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As emphasized in our original papethe main purpose compared to 58 in ours. Due to the numerical continuation,
of the proposed method is to numerically continue the matrixhe complex trajectories display a more scattered behavior
elements of a multidimensional Hamiltonian operator ex-than when using analytical continuation, as shown in Fig. 1.
pressed in a contracted basis set of the type The resonance position is then ascribed to the rapid departure

) from a stationary behavior. From this figure, the resonance

{|®m(Rp))|Ry),m=1,M,;p=1,P}. y g

characteristics foE; , as obtained from numerical continu-
In the above notation, th¢[R)} stand for some discrete

ation, display 8 and 4 digits of accuracy for the position and
variable representatiotDVR), and the{|®(R;))} repre-  width, respectively; foE; , the accuracy is of 7 and 6 digits,
sent the adiabatic solutions computed at fixed vaRie

respectively.

=R, . As this procedure requires the numerical continuation  Figure 2 displays the complex trajectories, as obtained
of the potential matrix elements initially expressed in a grid

representation, we first presented results for the one-

dimensional (1D) test case considered by Bludslt al. -5.824¢-05
However, contrary to what is claimed in their comment, we
show below that for this test case (a)
. .. -5.825e-05
(i) our method actually leads to a much better precision
than the one reported in their Table I;
(i) it does not fail when larger basis sets are used; -5.826e-05 | N\
(ii ) the correction proposed by these authdtsg. (10)] X\“
cannot be used as their basic assumpfiog. (9)] does not -5.827e-05 +_ \ B
hold. I ) P
We compare in Table | below the results obtained using 5828005 | jﬁ?’\l\\t\\\')
our original method, those of Bludslst al., as well as the ' )
values computed by means of an analytical continuation. In
all cases, the same basis set of 29 DVR points covering the 5820 0 97095 12097100 12097105 La2097110

range Re[0,15] has been used. However, Bludsky al.

mention using 200 integration points in their calculation, as -0.173750
(b)
TABLE I. Results for the first two odd resonances of the one-dimensional
Hamiltonian modeH = — 3 d%dR2+ (R2— J)e ***+J, whereJ=0.8 and .
N=0.1. A basis set of 29 DVR points covering the rarige[0,15 has - @ w/ P ad
been used. -0.173751 ¢ ,/'%’” 2 e
al |
Numerical continuation —_
L'/:// {e——e Numerical |
Our metho@  Bludskyet al® Analytical continuation {==-—© Analytical |
R E;] 1.420971 01 1.421 1.420 970 99
ImM[E;] —5.8268(-5) —5.828(-5) —5.8272(-5) 0173752 ‘ ‘
ReE;]  2.584584 2.5846 2.584 583 T 72584582 2584583 2584584 2584585  2.584586
ImM[E;] —1.73751¢1) —1.7375(1) —1.737508(1)

FIG. 1. Complex trajectories associated to the two resonances reported in

@Using 58 integration points.

bUsing 200 integration points.
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Table |, as obtained by numerica#®(—®) or analytical(o_._9 continua-
tion : (a) E; ; (b) E5 . The arrows indicate the resonance location.
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FIG. 2. Same as Fig.(4) for a basis set of 39 grid points covering the range '36'070.

Re[0,20.
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FIG. 3. Variation of the quantity/(Rma,e'*) —J along the contouF',, (see
by using a larger basis set of 39 grid points covering theexy, as a function of the rotation angle
rangeR [ 0,20], and computed by numerical and analytical

continuations. Only the firsE; resonance is shown in this R__ to R,.&'? as stated in their Eq8). To this end, they

figure. The results displayed in Table Il demonstrate that thenake the assumption th&t(Rn.,€'¢) can be approximated
resonance is now computed to 9 digits of accuracy for theyy some constant,, along this contouf ., . It should, how-

position, the width being known with 5 significant digits.

ever, be noted that they never mention which valigewas

In their comment, Bludskyet al. propose to take into actually used in the subsequent calculations. To test this as-

account the integration along the contdus running from

sumption, we report in Fig. 3 the values taken by the quantity
V(Rna€'¢) —J along this contoutl”.,, as a function of the

TABLE II. Results for theE; resonance as computed with a basis set of 39 rotation angleg. The constand=0.8 has been subtracted in

DVR points covering the rang@ [ 0,20].

Numerical continuatich ~ Analytical continuation

R4 E;] 1.420 970 959 1.420 970 958
Im[E; ] —5.8268(-5) —5.8269(-5)

@Using 78 integration points.

order to show the actual variation. Looking at this figure, it
seems difficult to define a meaningfil, approximation,
other than the trivial on&,=0. This simply corresponds to
ignoring the contribution along the contolit,, as was im-
plicitly done in our original method.
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