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ABSTRACT

In this thesis a new markerless deformable model capture system is presented
which is more accurate and controllable than similar systems. Computer vision
methods are applied and modified to capture the animated geometry of defor
mable surfaces such as human faces and cloth. The markerless approach makes
simultaneous recovery of animation, texture and lighting possible.

The system assumes that the initial pose of the deforming object is known and
that the deformation is captured by an array of carefully placed cameras. By
modifying the basic 2D optical flow algorithm, which has been used in similar
work, the movement of the 3D geometry is solved for directly and in all views
simultaneously frame by frame. This technique incorporates the epipolar con
straint into the solver, reducing the search space resulting in higher accuracy
and less accumulated error.

The thesis outlines the basic mathematic tools that have been used such as
projective math, 2D warps, Conjugate Gradient Optimization, image registra
tion, and spring systems. It describes how these tools can be combined to build
a Model Flow system and how such a system performs in comparison to an
optical flow based approach that has been used in production.
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1. INTRODUCTION 

1.1 Background 
This master thesis is a mandatory part of a MSc degree in media technology and
engineering at Linköping University (LiU). It contributes with 20 Swedish
university credits towards the degree, which should correspond to twenty
weeks of full time work. In practice this means six month of work which for this
specific thesis was carried out at the digital studio and visual effect house
Digital Domain (DD) in Venice, CA (USA).

I, the author of this thesis, applied for an internship at DD through LiU in the
spring of 2004. I was approved by both the LiU and DD during the summer and
left for Los Angeles in October of 2004. At this stage I was also assigned one
academic supervisor, Professor Ken Museth, and one industrial supervisor at
DD, Creative Director of Software Doug Roble.

The subject of my thesis was worked out in a process where my background
and my requests were weighed against active research areas at DD and their
requests. The project was to be an integrated part of the research and software
development at DD and one of the requests was that the results should be
submitted as a sketch to SIGGRAPH 2005, and if accepted, presented by me at
the conference.

The topic which was initially agreed on was “Facial Capture and Animation”.
The project involved extending the existing suite of computer vision tools at DD
in a way they would allow capturing of markerless facial animation. DD has
over the years noticed a growing need for detailed facial capturing and ani
mation, a process which historically has been an expensive and labor extensive
task. This project would hopefully automate this process somewhat and
hopefully surpass previous work in the field.

As time passed the project evolved into a slightly wider field of application and
the goal was no longer just to capture and animate faces but to develop a
system that could capture the animation of any kind of deforming surface. Since
this thesis describe a system especially designed for visual effects in motion
pictures I will already in the introduction explain some of the central parts of
the modern visual effect pipeline and the how my work relates to those parts.
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1.2 Modeling and Animation in the entertainment industry 
The process of modeling and animating faces can be broken down into a few
basic steps. Even though these steps can be used for many types of objects that
are animatable the face will be used as an example in this simple walk through.

The first step is to collect reference material of the face. This can be still images,
short video clips of the face moving, and different kinds of physical measure
ment of the face. In motion pictures laser scans of either the face itself or a cast
of the face, made from either plaster or latex, is used as a complete 3D reference
of the face. The purpose of the reference material is to capture all the
characteristics of the face you want to model and animate.

The second step is to convert this reference material into useful models of the
properties of the face. This means both models of skin characteristics, such as
color, texture, and light scattering, and the geometric three dimensional (3D)
appearance of the face. The process of creating a 3D model of the face is usually
just called modeling and is an art form in itself, performed by trained pro
fessionals. If a laser scan, or any kind of physical measurements, are available
that data is used as guidelines for the artist when the 3D model is sculptured
out of mathematical curves and geometrical building blocks such as small
triangles and polygons. A common way to represent 3D geometry in computers
are as triangle meshes which consists of hundreds, thousands, or millions of
small connected triangles each consisting of three vertices, three edges and one
face. This geometric representation will be used through out this thesis.

When the face is represented by a number of models describing all of its attri
butes the geometric model is given to a “rigger”. In the third step of this process
the rigger connects every part of the geometric model to handles, knobs, dials
and sliders controlling the motion of the different parts of the face. This is
usually done through a combination of sliders mixing between blend shapes
and sliders controlling physical attributes, such as the dropping the jaw. Blend
shapes are specific poses you can blend between. For example it is easy to
imagine how a face can be modeled in various stages of happiness and a slider
can be connected to those stages and that way act as a control for how happy
the face should look. The purpose of rigging is to make the job easier for the
animator whose job is to pose and animate the model according to a script. If
the rigging is done correctly any desired pose of the face can be recreated by
putting the sliders in the right positions.

The forth step is called animation and here an animator uses the animation rig
created by the rigger to animate the face according to a script or the directions
of a director. This might sound easy but if you consider that a human face has
thousands of muscles that acts as controllers for the appearance of the face the
task for the animator, who maybe only has twenty controllers at hand to
recreate the exact same spectrum of expressions, suddenly seams a lot harder.
On top of that humans are extremely well trained to interpret facial expressions
and movements.
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The fifth and final step in this process is to combine the skin appearance
models, the geometric model and the animated movements of the face into
synthetic photographs of the face in order to give the impression that this face
actually exists and it has been captured performing with a camera. This step is
called rendering and is still very much an active area of research and will not be
covered at all in this thesis.

As can be seen above there are lots of manual work in this process and for
decades research has been done to minimize the work load for the artists.
Maybe the most important set of tools to speed up the process goes under the
name “Motion Capture”. As the name hints the technology makes capturing of
motion possible. This way animators can get help from actual actors to “drive”
the animation. The data captured with motion capture techniques is usually
noisy and seldom rich in detail or even accurate, but the data can usually be
cleaned up and modified by the animator. At least enough to spare them many
hours of work creating the same data from scratch. Motion capture data can be
captured in many different ways ranging from mechanical sensors to ultra
sound sensors and computer vision systems. Many of these technologies are not
well suited for capturing detailed motions of a deforming surface such as a face.
In this thesis a computer vision based system that is specially designed to
capture animations of deforming surfaces, such as faces and cloth, will be
developed end evaluated. Such a system can both assist the animator and rigger
with animated reference material and drive the animation itself which should
speed up the production pipeline and hopefully result in higher quality of the
final result!

1.3 Tracking and Registration 
One of the core technologies of visual effects in motion pictures is the ability to
seamlessly combine synthetic or “fake” footage with live action footage. Synthe
tic material can for example be computer generated material or hand painted
matte paintings. “Fake” footage can be miniature footage or other kind of
footage that are meant to fool the eye in some way. This technology is in gene
ral called compositing since many image sources are combined together in one
composite image.

To make this composite believable as an actual photograph many problems
have to be solved. One of the most complicated of these problems is camera
tracking. Camera tracking means that the position, orientation and optical
settings of the camera in the live action footage is captured and matched in the
other image sources. An example scene could be a camera panning across a
room in which there is a table. If a computer generated vase is to be placed on
that table synthetic images needs to be generated, corresponding to the angle
from which the camera sees the table. Camera tracking data can either be
captured mechanically with robotic cameras and cranes or with computer
vision and visual queues in the image material.
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When the position, orientation, and the optical parameters of the camera are
known, i.e. it is tracked; other objects in the scene can also be tracked and
matched with synthetic or “fake” footage. In the example with the table and the
vase the table can now be tracked and that way make the vase stick to the table
even if someone in the scene nudges it over the floor or rotates it. Traditionally
only rigid object such as boxes, walls, pillars, and tables can be tracked in a
scene. In this thesis a computer vision based system that is specially designed to
also track deforming objects such as faces and cloth, will be developed and
evaluated. Such a system allows synthetic and “fake” footage to be matched
with deforming surfaces.

1.4 Problem Statement 
Both when the deformation of an object is captured for tracking reasons or for
the sake of driving an animation rig the output should be an animated 3D
model representing the geometry and the deformation of that geometry. In the
visual effects industry it is reasonable to assume that a static 3D model of good
quality is delivered by a modeling artist. Probably numerous tracked cameras
can be placed around the object on the set, but it is not certain that neither the
lighting conditions nor the surface properties of the object can be controlled
since the lighting and the appearance of the object might also be captured for
the final shot. This implies a scenario where the deformation of an animated
object is wanted, given numerous camera feeds of the deforming object and a
static geometric model of the object. In the worst case the lighting of the scene
cannot be altered or markers be placed on the surface of the object.

The object of this thesis is to develop and evaluate a system that can track and
capture deforming geometry under these conditions using computer vision.
The system is customized for the creation of visual effects in feature films but
the algorithm can be used in other situations as well. Both the algorithm and the
implementation presented in this thesis are specifically developed for this thesis
by the author and the co authors mentioned under acknowledgements.
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2. MATHEMATICAL OVERVIEW 

In this section the mathematical core technologies of this thesis will be
introduced and briefly explained. Since all of these methods and algorithms are
well established in computer graphics and proven in numerous applications
and scientific papers there will be no attempts to prove or explain them in
detail.

2.1 Naming conventions 
In this thesis the following naming convention will be used:

Notation Alt. notation Description
x, y, z zyx ,, 3D coordinates in space.
u, v vu, 2D image coordinates, u = horizontal and v = vertical.
u*, v*, w wvu ,, ** 2D homogenous image coordinates.

A, B,M, S, … ,...,,, SMBA Capital letters usually represents matrices.
a, b,m, s,… ,...,,, smba Bold lower case letters or letters with an arrow on top

usually represents vectors.
a, b, m, s, … ,...,,, smba Regular lower case letters usually represents scalar

values.
AT TA Matrix transpose
A 1 1A Matrix inverse

2.2 Transformations and homogeneous coordinates 
In computer graphics linear mappings from one particular space to another is
called transformations. There are many different transformations and some
examples are 2D translations (2D to 2D), 3D rotations (3D to 3D) and perspec
tive projections (3D to 2D). Transformations are essential to computer graphics.
Mathematically it is basically linear algebra where transformations are
performed through matrix multiplications. Even translations, which also can be
performed by additions, can be performed by matrix multiplications if
homogeneous coordinates are used.

Homogenous coordinates are created by adding an extra “dimension”. In 2D
that means (u,v) (u,v,1) and in 3D in means (x,y,z) (x,y,z,1). Since the extra
“dimension” is not guaranteed to equal one, after for example perspective
projections, it is often referred to as w. To get a 2D point out of a 3D
homogenous vector the vector is simply divided by w which will guarantee that
w equals one. When projecting it is the divide that performs that actual
flattening of dimensions.
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2.2.1 Projective transformation 

Since the world is in 3D and a computer screen or a digital image is in 2D the
mapping between 3D and 2D is crucial in computer graphics and computer
vision. Transformations that map a space of higher dimensionality to a space of
lower dimensionality are called projective transformation and in this thesis
perspective projections are in particular interesting since they mimic the beha
vior of both human eyes and photographic cameras fairly well. There are other
kind of projective transformations such as orthographic projection but those
will not be discussed here. In computer graphics text books the perspective
projection matrix often looks like this:

10/100
0100
0010
0001

*

*

*

z
y
x

dw
z
y
x

Eq. 2.1

Where “d” is the distance along the z axis where the projective plane is located.
In this thesis though, for the sake of simplicity and pedagogical reasons, the
same equation will be written this way:

1
0/100
0010
0001

*

*

z
y
x

dw
v
u

Eq. 2.2

And especially when an arbitrary triangle in space is projected onto an image
plane the following matrices are multiplied:
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2
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1

1
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2*

2*

1

1*
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z
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x
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x

z
y
x

dw
v
u

w
v
u

w
v
u

Eq. 2.3

Or even simpler S = P*V, where S is a 3x3 matrix with three homogenous screen
coordinates describing a 2D triangle, P is 3x4 projection matrix, and V is a 4x3
matrix with 3 homogeneous vertex coordinates describing a 3D triangle in
space. More sophisticated camera models are out of scope of this thesis and in
this particular system the creation of the projection matrices was taken care of
by propriety computer vision code at Digital Domain.
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2.2.2 2D Warps 

2D warps are typically defined as linear transformations that can map a 2D
coordinate in an image to another 2D coordinate in another image using a 3x3
matrix. However, sometimes 2D warps also include mappings that cannot be
described with a 3x3 matrix and this expression takes account of them as well:

vuvu ˆ,ˆˆ,
Eq. 2.4

This thesis will concentrate on the warps that can easily be described with
linear matrix algebra though:

1
ˆ
ˆ

333231

232221

131211

*

*

v
u

www
www
www

w
v
u

Eq. 2.5

And especially the case where an arbitrary 2D triangle in an image is warped
into another triangle:
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Eq. 2.6

Which in compact notation is T =W*S whereW is a 3x3 warp matrix, S is a 3x3
source matrix describing the source triangle, and T is a 3x3 target matrix
describing the target triangle. It will later in this thesis be clear that the 2D warp
is a great instrument when implementing Model Flowing since much of the
implementation is based on the ability to warp and compare pixels in two
different images.

2.3 Conjugate gradient Optimization 
There will be no attempt to fully explore the subject of conjugate gradient opti
mization in this thesis since there is plenty of good literature on the subject ([15]
[2][20]) and since no new work on conjugate gradient optimization was done
for this project. Conjugate gradient optimization will be used later in this thesis
though, which is the reason for this brief introduction to the concept. Conjugate
gradient optimization is one of the most effective and popular algorithms for
finding the nearest local minimum of a function of n variables in situation
where the gradient of the function can be computed. It is a highly effective
method for symmetric positive definite systems, which is why it is used in this
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thesis, and contrary to many similar algorithms it uses the conjugate directions
instead the local gradient for going downhill towards the minima.

The method works by generating successive approximations to the solution (i.e.
a vector sequence of iterates), residuals corresponding to the iterates, and
search directions used in updating the iterates and residuals. Only a small num
ber of vectors need to be kept in memory even when the length of the sequences
becomes large. A typical system to be minimized by conjugate gradient optimi
zation can be described by Ax=b, where x is a vector of variables for which you
solve for and A is a positive definite matrix. In “Templates for the Solutions of
Linear Systems: Building Blocks for Iterative Methods” [2] the conjugate
gradient algorithm is described with the following pseudo code:

end
necessaryifcontinueeconvergencCheck

qrr
pxx

qp

pAq
endif

prp

else
rp

iif
rr

ifor
xguessinitialsomeforxAbrCompute

i
i

ii

i
i

ii

iTi
i

i

ii

i
i

ii
i

i
i

iTi
i

;

1

...,2,1

)()1()(

)()1()(

)()(

1

)()(

)1(
1

)1()(
2

1
1

)0()1(

)1()1(
1

)0()0()0(

Do note that for scalars the iteration “i” is indicated with a subscript like “ai“
and for vectors it is indicated by a(i) to avoid confusion regarding indexing of
the vector elements. Luckily there is a free open source C++ library where the
pseudo code above and many other matrix operations and algorithms are
implemented in very efficient C++ code. The library is called SparseLib[21] and
is especially designed to handle huge but sparse matrices in scientific computa
tions. SparseLib is used in the implementation of the system described in this
thesis.
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2.4 Image registration 
Image registration is one of the fundamental problems in the fields of computer
vision and image processing. The basic idea is to transform or deform the pixels
in an input image in a way they line up as close as possible with the pixels in a
template image. This problem can have a number of different sets of variables
depending on the kinds of transformations or deformations one allows. Over
the years different algorithms and refinements of those have been presented. A
classic, and powerful, algorithm is the iterative image registration technique
presented by Lucas and Kanade in 1981 [11]. Since the image registration
element of the capturing system presented in this thesis is very similar to the
Lucas Kanade algorithm, the algorithm will now be described in short. For
more details on the algorithm the original paper by Lucas and Kanade is highly
recommended.

As with all image registration the goal of the Lucas Kanade algorithm is to align
a 2D template image T(u,v) to an input image I(u,v). Algebraically that amounts
to minimize the sum of the squared error between the template T and a warped
version of the input I. If a column vector containing the pixel coordinates is
defined as u = (u,v)T and a vector of parameters as p = (p1, …pn)T, W(u;p) de
notes the parameterized set of allowed warps. W(u;p) is the mapping between
pixel u in template T and the subpixel coordinates W(u;p) in the input image I.
W(u;p) can behave like a simple 2D translation or describe a much more com
plex deformation with an arbitrary number of parameters n. Mathematically
this is a minimization problem where the following equation is to be
minimized:

Tinupixelsall
uTpuWI 2)());((

Eq. 2.7

The minimization is typically a non linear optimization with respect to p. Lucas
and Kanade assumes that there is a current estimate of p from which the
equation can be approximately minimized by iterating the following two steps
until the parameters p converges or a lower threshold for the error is reached:

pppParametersUpdating

uTppuWIErrorgCalculatin
Tinupixelsall

:

)());((: 2

Eq. 2.8

The Lucas Kanade algorithm is a Gauss Newton gradient descent non linear
optimization algorithm. To make the error calculating step linear, a first order
Taylor expansion of I(W) is performed which gives us:
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Tinupixelsall
uTp

p
WIpuWI

2

)());((

Eq. 2.9

Where

v
I

u
II ,

Eq. 2.10

is the image gradient of I evaluated at W(u;p) and the term

p
W

Eq. 2.11

is called the Jacobian of the warp. The resulting equation has a closed form
solution which can be derived by taking the partial derivative with respect to
delta p, setting that expression to equal zero and solve for delta p. Like this:

Tinupixelsall

T

Tinupixelsall

T

uTpuWI
p
WIHppforSolve

uTp
p
WIpuWI

p
WIderivativePartial

)());((:

)());((:

1

Eq. 2.12

Where H is the nxn Gauss Newton approximation to the Hessian matrix:

Tinupixelsall

T

p
WI

p
WIH

Eq. 2.13

All the key steps in the Lucas Kanade algorithm have now been presented. The
complete iterative loop looks like this:

Calculate new delta p

Calculate error

If error is getting lower: update parameters and start over, else: Done!
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2.4.1 Optical Flow 

Given two consecutive frames in a continuous image sequence the optical flow
is the 2D vector field which, to the extent possible, describes the motion of each
pixel from frame A to frame B (or from frame B to frame A). Another loose
definition of optical flow is the apparent motion of the image color pattern. In
the perfect of worlds the optical flow would also give information of how
objects in the scene have moved, between the two instances in time when the
images were sampled. For the idea of a correct optical flow to be valid a long
list of assumptions need to be made. These are some of the more important
ones:

Objects do not change color between two consecutive frames.

There is no change of occlusion in the scene.

No object leaves or enters the scene.

All objects has texture that can be tracked.

All moving surfaces are Lambertian (no specular highlights).

The lighting condition is constant.

There is no photometric distortion.

These assumptions are in practice never all true but in most cases true to some
extent if the frames are captured close enough in time. This makes optical flow,
in all its simplicity, a surprisingly useful computer vision tool. But even if the
idea of optical flow is fairly simple it is not trivial to calculate in most cases.
Ideally the flow of every single pixel is calculated but in reality that is too
expensive and the result would be very noisy. Since neighboring pixels usually
move in similar paths it is fair to assume that the flows of only a subset of pixels
need to be calculated. The flow for the pixels in between can be interpolated.

A sequential image sequence, such as most normal video clips, usually fulfills
the requirements of image registration fairly well. That is, almost any given
sequential frame pair is almost identical in color and contents and they, almost
without exception, picture the same objects. With that said it is very understan
dable that image registration algorithms are used to approximate optical flow.

When an image registration algorithm, such as the one presented by Lucas and
Kanade, is used to calculate optical flow a set of key points in the image are
chosen. These key points can either be evenly spaced on a grid or placed
according to some image processing scheme. If the Lucas Kanade algorithm
described above is used each key point is given at least two parameters, one for
horizontal translation and one for vertical translation. Other parameters, that
for example enforce global smoothness of the vector field, can be added to the
solver before the minimization begins. The areas between the key points are
warped according to the movement of the closest key points when the error is
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calculated for every iteration. When the optimal movements of the key points
have been found sub pixel optical flow for each and every pixel can be inter
polated.

2.5 Spring Systems 
Many physical simulations of membranes, solids and surfaces are simulated
using systems of particles interconnected with springs. Sometimes masses are
assigned to the particles (mass spring systems) and a range of different kinds of
linear and non linear springs can be used. In all these systems the spring forces
are calculated and summed up for each particle. Other kind of forces such as
friction, gravity, drag, and inertia can easily be added for each particle and the
complete system can be simulated over time with either explicit or implicit time
integration. Systems of this kind has proven to simulate the inner forces of
materials relatively well and especially materials like paper and cloth seam to
be particularly well suited for this kind of simulation model. Surface character
ristics such as bending, stretching, shearing and even ripping can be mimicked
in at least a visually correct way (i.e. the solution looks plausible).

Cloth simulations in computer graphics are often simulated with mass spring
systems [1][13]. For cloth three different springs are typically used: stretching
springs, bending springs, and shearing springs. Stretching springs simulates the
elasticity in cloth in the vertical and horizontal direction by connect quads of
neighboring particles in squares (see figure 2.1). Bending springs interconnects
every other row and column of particles with longer springs which gives the
material stiffness and resistance to bending (see figure 2.2). Shearing springs
locks the stretching quads over the diagonal to limit shearing motions of the
material (see figure 2.3). In the following three figures the layouts of the three
different kinds of springs in a cloth simulation are illustrated.



16

Figure2.1 Stretching springs

Figure 2.2 Bending springs
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Figure 2.3 Shearing springs

The math and physics in spring models is quite simple. The characteristic
element of springs is that they always strive to get back to its equilibrium state.
This manifests itself through forces acting on its ends toward the center of the
spring if the spring is extended or away from the center if the spring is
compressed. The simplest model is the linear spring which is described by
Hooks law:

xkF
Eq. 2.14

Where F is the force along the spring, k is the spring constant, and delta x is the
amount the spring has been compressed or extended (x x0). The minus sign can
be included in the spring constant but emphasizes that the force has opposite
sign than the change of length. The springs that will be used in the capturing
system described in this thesis will be slightly more advanced and the forces
will be calculated according to:

2

3)( xkF

Eq. 2.15

Where T is a threshold value for the ratio between delta x and the original
length of the spring. I.e. if T is 0.10 the threshold is 10% of the original length of
the spring. Below the threshold the spring will be softer than the linear case.
Above the threshold the spring gets stiffer fast since the function is a cubic
function. Such a spring will allow small fluctuations but will punish large
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changes. Exactly the kind of behavior the Model Flowing algorithm will benefit
from, where expected deformations are allowed but extreme distortions should
be panelized and unrealistic solutions prohibited.
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Figure 2.4 This plot illustrates how the spring force for the cubic spring is small below
the threshold, which will let the spring flex quite freely around its equilibrium state, but
quickly grows large when the spring is contracted below, or extended beyond, the
threshold. The blue dotted line represents a linear spring with a spring constant of 50
while the green solid line represents a cubic spring with threshold of 0.05 (5%) and a
spring constant of 50.
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3. RELATED WORK 

In this section previous work relating to capturing of deforming geometry in
general, and capturing of faces in particular, will be discussed. As in many
other fields of computer graphics there are two distinctive categories of earlier
work: research done by graphics labs at universities, schools, and dedicated
research facilities, and work done on productions in the entertainment industry.
The first category is very well documented and recognized by a high degree of
automation and in most cases dubious results from a artistic standpoint (mostly
because of lack of funding and/or artistic skills). The latter category is very
seldom documented in detail and usually has a large degree of user supervision
from talented artists and the visual results are generally stunning. The work
presented in this thesis is very much in between industry and academia and
therefore references from both camps have been used extensively.

3.1 Facial Capturing 
Faces are still somewhat of a holy grail in computer graphics. For tens of years
massive research has been done on everything ranging from facial recognition
and facial scanning to facial modeling, animation and rendering, and still loads
of new research is presented every year on graphics subjects relating to faces.
One face related area of research that has been around for a long time and still
is going strong is automated capturing of facial animation or facial capturing in
short. There are many reasons for capturing the movements of faces and some
of the more common objectives of research done on the subject are:

Capturing and isolating the animation, which in turn can be applied to
other faces or geometric models.

Capturing and isolating the geometric properties of a face, with the
intention of animating by hand or with the motions captured from
another face. [19]

Capturing and isolation the reflectance properties of the face in order to
be able to relight the animated face afterwards. [10]

Capturing and isolating the animation in terms of poses, i. e. the face is
parsed to a set of already defined poses such as happy, sad or grumpy,
or a mix between those poses. [4][12]

Capturing and isolating the geometric properties of a face in terms of
poses, with the intention of defining a mapping between the geometry of
the face and already defined poses such as happy, sad or grumpy. [10]

In the two following sections some of the major influences in this project will be
described and similarities and differences will be discussed.
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3.1.1 Using markers 

Traditionally tracking markers, or at least well defined features, have been used
for all kinds of motion capture and tracking in general. A tracking marker can
be anything from a piece of green tape on the wall in the background to hi tec
super reflective silver spheres on a motion capture suit to a simple dot on a
human nose made with a pen. Williams [17] pioneered the technique of facial
capturing with markers, tracking 2D points on a single image. Guenter et al. [9]
extended this approach to tracking points in 3D using multiple images. Terzo
poulos and Waters [16] estimated muscle contractions from the displacement of
a set of face markers. Simulating muscles to some extent is a fairly common
approach to limit the search space and thus making the capturing process more
robust. Muscle simulations also fit well into the concept of blend shapes and
model rigging in the animation pipeline.

In the visual effects industry tracking markers are well established in the
pipeline and most successful facial capturing has been done with markers.
Unfortunately a lot of the capturing done in production is not well documented
but the research facility ICT of University of Southern California has both done
substantial academic work on facial capturing and consulting work for the
industry. In [10] Hawkins et al describes the system ICT has developed to
capture facial animations and animatable facial reflectance fields. The system
has been used for facial capturing in the academy award winning motion
picture Spiderman II among other movies. The ICT capturing rig is a good
example of the state of the art in facial capturing with markers.

The system is built around a light stage which can very rapidly light an object
more or less arbitrary which enables them to capture the facial reflectance field
while capturing the facial animation. Apart from the light stage, the system is
quite traditional in the sense that it uses 6 cameras for capturing and the
deforming model is basically a triangle mesh connecting the markers on the
face. The face is initially captured in approximately 60 different poses, covering
the most common expressions, visemes, head poses, and eye positions. Since
they use multiple geometrically calibrated cameras they can triangulated the
3D positions of the fiducial dots, i.e. the markers, and thus form the basis of
their 3D face model. They use approximately 300 facial markers which is a
fairly large number of dots in a human face but still a rather coarse representa
tion of a human face.

When all poses are triangulated in 3D they can define them as blend shapes.
The animation can now be driven by the actor, deforming the geometry
through combining/blending the captured blend shapes. The strength of this
approach is the robustness due to the fiducial dots and the limited search space
due to the fixed number of blend shapes. The biggest drawbacks are the
substantial work involved in creating the bland shapes and the coarseness of
the final animation both because of the limited number of markers and blend
shapes. The fiducial dots has to be removed before the data can be used for
rendering, a process which both degrades quality and takes time and effort.
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3.1.2 Without markers 

Even if tracking markers is an established tool in motion capture they are not
suitable in all situations. As computers have become more powerful and digital
video cameras have gotten faster and sharper (higher resolution and less noise)
more advanced algorithms have emerged which opens up new possibilities and
problems. Most markerless tracking solutions are very similar to their
counterparts using markers. Instead of tracking the markers, image registration
or optical flow algorithms are usually used to drive the deforming geometry.

An interesting exception is the work done by Zhang et al. [Zhang et al. 2004]
which uses structured projected light to eliminate the need for traditional
markers or even textures in the scene. Since they project light patterns onto the
face the image data is quite useless for pretty much anything else and the
annoyance factor for the actor/actress is not negligible. When the person is
captured they can drive the animation without the light patterns though, and
the results are very good.

Others have calculated the optical flow from the image sequence and decompo
sed the flow into muscle activations. Essa and Pentland designed and imple
mented a physically based face model and developed a control theoretical tech
nique to fit it to a sequence of images [6][7][8]. Douglas DeCarlo and Dimitris
Metaxas have done some excellent work on combing optical flow, edge infor
mation and Kalman filtering [5] to track faces with great results. Unfortunately
the face models they use are not very detailed and they solve for a very limited
number of parameters, but their method seams to be very robust.

At SIGGRAPH of 2003 Borshukov et al. [3] presented their “Universal Capture”
approach in a sketch. Their capturing approach is somewhat similar to the one
used for Model Flowing, but when they calculate 2D optical flow on the camera
feeds independently the Model Flow algorithm solve for a flow in 3D right
away. The strength of the Model Flow approach is that it incorporates the
epipolar constraint in the solver and not in a separate triangulation step.
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4. SYSTEM OVERVIEW 

The most common approach for capturing deforming geometry such as faces is
to use multiple cameras and stereo triangulation. The capturing system descri
bed in this thesis is taking this approach although it is more targeted towards
feature film productions and the tracking pipeline at Digital Domain. The came
ras used in this setup are assumed to capture color with three channels and
have fairly high resolution even though the algorithm is very flexible when it
comes to resolution and image format. The cameras do not have to be of the
same type, be color calibrated or have the same resolution, but they need to be
tracked in space, optically calibrated, reasonably synchronized, and carefully
placed. Potentially a moving “hero” camera could be used on set even though
such a setup has not yet been tested and will not be evaluated in this thesis.

4.1 Physical Setup 
For facial capturing in feature film productions it is common to use between 5
and 8 cameras positioned in a way such that all interesting parts of the face is
captured by at least 2 cameras at all time. When capturing cloth or any other
deforming object the number of cameras may have to go up or down
depending on the situation but still all geometry that is to be captured need to
be captured by at least 2 cameras in every frame. Ideally the camera views
should both overlap to a large extent and be spread wide apart, which is an
inherited dilemma of stereo triangulation. The process of putting the capturing
system together and capturing deforming geometry includes the following key
steps:

Positioning of the cameras around the object to be captured.

Calibrating of the cameras. That is finding the intrinsic parameters.

Tracking of the cameras. That is finding the extrinsic parameters. If one
or more of the cameras will be moving during the shot that movement
needs to be tracked as well.

4.2 Camera Calibration 
Calibrating a camera is basically to estimate the values of the intrinsic and/or
extrinsic parameters of the camera. The intrinsic parameters of a camera are the
parameters necessary to link pixel coordinates of an image point to a corre
sponding coordinate of the theoretical image plane of a camera. These parame
ters are the focal length of the camera, the location of the image center in pixel
coordinates, the effective pixel size in horizontal and vertical direction, and, if
required, the radial distortion coefficient. Estimations of the intrinsic camera
parameters are usually calculated by linking the known coordinates of a set of
3D points and their projections in an image. In practice this means that a test
pattern of some sort is waved around in front of a camera to generate test
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images that can be processed in special calibration software. The test pattern is
usually some sort of checkerboard that can easily be tilted and moved within
the camera view. A common set of images for camera calibration consists of
roughly 20 images of the checkerboard rotated around all its axles and moved
in all direction covering all corners of the image. The capturing system de
scribed in this thesis requires that all cameras used for capturing are calibrated
and that the resulting image sequences are rectified accordingly.

Calibrating cameras is somewhat of a necessary evil for almost all kinds of
computer vision applications. It is far from a solved problem and still papers
are published on the subject. This thesis will not attempt to fully cover the
subject of camera calibration.

4.3 Camera Tracking 
Extrinsic parameters are the parameters that define the location and orientation
of a camera with respect to a known world reference frame. In the movie indu
stry the process of finding the extrinsic parameters of a camera is usually
known as “tracking the camera”. At Digital Domain a proprietary software
package named TRACK is used by “trackers” to capture the necessary extrinsic
parameters. TRACK can both handle automated tracking and more traditional
tracking where the images are lined up with simple 3D geometry more or less
by hand. The concrete results of tracking a camera in a shot are the animated (if
the camera, or the world, is moving) translation vector and the animated (if the
camera, or the world, is rotating) rotation matrix describing the placement and
movement of the camera throughout the shot. This information is usually
exported and passed on to animators, modelers and compositors. In the case of
capturing deforming geometry in 3D this information is vital for triangulation.

The easiest way to track cameras in a shot is to incorporate some kind of known
geometry in the shot. When multiple and/or static cameras are used custom
made “tracking objects”, such as tracking cubes, can be used. A tracking cube is
a carefully constructed wire frame cube with well defined tracking markers
placed in its corners and sometimes along its edges. With a tracking cube in the
scene it is straight forward to calculate the exact position and orientation of the
cameras in TRACK. Camera tracking can also be achieved with advanced
mechanical robotic arms that can export, and repeat camera positions and
movements with astonishing accuracy. Equipment for mechanical camera
tracking is very expensive and rarely used other than when a shot has to be
completed with multiple and identical passes.

4.4 Camera positioning 
To get optimal results from triangulation the base line (the distance between the
lines of sight of the cameras) should be large. At the same time there should be
a substantial overlap in image information. To triangulate the position of a
piece of geometry that piece needs to be captured by at least two cameras at all
time.
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5. MODEL FLOWING 

In this section the heart and soul of Model Flowing will be described. First the
algorithm will be summarized fairly quickly followed by a simple walk
through using the simplest example possible. Last in this chapter the different
parts of the algorithm will be discussed in detail. For even more details chapter
6 is especially devoted to implementation.

At this point of the capturing process a suitable data set has been captured with
a setup described in chapter 4. In other words: for the Model Flow algorithm to
work the following requirements has bee fulfilled:

The deformation was captured with multiple calibrated, synchronized,
and tracked cameras.

There is a polygon model describing the geometry in its initial state.

The polygon model can be represented with triangles and it is perfectly
lined up with the captured image sequences in frame 0.

Every part of the geometry was captured by at least two cameras at all
time.

A fundamental concept for this algorithm is that it finds the best possible defor
mation one frame at the time in sequence starting with the very first frame. This
means that the algorithm will treat the state of the system in frame 0 as absolute
truth when calculating the deformation in frame 1. When the best possible
deformation in frame 1 is found it will go to the next frame and solve for the
best possible deformation in frame 2 treating the state in frame 1 as absolute
truth. From now on the frame which is already lined up will be called the
current frame or frame 0. The frame which is solved for will be called the next
frame or frame 1. Since the deformation has been captured with multiple
cameras a “frame in time” corresponds to multiple images.

As the name of the algorithm suggests the algorithm is “flowing” the 3D geo
metric model from one frame to the next. It is important to understand that 2D
pixels are not flowing, as in 2D optical flow, but the actual 3D geometry. In
order to optimize this 3D flow the captured image data is used in a cost
function and in the estimated derivative of this cost.

The core idea is that by deforming the geometry in the next frame, and by
projecting the image data from the next frame onto that deformed geometry,
the current frame can be synthesized. The difference between the pixels in the
actual current frame and the synthesized current frame is the cost function that
will be minimized. This cost is a function of the vertex positions in the next
frame so reducing it will deform the geometry. Do note that the cost always is
calculated as the difference between two frames from the same camera but the
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cost is summed up for all camera views in the solver. Thus the Epipolar
constraint is enforced in the solver and all image data contribute to one single
deformation solution.

By deriving the cost function with respect to the x , y , and z coordinates of the
geometry in the next frame the gradient of the error can be estimated as a
function of image derivatives. Similar to the Lucas and Kanade [11] image regi
stration algorithm presented in chapter 2. Analytic derivatives to each para
meter are not available and numeric differencing is prohibitively expensive.

5.1 The Algorithm – A walk through 
In the most basic case there is one triangle
captured by two cameras according to the
figure on the right. Of course in a real world
scenario there would be substantially more
triangles and probably more cameras as
well.

If the system is correctly initialized there is
a perfect match between the geometry and
the images in the current frame.

Figure 5.1

The geometry can now be projected out
onto the image planes as in this figure.
Using a simple scan line rasterizer each and
every pixel corresponding to this triangle
can be identified. These are the pixels that
will be synthesized and compared. The
number of pixels defines the number of
residuals in the solver.

Figure 5.2
In the next frame the geometry and the
image data no longer line up. By comparing
the pixels corresponding to the triangle in
the current and the next frame an error,
which indicates how far off a correct defor
mation is, can be calculated. The pixel error
is the cost function of the solver. The gra
dients and the costs can be plugged into a
conjugate gradients solver which will mini
mize the cost according to the conjugate
gradient method. Figure 5.3
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The conjugate gradient method is an
iterative algorithm which will iterate until
the total cost reaches a lower threshold or
the algorithm finds a local minimum from
which it can’t continue. The resulting defor
mation hopefully results in a, once again,
perfect match between the geometry and
the image data.

Figure 5.4

5.1.1 The spring extension 

In situations where there is very little image
information to track or the texture in the
image is invariant to scale there is nothing
in the Model Flow algorithm that conserves
size or shape of the triangles. To make the
algorithm more robust in those situations
spring forces has been added along the
edges of every triangle. While this is no
attempt to accurately model any physical
system, these spring forces are a simple
approximation to the elasticity of many
deformable surfaces such as cloth and
human skin. The behavior of the springs is
controlled by the capturing artist when
running the Model Flow command in
TRACK.

Figure 5.5

5.2 Conjugate Gradient Solver 
The conjugate gradient (cg) solver is the work horse of the capturing system
described in this thesis. A typical system of equations that is to be fed into a cg
solver is usually written as Ax=B but in this thesis it will be written as Aq=b for
consistency and to avoid confusion between the column vector x and the x
coordinates. Figure 5.7 will hopefully explain this seemingly childish system of
equations even further:

The conjugate gradient method is a iterative algorithm which requires several
iterations for optimal results. While model flowing no deformation is assumed
for the first iteration and the vertex coordinates from the current frame, q0, is
used. After each iteration, i.e. solution of the Aq=b system, the deformation is
updated according to qn+1=qn+q, where q is the latest solution. When the
method no longer finds better solutions the iterative process stops and the
optimal deformation found so far is used.
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Figure 5.7 Illustration of the system of equations that is to be minimized.

Figure 5.7 clearly illustrates that the matrix A will be quite huge and far from
square. By taking the pseudo inverse of A the equation turns into ATAq=ATb
which can rewritten as A2q=b2 but this time the Jacobian A2 is guaranteed to be
square, diagonal, positive definite and in most cases extremely sparse. Exactly
how most cg solvers like it.

The residuals in b are easily calculated since they are just the costs from the cost
function, i.e. pixel differences. The Jacobian is a different story though, since it
consists of gradients of the cost function with respect to the variables which are
solved for. There is no way of calculating the analytic derivative of such a
complex cost function, but the gradients can be approximated as functions of
the image gradients which can easily be calculated. Note that the solution
vector q is in practice a suggested step towards the correct solution rather than
the final solution. This means that q is added onto the total deformation
iteration after iteration until the cost no longer is getting smaller.
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5.2.1 The Cost Function 

The complete cost function for a full Model Flow system looks like this:

Vertices Triangles Cameras Pixels RGB
vuonCostFunctiCost ),(

Eq. 5.1

Where u and v are horizontal and vertical pixel coordinates. Luckily the solver
will take care of all the summations and in a moment it will be clear that each
pixel only depend on nine variables at the most. This means that the important
part is the actual cost function inside all the summations:

2),()ˆ,ˆ(),( vuIvuIvuonCostFuncti currentnext

Eq. 5.2

This is nothing but a pixel difference. Since only the minimization of this
function is interesting the square root can also be ignored:

2),()ˆ,ˆ(),( vuIvuIvuonCostFuncti currentnext

Eq. 5.3

5.2.2 The Warp 

If perfect conditions are assumed, that is no occlusion and that the deforming
surface in 3D can be accurately modeled with a triangle mesh, all pixels will
belong to a triangle which is fully visible in both the current and the next frame.
This means that the deformation of the triangle in 3D equals a 2D warp of the
triangle in 2D. That is for every triangle there exists a 3x3 matrix which takes a
homogenous screen coordinate in the current frame, scurrent, and warp it to a
homogenous pixel coordinate in the next frame, snext:

currentnext sWs
Eq. 5.4

This warp enables a mapping between the pixels in the current and the next
frame:
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Since the warp is the same for all pixels belonging to the same triangle only one
warp matrix per triangle is needed and a complete triangle can be warped with
one matrix multiplication:

currentnext SWS
Eq. 5.6

Using this warp it is easy to compare pixels in two different triangles regardless
of the deformation in 3D. Further exploration of this equation gives:
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Eq. 5.7

The projection transformations presented in section 2.2.1, and especially equa
tion 2.3, enables the introduction of some new and very important matrices.
Pnext is the known 3x4 perspective projection matrix from the camera and Vnext is
the 4x3 matrix describing the coordinates of the vertices in space. This last
equation is very important! This warp describes the mapping between the
current and the next frame as a function of the vertex coordinates of the triangle
in the next frame. This means that the pixel mapping equation can be rewritten
for the case where the pixels in the current frame are fixed and the vertex
positions in the next frames are the variables:
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Eq. 5.8

5.2.3 The Jacobian 

The Jacobian is a carefully built matrix containing the gradients of the cost
function with respect to the parameters of the equation system. In this case the
derivatives with respect to the x , y , and z coordinate of the vertices need to be
approximated. Deriving the cost function in equation 5.3 with respect to the
parameters q leads to:
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The constant “2” can be dropped for simplicity in the last step since it is just a
constant and since Icurrent(u,v) is not a function of the parameters describing the
geometry in the next frame that part equals zero. Now apply the chain rule:
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In the last expression “diff” is the scalar difference between two pixels and the
column vector on the far right consist of the image gradient in the next frame in
u and v direction. Both the pixel difference and the image gradients are easy to
calculate when the interesting pixels are identified. The row vector in the
middle is still in need of more work. Expanding it with equation 5.8 gives:
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Where (from eq. 2.5)
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Which means
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As declared in equation 5.7 the warpW is created by multiplying Pnext,Vnext and
Scurrent. Pnext is projection matrix at the next frame, which is known and will stay
constant. Scurrent is the screen coordinates of the triangle in the current frame,
which are also known and constant. At this point it is clear that building the
Jacobian is not trivial but let’s discuss what we have so far and what these
letters really mean. The cost function is derived with respect to the column
vector of parameters q. In most cases there will be thousands or at least
hundreds of parameters in q but luckily the cost is calculated per pixel and
every pixel will be affected by (at the most) 9 parameters. This is because every
pixel belongs to a triangle which in turn is defined by three vertices. The
parameters belonging to those three vertices are the only nine parameters that
can affect the triangle and in turn the pixels it corresponds to. 3 vertices times 3
dimensions (x, y, and z) equal 9 parameters. Not surprisingly it is the same nine
x , y , and z coordinates in the matrix that define the triangle in space, Vnext.

In practice this means that there will be nine 3x3 matrices with warp gradients
for every triangle and camera. Those can be pre computed and the values
looked up and multiplied with pixel gradients and pixel differences when
building the Jacobian. The nine gradient matrices for each triangle are
computed thru deriving equation 5.7 with respect to the nine parameters of the
triangle.
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This equation (5.14) equals the following nine matrices of gradients:
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It is important to remember that both the projection matrices and the current
screen coordinates of the vertices will stay fixed and are well known during the
iterative minimization process. This means that the gradient matrices can be
calculated once for every triangles and camera and used over and over again
for all the pixels in that triangle iteration after iteration.

For every residual there will be nine (or less) entries in the Jacobian. The
Jacobian must have one column per parameter, which means that every group
of three columns represents one vertex. It also must have one row for every
pixel comparison. If all three color channels are used this means three rows per
pixel. In every row all values but nine must be zero! When building the
Jacobian the following pseudo code is used:

For every triangle:
 For every camera:
  Get the pre-computed gradient matrices (Eq. 5.15) 
  For every pixel:
   Get the pre-computed image gradients 
   For every vertex that belong to the triangle (3) 
    For every dimension (3/xyz) 
     For every color channel (typically 3/rgb) 
      Calculate the pixel difference (the cost) 

Calculate the nine entries in the Jacobian 
according to eq. 5.10 

5.2.4 The spring extension 

When a cg solver is set up correctly it is quite easy to extend it with other cost
functions that also affects the solution in one way or the other. A cost function
does not necessary capture all kinds of behaviors in a complex system like this
one, or it might have weaknesses that can be corrected by other costs.

The cost function described above is not perfect and it has a couple of apparent
weak spots. One of them is that it assumes that there is pixel information to
compare at all time and that the pixel information is so rich it will always give
correct costs when minimizing. In situations where large areas have hardly any
color variation or the color patterns are fairly scale invariant the pixel com
paring cost function will run into trouble. Since it doesn’t penalize unrealistic
size or shape changes of triangles weird things can happen in regions where the
pixel tracking assumptions fail.

The system described in this thesis incorporates an extension that will mimic
the elasticity and shape conservation properties that most deformable surface
show. By adding costs to the solver corresponding to theoretical spring forces
along the edges of the triangles in the polygon mesh area and shape preser
vation is encouraged. While this extension is no attempt to model any physical
system the spring forces greatly improves the robustness of the system.
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The springs are non linear cubic springs and their exact behavior can be
controlled by the capturing artist while capturing. The spring forces which are
used as costs are described by this equation presented in chapter 2:

2

3)( dkF

Eq. 5.16

Where T is a threshold value for the ratio between delta d (change of length)
and the original length of the spring. I.e. if T is 0.10 the threshold is 10% of the
original length of the spring. Below the threshold the spring will be softer than
the linear case. Above the threshold the spring gets stiffer fast since the function
is a cubic function. Such a spring will allow small fluctuations but will punish
large changes. Exactly the kind of behavior which is sought after in a system
which does not hinder expected deformations, penalizes extreme distortions,
and prohibits unrealistic solutions. For the cg solver the spring extension make
the following changes to the system of equations:

Figure 5.8 Illustration of the system of equations, including spring extension.

In the Jacobian the spring costs are derived with respect to the parameters
representing the vertices in each end of the spring. This means that every extra
row in the Jacobian represent one spring and in one of those rows all but six
entries must equal zero. The spring contributions to the system of equations are
much easier and faster to calculate since they are calculated for every edge and
not for every pixel. A simple example for the spring forces is a spring stretching
from (0,0,0) to (5,5,0) in it’s original position. If the spring is extended by the
square root of two it go from (0,0,0) to (6,6,0) delta d will be:
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Eq. 5.17

And the spring cost will be:
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Which is a scalar value that will be added to the bottom of the b vector. The
derivative of this cost, with respect to for example the x coordinate, is:
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Which, if evaluated at (6,6,0), equals:
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If k and T are positive the cost is negative and so is its derivative. This makes
perfect sense since an increase of x would indeed make the spring force
stronger in a negative direction. Since the solver wants its costs to equal zero
this information will affect the solver to decrease the value of x. Thus bringing
the spring closer to its equilibrium state.
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 6. IMPLEMENTATION 

The implementation of this system was all done in C++. Most of the code
written specifically for this project was written in Microsoft Visual Studio 2003
but the system runs in both Windows and Linux.

6.1 TRACK 
TRACK is the name of the academy award winning propriety computer vision
suite used at Digital Domain. It is a top of the line 3D tracker which has support
for both automated and manual tracking as well as extra features such as
optical flow based tracking and processing of laser scan data. In TRACK there is
excellent support for data input/output and it has a flexible and powerful user
interface which was used and extended to suit this project. The system
described in this thesis was implemented as an integrated part of TRACK 5.

Figure 6.1 The flexible and powerful user interface of track. On the very left the
parameter panels shows an editable tree structure of all parameters of the current
project. Along the bottom there is a time line with controllers. On top of the time line
you can see the curve editor in which any animated parameter can be plotted and edited.
In the top right corner the 3D panel is displayed and on its left the input image
sequence is shown with tracking data overlaid. The dialog box is the user interface for
tracking deforming geometry with Model Flowing in TRACK.
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One of the key ideas behind 3D tracking software is the connection between 2D
image data and 3D geometry, position, and orientation. The link between 2D
and 3D is the camera model; therefore the camera is fundamental in TRACK.
All image data in TRACK belong to a camera. Another key component in
TRACK is the model object which holds 3D geometry data. For the purpose of
Model Flowing a new model object was implemented, a deforming model
object, which has independently animatable vertices. Not only is the geometry
globally animatable but every vertex can be animated individually.

For normal tracking assignments the tracker usually has numerous pieces of
geometry which is to be lined up with one image sequence associated with one
camera. When performing Model Flowing the situation is the opposite, only
one piece of geometry is deforming but it is captured with multiple cameras.
This requires a slightly different link between cameras and geometry. This link
is created when the model flowing command is executed.

6.2 Data Structure 
Naturally a multi camera capturing system generates lots of data and during
the Model Flowing large amounts of data needs to be compared and modified.
In TRACK all image data is owned by a camera and all 3D geometry data is
owned by a model object. The 3D geometry is basically a list of coordinates in
space, the vertices, and a list of triangles defined by three indices in the list of
vertices. For every vertex that is “flowing” some new data need to created and
managed. First of all a list of new coordinates needs to be created. These are the
variables that will be solved for. Secondly all the data that will be used to
calculate those new coordinates needs to be gathered. Since the algorithm is
iterative much of the data will be stored in two versions, one for the current
iteration and one for the last iteration.

6.2.1 Vertex 

The vertex both keeps records of the error associated with the triangles
surrounding it and the estimated derivative of that error with respect to its x ,
y , and z coordinates. A deforming vertex also needs to keep track of its 3D
coordinates in the last frame and two sets of coordinates in the present frame,
one for the current iteration and one for the last iteration.

6.2.2 Triangle 

Every vertex keeps record of which triangles it belongs to and every triangle
knows its vertices. The triangles also keep track of its projections out into the
surrounding cameras. This means that a triangle stores a series of index patches
and pixel patches associated with the cameras. For every camera a triangle
stores one reference index patch from the last frame, one pixel patch from the
last frame, one warped pixel patch according to the vertex positions in the last
iteration, and pixel patches with image derivatives in u and v direction. Since
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the warps used for pixel comparison is defined per triangle the triangle also
keep track of the warp and gradient matrices associated with the cameras.

6.2.3 Index Patch 

The index patch stores the pixel coordinates for a patch of pixels corresponding
to a triangle projected onto an image plane and then scan line rasterized. Note
that the patch is not storing the RGB values but stores which pixels in an image
belong to a triangle.

6.2.4 Pixel Patch 

The pixel patch is the lowest level of data structure storing actual pixel values.
It is basically a 2D float container storing RGB values corresponding to an index
patch.

6.3 Warping and Unwarping 
The Model Flow algorithm assumes that there is a perfect match between the
3D geometry and the image data from the cameras in the frame prior to the one
it is solving for. That is it knows it has a perfect match to start with and it wants
to solve for the deformation that will give a perfect match also in the following
frame. By projecting the geometry out onto the camera planes and scan line
rasterize every triangle into index patches each triangle knows what pixels
belong to it. With the projection matrices from the cameras the associated 2D
warps that will correspond to the pixel deformation when the geometry is
deforming can be calculated. Of this data most of it is not depending on the
new vertex coordinates which means it will be constant during the iteration
process and can therefore be precomputed and stored.

Before the iterations start the actual pixel values for a triangle is gathered
according to the index patch and written to a pixel patch. In every iteration 2D
warp matrices are built that maps pixels from the deformed triangle back to the
already tracked triangle. A per pixel comparison can now be made between the
pixels in the pixel patches and the corresponding pixel values gathered from
the next frame using the 2D warp matrices. The difference is stored as the cost
at vertex level. Using the same warp and pixel derivatives the gradient of the
error can be estimated and stored as well.

6.4 CG Solver 
Systems that is to be solved by the conjugate gradient method is often written
as Ax=b where x is a column vector with the variables that are solved for and b
is a column vector with the cost for every residual. A is a big matrix as wide as
the number of variables to solve for and as tall as the number of residuals in the
system. Since A is not square but otherwise very well behaved the pseudo
inverse is calculated which will give us ATAx=ATb. ATA is square, symmetric,
positive definite, and very sparse. Implementationwise A or b will never be



39

stored. ATA and ATb is calculated right away and given to a conjugate gradient
solver. In the figure below is a visualization of what ATA looks like for the cloth
data set that will be introduced in chapter 7.

Figure 6.2 Visualization of an ATA matrix. On the left the complete matrix where black
pixels represent zeros and green pixels represent real data is illustrated. The matrix is
clearly both diagonal and extremely sparse. On the right is a close up of the very left top
corner of the matrix. In ATA every group of three columns represents one vertex. Every
group of three rows represents vertices that are connected to each other. The “gaps” in
the diagonal is caused by the fact that the vertices along the edges are not connected to
as many vertices as the vertices in the middle of the triangle mesh.

6.5 SparseLib 
“SparseLib++ is a C++ class library for efficient sparse matrix computations
across various computational platforms”[21]. SparseLib is an excellent library
which supports a range of different storage formats and basic matrix operators.
It also incorporates some very fast iterative solvers and fitting preconditioners
for linear systems.

When all per triangle setup is done for an iteration the costs and the gradients
are collected and written to compact SparseLib matrices. SparseLib then solves
the equation system in matter of milliseconds and a new estimated deformation
is given as the result. If the new estimate renders a better result the iterative
process goes on, if not the deformation is rolled back to best known defor
mation and the system takes on the next frame.

6.6 Pseudo Code 
At the core of the Model Flow algorithm there is a main loop that takes two sets
of images and a piece of geometry which lines up with the first set, and returns
a deformation for the geometry which makes it line up with the second set as
well. This main loop looks like this in pseudo code:
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// Assume no deformation is needed 
Do warping;
Calculate error; 
If (error < threshold)   done = true; 

While (done!=true) 
{
 Old error = error; 
Remember vertex positions; 
 Build matrices for solver; 
 Solve equation system; 
 Update vertex positions (p = p + delta_p); 
 Do warping; 
 Calculate error; 
 If (error < threshold)   done = true; 
 Else if (error > old error) 
{
     restore old vertex position; 
     done = true; 
 } 
}
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7. RESULTS 

In this section some early test results will be presented and discussed. As Model
Flowing has not yet been used in production and the implementation described
in this thesis still has some basic functionality missing. It is reasonable to be
lieve that Model Flowing can perform better than this. Since both inputs and
results are animated it is extremely hard to illustrate their characteristics in
print. It is to some degree up to the reader to “fill in he blanks” and “envision”
the animations.

7.1 CG Cloth Data Set 
In this data set an animated piece of synthetic cloth was rendered from 2
camera views in a piece of software called Maya from Alias|Wavefront. The
reason for using computer generated imagery in this data set was to avoid
problems related to image noise, camera calibration and other factors which are
not part of this research project. Computer generated imagery is also cheaper to
produce in terms of man power and technical resources. The data set is 120
frames long and the resolution of each image is 480 by 640 pixels. The physical
setup (in the virtual world ofMaya) looks like this:

Figure 7.1 Illustration of the physical setup inMaya. The geometry describing the
cloth can be seen on the right and the two cameras can be seen on the left.

When rendered the triangle mesh was textured and given material properties to
make it resemble some kind of cloth like material. This is what a pair of cap
tured images look like:
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Figure 7.2 Example of a pair of input images from the cloth data set. Clearly the base
line is not very wide.

On the cloth data set both the universal capturing approach [3] and Model
Flowing was used for comparison. Figure 7.3 picture a frame from a camera
view very close to the ones used for capturing. The geometry produced by the
capturing algorithms are overlaid the original image. If the deformation has
been captured perfectly the cloth and the polygon mesh should line up per
fectly. The checker board pattern on the cloth has nothing to do with the
polygon model though.

Figure 7.4 to 7.6 show some renderings of the final captured deforming geome
try from a more aggressive angle than figure 7.3. This view point is far from
where the cameras captured the input data and will show more of the accumu
lated noise and error in depth estimation. Once again the Universal Capturing
has been used on the left and Model Flowing has been used on the right.
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Figure 7.3 Two illustrations of how the resulting mesh animation fits the original cloth
movements. Universal capturing on the left and Model Flowing on the right. Model
Flowing renders better results than the optical flow based capturing method. This is
particularly noticeable along the edges of the mesh.

Figure 7.4
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Figure 7.4(previous page), 7.5(top), and 7.6(bottom) Wire frame renderings of the
final captured animation. A perfect result should show a smooth and cloth like polygon
mesh. These three frames clearly show how error accumulates over time and that Model
Flowing generates significantly less errors than the optical flow based algorithm.

7.2 Regina Face Data Set 
Since capturing of deforming geometry mainly is used for facial capturing a
crude facial capturing rig was built and a short test sequence was shot at the
Digital Domain stages. The sequence is 120 frames long and was captured with
three off the shelf standard definition DV camcorders. This is what the physical
setup looked like in the real world and after it had been recreated in TRACK:
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Figure 7.7 Physical setup for the Regina data set. Notice the tracking cubed placed
where the head of the actress will be located. The tracking cube was used to track the
cameras with respect to each other and the scene.

Figure 7.8 Resulting initial setup in TRACK with virtual cameras and tracking cube
placed according to the real world setup.
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Here are some frames from the captured material:

Figure 7.9(top) and 7.10(bottom) Examples of input data in the Regina data set.

Unfortunately there was neither time nor money to create a high quality
geometric model of Regina’s face. Luckily TRACK has built in features for
triangulating simple polygon meshes by hand. This method is both slow and
inaccurate but it resulted in some kind of geometry that could be used for a
simple test. Figure 7.11 illustrates how the geometry was produced.

The course geometric model was lined up with the first frame in the data set
and used as the initial geometry when the Model Flow process was kicked off.
For this data set only Model Flowing was evaluated and figure 7.12 to 7.14
show the resulting deforming geometry rendered on top of the input data. Even
though the course geometric model obviously breaks the assumption that an
accurate static 3D representation of the geometry exists the triangle mesh
deforms fairly well. Surprisingly the algorithm manage alright even in areas of
heavy deformation around Regina’s mouth and eyes.
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Figure 7.11 Triangulating geometry in TRACK is possible but it is far from an
accurate way of modeling 3D geometry. Unfortunately this was the only affordable way
of producing geometry data for this data set.

7.3 Performance 
This system is targeted specifically towards the visual effects industry with no
compromise photo realistic results in mind. That means that there is no real
need for real time capturing as long as the results are good enough to save time
and money in the creation of an effects shot. Since no production class test
sequence has been shot or evaluated it is hard to say how well the system will
scale but the test sequences seamed alright.

Both the cloth sequence and the Regina sequence took around 3 to 4 seconds
per iteration to process. The cloth has much more vertices whereas Regina was
captured with one more camera. The cloth sequence would allow 10 to 20 itera
tions whereas the Regina sequence would take 5 to 10 iterations. This is proba
bly because of the noisier nature of photographed material which probably
introduces more local minima where the minimizer can get stuck. Both sequen
ces could easily be worked on with a fairly standard workstation with two 1
GHz processors (only one processor was used for capturing) and 2 GB of
memory.
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Figure 7.12(top), 7.13(middle), and 7.14(bottom) Resulting deforming mesh
rendered on top of the input data. Even this course mesh captures the animation fairly
well and sticks to the deforming face.
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8. DISCUSSION 

Overall this project went well and according to plans. The method presented
here has yet to be used in production but the potential was good enough for a
publication at SIGGRAPH 2005. In most cases neither markerless tracking nor
per vertex animation are necessary and this approach may seam like overkill.
These kinds of features may very well never be required but in research all new
ideas and approaches are interesting ideas and approaches and this system
obviously has its upsides.

8.1 Summary 
In this thesis a new markerless deformable model capture system is presented
which is more accurate and controllable than previous methods. Computer
vision methods are applied and developed to capture the geometry of
deformable objects such as human faces and cloth. The markerless approach
allows recovery of animation, texture and lighting at the same time.

The system assumes that the initial pose of the deforming object is known and
that the deformation is captured by an array of carefully placed cameras. By
modifying the basic 2D optical flow algorithm, which has been used in similar
work, the movement of the 3D geometry is solved for directly and in all views
simultaneously frame by frame. This technique incorporates the epipolar
constraint across the cameras, reducing the search space and resulting in higher
accuracy and less accumulated error.

Image information from all camera feeds and virtual spring forces are incorpo
rated into a single cost function. This cost function is a function of the geometry
deformation and its gradients can be approximated as functions of the image
derivatives. Minimizing this cost function deforms the geometry towards a
better match between the image streams and the final animated geometry.

The thesis covers all basic mathematic tools that has been used such as
projective math, 2D warps, Conjugate Gradient Optimization, image registra
tion, and spring systems. It describes how these tools can be combined to build
a Model Flow system and how such a system performs in comparison to an
optical flow based system.

8.2 Contributions 
Contributions in research are best recognized and evaluated by others than the
originator of the research and hopefully by people with far more experience
and knowledge than the author of this thesis. In spite of that some comparisons
can be made with very similar recent work. In 2003 Borshukov et al. for
example presented Universal Capture [3] which was a complete system for
markerless capturing of deforming geometry using 2D optical flow and an
array of cameras. Where as optical flow driven methods solve for solutions in
2D rather than solving for 3D, Model Flowing has a huge advantage. By incor



50

porating the epipolar constraint into the solver and gathering all image data
into one system of equations the ambiguity of optical flow methods is
eliminated and the search space is radically reduced.

Other interesting components of the Model Flowing approach is the way the
Jacobian incorporates gradients as functions of both image gradients in 2D and
vertex positions in 3D and the extension with spring forces. 2.5D image regi
stration has been proposed before but not incorporated in a markerless captu
ring system like this. Systems of springs are also well known in simulation
applications but have not previously been used to support capturing of faces.

8.3 Conclusions 
Model Flowing is an algorithm which has shown very promising results in
initial tests on capturing deforming geometry such as human faces and cloth.
The method is mathematically and practically superior to similar optical flow
based methods but is still fairly simple and straight forward to implement.
Some functionality need to be added and more production like testing need to
be conducted before Model Flowing can be used on a large scale project but the
potential is obvious.

Over all the project resulting in this thesis must be considered a success since
both the supervisors at University of Linköping and at Digital Domain are
happy with the results and the project resulted in a publication of a sketch at
SIGGRAPH 2005, which was one of the initial goals. The time frame of this
project has well overshot the intended six months but the important deadline to
finish all implementation work while in LA was met.

8.4 Future Work 
The code base and all rights to the implementation of Model Flowing described
in this thesis is fully owned and controlled by Digital Domain. More testing is
being conducted on the work that has been done so far and there are plans to
use the system in production within a year. Even though a lot of work has been
put into the system already it is far from perfect and there are many ways in
which it can be improved. In this section some of the possible refinements and
extensions are presented.

8.4.1 Occlusion 

As Model Flowing is presented in this thesis it has one major flaw which makes
it close to useless for most applications. It has no support for occlusion which
enforces unnecessary constraints on the capturing process. Instead of just have
to capture every part of the geometry with at least two cameras at all time the
system now has to capture all geometry with all cameras at all time. This
obviously puts huge limitations on what kind of geometry that can be captured.

Support for at least self occlusion would not be especially difficult to
implement. The problem of occlusion has been worked on for decades in com
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puter graphics and is in most cases a solved problem. Information about how
much of and from what angle a triangle is seen could also be used as weights
for the solver. Some cameras have better views of some triangles and should
therefore have greater impact on their deformations.

8.4.2 Weighting 

Both for user supervision and for automation reason there should be more
weighing between the different local systems in Model Flowing. An obvious
extension would be controlled and automatic weighting of the spring forces.
One could imaging that areas of very little color variations would automatically
get less weight in the solver and the neighboring areas with good patterns to
track and the springs in the area would get higher weights. This way the system
as a whole would be more robust and sort of tone down its own weaknesses.
These weights should also be controllable by the user who then could manually
turn up the spring weights in areas where appropriate.

8.4.3 Sticky Edges 

Since exact knowledge of the initial geometry at every frame is known it should
not be hard to calculate areas where contours and edges in the images are likely
to appear. With statistical models or edge detecting algorithms the corre
sponding edges and contours in the input images should be quite easy to track
if the interesting areas are already identified. This in turn would open up the
possibility of encourage coherence of the contours in the image and in the
deforming geometry and counteract the sliding, slipping and drifting associated
with flowing algorithms where error accumulate over time. This approach has
been implemented by DeCarlo and Metaxas [5] with astonishing results in
terms of robustness.

8.4.4 Optimizations and speed-ups 

Even though the current implementation is not painfully slow to work with
there is always room for speed ups. Within the next generation/generations of
graphics hardware, or maybe even with the current generation, a lot of the
Model Flow algorithm should be possible to implement in hard ware. Projec
ting geometry and interpolating and comparing pixels are what graphics
hardware do best. On top of that most of the slow parts of the current
implementation are very parallel and should therefore be ideal for hardware
implementations.
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