropic 
Gaussian diffusion blending showed that blending by means of anisotropic diffusion 
might be a satisfying solution to the blending problem, which led to an 
implementation of an anisotropic Gaussian convolution filter. Finally anisotropic 
diffusion was implemented and evaluated for global smoothing of level set surfaces. 

1.5 Thesis Outline  
The rest of this thesis is laid out as follows. In chapter 2, the concept of level sets and 
different level set data structures will be explained. Chapter 2 also addresses related 
surface editing work, mainly with implicit modeling in mind. Chapter 3 will give a 
technical description of the ideas behind Gaussian diffusion as a mean for blending 
and smoothing of level set surfaces. The implementation of anisotropic Gaussian 
diffusion for level set surfaces is explained in chapter 4. The results will be presented 
in chapter 5 and finally discussed in chapter 6. It is assumed that the reader has a basic 
knowledge of computer graphics, calculus and programming. 
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2 Background and Related Work 
This chapter will describe the general concept of level sets and the very compact and 
efficient DT-Grid level set data structure. Further, previous work within the field of 
surface smoothing and blending will be discussed.  

2.1 Level sets 
A level set is an iso surface, or an iso contour in 2D, of an implicit function φ for a 
specified iso value C. Given a function φ: ℜn→ℜ, the level set surface S is defined as 
 
{ }CxxS =! )(

rr
" ,  n

x !"
r       (2.1) 

 
In other words, the level set is the set of points in ℜn that satisfies the equation 
 
φ(x) = C         (2.2) 
 
This means that the level set is defined as all the points in ℜn for which the implicit 
function φ is equal to the specified iso value. This is best illustrated with the level set 
φ(x) = x2 + y2 = C, which defines a circle centered in (0, 0). The set of points that 
make up the level set is then obtained by solving x2 + y2 = C, which yields in a circle 
with a radius, r = sqrt(C). When evaluating all points within the area containing the 
level set three different cases will arise. 
 

• φ(x) > C. The point x is outside of the surface. 
• φ(x) < C. The point x is inside of the surface. 
• φ(x) = C. The point x is on the surface. 

 

 
Fig 2.1. Circle level set. Points where φ is larger than C are outside the level set, points where φ is 
smaller than C are inside the level set and only the point where φ=C defines the level set. 
 
This is an important property of level sets that makes it easy to classify points in space 
as being inside, outside or on the interface. It is common practice to define the level 
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set as the iso surface φ = 0. Now all points inside the surface have negative values and 
points outside the surface have positive values. 
 
It is often very important to calculate the gradient of a level set. For an n dimensional 
level set it is defined as 
 

),,,(
21 n

xxx !

!

!

!

!

!
"#

$$$
$ K         (2.3) 

 
The gradient of a level set is always perpendicular to the iso surfaces and points in the 
direction of maximum increasing φ, which yield in the following expression for the 
surface normal. 
 

!

!

"

"
±=n          (2.4) 

 
The specific level set representation used for this thesis is a so-called signed Euclidian 
distance function. It is an implicit function that always returns the shortest Euclidian 
distance to the interface. It is defined as 
 
  

! 

"(
r 
x ) =min(

r 
x #

r 
x 

s
), where xs is a point on the interface.   (2.5) 

n
x !"

=# 1$
         (2.6) 

 
To be more specific, the level sets of interest for this thesis are signed Euclidian 
distance functions. Since the interface is defined as the zero level set, the level sets get 
the following property: all points inside the interface, φ < 0, have a negative distance 
to the interface, points outside the interface, φ > 0, have a positive distance to the 
interface. Points on the interface of course have zero distance to the interface. 

2.1.1 Dynamic level sets 
Deformation of level set models is the most important part of the level set concept and 
is truly one of its strongholds. In fact it is the main reason why it is a popular surface 
representation. To be able to deform level sets, a time parameter is added to the 
previous definition of the interface. 
 

  

! 

S "
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x (t)#(

r 
x (t), t) = C{ }        (2.7) 

 
By differentiating the above definition of the interface one will see how the interface 
may be deformed in its local normal direction. 
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The F term in eq. 2.9 is called the speed function and controls the movement of the 
interface in the direction of the normal at each grid point. The type of speed function 
to use depends on what kind of surface deformation that is sought after and is user 
defined. The most basic case for propagating or moving a surface is when the speed 
function is equal to one. This will make dφ/dt equal to minus one, which corresponds 
to erosion of the level set interface. A more complex example would be to morph one 
shape to another, which would correspond to a speed function equal to the final shape 
level set [6]. By defining a proper speed function it is also possible to smoothly blend 
two level set models, which is briefly explained in section 2.3.1. However, it will be 
shown that blending level sets by anisotropic diffusion does not require a definition of 
a speed function in contrast to all other surface deformation methods. 

2.1.2 Level set model representations  
Level sets are stored as a sampling of an implicit function. This means that in 2D a 
level set contour is stored in a two-dimensional uniform grid and in 3D a surface is 
stored as a volume. This makes the memory footprint of level sets a lot larger than for 
parametric surfaces. 
 
A lot of work has been devoted to making level set methods and level set storage 
requirements more efficient. The main problem for level set methods is that since it 
adds one extra dimension it is computationally very heavy. It requires that level set 
computations for a surface involves all voxels within the volume containing the zero 
level set interface. One is actually tracking all the level sets not just the one of 
interest, the zero level set. To solve this problem, the narrow band concept was 
introduced in [7, 8]. The concept of the narrow band technique is that level set 
computations are restricted to a narrow band of voxels immediately surrounding the 
interface. This reduces the time complexity of level set computations for a surface 
from O(n3) to O(n2).  
 

(2.8) 
 
(2.9) 
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Fig 2.2. 2D Uniform sampling of level sets.  A) Euclidian distance field sampled on uniform grid b) 
Narrowband representation of a Euclidian distance filed. Voxels that are parts of the narrow band are 
marked with green. The blue curve represents the interface. 
 
One problem still remains, the level set still makes use of a full grid, which means that 
the memory footprint of the level set surface is still O(n3). A solution to the storage 
problem is the tree implementation, which stores the level set surface in an octree data 
structure [9, 10], allowing higher resolution around the interface. This reduces the 
storage requirements to O(n2). Unfortunately, due to the hierarchical data structure, 
the time complexity of the access operation is reduces to O(nlog n), which in turn 
effects the performance of the level set computations. Another drawback of the tree 
data structure is that the non-uniform sampling makes impossible to use higher order 
finite difference upwind schemes. 

2.1.3 The DT-Grid 
As mentioned in the previous section there exists level set data structures that either 
improves the performance of level set methods or decrease the memory footprint of 
level set models. The DT-Grid (Dynamic Tubular Grid) [5] brings one solution to this 
dilemma by offering a very compact and efficient data structure that reduces the 
memory footprint and is efficient for level set methods. 
 
The DT-Grid only stores values within a narrow band of the propagating surface, 
which makes the memory usage proportional to the surface itself instead of the 
containing volume. At the same time the level set surface is sampled on a dynamic 
uniform grid. This means that the grid is free from any boundary restrictions on 
surface expansion. In other words, the DT-Grid combines the best of two worlds, the 
compactness of the hierarchical tree implementations and the uniform grid from the 
narrow band implementations. A uniform grid is important since it allows the use of 
all important finite difference schemes already developed for uniform full grids. 
Moreover, uniform grids do not suffer from Lipschitz discontinuities that may arise 
from interpolation over non-uniform grids.  
 
The nature of the DT-Grid does not allow constant time for random access of grid 
points. Even though random access is still very fast, this fact has lead to the 
introduction of the iterator concept. Iterators are a fundamental part of the DT-Grid 
data structure. The iterator is a construct that provides constant access time for grid 
points when they are accessed sequentially. Constant access time may also be 
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obtained for the iterator’s neighbors by using something called a stencil iterator. 
Constant neighbor access time is important for different kinds of finite difference 
schemes. The stencil iterator allows for constant neighbor access time on average 
when iterating over the entire tubular grid. The stencil iterator is in fact not a single 
iterator but a collection of iterators, one iterator for each grid point within the 
specified stencil. The DT-Grid allows user-defined stencils and tubes, narrow band of 
a certain with around the interface, for the iterator, which has been of most 
importance for this thesis.  

2.2 Constructive Solid Geometry  
One major advantage of level set models is that they support straightforward 
Constructive Solid Geometry (CSG) modeling, i.e. copy, cut and paste operations. 
This has been of fundamental importance for this thesis. CSG modeling is a very 
intuitive and simple way to create new and interesting models or for renovating pre-
existing models. For signed distance fields CSG operations are defined as a set of 
Boolean operators, more exactly as max and min operations. These operations are 
described in table 2.1. 
 
Table 2.1 CSG operations. Positive outside sign and negative inside sign are assumed for the level set 
A and B. 
Union,  FA∪B Min (FA, FB) 
Intersection,  FA∩B Max (FA, FB) 
Difference, FA-B Max (FA, -FB) 
 
 

 
 
 
Fig 2.3. CSG operations a) Union b) Intersection c) Difference 

2.3 Blending implicit surfaces 
There exists a lot of related work for blending of implicit functions. As always all 
methods have their drawbacks and advantages. When it comes to modeling of implicit 
surfaces they can be categorized in to two groups. Analytical implicit functions that 
are continuous functions, for example the function describing a sphere. 
 

2222
zyxr ++=         (2.10) 

  
The other type of implicit functions is called numerical implicit functions and is 
discretely sampled functions, for example level sets. Blending of implicit functions 
differ depending on the type of the implicit function. This section will first discuss 
related work for blending of level sets and secondary discuss the topic of blending 
analytical implicit functions. 

a b c 
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2.3.1 Blending of level sets  
The only previous work known on local blending of level set is the mean curvature 
flow blending method introduced in 2002 by K. Museth et al [1] The mean curvature 
flow method produces blending of two level sets by means of moving the surface until 
the mean curvature around the intersection region reaches a specified value. It is done 
by constructing a specialized speed function and solving the level set equation. The 
blending speed function takes several parameters into account and is defined as: 
 
Fblend(x, n, φ) = αDp(d)C(K)K      (2.11) 
 
Where α is a user defined positive scalar that controls the rate of convergence of the 
level set surface. Dp(d) is a distance based cut-off function dependent on the distance 
d from the level set surface to the intersection curve. C(K) is another cut-off function 
that lets the user determine the upper and lower band of the curvature value. K is a 
curvature measure of the level set surface. The use of cut-off functions to control the 
amount of smoothing is a feature shared by the anisotropic Gaussian diffusion 
blending operator proposed in this thesis. The curvature parameter is found by 
calculating the eigenvalues of the shape matrix [11]. For implicit surfaces, the shape 
matrix is defined as the derivative of the surface normals projected onto the tangent 
plane of the surface. The mean curvature can be written as: 
 

!

!

"

"
•"=•"=

2

1

2

1
nK        (2.12) 

 
The mean curvature flow blending operator also lets the user constrain the direction of 
the surface’s motion, i.e. controlling if material is added or removed from the model. 
This is accomplished by clamping positive motion to zero for removing material and 
vice versa for adding material. Even though the mean curvature flow based blending 
operator produces great results it has the disadvantage of being slow. This is due to 
the fact that it is required to solve the level set equation and the required propagation 
and reinitializing of the level set that follows. As will be shown, this is not required 
for blending by means of anisotropic diffusion, which allows it to be a lot faster.  

2.3.2 Blending of analytical implicit functions 
When it comes to blending of implicit functions there exists a wide range of blending 
functions. This chapter will highlight some common blending methods that use 
density functions and R-functions. 
 
One way of blending implicit functions is to blend so called density functions. By 
converting an implicit function to a density function it becomes easier to blend the 
implicit models with different blending functions. The density function is defined as: 
 
D(x) > 1 if x is inside the surface 
D(x) = 1 if x is on the surface 
D(x)∈[0,1[ if x is outside the surface 
 
A signed distance function can be turned into a density function by the following 
transfer function, 
 
Di = exp{-Fi(x)}        (2.13) 
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if the implicit function i is said to have a negative inside, 
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Three common blending functions for density functions are the linear blending, the 
hyperbolic blending and the super-elliptic blending functions. They are defined as in 
table 2.2. 
 
Table 2.2 Blending density functions 
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Fig. 2.4 Blending density functions a) Linear blend b) Hyperbolic blend c) Super-Elliptic blend 
 
Another way to blend implicit models is to use R-functions. R-functions are real-
valued functions, f(x1, x2, …,xn), whose sign is completely determined by the sign of 
its arguments xi. The R-function may be viewed as a logic switch. If negative values 
correspond to false and positive values correspond to true it may be used as a logic 
switch for Boolean operations of implicit surfaces with a positive inside. Take the 
intersection case for example that corresponds to a logic AND switch, if the R-
function takes two implicit surfaces as input it will return true (inside) only if its two 
input surfaces are true, i.e. inside both surfaces. For the solid object A defined as, 
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a popular R-functions can be described as: 
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Where α is a continuous function α =β(FA, FB) that satisfies the following conditions: 
 

a b c 
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-1<β(FA, FB)≤1,        (2.18) 
 
β(FA, FB) =β( FB ,FA) =β(-FA, FB) =β(- FB ,FA).    (2.19) 
 
One simple case of the above R-functions are when α = 1, which yields in simple Min 
and Max operations. 
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These Min and Max operations still have the problem of having C1 discontinuity 
where FA = FB. However there are other types of R-functions that provide Cn 
continuity along the entire boundary. 
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The blending functions described in this section could be applied, with some 
modifications, to level sets. The main draw back is that these blending functions are 
global. This means that they act on the entire surface and may blend in areas where no 
blending is desired, e.g. where two surfaces are close to each other. Their blending 
parameters are also not very intuitive, which makes it hard to find a desired blending. 

2.4 Surface smoothing  
Mesh smoothing or in more general terms, surface smoothing, is an important topic 
and a lot of research has been done in the field.  The reason for its importance is that 
computer graphics models constructed from real world data, e.g. 3D photography, 
contains undesirable noise. It is desirable to remove the noise and at the same time 
cause minimal damage to the underlying geometry of the object. This section will 
focus on level set smoothing methods but also briefly discuss smoothing of meshes. 

2.4.1 Smoothing of level sets 
There are two main methods for smoothing of level sets, curvature flow [1] and 
morphological operations [1]. The curvature based smoothing method is better suited 
for local smoothing since it its more computationally demanding than morphological 
operations.  
 
The curvature based smoothing and sharpening operator makes use of the surface 
curvature, as implied by its name, to determine how to move the surface in order to 
make it smoother or sharper. It is the same idea as for curvature flow based blending, 
only with a different ROI. By specifying a maximum curvature value, the surface is 
moved until the curvature of the specified area is below the specified value for the 
entire region. It is done by defining a proper speed function that moves the level set 
surface in the direction of the local normal with a speed that is proportional to the 
local curvature. The method may also be constrained to only move the surface 
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inwards or outwards. It is constrained locally by defining the ROI with a quadric. 
Now only the surface within the quadric will be affected.  
 
For global smoothing of level sets, the morphological opening and closing operations 
are probably more convenient. Opening and closing are different combinations of the 
morphological operations, dilation and erosion. A morphological opening is the 
combination of a dilation followed by erosion and the closing operation is the vice 
versa. Opening tends to remove fine pieces or thin appendages while closing fills 
small gaps or holes. Morphological operations adapt well to level sets as dilation can 
be seen as an offset of the level set to an iso surface outside of the zero level set. 
Erosion can in turn be described as moving the surface to an iso surface inside of the 
zero level set. The morphological opening process may be seen as a four-step process 
1) offset the surface inwards 2) reinitialize the level set to a signed distance function 
with respect to the new surface 3) offset the surface outwards with the same amount 
as the inward offset 4) reinitialize the level set to a signed distance function. The 
procedure for morphological closing is the same but reversed. The morphological 
operations may be implemented for level set by solving a special form of the level set 
equation, the Ekonial equation,  
 

!
!

"±=
dt

d          (2.23) 

 

2.4.2 Mesh smoothing 
When it comes to smoothing of meshes, an extensive amount of work has been done. 
Some of the most common approaches are the Laplacian smoothing method[13, 14], 
the bilaplacian smoothing flow [14],  the diffusion and curvature flow method [15] 
and the Taubin λ|µ scheme [13]. A more interesting method for smoothing polygonal 
meshes from this thesis’ point of view is the adaptive and anisotropic Gaussian 
filtering method [16]. It is a three-step process where first an optimal scale of the 
anisotropic Gaussian filter is calculated for each vertex normal, the vertex normals are 
then smoothed with the appropriate filter kernel. In the final step the position of all 
vertices are updated to fit the mesh to the field of smoothed mesh normals. The design 
of the adaptive anisotropic Gaussian filter is based on the method described in [17], 
where they propose an adaptive filter that enhance edges and corners. The main idea 
is to scale the size of the filter kernel depending on the magnitude of the local 
gradient. The larger the magnitude of the gradient is the less the image is diffused at 
that point and vice versa. The idea to use this technique for mesh smoothing has 
shown to produce visually very pleasing results. 
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3 Blending and smoothing by means of 
Gaussian diffusion  
This chapter will describe how Gaussian diffusion can be used for smoothing 
surfaces, both globally and locally. First there will be a description of how to use 
Gaussian diffusion for blending and surface smoothing. Thereafter a detailed 
description of Gaussian low pass filters with extra emphasis on non-orthogonal 
separation of the anisotropic Gaussian convolution filter will follow. 

3.1 Blending 
Level set models produced by combining two level sets by means of the CSG union 
operation tend to create sharp creases in the intersection of the two surfaces. Not only 
is the intersection sharp, but it may also suffer from artifacts due to aliasing effects 
from re-sampling. By performing a local blending operation around the intersection 
area, the surface will be drastically improved. This can be accomplished by means of 
mean curvature-based flow, but it will be shown that a more efficient method is 
anisotropic diffusion.  
 
The anisotropic diffusion blending operation is an anisotropic Gaussian low pass 
filtering operation of a specified area around the intersection, the region of interest, 
ROI. What the Gaussian low pass filter will reduce the high frequency components of 
the surface within the ROI, which will reduce the surface’s curvature. A geometric 
interpretation is that one is spreading the normal information at each point to its 
neighbors. The operation can be divided into two main parts, specifying the region of 
interest and calculating the size and orientation of the Gaussian filter kernel. 

3.1.1 ROI 
Before blending the two surfaces the region of interest must be specified. The naïve 
and simple way is to define all areas where the two input surfaces are within a specific 
distance from each other. This may however lead to blending in areas where blending 
is undesirable, since surfaces may be close to each other but not intersect. The way to 
do it is to sample the intersection curve, the curve where the two input surfaces 
intersect, and define the blending ROI as a narrow band of a certain radius around the 
intersection curve. The sample of the intersection curve is the set the voxels that 
contain a zero-distance value to both input surfaces. For sampling of the intersection 
curve, a voxel value of 0.7 has been found to produce satisfying results and for the 
ROI a narrow band with a radius of four voxels has shown to be suitable.  

3.1.2 Shape & Orientation of the Gaussian kernel 
An anisotropic Gaussian filter kernel is a filter kernel with two or more free variance 
parameters. In 3D that means that there are at most three and at least two free variance 
parameters of the filter kernel. The variance parameters describe the standard 
deviation along the filters main axes, u, v and w in 3D. If a Gaussian filter kernel in 
3D only has two free variance parameters it means that two of its three parameters are 
the same. For the blending operation a filter kernel with two free variance parameters 
is used. The second and third variance parameters, σ2 and σ3, are set to be the same, 
σ2 = σ3. When σ2 is set to be larger than σ1, the filter kernel will take the shape of an 
oblate rotational spheroid. The filter kernel will then be oriented in such a way that its 
first axis, the axis along σ1, is parallel with the local gradient at each voxel. This can 
be interpreted geometrically as if the oblate shaped filter kernel, for each voxel, is 
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lying on the voxel’s tangent plane. Since the filter kernel is of larger extent along the 
surface’s tangent plane, the smoothing effect will therefore also be larger along this 
plane. This allows for control over the amount of smoothing by controlling the size of 
the Gaussian filter kernel. The larger the two variance parameters are, the greater the 
blending effect will be. 

3.1.3 Boundaries 
One side effect of only filtering the intersection ROI is that there will be a sharp 
transition from filtered voxels to non-filtered voxels. There is no in-between, only 
filtered or non-filtered voxels. This may cause some irregularities or unwanted 
artifacts on the boundaries of the blended areas. To avoid this, the size of the 
Gaussian filter kernel can be made adaptive. By regulating the size of the filter kernel, 
i.e. the size of the variance parameters, smooth borders around the blended areas may 
be achieved. The following piece vice polynomial [1] has been found to produce good 
results. 
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Where β is a function of the distance to the zero crossing (ZC), which is given by the 
voxel value at each point. 
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The new variance parameter where then calculated as: 
σnew = σstart – decayMax⋅ p(β) 
 
 

 

 
 
Fig 3.1. The piece wise polynomial function for scaling the size of the kernel 

3.2 Surface smoothing 
This section aims to describe how the idea behind the use of anisotropic Gaussian 
diffusion for blending of level set models may be reused and modified to suit global 
level set surface smoothing. A Gaussian low pass filter is a blurring filter, i.e. it 
regionally distributes the high frequency components of an image or 3D image. This 
is a fundamental fact, which blending by means of anisotropic Gaussian diffusion 
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relies on. But why only use it for blending when one may use it for surface smoothing 
in general? The features of the surface smoothing Gaussian filter kernel correspond to 
the features of the filter kernel used for blending. It is desired to construct a kernel 
that does most of the smoothing along the surface. An oblate spheroid shaped kernel 
oriented to lie on a tangent plane to the surface suits this purpose well, since it has a 
larger extent along this plane than out of the tangent plane. This is the same type of 
Gaussian kernel that is used for blending of two level set surfaces. Moreover, it is also 
oriented in the same fashion as in the blending case, since it shall be lying on the 
tangent plane to the surface as well. This is achieved by orienting the u axis of the 
kernel along the local gradient of the surface. However, two things differ between 
smoothing and blending. The most obvious difference is that the region of interest 
differs. Now the entire surface is of interest and not just the intersection area of two 
joined surfaces. Still, there is no need to filter the entire volume encapsulating the 
surface. A set of voxels within a narrow band of some radius, r, is satisfactory. 
Second, there is no need to have an adaptive size of the Gaussian kernel since there 
are no areas that shall remain unaffected. The surface-smoothing algorithm may be 
summarized as a filtering of the set of voxels within a narrow band around the 
interface with an anisotropic Gaussian convolution filter. 

3.3 Gaussian diffusion 
Smoothing a surface by means of Gaussian diffusion corresponds to diffusing the 
surface’s normals. High frequency components of a surface are defined as the fine 
details of the surface. One can say that the more curvature there is on the surface the 
more high frequency components there are. When smoothing a surface the objective 
is to reduce the amount of high frequency components, trying to make the surface as 
flat as possible. This can be accomplished by a simple low pass filter.  
 
The Gaussian low pass filter has the properties of being exponentially decaying and at 
the same time strict positive, which makes it suitable for smoothing and blending 
level sets. The surface is low pass filtered by means of convolution of the level set 
volume in 3D and the convolution kernel is given by the Gaussian distribution. In 1D 
the Gaussian distribution takes the following form: 
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Fig 3.2. Gaussian distribution. The Gaussian distribution in 1D given by eq. 3.3 with standard 
deviation 1.0. 
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For a discrete signal F[x], as the in the level set case, the Gaussian kernel can be 
implemented as a finite sum. Capital letters are use to accentuate that use of discrete 
signals instead of continuous signals. 
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In theory the Gaussian distribution never reaches zero and would thereby require an 
infinitely large convolution kernel. In practice the Gaussian distribution is effectively 
zero more than about three standard deviations from the mean, which means that the 
kernel can be truncated to zero beyond this point. This type of filter is called a finite 
impulse response filter (FIR). 
 
The Gaussian distribution can easily be extended from one-dimension to n-
dimensions and take different forms depending on the variance parameters along the 
coordinate axes.  

3.3.1 Isotropic Gaussian low pass filtering 
A Gaussian filter has as many free variance parameters as dimensions. When all 
variance parameters are the same, i.e. when there is only one free variance parameter, 
it is said to be isotropic. In 2D the isotropic Gaussian filter would have the shape of a 
circle and in 3D it would have the shape of a sphere.  
 
Extending the Gaussian distribution from 1D to 3D for the isotropic case would look 
like this: 
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      (3.5) 

 
As seen in equation 3.5, the isotropic Gaussian filter in 3D can be described as the 
product of the 1D Gaussian along the x-axis, the 1D Gaussian along the y-axis and the 
1D Gaussian along the z-axis. This means that the n-dimensional isotropic Gaussian 
convolution filter can be separated into n numbers of sequential 1D convolutions 
along its coordinate axes. The one-dimensional kernel is described by the function 
g(x), which is the same as g(y) and g(z). This feature can be used to enhance the 
performance of the filter. For example, in the two-dimensional case with a filter of 
size n*n, n2 operations would be needed for each pixel, but when separating the filter 
only 2*n operations are needed. This is because when the filter is separated the image 
is first filtered with a stencil of size n along the x-axis; the result is then filtered with 
another stencil of the same size along the y-axis. Each grid point is thereby filtered 
two times with a stencil of size n instead of filtered one time with a stencil of size n2. 
The fact that isotropic Gaussian filters only have one free variance parameter makes 
them easy to handle analytically and also easy to implement. This has made them very 
popular but their anisotropic sibling is much more interesting for image processing 
since they also encode information about orientation. 
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3.3.2 Anisotropic Gaussian Low pass filtering 
Since the purpose of the filtering is to smooth surfaces, a filter that takes this fact into 
account is preferred. The anisotropic Gaussian filter suits this purpose. An anisotropic 
Gaussian filter is a Gaussian filer with more than one free variance parameter. In 
three-dimensions where u, v and w are orthogonal, the anisotropic Gaussian filter can 
be described as 
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Where u, v and w are defined as 
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          (3.7) 
 
As in the case with the isotropic Gaussian filter the anisotropic filter can also be 
separated. This however is not as simple as in the isotropic case. It is standard 
procedure to separate the anisotropic Gaussian along its main orthogonal axes. The 
problem is that the direction of integration has to be rotated with respect to the 
coordinate grid. This means that interpolation must be used in all n dimensions for all 
n integration steps, which will make it cumbersome to implement and slow. 
Numerical errors may also occur and accumulate.  

3.3.3 Non-orthogonal separation of the anisotropic Gaussian filter 
It is possible to decompose the anisotropic Gaussian in ℜn in an efficient way [12]. 
Since this subject is of such great importance for the performance of the smoothing 
operation, a description of how to efficiently separate the anisotropic Gaussian will be 
given. This section about the non-orthogonal separation of the anisotropic Gaussian 
filter is based on the paper by Lampert and Wirjadi [12]. 
 
The way an efficient separation of the anisotropic Gaussian is done is not to separate 
it along its main axes but to try to separate it along arbitrary and possibly non-
orthogonal axes, with the original coordinate axes as a base. In this way the 
cumbersome rotation of grid points is no longer needed. These directions, which the 
kernel is decomposed along, may easily and efficiently be described as vectors. 
  
“For any decomposition of the ∑ = VDVt covariance matrix ∑ into square matrices 
D and V, where D is diagonal and positive, and V has determinant 1, there is a 
separation of the nD-Gaussian into 1D-Gaussians, where the separation directions 
are given by the column vectors of V.” [12] 
 
The matrix Σ is defined in eq 3.25. By finding the matrices V and D, an efficient 
separation of the anisotropic Gaussian kernel may be obtained. A description of this 
procedure follows.  
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Fig 3.3. Gauss kernel axes. A 2D schematic view of the axis of which a 2D Gaussian kernel is 
separated along. a) The kernel’s principal axes are uv-aligned. b) The kernel’s principal axes are uv-
aligned but the kernel is defined in the x, v1system. [18]  
 
3.3.3.1 Factorization 
Below follows how the n-dimensional Gaussian filter kernel, g(x), can be factorized 
to a series of one-dimensional Gaussians, g(x) = g1(x1)⋅ … ⋅gn(xn). 
 
The anisotropic Gaussian kernel, g(x), can be written in the following form: 
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Where x = (x1, …, xn), nn!"#$  is the covariance matrix (see eq 3.25) and !  is the 
determinant of ! . In ∑ = VDV t, Assume that D is diagonal and positive, V has the 
determinant 1, |V|= 1, then ∑-- 1 = V-tD-1V-1 and the Gaussian can be written as 
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Changing the x linearly to v =(v1, …, vn) with v:=V-1x. The Gaussian kernel becomes 
 

!
"
#

$
%
&
'=

'
vDv

D
vg

t

n

rr 1

2/12/ 2

1
exp

)2(

1
)(

(
     (3.10) 

 
Since D is a diagonal matrix and is assumed to have positive entries denoted by 
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2/1 . It follows that D –1 is diagonal and with only positive 
entries as well and that the matrix product is a weighted sum of squares. 
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As one can see this form of the Gaussian kernel can be can be factorized by means of 
laws of the exponent. 
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Each gi (vi) is now an ordinary one-dimensional Gaussian distribution with mean zero 
and standard deviation di along vi.  
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3.3.3.2 Separation of the convolution integral 
By changing the coordinates of the convolution integral from x and y to u and v, it 
will be shown how the above factorization gives rise to a separation of the 
convolution integral. Convolution of the two functions f and g, in this case 
corresponding to the level set (f) and the Gaussian (g), is given by: 
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Switching from the from x and y to u and v coordinates, yields in the following 
integral 
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Where u and v are defined as: 
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|V-1| has been added to the integral since there has been a change of coordinates. Since 
the determinant of V is assumed to be equal to one it follows that  |V-1| = 1. The 
separated integral now looks like: 
 

! !!
" ""

### ###$ nnnnnnnnn dvdvvVfvugvugvugxgf K
r

K
v

11111 )()()()())(*( (3.16) 

 
The matrix-vector product, Vv, in the last term of the integral f(Vv) may be split up 
into a sum, !=

i

i

i
vvvV , where vi are the column vectors of the matrix V. This means 

that when integrating over vi one is convoluting along the direction vi. The notation of 
directional convolutions offer a very compact and neat notation for this. 
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*v is the directional convolution operator and is defined as: 
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Now the convolution integral of dimension n is separated into n one-dimensional 
integrals, each one convoluting along their respective direction vi. 
 
3.3.3.3 Parameterization in 3D 
Next, we need to find the values for D and V. Only the three-dimensional case will be 
discussed here since it’s the interesting case for surface smoothing purpose. To find D 
and V triangular factorization of Cholesky type is used. The triangular factorization 
has the advantage over the single value decomposition factorization that it will 
generate directions that will require fewer interpolation steps for the convolution step. 
The triangular factorization is computed by writing  
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Which leads to 
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The covariance matrix ∑ can also be described as  
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t

=! ,          (3.25) 
 
S is a diagonal matrix containing the variance values. R is a three by three matrix 
describing the rotation. Rx1 denote rotation around the x1 axis and Rx3 denotes rotation 
around the x3 axis. 
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If σ2 = σ3, which is the most common case for filtering of 3D image data and for the 
blending method proposed in this thesis, the anisotropic Gaussian is rotationally 
invariant around its first axis. Because the base used is Euler angles this means that 
the first rotation in the x1 direction can be removed from the equation. R is now only 
dependant on the two angles θ and ϕ. 
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Now the parameterization of ∑ can be obtained by solving tt

VDVSRR =  and it 
becomes 
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3.3.3.4 Discretization and interpolation 
The next and final step is to obtain a discrete convolution operator, which may be 
described as a finite sum. The convolution filter for the discrete case described with 
directional convolution notation in the three-dimensional case looks like 
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and the convolution integral turns into the following sum 
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Since the convolution filter is separated it means that the input signal will first be 
filtered along v1, the resulting signal will then be filtered along v2 and finally the 
output signal of the second filter pass will be filtered along v3. 
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Remember, vi are the column vectors of the matrix V, giving 
 
v1 = (1, 0, 0)t 
v2 = (v12, 1, 0)t 
v3 = (v13, v23, 1)t  
 
This yields in three sums, one for each filter pass  
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x is the current voxel to be filtered and Gi is given by 
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Now all the pieces for an efficient anisotropic Gaussian convolution filter have been 
given. As seen from the convolution sums, the reason that this separation scheme is so 
efficient is that the directions of integration do not need to be rotated with respect to 
the coordinate grid. The separation scheme also has the advantage of being very 
effective in terms of interpolation. Thanks to the factorization, no interpolation is 
needed for convolution along the x1 direction. For the following convolutions only 
one additional interpolation direction is added per convolution. In the three-
dimensional cases this means that for the second pass interpolation is only needed 
along the x-axis and for the third pass it is only needed within the xy-plane. This is a 
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major advantage compared to regular anisotropic Gauss filtering where interpolation 
always must be performed along all three axes if the kernel isn’t grid aligned. 
 
 

 
 
 
Fig 3.4. Convolution directions. Schematic view of convolution directions and interpolation. In a) no 
interpolations is needed, in b) interpolations is needed along x1 and in c) interpolations is needed in the 
x1x2-plane. 
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4 Implementation 
 
This chapter intends to describe the implementation part of the thesis. The emphasis 
of this chapter will be on how to incorporated the level set blending operation with the 
DT-Grid level set data structure [5]. It will also be explained how to extend the 
blending operator for global surface smoothing. 
 
The level set blending and smoothing operations have been implemented in C++.  

4.1 Blending – Anisotropic Gauss filtering 
Blending of two level set surfaces by means of anisotropic diffusion has been 
implemented as convolution of a specified region of interest of the union level set 
with an anisotropic Gaussian filter kernel. The convolution filter has been 
implemented as a finite impulse response filter (FIR). 

4.1.1 Finite impulse response filter 
Since the anisotropic Gaussian diffusion is implemented as a separated FIR 
convolution filter in three dimensions three different convolution stencils have to be 
calculated for each voxel. New stencil values need to be calculated for each voxel 
since the stencils are dependent on the local orientation of the kernel, which in turn is 
dependent on the local normal of the surface. The filter process has been a three-step 
process. A copy of the original union volume has been used as a buffer volume. The 
way it works is that while filtering one volume the results are stored in the other 
volume and for the following filter pass the second volume is filter and the results are 
stored back in the first volume. It continues in this way until all convolution passes 
have been processed. 
 
The Gaussian distributions given in the equations 3.36 - 3.38, describe each one of the 
three stencils. The variance parameters of the stencils are given by the parameters in 
the diagonal matrix D of the decomposition of the covariance matrix ∑. 
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d
1

2 
corresponds to the standard deviation of  first stencil, 

! 

d
2

2 corresponds to the second 
stencil and 

! 

d
3

2 corresponds to stencil number three. The sizes of the stencils are 
dependent on its variance parameter and are usually of the size 5σ, rounded upward to 
the closes odd integer. Beyond this point the value of the Gaussian distribution is so 
close to zero that it can be truncated to zero. 
 
The directions of the stencils are described as the column vectors of the V matrix of 
the decomposition of the covariance matrix ∑. The first column vector of V 
corresponds to the first stencil, the second column vector to the second stencil and the 
third column vector to the third stencil.  
 
To obtain the variance parameters 
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2 and 
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3

2 and the direction parameters v12, v13, 
v23 the rotation angles θ and ϕ need to be found. These angles may be calculated with 
the help of the local gradient (nx, ny, nz) at each voxel.  
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Fig 4.1 Angles. Schematic view of how to find the angles θ and ϕ with help from the local normal n. 
 
Where nx, ny, nz may be calculated by using finite difference and dx, dy and dz are the 
distances between two voxels along the x-, y- and z-axis respectively. 
 

dx
zyxzyxnx
2

1
)),,(),,(( 11 !+ !=       (4.3) 

 

dy
zyxzyxnx
2

1
)),,(),,(( 11 !+ !=       (4.4) 

 

dz
zyxzyxnx

2

1
)),,(),,(( 11 !+ !=       (4.4) 

 
 
 

4.1.2 Where to blend 
The tracking of the designated blending area may be performed in different ways. 
Which method to choose depends on which kind of data structure that is used. For this 
thesis the blending operator has been implemented both for the simple and intuitive 
dens level set representation and the advanced and compact DT-Grid level set 
representation. Different methods for tracking the intersection regions of the two input 
surfaces have been used for the two different data structures. The simplicity of the 
dens level set data structure lead to a very straightforward implementation where a 
sampling of the intersection curve is stored during the CSG union operation. The 
indices to these voxels are stored in an array and all neighbor voxels within a 
specified distance to the zero crossing are added to the intersection ROI. The 
intersection curve is defined as the set of voxels that contain both input surfaces.  
 
For the DT-Grid, the blending operator has been implemented as a part of a large 
framework, the Graphic Group Library. This in combination with the data structure it 
self has lead to the use of an alternate approach for tracking the intersection ROI. The 
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intersection ROI is defined as the regions where the beta band of intersection volume 
intersects with the beta band of the union volume. 
 

 
 
Fig. 4.2. ROI. The image shows how to find the intersection area of two curves with the help of the 
intersection volume. The two original shapes are marked with dotted lines. The blue band corresponds 
to the beta band of the union shape and the green band corresponds to the beta band of the intersection 
shape. The intersection areas are marked with red. 
 
The DT-Grid relies heavily on iterators for accessing and manipulating values in the 
level set. To be able to set new values in the grid, an iterator must point to the 
specified voxel. So in order to blend the level set surfaces an iterator that iterates over 
the entire beta tube of the union surface is defined. While iterating over the beta tube 
one has to check if the current voxel is within the beta tube of the intersection surface. 
If inside, it means that the current voxel is within the intersection ROI and needs to be 
filtered.  

4.1.3 DT-Grid grid access – Random access vs. stencil access 
The DT-Grid only stores values in a narrow band around the interface in contrast to a 
simple dens level set which stores all values within a box-shaped volume. For a full 
grid, random access is a simple mapping from the grid point to the corresponding 
array index and is performed in constant time. 
  
Array index = i⋅rows⋅columns + j⋅columns + k    (4.5) 
 
Where i = row index, j = column index and k = z index. 
 
For the DT-Grid random access may be performed in logarithmic time in the number 
of connected components within p-columns [5]. Since the numbers of connected 
components are very small in relation to the number of grid points the random access 
operation becomes almost as fast as for a full grid in practice. However, using random 
access with DT-Grid is easy since it has full support for random access. One merely 
has to specify the index, i, j, k, to the desired grid point. Constant time access can be 
obtained if sequential access with iterators is used instead. When combining an 
iterator with an iterator stencil constant time is obtained for neighbor access as well. 
This is applies when iterating over an entire tubular grid. It is implemented by 
specifying a stencil of iterators. These iterators are then stored in an array accessible 
from the main iterator. One then has to create a function in the iterator class that by 
accessing the values of the neighbor iterators can calculate the desired task. 
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For the blending operation it seems like an iterator stencil that matches the Gaussian 
convolution filter stencil would be the optimal way for incorporating the anisotropic 
diffusion blending with the DT-Grid. However, random access has been proven to be 
more efficient. This is because when using stencil iterator access additional iterators 
for all grid points within the stencil needs to be incremented as well. In other words, it 
may be faster to do a slow operation a few times than doing a fast operation a lot of 
times, see fig 4.2 below. The number of grid points that belong to the intersection ROI 
are very few in relation to the total number of grid points. Random access is therefore 
faster than stencil iterator access for accessing neighbors of an iterator when it comes 
to blending by means of anisotropic diffusion. 
 

 
Fig 4.3. Random neighbor access vs. stencil neighbor access. This chart compares stencil iterator 
access (continuous lines) and random access (dotted lines) for accessing neighbors of an iterator. The 
y-axis is the time it takes to iterate over a surface and access the iterator’s neighbors for a certain 
percentage of the total numbers of visited voxels.  The test has been performed for three different 
stencil sizes of 5, 7 and 21 points.  

4.2 Global smoothing 
Since Gaussian diffusion is a smoothing operator it has been a secondary goal to 
implement it as an operator for global surface smoothing. The anisotropic Gaussian 
diffusion filter has been implemented straightforward as a FIR filter and is very 
similar to the blending case. There is however some differences that need to be 
addressed. Obviously the region of interest is different. The smoothing operator has 
been implemented to affect an entire surface and not only a sub part of it. There is 
also no need to dynamically change the size of the Gaussian kernel since all surface 
voxels are being convoluted. The fact that the entire surface is affected allows for a 
more efficient use of DT-Grid data structure than for the blending case. To achieve 
the best performance of the smoothing operator one wishes to constrain the Gaussian 
convolution filter to only operate within a narrow band, as thin as possible around the 
interface, but which still generates a satisfactory result. A narrow band with a radius 
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of 1.5 has proven to be sufficient. When it comes to implementation issues, there are 
two major differences between the implementation of the smoothing and blending 
operator. The issues arise when incorporating the operator with the DT-Grid level set 
data structure. They may be pinpointed to 1) defining stencil formats for stencil 
iterator access 2) defining a tube which corresponds to the region of interest. 

4.2.1 Defining stencils and tubes 
Since the smoothing operator has to access the entire surface it will use sequential 
access with a stencil iterator instead of random access, which is used for the blending 
operator. Stencil iterator access allows constant time access of grid points when they 
are accessed sequentially, compared to logarithmic time for random access. Two 
different stencils need to be defined; one for each of the two first filter passes. These 
stencils shall correspond to the stencils of the Gaussian convolution filters. The 
stencils must however be extended with extra grid points to support fast calculation of 
the local gradient. The first stencil must be extended with y+1, y-1, z+1, z-1, and the 
second stencil with z+1, z-1, with respect to the center of the stencil. The reason that 
the third filter pass uses random access and not stencil iterator access is that it requires 
a very large stencil. A stencil for the third filter pass would require a minimum stencil 
of 3x3x7 iterator, which is more expensive than accessing the few elements of the 
convolution filter stencil by random access. Unfortunately, the structure of the DT-
Grid does not allow dynamic creation of stencil formats for the stencil iterator. This 
means that variance parameters of the Gaussian kernel is somewhat limited.  
 
The DT-Grid has some predefined tubes of certain widths but these are either too 
narrow or too wide, therefore a custom tube has been implemented for the smoothing 
operator. Defining a tube is merely to define the set of voxels that are within a certain 
radius from the zero level set. It is an easy task, which follows a given structure of the 
DT-Grid. 



 28 

5 Results 
The intension of this chapter is to present the results of the blending and global 
smoothing functions implemented for this thesis. Statistics from a comparison 
between Gaussian diffusion blending and mean curvature flow based blending will be 
presented. Limitations of the developed algorithm will also be highlighted. The 
performance of the blending algorithms will be given first followed by the results 
from implementation of global smoothing.  
 
Over all, the implementation process has been found successful as well as the 
integration with the DT-Grid and the Graphics Group Library. 

5.1 Blending performance 
The Performance of a blending function may be measured in two different ways, 
namely the speed in which the blending is performed and the smoothness of the 
blended area. The aesthetic results of the blending will be presented first. 

5.1.1 Visual appearance 
In computer graphic there is a saying, if it looks good it is good. Therefore the 
aesthetic results of the blending algorithm have been measured by its visual 
appearance in the eye of the beholder. Since it is all about the pictures, a set of images 
comparing Gaussian diffusion blending with mean curvature flow based blending 
follow below. They show that the presented algorithm produces a visual result at least 
equivalent to one produced by the curvature based blending method. The images also 
show how the amount of blending is controlled by the Gaussian filter kernel’s 
variance parameters. To enhance the blending effects, the models have been rendered 
with flat shading. 
 
 

             
 
Fig 5.1 Union of a torus and a box. No blending has been performed. See fig 5.2 for blend results. 
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Fig. 5.2 Union of a torus and a box. Anisotropic diffusion of different variances compared with 
curvature flow based blending. a) diffusion, σ1 = 1.0  & σ2 = 1.5 b) diffusion, σ1 = 1.5  & σ2 = 2.25 c) 
diffusion, σ1 = 2.0  & σ2 = 3.0 d) curvature, 10 iterations e) curvature 15 iterations f) curvature 30 
iterations. For figures of the unblended model see fig 5.1. 
 
 

 
Table 5.1. Anisotropic diffusion. Execution times for blending a box (180 * 60 * 
180) and a torus (138 * 42 * 138) by means of anisotropic diffusion. The ROI consists 
of131 072 voxels. The DT-Grid has been used as the level set data structure. 
 
 

 1 2 3 
Iterations 10 15 30 
Time 576 s 944 s 1851 s 

 
Table 5.2. Mean curvature flow. Execution times for blending a box (180 * 60 * 
180) and a torus (138 * 42 * 138) by means of Mean curvature flow. The ROI consists 
of 131 072 voxels. The DT-Grid has been used as the level set data structure- 

 1 2 3 
Variance σ1=1.0; σ2 = 1.5 σ1=1.5; σ2 = 2.25 σ1= 2.0; σ2=3.0 
Time  63s 67 s 72 
Filter pass 1 4,1 s 4,5 s 5,3 s 
Filter pass 2 5,8 s 6,8 s 8,4 s 
Filter pass 3 8,7 s 11,1 s 14,4 s 

a b c 
d e f 
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5.1.2 Speed 
The test case that has been used for speed measurements of the blending function is as 
follows: a box with 180 * 60 * 180 grid points and a torus of the dimensions 138 * 42 
* 138. The resulting intersection ROI consists of 131 072 voxels. The test 
environment has been a window workstation with an AMD Sempron CPU on 1.4 
GHZ and 512 MB of RAM. This has not been an optimal environment since the 
computer is not performing as well as one can expect from workstation with this kind 
of setup. Even though the timings are not representative for this kind of setup, it stills 
show a proper relation between anisotropic diffusion based blending and mean 
curvature flow based blending. As shown in table 5.1 and 5.2, the blending proposed 
in this thesis out performs curvature based blending with a minimum factor of nine. 
When extensive blending is demanded it outperforms the curvature based blending 
with a factor larger than 25 and at the same time performs a heavier blending. As one 
can see from table 1, the actual filtering takes about 30 % of the blending time. The 
rest of the blending execution time is spent on initializing a buffer level set and 
rebuilding the resulting model. 

 

 

 
 
Fig 5.3. Winged horse. Detailed shots of the intersection between a wing and a horse. The images on 
the left have not been blended while the images on the right have been blended by means of anisotropic 
diffusion. The intersections are marked with a dotted red line. An overview of the model may be seen 
in figure 6.2. 
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5.2 Smoothing 
The anisotropic diffusion algorithm proposed for blending has been extended to 
perform global smoothing of level set surfaces. The level set surface is smoothed with 
a constant anisotropic Gaussian filter kernel oriented with respect to the local 
gradient. The smoothing operator is effective in terms of visual smoothing but since 
the size of the filter kernel is constant, the surface is smoothed uniformly.  
Anisotropic diffusion smoothing has been compared with morphological opening 
since the opening method is the most efficient global smoothing operator for level 
sets. When comparing the two methods it is concluded that morphological opening is 
better at removing thin elements or spikes from the level set surface, see fig 5.4. 
Beside the spikes the anisotropic Gaussian diffusion method offers smoothed surfaces 
equivalent to the resulting surface of the opening operation. However, the method 
proposed in this thesis is a lot faster than morphological smoothing, see table 5.3. 
 
 

 
 
Fig 5.4 Diffusion vs. morphological opening. The model to the left is smoothed with an anisotropic 
kernel with standard deviations of 1.5 and 2.2. The right model is smoothed with morphological 
opening where the surface have been eroded three units three times then dilated three units three times. 
As indicated by red, the anisotropic smoothing operator has not been able to remove the thin element in 
the neck of the model. 
 
 
 
 

Smoothing Execution time 
Morphological opening 754 s 
Anisotropic diffusion, σ1=1.5; σ2 = 2.2 115 s 

 
Table 5.3 global smoothing. Comparison between morphological opening and 
anisotropic diffusion. The morphological opening has moved the surface inward three 
units three times then outwards three units three times. The resolution of the model is 
251*242*168 grid points. 
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Fig 5.5. Smoothing comparison. Comparison of smoothing by anisotropic diffusion, b, and 
morphological opening, c. The original model is shown in a. Model c has been morphologically 
smoothed in the fashion described in table 5.3 above. 

5.3 Limitations 
There are some limitations in this project’s implementation of the blending and 
smoothing algorithms. These issues will be addressed in this section. 
 

• Controlling material. One drawback with blending and smoothing 
surfaces as proposed in this thesis is that the user cannot control if 
material is added or removed from the model. This is a feature that 
would give the user increased control of the final model.  

• Arbitrary local smoothing. Only global smoothing has been 
implemented for this thesis. However it is often desired to constrain a 
smoothing operator locally. For example, there may be some damaged 
areas of a model that would be improved by smoothing, but global 
smoothing would lead to reduction of important details in other areas.  

• Shape preservation. The global smoothing operator uses a constant 
size of the filter kernel, which makes it less observant of surface 
structure. 
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6 Discussion 
The task of implementing blending of implicit models by means of anisotropic 
Gaussian diffusion has been interesting and challenging. The main issue has of course 
been to fully grasp the efficient separation of the anisotropic Gaussian convolution 
filter. Another challenge has been to understand the DT-Grid level set data structure. 
 
The performance of the anisotropic Gaussian diffusion blending method is satisfying 
and compared to the previous known method, mean curvature flow based blending, it 
is superior in terms of execution times. The fact that the convolution part is the part of 
the blending system that requires the least effort shows the strength of the algorithm. 
Parts of the blending system that represents a significant part of the execution time are 
the initializing and rebuilding of the level set. There are methods for improving the 
performances of these processes, which are proposed in future work section. The fact 
that no PDEs need to be solved is the key to the great speed of the anisotropic 
diffusion method. It also makes it easier to implement since it does not require 
numerical solvers. 
 
The actual filtering process may also be broken down into a core process and a 
support process. The support process is the process of iterating over the entire surface, 
visiting an excess of grid points that are meant to be unaffected. Consequently, the 
core blending function is faster than it first appears to be. This is pointed out since the 
issues mentioned in this section mainly refer to the use of the DT-Grid data structure, 
i.e. the performance of the blending algorithm may vary due to the level set data 
structure at hand. 
 
As for the visual appearance the proposed method delivers a satisfying result. It offers 
just as smooth transitions between level set surfaces as the mean curvature flow 
alternative. The Gaussian diffusion blending method also offers an intuitive way for 
the user to control the amount of blending, i.e. the smoothness of the transition 
between two level sets. It is controlled by the size of the filter kernel, i.e. the size of 
the two variance parameters, larger variance gives smoother transitions. The proposed 
method has also proven to be less sensitive to the quality of the input models, which 
has been discovered during the implementation process.  
 
The use of anisotropic Gaussian diffusions as a mean for surface smoothing was 
mainly an extension of the idea behind the blending algorithm and has therefore not 
been investigated as thoroughly as the blending. Gaussian diffusion would be a good 
candidate for local smoothing as well since it is faster than curvature based flow, 
which has been shown for blending. For global blending of level set surfaces 
morphological opening and closing operations produce a visually more satisfying 
result but there is still use for smoothing by anisotropic diffusion thanks to its great 
advantage in speed. 

6.1 Conclusion  
This thesis has shown that anisotropic Gaussian diffusion is a very well suited method 
for blending of implicit models and level sets in particular. The thesis has also shown 
that the blending idea can be extended for global surface smoothing with very little 
effort. The developed method has proved to be very advantageous in terms of speed, 
compared to its alternative, the mean curvature flow blending method. It has at the 
same time also shown to produce a visual result that is as good as previous methods. 
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The general conclusion is that blending by means of anisotropic Gaussian diffusion is 
a very good alternative to the mean curvature flow based blending method.   

6.2 Future Work 
This section will propose ideas on how to extend the use of anisotropic diffusion and 
improve its over all performance.  

6.2.1 Parallelization  
One way to drastically improve the speed of level set methods in general is to 
distribute the computations on a cluster of processing units, i.e. parallelization of level 
set methods. While setting up a cluster of workstations may seem like a cumbersome 
task, the central processing units (CPU) of today are increasingly using a dual core 
technology. This new technology will allow parallelization on a single desktop or 
laptop computer. Even more, today there exists workstations with two or more dual 
core CPUs and apple is soon to release their Mac Pro with two quad core CPUs. This 
will allow for numerous parallel processes for computations of level set methods. The 
blending algorithm proposed in this thesis can easily adapt to this new technology. It 
can be done by dividing a filter pass into several simultaneous processes, each one 
filtering different parts of the surface. However, the greatest benefit would come from 
the speed up of the CSG operations and the initialization and rebuilding of level sets, 
since they can also be divided into different regions distributed on separate processing 
units. 

6.2.2 Localization with quadrics 
Since the Gaussian blending operator is a smoothing operator it seems like a good 
idea to use the technique for local surface smoothing as well. One way to localize the 
smoothing operation would be regionally constrain the region of influence for the 
smoothing operator by using quadrics or super quadrics. This method has been proven 
successful for curvature based smoothing and sharpening [1].  

6.2.3 Surface smoothing with shape preservation 
A drawback of global surface smoothing, both morphological and by means of 
anisotropic Gaussian diffusion, is that it tends to also smooth away sharp structural 
features of the surface, not only the noise on the surface. By smoothing the surface 
with an adaptive Gaussian kernel this may possibly be achieved as it has been for 
polygonal meshes [16]. 
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Fig. 6.1. Greek bust. A 3d scanning of a Greek bust that have been repaired by copying a nose from 
another model and copying the right cheek, the copied parts have then been pasted with anisotropic 
diffusion blending to their respective place.   
 
 

 
 
Fig 6.2. Winged horse. Wings have been copied from a griffin and then pasted on a horse. The left 
wing is a mirrored duplication of the right wing. The wings and the body have been blended by means 
of anisotropic diffusion. Close ups of the blending is shown in fig 5.3. 
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Fig 5.6 Geo textured bunny. The Stanford bunny has been textured with 56 stars in different sizes that 
then have been blended with the bunny.
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