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Abstract 
 
A system for free surface fluid simulation using improved particle level sets is presented. The 
system is based on previous work in the field of fluid simulation and level sets but contains 
some novel features, most important of which is a method to guarantee volume conservation 
for the simulated fluid. A simple approach to simulated surface friction is also presented as 
well as a modification to the particle level set method designed to improve the capturing of 
thin fluid interfaces on boundary surfaces.  
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1 Introduction 
 
Though the field of computational fluid dynamics (CFD) has been around for quite some time 
the simulation of free surface flows for graphics applications is a recent addition. There has 
been some quite impressive work previously published in this field but there still are many 
things that can be improved upon or further developed. The aim of this thesis is to describe a 
system for free surface fluid simulation and visualization building on previous work in the 
field and to provide solutions to some of the problems associated with such a system. The 
system will be based on Eulerian methods using level sets to represent geometry. Our own 
implementation of Lagrangian marker particles as described by Enright [2] will be used to 
improve the ability of the level sets to preserve fine features. The particle system will contain 
a few novel features, one regarding the treatment of particles on thin surfaces in contact with 
external boundaries and one regarding the deletion of particles. A simple method for 
simulating surface friction is introduced as well as a novel feature that aims to eliminate 
volume loss during the simulation – a common problem for fluid simulation using Eulerian 
methods. The simulation software is intended to be able to handle complex geometry that is 
easy to model and use. This is achieved by using the closest point transform to allow the user 
to model the environment and initial fluid surface in a 3D modeling program and then read 
this model into the simulation software. To solve the Navier-Stokes equations that drive the 
simulation kinetically we will use the projection method with the stable fluids approach 
introduced by Stam [12]. This will achieve a stable simulation environment that allows for 
different time-steps to be used for the Navier-Stokes solver and the level sets. The simulation 
system is meant to achieve visually pleasing results and some compromises will be done with 
regard to the accuracy of the physics involved.
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2 The theory 
 
The theoretical background to this thesis is mainly based on work by Stam [11], [12] , Enright 
et. al. [1] and Enright [2]. The book on level set methods by Osher and Fedkiw [9] has also 
been very helpful as well as the work by Peng et. al. [10].  
 

2.1 Notations 
 
A few words should be said about the notations used in this thesis. Variables and functions 
will be written in italic letters and vectors will be written in bold, italic letters or with an 
arrow over the vector. Sets will be written in upper-case letters and matrices and operators in 
upper-case bold letters. Units will be written in brackets. Below is a short list of some of the 
most commonly used notations: 
 
 x  the variable x 
 f() the function f 
 x the vector x 
 x  another way of writing the vector x 
 S the set S 
 M the matrix M 
 P the operator P 
 [m/s] the unit ‘velocity’ (m/s) 
 ∀ ‘for all’ 
  : ‘such that’ 
 

2.2 Level sets 
 
Given a function 
 
  ℜ∈ℜ⊂→ ηηφ ,,: nDD  
 
we can define the level set  
 
  { }ηξφξη =∈≡ )(:)( DL f  (2.1) 
 
in other words the set of points that solve the equation 
 
  ηξφ =)(  (2.2) 
 
Let us look at the level set φ(x,y) = x2 + y2. This describes all possible circles that have their 
center-point at the origin. To find the actual circle with radius r one must solve equation (2.2) 
with η = r2. η is often referred to as the iso-value for the implicit surface it specifies. This n-1 
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dimensional subspace to the n dimensional level set is called the iso-surface associated with 
the specified iso-value. If we for example choose r = 1 => η = 1 we get the equation  
x2 + y2 = 1 which is the implicit description of the circle with radius 1. One can easily imagine 
that there exists a set of values for x and y that satisfies this equation but it is not immediately 
clear which values since they are implicitly given. For every value of x and y we can however 
identify three important cases which are shown in figure 2.1 
 

 
Figure 2.1 Implicit circle with r = 1 showing the three principal cases: outside, inside 

and on the iso-surface. 
 
From this simple example we can see that we can determine if a point in space is inside, 
outside or on the implicit circle by comparing the value of the implicit function to the iso-
value corresponding to that radius. The iso-surface can be seen as the interface that separates 
two regions of space and we will hereby refer to it simply as the interface S. Using vector 
notation and where η is the iso-value the interface can be defined by 
 
  S ≡ {x : φ ( x) = η} (2.3) 
 
For the interior region Ω bounded by S we get 
 
  φ(x) < η ï x œ Ω 
  φ(x) > η ï x – Ω 
  φ(x) = η ï x œ ∑Ω ≡ S 
 
The gradient of an n-dimensional level set is calculated as 
  

x 

0-1.4 

x = -1, y = 1 
x2 + y2 = 2 

x = -1, y = 0 
x2 + y2 = 1 

x = 0, y = 0 
x2 + y2 = 0 

0.5 

1 

1.5 

y 

0.5 1.0 1.5 
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  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

≡∇
n21 x

...
x

,
x

φφφφ  (2.4) 

 
and the unit normal will be 
 

  
φ
φ

∇
∇

≡n  (2.5) 

 
The normal n is always perpendicular to the iso-surfaces and point in the direction of 
increasing φ.  

 
Figure 2.2 Gradients and normals on implicit functions 

 

2.3 Euclidian distance fields 
 
A special kind of implicit function that will be very useful for us is the Euclidian distance 
function which is defined by 
 
  φ (x) = min(|x - xs|) ∀ xs œ ∑Ω (2.6) 
  |∇φ| = 1  (2.7) 
  x œ ℜ 
 
This means that φ (x) is a scalar field that gives the closest Euclidian distance to the interface 
for every point in space. The geometrical information provided by this is very useful and from 
here on the level sets used will be (signed) Euclidian distance fields. The sign convention 
used in this thesis is negative distances on the inside of the interface and positive distance 
outside. 
 
Though a powerful tool the distance field has one problem that one should be aware of: For 
points in space that are equidistant to more than one point on the interface the gradient of the 

n n

n

φ = 1 
φ = 2 
φ = 3 
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signed distance field becomes ill defined. An example of this for a rectangle can be seen in 
figure 2.3. 
 

 
 

Figure 2.3 Undefined normals in the distance field of a rectangle 
 
This will cause problems when solving equations that depend on the gradient of the distance 
field and one has to be extra careful when designing a numerical solver for these equations. 
 

2.4 Level set dynamics 
 
Since our goal is to simulate the dynamic surface of moving liquid there is one final and 
critical component that our level set need to have: Dynamics. 
To achieve this we will use the dynamic level set formulation: 
 
  S(t) = {x(t) : φ(x(t), t) = η}. (2.8) 
 
By introducing time dependence to the distance function φ we can move the interface defined 
by the iso-value η. Since we may define the initial level set in such a way that the interface 
we are interested in corresponds to any iso-value we will hereby simply use η = 0 for 
convenience. Now let’s see what happens if we differentiate equation (2.8) with respect to 
time. 
 

  

⇒•−∇=
∂
∂

⇒=
∂
∂

∂
∂

++
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

⇒=

dt
xd

t

t
x

xt
x

xt
x

xt

dt
dttx

dt
d

n

n

φφ

φφφφ

ηφ

0...

)),((

2

2

1

1

 

  ⇒•
∇
∇

⋅∇−=
∂
∂

dt
xd

t φ
φφφ  

  =•⋅∇−=
∂
∂ vn

t
φφ  (2.9) 

  ,...),( nxF⋅∇−= φ  (2.10) 
  
We now see that if we define a velocity v in every point in space, thus creating a velocity field 
we can use that in equation (2.9) to propagate the level set along the velocity field. In general 

? 
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one could specify some speed function F that can depend on any number of variables that can 
then be used to advect (move) the interface. 
 

2.5 Navier-Stokes equations 
 
In differential vector form without the viscous stress tensor the Navier-Stokes equations for 
viscous incompressible flow can be written as 
 

  ( )
ρ

ν pVVVF
t
V ∇

−⋅∇•−∇⋅+=
∂
∂ 2  (2.11) 

  0=•∇ V  (2.12) 

  
t
xV
∂
∂

=  

 
Where V is the velocity field, F is the external force vector field, ν is the viscosity, p is the 
pressure field and ρ is the density. Solving these partial differential equations (PDE:s) is a 
quite non-trivial problem and has to be done using numerical methods. Fortunately there has 
been a lot of previous work done in this area. A popular means of solution is the projection 
method used in [2], [3], [9], [12], [16] among others. A problem when numerically solving the 
Navier-Stokes equations is however that the solution tends to easily become unstable if the 
time-step is too large. In [12] Stam suggests an approach to solving the Navier-Stokes 
equations that is stable regardless of time-step size, something that is very nice for practical 
fluid simulations. Our solver will be based on this work. 
 
The first step of the projection method is to merge equation (2.11) and (2.12) to create a single 
equation for the velocity V. This can be done using a mathematical property of vector fields 
known as Helmholtz-Hodge Decomposition. The statement is that any vector field u can be 
decomposed into the form 
 
  u = v + ∇w (2.13) 
  ∇•v = 0   (2.14) 
 
where w is a scalar field.  
 
A projection operator P which projects the vector field u onto its divergence free part v = Pu 
is obtained by first calculating the divergence part w of the vector field via the equation  
 
  ⇒∇+•∇=•∇ wvu 2  
  wu 2∇=•∇  (2.15) 
 
We then obtain the projection operator by using the relation (2.13) as follows: 
 
  v =  Pu = u - ∇w 
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Using this operator guarantees that equation (2.12) is satisfied and also allows us to rewrite 
equation (2.11) to 
 

  ( )( )VVVF
t
V

⋅∇•−∇⋅+=
∂
∂ 2νP  (2.16) 

 
using PV = V since V is divergence free and where P(∇p/ρ) = 0 since p is a scalar field and 
thus is only divergence free if the pressure field is constant in which case ∇p = 0 trivially. 
 
The idea is now to break up the PDE into components and solve it in parts. The three 
components will be the external force component F, the self-advection component -(V•∇)·V 
and the diffusion component ν·∇2V. We will then obtain the velocity field wt+dt for some 
future time t+dt by updating the old velocity field wt  according to the algorithm 
 

dttt wwwww +⎯⎯ →⎯⎯⎯ →⎯⎯⎯ →⎯⎯⎯⎯ →⎯ project
3

diffuse
2

advect
1

force add  
  

2.5.1 Forces 
 
Solving the external force term is quite straight-forward. We simply define the force-field F 
and create w1 from wt by using the equation 
 

  F
t

w
=

∂
∂ 1  (2.17) 

 

2.5.2 Self-advection 
 
The self-advection term is the non-linear -(V•∇)·V term of the Navier-Stokes equations. This 
term is quite important since it allows for non-linear phenomenon like vortices. Using 
straight-forward methods for representing the self-advection term will unfortunately result in 
solvers that easily become unstable and thus we will borrow the clever idea for stable fluids 
presented in [12]. In this paper Stam shows that one can avoid the stability issue by modeling 
the effect of this term instead of solving it explicitly. The self-advection term can be 
interpreted as the motion of the velocity field along itself and Stam shows that one can use 
this insight to model the term as follows: 
 
Given the velocity field w1 we create w2 by using the velocity of w1 on a position that 
corresponds to the position a zero-mass particle would have had dt time-units ago as seen in 
figure 2.4 
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Figure 2.4 Self-advection using the stable fluids approach 
 
If we define the particle trace operator T we can write this step as the equation 
 
  ( ) ( )( )txwxw d,12 −= T  (2.18) 
 

2.5.3 Diffusion 
 
The diffusion step is pretty straight-forward and the velocity field w3 can be obtained by 
solving the diffusion equation 
 

  2
22 w

t
w

∇=
∂
∂ ν  (2.19) 

 

2.5.4 Projection 
 
The final step in this algorithm to solve equation (2.16) is to apply the projection operator to 
the vector field w3. In order to do this we need to find the scalar field in equation (2.13) that 
represents the divergence component of w3 by solving equation (2.15) and then use the 
relation  
 
  qww dtt ∇−=+ 3  (2.20) 
 
where q is scalar field representing the divergence of w3. This allows us to create the final, 
divergence free vector field wt+dt.  
 

x(t) Δδ x(t-dt) 
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3 The implementation 
 
The numerical implementation of the algorithms and equations described above is based 
primarily on previous work described in [2], [9] and [16]. A few novel features are also 
included, most importantly a modified particle system and a method to force volume 
conservation regardless of the fluid lost due to numerical inaccuracy or other errors in the 
simulation. The implementation will be written in C++ to achieve object orientation and fast 
execution code. The implementation will to a large extent be described at an algorithm level, 
leaving out the details of how to implement them in a specific programming language.  
 

3.1 Discretization 

3.1.1 The computational grid 
 
The numerical foundation of the simulation software will be Eulerian methods and thus we 
need to spatially discretize our simulation domain into a computational grid. In order to 
simplify the numerical schemes and thus reduce the overall computational cost we will define 
the grid cell to be a cube with the side Δδ = 1, i.e. Δx = Δy = Δz = 1. This will greatly reduce 
the computational complexity of the overall simulation system. We will allow for different 
number of grid cells in each dimension but the sampling rate will be the same along each axis. 
Numerical values such as closest distance and velocities will be stored in the center of the grid 
cell. 
 

 
Figure 3.1 A 2D grid with values stored at the cell centers 

 
Though we use the regular grid described above for our simulation system there exists a more 
advanced type of grid that has shown to work well for fluid simulation. This grid is known as 
a MAC grid and is described briefly in [9]. For this grid velocities is stored at the middle of 
each cell face instead of at the center. Distance information is however still stored as for the 
regular grid. 
 

3.1.2 Spatial differentiation 
 
The spatial differentiation operator for some function f in the direction x may be discretized as 

 

  

Δδ 
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x

ff
x
fD ii

Δ
−

≈
∂
∂

= ++ 1  (3.1) 

  
x
ff

x
fD ii

Δ
−

≈
∂
∂

= −− 1  (3.2) 

  
x
ff

x
fD ii

Δ
−

≈
∂
∂

= −+

2
110  (3.3) 

 
where D+ is the forward difference, D- is the backward difference and D0 is the central 
difference. D+ and D- are first order accurate and D0 is accurate to the second order. These 
operators will be used when execution speed is the most important factor. 
 
When numerical accuracy is important we will instead use the Hamilton-Jacobi Weighted 
Essentially Non Oscillating scheme hereby referred to as HJ WENO. This is a weight 
optimized version of the third order accurate HJ ENO scheme and under ideal conditions it 
will be fifth order accurate. According to the HJ WENO scheme as described in [2] we may 
discretize the spatial differentiation operator as  
 

            ⎟
⎠
⎞

⎜
⎝
⎛ −++⎟

⎠
⎞

⎜
⎝
⎛ ++−+⎟

⎠
⎞

⎜
⎝
⎛ +−=±

66
5

336
5

66
11

6
7

3
543

3
432

2
321

1
vvv

wvvvw
vvvwD  (3.4) 

 
Where, for D+ 
 

 
x

ff
v ii

Δ
−

= ++ 23
1   

x
ff

v ii

Δ
−

= ++ 12
2  

 
x

ff
v ii

Δ
−

= +1
3      

x
ff

v ii

Δ
−

= −1
4  

 
x

ff
v ii

Δ
−

= −− 21
5    

 
and for D- 
 

 
x

ff
v ii

Δ
−

= −− 32
1   

x
ff

v ii

Δ
−

= −− 21
2  

 
x
ff

v ii

Δ
−

= −1
3      

x
ff

v ii

Δ
−

= +1
4  

 
x

ff
v ii

Δ
−

= −+ 12
5    

   
 
The weights are calculated as 
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where ε = 1e-6 and the smoothness S is given by 
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2
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2
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2
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3.1.3 Time integration 
 
When solving time dependant PDE:s on the form 
 

  ( )fq
t
f
=

∂
∂  

 
we will need an operator that performs time integration. Time integration will be done 
explicitly using a third order accurate Runge-Kutta scheme. Advancing the function f Δt time-
units forward in time will be done through the relation 
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where  
  ( ) ( )fqtffE tt ⋅Δ+=  (3.6) 
 

3.1.4 The divergence operator 
 
The divergence of a vector field V is calculated as ∇·V. Using central difference the discreet 
divergence operator in three dimensions becomes 
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where u, v, w are the vector components. 
 

3.1.5 The Laplace operator 
 
The Laplace operator ∇2 acting on the scalar field u can be discretized as 
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3.1.6 Poisson equations 
 
When solving the Navier-Stokes equations one will encounter some Poisson equations. In 
general Poisson equations can be written on the form 
 
  vu =∇ 2   (3.9) 
 
where u is a scalar potential and v is a source function. Discretizing this equation using the 
discrete Laplace operator as described above will result in a linear equation system with one 
variable for each element in the scalar field u. For a 3D simulation grid with 100x100x100 
voxels this means that we will have 1·106 scalar elements in u – one for each voxel. This will 
result in a gigantic 106 x 106 matrix to which we need to find the inverse in order to solve the 
equation system. Using regular methods for doing this is thus out of the question but since the 
matrix will be very sparse we may use a solver that can take advantage of this property. In our 
software a preconditioned conjugate gradient solver is used and the algorithm is only iterated 
until the largest residual element is less than 0.5. This has experimentally proven to be a good 
compromise between precision and speed. All matrices are stored efficiently in dynamic 
arrays of size O(n3) instead of O(n6) for the full matrix. 
 

3.1.7 Boundary conditions for Poisson equations 
 
When solving the Poisson equations encountered for free surface fluid simulation one will 
have to take two boundary conditions into consideration – the Dirichelt boundary condition 
and the Neumann boundary condition. 
 

3.1.7.1 The Dirichlet boundary condition 
 
The Dirichlet boundary condition is represented by the equation 
 
   0=• nv  (3.10) 
 
and simply states that there can be no flow into or out of the boundary surface to which n is 
the normal. In our case this will be solid objects. In the program this condition will be 
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explicitly enforced by projecting all velocities neighboring a boundary surface onto the plane 
to which n is normal. 
 

3.1.7.2 The Neumann boundary condition 
 
The Neumann boundary condition represented by the equation  
 

   0=
∂

∂

n
v  (3.11) 

 
states that there shall be no change of flow along the normal n of a boundary surface. This 
condition is an essential complement to equation (3.10).  
 
Equation (3.11) can be enforced by eliminating the connection between solid boundary cells 
and fluid cells when building the linear equation system for the discreet Poisson equation. If 
we assume that the grid cell at position i,j,k contains fluid while the grid cell i-1,j,k belongs to 
a solid object we enforce the Neumann boundary condition by assuming  
 
  0,,,,1 =−− kjikji uu  (3.12) 
 
when discretizing the Laplace operator for grid cell i,j,k. 
 

 
 

Figure 3.2 The Neumann boundary condition at a solid boundary 
 
  

3.2 Level set implementation 
 
The level set implementation is based on the work by Enright [2]. The level set is represented 
with a scalar field where every cell in the computational grid contains a scalar representing 
the closest distance from that point to the interface.  
 

Solid boundary 
cells Fluid cells 

 

i,j,ki-1,j,k 

i,j-1,k
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Figure 3.3 Interface representation using level sets (values are approximate) 
 
Since the interface is implicitly represented by the distance information stored in our 
computational grid it is necessary to define the discreet inside set Ω. This will be done using 
the convention 
 
  φ(x) < 0.5·Δδ ï x œ Ω 
  φ(x) > 0.5·Δδ ï x – Ω 
  |φ(x)| <= 0.5·Δδ ï x œ ∑Ω 
  
  Δδ = 1   
  
Thus, in essence, we regard a grid cell as being part of the interface-cell set if any part of the 
interface passes through the circle, or sphere in 3D, with radius 0.5 that is inscribed in the cell.  
 

 
Figure 3.4 Cell classification for the discreet level set 

 
In order to advect the level set we also need a velocity field. This is defined as a velocity 
vector at each grid point.  
 

3.2.1 Local level set method 
 
Solving the level set PDE:s in the full volume of the grid is extremely time-consuming but as 
shown by Peng et. al. [10] it is possible to use a localized representation of the level set where 
the equations are only solved in a narrow band around the interface. This is possible since 
only the interface cells and the cells in the direct proximity to the interface will be of interest 
when doing level set advection and we can thus focus on this region instead of the entire grid. 
  

1.0 0.9 0.4 0.0 

0.2 0.2 -0.3 -0.6
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The exact width of this band will depend on the width of the differentiation kernel used by the 
numerical schemes. For first order we only need one grid cell on each side of the interface cell 
and for fifth order HJ WENO we will need three cells on each side. Instead of the function φ 
being a signed distance function for the entire simulation domain we now only require this 
inside a band with thickness γ: 
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 (3.13) 

 
where d(x) is the signed closest distance from x to the interface. 
 
The values of γ used in the program depend on the accuracy of the scheme used. Both first 
and fifth order is available. For first order spatial difference we will need one cell on each side 
of the interface and for HJ WENO we will need three. Taking the cell containing the interface 
into account the band ‘radius’ γ will be 
 
 ⎡ ⎤ 25.1 ==γ   for first order spatial difference  
 ⎡ ⎤ 45.3 ==γ   for fifth order HJ WENO  
 
The band structure itself is stored as a dynamic array containing the coordinates of all grid 
points that are within the band, from here on referred to as the narrow band.  
 
As the interface moves it becomes necessary to update the narrow band. In order to do this an 
additional outer band will be needed to keep track of grid-cells that are to be added to, or 
removed from, the narrow band. For practical reasons this outer band need to be at least two 
grid cells thick for both first and fifth order methods resulting in a final band ‘radius’ of 4 and 
6 grid cells respectively. 
 

3.2.2 The particle level set 
 
Though the implicit representation of the interface allows us to represent its position with 
arbitrary precision there is still a price to pay when discretizing the simulation space. The 
coarser the grid the more difficult it becomes for the level set to preserve regions of high 
curvature resulting in the erosion of sharp corners and fine features. It is also impossible to 
preserve surfaces that are thinner than the width of one grid cell. The two cases are shown in 
figure 3.5. 
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Figure 3.5 Errors when advecting the discreet level set 
 
 
In [2] Enright propose the use of a hybrid level set method to lessen the impact of these 
problems. His idea is to use marker particles with no mass distributed around the interface to 
help preserve fine features. The idea is that each particle will have a signed radius that gives 
the closest distance to the interface from the position of that particle. This radius information 
will be kept as the particle is advected. The information about the position of the interface 
carried by the particles can then be compared to the position of the interface after it has been 
advected. Any errors can thus be identified and corrected since the particles will not have 
been affected by any smoothing effects native to the discreet level set representation. 
The basic idea can be seen in figure 3.6 
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Figure 3.6 Particle correction of the level set interface  

 
The red particles are positive (outside) particles and the blue are negative (inside) particles.  
 
Correcting the level set using particle information is done along the lines suggested by 
Enright in [2]: A positive and negative corrected distance field φ+ and φ- is initiated with the 
damaged field φ and then a Boolean union operation is performedwith all the particles: 
 
  φ+ = max(φ+, rp) ∀ rp ≥ 0  
  φ- = min(φ+, rp) ∀ rp < 0  
 
where rp is the signed radius of the particle. Enright then suggests that the two representations 
should be merged using the value of φ+ or φ- depending on which has the least magnitude. 
This did not work very well in our implementation, probably due to the different way particles 
are seeded and reseeded as described in section 3.2.3. Instead the mean value  
 

    
2

−+ +
=

φφφ  (3.14) 

 
is used.  
 
The particles are implemented in a dynamic array and lives in free space. The connection 
between particles and the grid is made by transforming the particle coordinates from the 
global coordinate system to grid coordinates. 
 

3.2.3 Seeding and re-seeding particles 
 
The main practical problem with the particle system is that we need to create and maintain a 
uniform distribution of particles around the interface. Since regions of the level set may 
stretch and contract we must continuously monitor and maintain the target particle density in 
each grid cell. Too many particles in any cell is a waste of memory and processing power and 
too little means we loose the effectiveness of the particle correction. 
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3.2.3.1 Seeding new particles 
 
We create the particle band around the interface by assigning a particle density k to each cell 
in the narrow band according to the distribution 
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We then loop through the particles and count how many of them there are in each cell in the 
narrow band. For all cells that have too few particles we randomly seed new ones until (3.15) 
is satisfied for all cells in the narrow band. Each seeded particle is assigned a signed radius 
that is equal to the signed distance from the position of that particle to the interface. This 
allows the particle to explicitly represent information about the position of the interface and 
allows reconstruction of damaged parts of the level set during the particle correction step. The 
radii used are the same as suggested in [2]: 
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where sign(xp) is the sign function 
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If a seeded particle happens to be placed closer to the interface than the distance rmin the 
particle is re-seeded until it can be placed at a distance greater than rmin. If no acceptable 
coordinate has been found for the particle after five attempts it is discarded and we allow the 
cell have less particles than the target density. 
 

3.2.3.2 Treatment of existing particles 
 
In spite of the particles continuously feeding distance information back to the level set there 
will be a difference in the positive and negative corrections φ+ and φ-. This will result in the 
particle radii not being accurate for all particles after the correction is done. This effect is 
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unwanted and is removed by feeding distance information back from the corrected level set to 
the particles by changing the particle radii so that the particle representation once again is true 
to the current implicit interface representation of the level set. Since the minimum radius of 
the particles have been restricted but not the minimum distance of each particle to the 
interface with the exception of the newly seeded particles we may have particles that are 
closer to the interface than their radius. The errors introduced by this is not a big issue since 
the smoothing operation of (3.14) will result in an interface that still is located approximately 
at the right position. 
  
As stated above the particles will help preserve fine features and thin interfaces for any level 
set. But for a level set representing a region of liquid it will prove very useful if the interface 
never becomes thinner than what can be represented by the level set, i.e. one grid cell thick. 
Though this will impair the ability of the liquid to split apart it will greatly help preserve thin 
interfaces and thus improve overall visual appearance. One should be aware however that this 
is at the expense of simulation accuracy with regard to physics. Since we are primarily 
interested in simulations that are visually pleasing and not necessarily true to nature this is a 
price we are willing to pay. This goal will however introduce one problem since it means that 
two of our requirements on the liquid will be conflicting in regard to how the particles are to 
behave: We want two parts of the liquid to merge if they collide and we also want thin sheets 
of liquid to be preserved as well as possible with the aid of the particles. The two cases are 
exemplified in figure 3.7. 
 

 
Figure 3.7 Special cases when doing particle correction 

 
The principal case to the left shows two interfaces that are close together and moving towards 
each other with particles on both sides of the interface. As shown to the right there are two 
principal situations where this arises – when two parts of the level set is about to merge as 
shown in a) and when a thin sheet of liquid is being made too thin to represent by the grid as 
shown in b). Situation b) is the one where we want the particles to force the interfaces to stay 
apart thus keeping the liquid interface from being too thin. In situation a) however we want 
the two parts of the level set to merge which means that we want to allow the two 
approaching interfaces to collide. The solution to this problem is based on the sign of the 
particles. As can be seen in a) there will be positive particles, i.e. particles outside the liquid, 
in between the two interfaces and in situation b) the squeezed particles will be negative. 
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When we update the radius of the particles we can get the effect we want by treating positive 
and negative particles differently: If a positive particle appears on the negative side of the 
interface of the corrected level set by more than rmin we will change the sign and radius of the 
particle to represent its new position. This situation will arise if two parts of the level set has 
collided as in a). If on the other hand a negative particle appears on the positive side of the 
interface we will regard this as situation b) and not allow the particle to change its sign. We 
will however still change the radius making the particle larger the further on the “wrong” side 
it is, thus increasing the correctional effect. The mean value representation calculated by 
(3.14) will then guarantee that we get a tendency to push the interfaces apart as exemplified in 
figure 3.8. 
 

 
 

Figure 3.8 Thin interface preservation prioritizing negative particles. 
 
If, in spite of the effect described above, a negative particle for some reason moves a distance 
greater than rmax into the positive region it is regarded as an indication that the level set wants 
that region to disappear and we will allow the particle to change sides. This may for example 
be the case if the driving velocity field wants to split up a region of the level set. It will also 
help preserve the integrity of the particle representation since we will not allow negative 
particles drifting too far into the positive region of the level set. 
 
 

 
 

Figure 3.9 Condition for allowing negative particles to change side of interface 
 

Negative particles forced outside 
interface due to unwanted merging 

Mean value curve representing the 
corrected interface 
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3.2.3.3 Deleting particles 
 
If a region develops where there is a higher particle density than the target density k we will 
have to remove some particles. The deletion of particles should however be done with great 
care since they carry information about the correct position of the interface, information that 
is lost when the particle is deleted. In [2] Enright solves this problem by deleting the particles 
in radius order, starting with the ones that are furthest away from the interface and thus has 
the largest radius. He uses a max-heap to accomplish this. We will however use our own 
method for achieving this selective deletion of particles: For each cell in the narrow band we 
calculate a condition number ξ according to the formulae 
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where np is the number of particles in the cell. As we update rp for the particles we simply 
compare its radius rp to ξ and if rp ≥ ξ we delete the particle. This is done until np = ρp or all 
particles have been visited once. This means that we, in extreme cases, may allow up to 2ρp 
particles in cells where all the particles are very close to the interface and thus regarded as 
very important. In reality this situation is rather unlikely and the particle density will be close 
to ρp but without the need for heap sorting. Our method has the advantage of being faster than 
heap sorting as long as the simulation is well behaved so that the excessive amount of 
particles in each cell is small. It also provides a more dynamic particle density that depends on 
how close the particles are to the interface. 
 

3.2.4 Advection 
 
Advecting the level set is done by solving the “level set equation” (2.9). In order to do this we 
need to calculate the normal n according to equation (2.5). This is done by using an upwind 
differential scheme for the spatial differentials to take advantage of the direction of 
information flow. Up-winding will increase stability and improve the behavior of the solution 
since it prioritizes the differential direction from which information that affects the current 
simulation cell originates. This simply translates to choosing the directional differential D+ or 
D- depending on the direction of the velocity vector v = (vx, vy, vz) at each grid point. If a 
component of the vector is positive we use backward-difference for that component, 
otherwise we use forward difference. In pseudo-code this step can be written as: 
 
for (n = x,y,z) 
  if vn >= 0  
    use D-

n 
  else 
    use D+

n 
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Here the spatial differentials can be either first order or fifth order depending on user demand. 
For time integration we use the third order Runge-Kutta method (3.5). When the normal is 
known propagation of the interface from time t to t + Δt is done applying the discretized level 
set equation  
 
  ))(()( xvnDx ttt •−=Δ+φ  (3.19) 
 
to each point in the narrow band. 
 
This solution algorithm is unfortunately not unconditionally stable with regard to the time-
step Δt. It can however be shown that stability can be ensured using the Courant-Friedreichs-
Lewy (CFL) condition: 
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In essence the CFL condition states that the interface must move less than one grid cells in 
any direction for each update cycle of the level set (for α = 1). In the program we use α = 0.5 
which in our case proved to be a good compromise between stability and performance. Using 
this and the earlier convention of Δx = Δy = Δz = 1 equation (3.20) can be rewritten as  
 

  ( )zyx vvv
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=Δ  (3.21) 

 
It should be noted that the CFL condition may be avoided if a semi-Lagrangian method such 
as the one used when solving the self-advection term of the Navier-Stokes equations is used to 
achieve the advection of the level set. 
 
When advecting the level set we also advect the particles used for correcting the interface 
position. This is done using Newtonian mechanics for a zero mass particle by solving the 
equation 
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t
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∂
∂  (3.22) 

 
in every cell containing particles. Discretized this becomes 
 
  ))(,( ,, xvxDx nnttntt =Δ+  (3.23) 
  zyxn ,,=  
 
thus producing one equation for each component of x. Since particle positions are in machine 
precision while velocity vectors are only defined in each simulation cell we will need to do 
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interpolation to find the velocity v at the particle position x. In the program we will use tri-
linear interpolation for this. 
 
 

3.2.5 Re-initialization 
 
As the level set is propagated forward in time it will loose the property of an Euclidian 
distance field. This is mainly caused by the velocity field of the fluid advecting different parts 
of the level set by different amounts. This is unacceptable since many equations and relations 
are dependant on |Δφ| = 1 to be accurate. To correct this we do a re-initialization step after 
each advection of the level set. The purpose of this is to restore the level set to an Euclidian 
distance field once again. 
 
This non-trivial problem can be solved using the re-initialization equation 
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assuming Δx = Δy = Δz = 1. As suggested in [9] we use a smeared out sign function S instead 
of a discreet sign function to get better numerical results. 
 
Equation (3.24) is closely related to the level set equation (2.9) but this time we propagate the 
level set using a function that forces it to regain the property of an Euclidian distance field. To 
solve equation (3.24) we use upwind differentiation in the direction of the interface when 
calculating |∇φ| in accordance to Godunov’s scheme as described in [9]. This means we will 
prioritize information in the interface direction which in turn results in information 
propagating outwards with the interface as boundary condition. For each time step of the 
fictious time τ φ will be forced towards an Euclidian distance field which will mean that |∇φ| 
will approach 1. When |∇φ| = 1 equation (3.24) is reduced to  
 

  0=
∂
∂

t
φ  

 
which means that we have reached a steady state where the level set does not change. 
 
As when solving equation (2.9) there is a CFL condition involved. In our case the re-
initialization time step 
 
  5.0=Δτ  
 
has proven to work well. If the level set is far from an Euclidian distance field a more 
conservative time-step may be needed. Numerically this means that information will be 
propagated outwards from the interface at a rate of 0.5 grid cells per iteration of the solver. 
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Thus we need to iterate the solution algorithm to equation (3.24)  
 
 4/Δτ = 8  times if first order spatial differentials are used 
 8/Δτ = 12 times if HJ WENO differentials are used 
 
in order to be sure that the entire level set is re-initialized. 
 
The main disadvantage of this solution is that the interface may move slightly as equation 
(3.24) is iterated towards steady-state. To reduce this phenomenon we do a particle correction 
step before the first two re-initialization cycles. 
 
Another thing that needs to be addressed in conjunction with re-initialization is updating the 
narrow band. Since the interface has moved during the advection step the band now becomes 
too thin on some places and too thick on others as shown in figure 3.10. 
 
 

 
 

Figure 3.10 Errors to the band structure after interface advection 
 
 
We know however that the interface has at most moved one grid cell due to the advection 
CFL condition. Using the distance information stored in the grid cells in the outer band we 
can now remove the band-cells that contain too large distance values and thus are regarded as 
outside the band structure. Admitting new cells to the band is a bit harder but can be done 
storing the band ID in each grid cell. ‘0’ means that the cell is not part of the band structure. 
We can now identify cells that shall be added by finding those cells in the outer band that has 
a distance smaller than the bandwidth -1 and that has a neighboring cell that is not part of the 
band.  
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Figure 3.11 Classification data structure to keep track of cells included in the band 
 structure 

 
The algorithm for this will be: 
 
For (all cells in the outer band) 
  If (distance > outer band width) 
    Remove cell from band 
  Else if (distance < outer band width – 1 and  
               neighboring cell is not part of band structure) 
    Add neighboring cell to band structure 
 
This allows us to keep the width of the band structure constant. Next we also need to update 
which cells belong to the inner respective the outer band. To do this we now re-initialize the 
entire band structure, including the newly added cells. We can then look at the distance each 
cell has to the interface to rebuild the inner and outer band according to. 
 
If (distance < inner band width) 
  cell belongs to inner band 
else 
  cell belongs to outer band 
 

3.2.6 The inside set 
 
Since our level set is to be used as surface representation in a fluid simulation we need to add 
an additional set of cells representing all grid cells that contain fluid. This is the inside set. 
The set is initiated by doing a flood-fill of the region inside the interface and is then 
maintained as follows: 
If, when advecting the level set, a cell gets its distance value changed from φ(x) > 0.5 to  
φ(x) <= 0.5, corresponding to the interface entering the cell, this cell is regarded as containing 
fluid and is added to the inside set. We then loop through the inside set and remove all cells 
that no longer contain fluid, i.e. all cells for which φ(x) > 0.5. As with the band structure the 
inside set is stored in a dynamic array. 
 

3.2.7 The level set update cycle 
 
The overall structure of the level set implementation can be seen in the following flow 
diagram describing one update cycle of the level set: 
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3.3 Multiple level sets 
 
There will be at least two different types of level sets used by our program. One fluid level set 
keeping track of the fluid interface and one solid boundary level set that represents walls and 
obstacles. One could also imagine having a number of moving solid objects in which case 
each of those will also need to be represented by a level set.  
 
To handle this we will add object properties to each level set containing information 
describing the level set. The most important of these properties will be ‘solid’, ‘fluid’ and 
‘stationary’. A level set may be solid or fluid and a solid level set may or may not be 
stationary. Stationary objects will not be affected by any forces and will act as solid 
boundaries.  
 

3.4 The Navier-Stokes solver 
 
Using the solution method outlined in section 2.5 with the added ability to handle simple solid 
object physics the Navier-Stokes update cycle used to advance the velocity field forward one 
time step will look as follows: 
 

 
 
The solver will take an array of level sets and update the velocity fields associated with each 
level set. Since the Navier-Stokes solver is based on the stable fluids approach of [12] we 

If fluid level set If solid level set

Add forces 

Time integration 

Self-advection 

Diffusion 

Projection 

Add forces 

Time integration



31 
 
 
 
 

need not worry about the size of the time-step. For simplicity the same time-step as that of the 
level-set will be used, though it is pretty straight-forward to allow two or three level set 
updates for each Navier-Stokes cycle. The practical limitation is set by the width of the 
narrow band since we will need correct velocities to address during the particle trace involved 
in solving the self-advection term.  
 

3.4.1 Simplifications and approximations 
 
The goal of the simulation system is to produce realistic and visually pleasing but not 
necessarily physically accurate fluid simulations. This compromise makes it possible for us to 
do a number of simplifications to the simulation engine, the most important of which are 
discussed in more detail below. 
 

3.4.1.1 No air simulation 
 
Only the region containing fluid is simulated. Though the region outside the fluid is supposed 
to represent air no simulation of this medium is done and we will refer to this medium as void. 
This will mean that there are no forces that limit the motion of the fluid into this empty 
domain. In general the visual effect of this approximation is very small but there is one case 
where the effect is apparent: The formation of bubbles.  
 
If a region of the void, gets enclosed inside the fluid one would expect a bubble to form as the 
captured air has nowhere to go. But since the air is not simulated it will exact no pressure on 
the surrounding fluid, thus exact no forces that prevent the bubble from getting consumed in a 
way that clearly defies expected physics. Fortunately this effect is very seldom apparent and 
may go unnoticed if one does not look for it. 
 

3.4.1.2 No surface tension 
 
The Navier-Stokes equations used in our simulation software do not include the viscous stress 
tensor. The most apparent effect of this approximation is the loss of surface tension effects. If 
this will be of consequence or not depends on the scale of the simulation. The most prominent 
visual effect of surface tension is the formation of droplets. The lack of this effect will only be 
apparent for small scale simulations since the droplets will be too small to see in large scale 
simulations and can then be modeled by particle systems or visual effects added to the general 
motion of the fluid.  
 

3.4.1.3 Incompressible fluid 
 
Another simplification to the Navier-Stokes equation is incompressibility. This means that the 
pressure inside the fluid is assumed to be constant. This will mean that pressure waves inside 
the liquid cannot form. The visual impact of this is however insignificant for most everyday 
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fluids. The bulk modulus for water for example is ≈ 2.2·109 N/m2 which comes close to that of 
steel (≈ 160·109 N/m2).  
 
Since the density will be constant across the fluid the mass of a fluid filled grid cell will be 
constant and we will hence forth treat all grid cells containing fluid as having mass 1. This is 
another approximation since it will mean that cells only partially containing fluid will still be 
treated as having mass 1 and thus the momentum carried by the fluid of that cell will be 
represented as higher than it should be. 
 

3.4.2 Velocity extension 
 
In order for us to be able to advect any level set along a velocity field we must guarantee that 
the velocity field is defined at least in the narrow band. Unfortunately this is not the case with 
the field generated by the Navier-Stokes solver. It is only able to calculate velocities for 
simulation cells that contain fluid which translates to all cells on or inside the interface. This 
means we must find some way to extend the velocity field to the outside of the interface so 
that the level set will be moved properly. A way to do this is using velocity extension as 
described in [9]. The idea is to propagate velocity information out in the normal direction 
from the interface the same way as distance information is being propagated during the level 
set re-initialization. To do this we use the general equation for extrapolating some 
characteristic S in the direction of the normal n: 
 

  0=∇•+
∂
∂ SnS
τ

 (3.26) 

 
 
In our case S will be a velocity vector leading to the corresponding equation for extrapolating 
the velocity field V in the direction of a normal field N: 
 

  )()()( xVxNxV
∇•−=

∂
∂

τ
 (3.27) 

 
It should be noted that this equation only extrapolates velocities into the outside region of the 
level set, but this is what we want since we already have correct velocities obtained from the 
Navier-Stokes equations on the inside. If one wants to extrapolate velocities in both directions 
this is easily accomplished by adding the sign of the distance field in front of the right hand 
side (RHS) of equation (3.27). 
 
Once again we will use the information on the interface as boundary condition, thus 
extrapolating the velocity field on the interface outwards along the normal field provided by 
the level set. In order to successfully do this we need to use upwind differentiation. In the 
program upwind differentials are used both when calculating the normal according to 
equation (2.5) and when calculating the gradient of the velocity field in equation (3.27) 
according to the following scheme: 
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We loop through all cells in the band structure that has φ > 0.5, i.e. all cells in the band that 
does not contain fluid. We choose to differentiate in the direction of smallest distance, i.e. the 
direction of the closest interface: 
 
If (φ(x+1) < φ(x) and φ(x-1) < φ(x)) 
   If (φ(x+1) > φ(x-1)) 
     Use Dx

+ 
   Else  
     Use Dx

- 
Else if (φ(x+1) <= φ(x)) 
   Use Dx

+ 
Else if (φ(x-1) < φ(x)) 
   Use Dx

- 
Else 
   Direction undeterminable, no information should flow into this point. Set all differentials to 
   zero. 
 
This example is along the x-axis but the algorithm looks the same for the y- and z-axis.  
 
After calculating the normal vector and the velocity gradient matrix at each cell we can 
calculate the RHS of equation (3.27) and use the third order Runge-Kutta scheme to update 
the field one time-step. As for the re-initialization equation we iterate these steps until the 
RHS of equation (3.27) approaches zero and we have reached a steady state. In the program a 
cutoff value of 0.1 is used. 
 
When solving equation (3.27) one must also take a CFL condition into account. As for re-
initialization 0.5 works fine, but in the program the more aggressive time-step of 0.7 is used to 
get faster convergence. 
 

3.4.3 Forces and scaling 
 
Forces are represented by a force field. Though an arbitrary function can be used to generate 
this field we only use the gravitational force in our simulations. The force field will be used to 
update the initial velocity field wt to w1 using equation (2.17) where we once again use the 
third order accurate Runge-Kutta scheme when doing time integration: 
 
  ( ))(),()(1 xFxwDxw tt=  (3.28) 
 
The effect of scale will also need to be represented by changes to the force term. This may not 
seem intuitive at first but is an effect of our choice to define each grid cell as being unit size, 
i.e. Δx = Δy = Δz = 1. A simulation domain consisting of 100 grid cells in each direction will 
thus represent a cube with the side 100 meters if we define the unit distance to be 1 meter. A 
unit distance of 3.15 cm will create a cubical simulation domain with the side 3.15 meters etc. 
This means that the scaling will be naturally represented in all grid-bound equations due to the 
nature of the grid. The only thing needed to get the physics right is a modification of all units 
that depend on distance. The unit of force is Newton [N] = [kg·m/s2] which is distance 
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dependant. Thus if we redefine the unit distance we must compensate for this in the force unit. 
We introduce the scale-factor α such that the side of each cell in our simulation domain is α 
meters. This means that we define our local distance unit [msim] ≡ [α·m] and as a consequence 
the force unit will change as follows: 
 

 [ ] [ ]sim
sim N

s
mkg

s
mkg
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mkgN

αα
α
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111

222 =
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⋅=
⋅
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Take the gravitational force exacted on an object with mass m for example: 
 

 [ ] [ ]simG NGmNGmF
α
⋅
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As can be seen we need to scale all forces by dividing with α, i.e. the unit size of the 
simulation cell. Scaling will also affect a few other units used in the simulation engine and we 
will point them out as they are encountered. 
 

3.4.4 Self-advection 
 
The self-advection term will update the intermediate velocity field w1 to w2. This step is done 
along the lines of the stable fluid approach by Stam as described in [12] and section 2.5.2. 
Given the old velocity field w1 we do a particle trace backwards through the field from the 
center of each grid cell containing fluid. We do this using the third order Runge-Kutta 
integrator to advect a zero-mass particle backwards in time from the center of the current cell 
to the position it would have had Δt time units ago. We then use tri-linear interpolation to 
estimate the velocity vector at that point in space and assign that velocity to the cell in w2 that 
is on the original coordinates of the zero-mass particle. In pseudo-code the algorithm will look 
like this: 
 
For (each cell containing fluid) 
  xp = coordinate of current cell center 
  vp = w1(xp) 
   
  xnew = RungeKuttaIntegration(xp, -Δt, vp) 
  vnew = FindVelocityAtCoordinate(xnew) 
  w2(xp) = vnew 
  

3.4.5 Diffusion 
 
The diffusion step consists of solving the Poisson equation (2.19). Using first order time 
discritization this equation translates to  
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where ν is the viscosity and I is the identity matrix. By discretizing the Laplace operator as 
described in section 3.1.5 three sparse linear equation systems are obtained, one for each 
component of the velocity vector. The equation systems are solved using a preconditioned 
conjugate gradient solver.  
 

3.4.6 Projection 
 
As discussed in section 2.5 our solution method to the Navier-Stokes equations depends on a 
projection operation that will project the velocity field w3 onto its divergence free part wt+Δt, 
completing the Navier-Stokes update-cycle. This operator is realized by first applying 
equation (2.15) to the intermediate field w3 
 
  3

2 wq •∇=∇  (3.31) 
 
Where the divergence ∇•w3 is calculated using the discreet divergence operator (3.7). These 
divergence values will become the RHS of the Poisson equation and will thus act as the 
source function. The field q that satisfies equation (3.31) will be the divergence component of 
w3.  This field is initiated to zero for the entire simulation domain. This actually translates to 
setting the atmospheric pressure to zero but this is not an issue since the only thing of 
importance when simulating incompressible fluids is that the pressure is constant. Thus the 
actual numerical value of the pressure can be chosen arbitrarily. Equation (3.31) is solved by 
using the discreet Laplace operator and then using a preconditioned conjugate gradient solver 
on the resulting equation system. After solving the Poisson equation the calculation of the 
final velocity field wt+Δt becomes straight-forward using the relation 
 
  qww tt ∇−=Δ+ 3  (3.33) 
 
that is derived from equation (2.13). 
 

3.4.7 Moving solid objects 
 
Moving solids are handled using the ghost cell method as described in [9]. This is done by 
taking into account the velocity of neighboring boundary cells when calculating the 
divergence ∇•w3 in equation (3.32). 
 

3.4.8 Surface friction 
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Surface friction is modeled by modifying the Dirichlet boundary condition. By introducing a 
friction coefficient μ ∈ [0,1] we may choose how much of the linear momentum bound in the 
velocity component parallel to the surface normal that is to be preserved. Linear momentum is 
directly dependant on velocity and we may model friction by only looking at the velocities. 
 Assume that the original velocity of the fluid in the cell is v. Then the relation  
 

  
22

np vvv +=   

 
describes the relation between the original velocity magnitude and the magnitude of the 
velocity components parallel and orthogonal to the surface normal.  
 
 

 
 
By setting the magnitude of the orthogonal component vo to 
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μ can be used to determine how much of the magnitude of vn that is to be transferred to the 
orthogonal vector vo. If μ = 1 all velocity magnitude and thus all momentum bound in vn is 
lost. If μ = 0 the final length of vo will be equal to v and all momentum is preserved.  
 

3.4.9 Sources, sinks and volume conservation 
 
We have created a system for adding sources and sinks to the simulation. This is done in the 
projection part of the solver by adding the size of the source to the component of the RHS of 
equation (3.31) that corresponds to the cell in which the source resides. This will create a bias 
for that cell when doing projection, thus allowing for a specified amount of divergence to be 
present in that cell. The unit for the source is [m3/s] and is thus distance dependant. This 
means that we need to take scale into account resulting in the scale accurate unit [m3/s]/α3. 
 
A novel feature of our simulation system is the ability to use forced volume conservation. One 
of the largest visual errors associated with the method used for our simulations is the loss off 
volume for the simulated fluid. There are several reasons for this unwanted phenomenon. First 
of all volume is lost due to the smoothing effect of the level set as described in section 3.2.2. 
Though the particle system compensates for this it is unable to completely remove the effect 
and over time the small errors will start to add up and become visible as lost volume. The 
Navier-Stokes solver is also responsible for some volume loss. This is due to the approximate 
solution to the projection operator, resulting in a velocity field that is not completely 

v

vn 

vo 
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divergence free. In general this will result in mass loss mainly due to gravity trying to force 
fluid into the floor. The explicit enforcement of the Dirichlet boundary condition will 
guarantee that no velocity vector can point into a solid object, but if the projection operator is 
unable to completely adapt the rest of the velocity field to this change small sinks will form at 
the floor boundary as shown in figure 3.12. 
 
 

 
 

Figure 3.12 Sinks created in the velocity field if the projection operator is not resolved 
 to infinite precision 

 
 
To compensate for lost mass we will keep track of the theoretical volume V0 and compare it to 
the actual volume. This theoretical value is calculated from the initial fluid volume. If sources 
or sinks are present the theoretical effect of these are added to the volume via the relation  
 
  tSVV Δ⋅+= 00  (3.34) 
 
where S is the total effect of all sources and drains in the simulation domain. This is done after 
the projection step of the Navier-Stokes solver to prevent conflict with the compensation step 
described below. 
 
The first step of the forced volume conservation algorithm is to calculate the difference 
between the current fluid volume Vc and the theoretical value V0. If the difference indicates 
that the current volume is equal to or greater then V0 nothing is done, but if the difference 
indicates that volume has been lost we proceed to the next step. Assume that we have lost a 
volume of ΔV volume units (VU). To compensate for the lost volume we assign a small 
source in each grid cell containing fluid so that that the combined effect of all the sources will 
compensate for the lost volume in one time-step. The formulae will look like this: 
 

  
tn

VV
S c

cell Δ⋅
−

= 0  (3.35) 

 
Here n is the total number of grid cells containing fluid. Compensating for all lost volume in 
one time-step may sound aggressive but this will generally not be a problem since the volume 
loss for each time-step is very small. The idea is that as long as the volume lost during each 
time-step is small it will be impossible to see the effect of the tiny sources distributed 
throughout the fluid volume. The uniform distribution of sources is chosen since it means that 
the bulk of the added volume will be to regions that already contain large volume. These 

g 
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regions generally have a small surface area compared to the volume and thus the tiny 
disturbance of the motion of the surface caused by the added sources will be too small to see.  
 

3.4.10 The Navier-Stokes update cycle 
 
Let’s take a look at the flow diagram describing the overall update cycle for the Navier-Stokes 
solver: 
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3.5 Input/Output 

3.5.1 Standard output 
 
The standard output format of the program is frame-files. These files store binary data 
containing the band structure of each level set in the simulation domain. Each frame is stored 
in a separate file. At default parameters the program outputs frames at 1/25 second intervals. 
 

3.5.2 Vispack volumes 
 
The simulation system is able to read Vispack volumes containing initial geometry for the 
solid boundaries and the fluid. More information about the Vispack file format can be found 
at the Vispack library webpage http://www.cs.utah.edu/~whitaker/vispack/ 
 

3.5.3 Scan conversion system 
 
In order to allow for complex initial geometry a scan conversion system has been 
implemented using the closest point transform library by Sean Mauch found at 
http://www.its.caltech.edu/~sean/ 
 
Via a script it is possible for the user to take a Wavefront object file (.obj) and convert the 
polygonal model into a Vispack volume that can then be used as input to the simulation 
engine. 
 

3.6 Simulation cycle overview 
 
The overall simulation cycle of the program is presented below: 
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Since the Navier-Stokes solver is based on the stable fluids approach it is quite robust with 
regard to time-step size and thus we use the same time-step as for the level set when updating 
the velocity field through the Navier-Stokes solver. 
 

3.7 Visualizing the results 
 
In order to visualize the resulting simulation we use a fast implementation of Marching Cubes 
that takes advantage of the fact that we know the distance to the interface at each point in 
space and that we only need to march through the narrow band. This transforms the implicit 
surface representation of the level set into an explicit, in this case polygonal, surface. How 
well different features on the implicit surface will be represented depends on the nature of the 
algorithm used for this transform. One may use several kinds of interpolation schemes to 
achieve results pleasing to the eye. It is also possible to use ray-tracing to visualize the level 
set surface. Since this method allows for refraction and reflection effects to be taken into 
account it is much preferred when visualizing transparent fluids like water. Since a full 
fledged ray-tracer is quite a project in its own right we have chosen to just use the Marching 
Cubes algorithm for our program. 
 
Using a playback function the it is possible to re-run a previous simulation frame-by-frame 
from the standard output files to see the finished simulation. It is also possible to output each 
frame to an image that can be used to make an animation of the completed simulation. 
 

4 Results 

4.1 Example 1 
 
The example in figure 4.1 and 4.2 shows the improvement gained by the forced volume 
conservation algorithm. A sphere of water is being dropped from a height of approximately 
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1.4 meters into a rectangular bounding box. The dimensions of the simulation domain are 
1.27x2.0x1.27 meters and consist of 70x110x70 voxels. The two simulations shown are run 
with identical initial conditions, but the simulation shown in figure 5.2 is using the forced 
volume conservation system while the simulation in figure 5.1 is not. 
 

 
 

Figure 4.1 Falling water sphere simulation not using forced volume conservation. 
 The pictures represent frame 1, 30, 50, 70 and 150 respectively 

 

 
 

Figure 4.2 Falling water sphere using force volume conservation. 
 The pictures represent frame 1, 30, 50, 70 and 150 respectively 

 

4.2 Example 2 
 
Example 2 shows a high resolution simulation that is designed to stress the components of the 
simulation engine and also show the ability of the particles to represent and maintain thin 
sheets of water on solid boundaries. A source injects water at high speed into the simulation 
domain and as the water hits the floor a large area is covered by a thin water surface. 
Turbulent flows develop creating a complex water surface. The particle system is able to well 
preserve the thin surface and the forced volume conservation algorithm compensates for the 
water that is still lost. The simulation domain is a 2x2x2 meter cube and the resolution is 
130x130x130 voxels. The average simulation time per frame for this animation was 42 
minutes. 
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Figure 4.3 Water source animation frame 1, 12 and 14 
 

 
 

Figure 4.4 Water source animation frame 32, 46 and 65 
 

 
 

Figure 4.5 Water source animation frame 104 and 206 
 

4.3 Example 3 
 
This example shows the possibility of using polygonal models to create the initial conditions 
for the simulation engine. A model of an hourglass containing water is created and exported 
to two .obj files, one containing the hourglass and one containing the water. The files are run 
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through the scan-conversion system and the resulting Vispack volumes are used as initial 
conditions to the simulation engine. The simulation domain is 0.98 x 2.0 x 0.98 meters and 
the resolution is 98 x 200 x 98 voxels. 
 

 
 

Figure 4.6 3D model of hourglass with initial water volume 
 

 
 

Figure 4.7 Hourglass simulation frame 1, 7, 13, 21 and 37 
 

 
 

Figure 4.8 Hourglass simulation frame 60 and 180 
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5 Encountered problems and future work 
 
Though the simulation system works well there were some problems encountered that were 
not solved. For the Navier-Stokes solver problems with keeping the fluid out of solid 
boundaries was encountered. As the simulation proceeded there was a tendency for the fluid 
to move further and further into the boundaries. This was not a problem for most simulations 
but did become a problem when violent flows or very narrow passages (only a few grid cells 
wide) were present. The cause for this was not discovered but is believed, at least partly, to be 
due to numerical errors when calculating the surface normal used in the Dirichlet boundary 
condition. A simple attempt at solving this problem was made by detecting fluid cells on their 
way into a boundary and adding a small velocity in the surface normal direction to these cells. 
Though this improved the situation it does not solve the problem.  
 
There is room for improvements to the forced velocity conservation method. A way to correct 
for the velocity over time instead of correcting the entire error may be introduced as well as a 
non-uniform distribution for how fluid is added. The current volume conservation algorithm is 
also limited to adding fluid and not removing it if there happens to be too much in the 
simulation domain. This is to avoid removing fluid from thin interfaces thus increasing their 
rate of dissipation. The removal of fluid would be possible without degrading the visual 
appearance if the sinks were only added to regions where there already is a lot of fluid. 
 
The visual appearance of the fluid, especially the lack of droplets may be modeled using 
particles. Some work has been done to achieve this but the combination of the Lagrangian 
methods that may be used on the particles and the geometry provided by the distance 
information of the level set provide a good platform for complex particle systems that live on 
and around the interface.  
 
Finally the system for sources can be improved. Instead of adding actual sources to the 
projection operator one may model the sources by explicitly creating a difference in velocities 
that is added to the velocity field created by the Navier-Stokes solver.  
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