
Distributed Ray Tracing In An Open Source Environment
(Work In Progress)

Gunnar Johansson∗

Linköping University
Ola Nilsson†

Linköping University
Andreas Söderström‡

Linköping University
Ken Museth§

Linköping University

Render nodes
A: Intel Pentium IV 2 GHz, B: AMD Athlon 2.1 GHz, C: Intel Pentium III 450 MHz, D: Apple PPC 970 2.5 GHz

A B C D E F G H I

F I G H C A B F I

G F G I H D F A B

G C E G A I B F H

F H F C G I A H B

H F I G H B A F C

H I F C D G H I A

I I F H A I F G H

B F G H F I C G B

A B C D E F G H I

Figure 1: Network distributed rendering of a scene with simulated depth of field. Left: The partitioning of the scene and the node assignment
is shown, the grey scale denotes complexity of the rendering measured in time spent per pixel. Right: The ray traced final image, note that
a large amount of samples per pixel are needed to sufficiently sample this scene (512 rays per pixel). Below: Bar-chart depicting the load
balancing measured in number of buckets rendered: A: Athlon XP 2.1GHz, B: P4 1.7GHz, C: Celeron 2.8GHz, D: PIII 700MHz, E: PIII
450MHz, F: Athlon MP 2.1GHz, G: Athlon MP 2.1GHz, H: PPC 970 2.5 GHz, I: Opteron 2.4 GHz.

Abstract

We present work in progress on concurrent ray tracing with dis-
tributed computers using “off-the-shelf” open source software.
While there exists numerous open source ray tracers, very few offer
support for state-of-the-art concurrent computing. However, it is a
well known fact that ray tracing is computationally intensive and
yet prevails as the preferred algorithm for photorealistic rendering.
Thus, the current work is driven by a desire for a simple program-
ming strategy (or recipe) that allows pre-existing ray tracing code
to be parallelized on a heterogenous cluster of available office com-
puters - strictly using open source components. Simplicity, stability,
efficiency and modularity are the driving forces for this engineering
project, and as such we do not claim any novel research contribu-
tions. However, we stress that this project grew out of a real-world
need for a render cluster in our research group, and consequently
our solutions have a significant practical value. In fact some of our
results show a close to optimal speedup when considering the rel-
ative performances of each node. In this systems paper we aim at
sharing these solutions and experiences with other members of the
graphics community.

CR Categories: I.3.2 [Computer Graphics]: Graphic Systems—
Distributed/Network Graphics D.1.3 [Programming Techniques]:
Concurrent Programming—Distributed Programming

Keywords: distributed ray tracing, render farm, open source

∗e-mail: gunjo@itn.liu.se
†e-mail: olani@itn.liu.se
‡e-mail: andso@itn.liu.se
§e-mail:kenmu@itn.liu.se

1 Previous work

Rendering of images lies at the very heart of computer graphics
and the increased desire for photorealism often creates a computa-
tional bottleneck in image production pipelines. As such the sub-
field of global illumination has been the focus of numerous previ-
ous publications, most of which are beyond the scope of this paper.
To mention some of the most important; Ray tracing [Appel 1968;
Whitted 1980], beam tracing [Heckbert and Hanrahan 1984], cone
tracing [Amanatides 1984], radiosity [Goral et al. 1984], path trac-
ing [Kajiya 1986], metropolis light transport [Veach and Guibas
1997], and photon mapping [Jensen 1996]. While some of these
techniques offer better performance than others a prevailing prob-
lem seems to be that they are computationally intensive. In this
paper we have chosen to focus on the popular ray tracing technique
extended with photon mapping. However, even this relatively fast
method can crawl to a halt when effects like depth of field or caus-
tics are added. Unlike the usual pin-hole camera, realistic camera
models usually require a significant increase in the amount of sam-
ples. The same is true when ray tracing caustics of translucent ma-
terials. Especially the latter has been a major issue in our group,
since we are conducting research on large-scale fluid animations.

The algorithms constituting ray tracing and photon mapping are of-



ten referred to as being “embarrassingly parallel”. Nevertheless
a large body of work has been devoted to this topic [Lefer 1993;
Freisleben et al. 1997; Stone 1998; Lee and Lim 2001], but rela-
tively little has found its way into open source systems. Yafray1 has
some seemingly unstable support for multi-threading, but currently
no distributed rendering capabilities. POV-Ray2 has some support
for distributed computing through unofficial patches. Finally, for
Blender3 some unmaintained patches and utilities appear to pro-
vide basic network rendering. PBRT4 is another ray tracer; without
distribution capabilites but with excellent documentation and mod-
ular code design. Given the state of the aforementioned distributed
systems we choose - in the spirit of simplicity and modularity - to
work with PBRT as opposed to competing ray tracers. We then ex-
tend PBRT with distribution capabilities which is straightforward
given its modular design.

2 System

Two fundamentally different strategies exist for concurrent comput-
ing. The first approach is threading which involves spawning mul-
tiple local threads (i.e. “lightweight processes”) sharing the same
execution and memory space. In the context of ray tracing these
threads can then cast rays in parallel. The second strategy is to
employ message passing, which provides parallelism by commu-
nication between several running processes each having their indi-
vidual execution and memory space. The former is more efficient
when considering shared memory architectures, but is obviously
not extendable to clusters of computers. For this reason, we use a
message passing technique which has optimized strategies for both
shared memory systems and clusters.

2.1 Software and Implementation

We have developed a modular distributed rendering system based
on simple modifications of pre-existing open source components.
The system can be configured to run on almost any computer hard-
ware using very little effort, creating a powerful rendering cluster at
virtually no cost. The core component of our system is the “phys-
ically based ray tracer”, PBRT, by Pharr and Humpreys [2004].
We have extended PBRT with OpenMPI [Gabriel et al. 2004] and
LAM/MPI [Burns et al. 1994; Squyres and Lumsdaine 2003] to
support concurrent computations on both shared memory and dis-
tributed architectures. Brief descriptions of these core components
follow:

• PBRT is open source for non-commercial use and offers an
advanced light simulation environment. It deploys a strictly
modular design and the source code is well documented.

• MPI (Message Passing Interface) [Forum 1994] is the de facto
standard for distributed scientific computing. The implemen-
tations we used are OpenMPI and LAM/MPI which offer full
compliancy to the MPI-2 standard.

To simplify the administration of our cluster, we use the warewulf
cluster solution5. The warewulf server makes it possible for nodes
to boot off the network while automatically downloading a special-
ized Linux configuration. Using this solution, virtually any ma-
chine connected to the network can be rebooted into the cluster and

1http://www.yafray.org
2http://www.povray.org
3http://www.blender3d.org
4http://www.pbrt.org
5http://www.warewulf-cluster.org

automatically register with the server. In addition, it is easy to main-
tain an up-to-date installation across the nodes and poll CPU and
memory usage.

Following the modular design of PBRT, our implementation is
based on dynamically loaded modules. This simplifies the network
abstraction layer significantly. PBRT is executed using the MPI
runtime environment on every node in the network. Then, each
node in turn loads different modules depending on its role. With this
setup we have implemented a star shaped rendering cluster which
has one master node that is connected to all the render nodes, see
figure 2. The purpose of the master node is to distribute work, col-
lect data, and assemble the final image. Since the complexity of dif-
ferent parts in the image is not known prior to rendering, the work
distribution is a non-trivial problem, which is further complicated
by the heterogeneity of the network itself. We chose to implement
an automatic load balancing scheme where nodes query the master
for tasks as the rendering progresses. First, the master partitions
the rendering work into buckets, for example blocks of pixels or
sets of samples. Then, each rendering node is assigned a bucket in
sequential order. As soon as a node completes rendering, the fin-
ished bucket is sent to the master node for compositing. If there
are unfinished buckets, the master returns a new bucket assignment
to the render node and the process loops. This simple scheme is
summarized in algorithm 1 and 2 for the master and render nodes,
respectively. This strategy of dynamic task assignment is expected
to automatically balance the load between nodes of different per-
formance, providing good utilization of the assigned render nodes.

Figure 2: We use a simple star shaped network layout. The master
node is shaded black and the render nodes white.

1: Compute the buckets for distribution
2: Assign initial buckets to the nodes in sequential order

3: while there are unfinished buckets do
4: Wait for a bucket
5: Add received bucket to image
6: if there are unassigned buckets then
7: Assign the next unassigned bucket to sending node
8: else
9: Send terminating signal to sending node

10: end if
11: end while

Algorithm 1: RENDERMASTER()

In practice, the implementation consists of a few lines of changes
in the PBRT core files and additional modules that implement our
distribution strategies outlined in algorithm 1 and 2. Our imple-
mentation currently supports distribution of either:



1: Initialize sampler and preprocess the scene

2: Wait for initial bucket assignment
3: while node is assigned a bucket do
4: while bucket is unfinished do
5: Fetch a sample from sampler and trace ray
6: Add sample result to bucket
7: end while

8: Send finished bucket to master
9: Wait for new bucket assignment or termination signal

10: end while

Algorithm 2: RENDERNODE()

Pixel blocks consisting of {R,G,B,A,weight} tuples.

Sets of samples consisting of {x,y,R,G,B,A} tuples.

Photons consisting of light samples {x,y,z,R,G,B,nx,ny,nz}.

where capital letters denotes the usual color channels, lower case
is used for coordinates and ni denotes normal vector components.
When distributing blocks of pixels, the render nodes will return a
block of finalized pixels to the master upon completion. This leads
to low, fixed bandwidth demands that are proportional to the block
size. However, this also requires that the nodes sample in a padded
region around the block for correct filtering of the boundary pix-
els. This means more samples in total, introducing an overhead
growing with smaller block sizes. If we assume that the block is
quadratic, with side l, and the filter has a filtering radius of r, then
the overhead is given by 4rl + 4r2. In practice this means that a
block size of 100×100 together with a typical filter radius of 2 al-
ready gives an overhead of 4×2×100+4×22 = 816 pixels out of
10.000, or roughly 8 % per block. This overhead needs to be care-
fully weighted against the better load balancing achieved by smaller
block sizes. For example a block size of 10× 10 pixels with filter
radius 2 introduces an overhead of 96 % per block.

Adversely, the distribution of samples does not introduce a similar
computational overhead, since the samples are independent of each
other. However, this approach leads to higher bandwidth demands.
More specifically, the bandwidth required for sample distribution
compared with pixel distribution is proportional to the number of
samples per pixel. For some scenes this can be a considerable num-
ber (see for example figure 1).

The two previous distribution strategies deals exclusively with the
casting of rays within the ray tracer. However, the celebrated
photon-map extension is also easily distributed, with nearly the ex-
act same code. We have parallelized the pre-proccessing step which
samples light at discrete points in the scene; the light estimation can
be parallelized using one of the two aforementioned modules.

2.2 Hardware

Currently, our cluster is composed of existing desktop computers
used by the members of our group, in addition to a collection of
very old retired computers collected in our department. The per-
formance ranges from a Pentium III 450 MHz to a dual core AMD
Opteron 280, giving a very heterogeneous cluster. The majority of
the machines are connected through 100 Mbps network cards and a
few are equipped with 1000 Mbps cards. Finally, to better evaluate
the impact of the very inhomogeneous hardware we cross-test on
a strictly homogeneous shared memory system with high network
bandwidth and low latency; an SGI Prism with 8 Itanium II 1.5GHz
CPUs, 16 GB of RAM and InfiniBand interconnects.

3 Benchmarks

To assess the performance of our render systems we have bench-
marked several different tests. By varying both the raytraced scene
and the bucket distribution we evaluate the load balancing. Figure
3 shows the result of applying the load balancing scheme as de-
scribed in algorithm 1 and 2 for both pixel and sample distribution.
The pixel distribution strategy is very close to optimal, and clearly
outperforms the sample distribution approach. Our tests indicate
that this is due to the currently inefficient, but general, computation
of the sample positions.

To measure the speedup achieved by the cluster, we measured the
rendering times of a benchmark scene at low resolution at each ren-
der node. This gives a relative performance measure for the nodes
that can be accumulated for a given cluster configuration. Figure
4 shows the speedup achieved by the cluster for respectively pixel
and sample distribution, and figure 5 shows one of the correspond-
ing load distributions. Since we can configure the cluster with an
arbitrary combination of nodes, we chose to generate four different
host-lists and plot the speedups achieved by increasing the number
of nodes from each list. As can be surmised from Figure 4, the
pixel distribution shows a clear advantage over the sample distribu-
tions. This is in agreement with the results shown in Figure 3. How-
ever, the pixel distribution deviates from the optimal linear speedup
when the cluster reaches an accumulated relative performance of
5-6 units. This illustrates the main weakness of our simple load
balancing scheme. Currently, the master assigns buckets to the ren-
der nodes in a “first-come-first-served” manner. Consequently it is
possible that a slow node is assigned one of the last buckets, mak-
ing the final rendering time depend on the execution of this single
slow render node. Our measurements indeed show that fast nodes
typically spend a significant amount of time idle, waiting for the
final buckets to complete. A better strategy for load distribution or
re-distribution is clearly needed to improve performance. This is
left for future work, but we have several promising ideas.

Figure 6 shows a frame from one of our gigantic fluid animations
(a water fountain) placed in the “Cornell-box”. The fluid interface
is represented by a sparse level set data structure and directly ray-
traced. Note that the complex fluid surface requires a very large
amount of recursive steps in the ray tracing to accurately account for
the light transmittance. The lighting conditions are very demanding
due to a high amount of indirect lighting and color bleeding. The
scene is rendered in a resolution of 1600×1600 with photon map-
ping using the final gather step. We stress that both the ray tracing
and photon shooting scale well even for a scene as complex as this.

Our final benchmark is presented in Figure 7. It shows how the
rendering times are affected by the number of buckets for a given
scene. As expected, the pixel distribution strategy suffers from a
large overhead induced by many small buckets, while the rendering
times using a sample distribution approach is left almost unaffected.
Also note the initial local minima in rendering time for the pixel
distribution, caused by the good load balancing resulting from an
optimal bucket size.

4 Future Work and Conclusions

As can be seen from figure 7 the input parameters to our sys-
tem greatly affect performance. A practical extension would be a
friendly user interface to the not always intuitive parameter space.
The user should only be concerned with adding a scene description
to a queue. For this we need to design heuristics or algorithms that
from a given set of parameters {image size, scene complexity, clus-
ter size, cluster node performance, etc.} finds the optimal settings
and forwards an augmented scene description to the system.



1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of processors

S
pe

ed
up

Optimal
Pixel distribution
Sample distribution

Figure 3: Benchmarking the scene in figure 1 at resolution 900×
900 with 16 samples per pixel partitioned using 81 buckets. The
rendering is performed on an SGI Prism shared memory machine
with 8 CPUs. Note how the speedup is close to optimal for pixel
distribution, while the sample distribution is suffering from over-
head in the computation of the sample positions.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Accumulated relative performance

S
pe

ed
up

Optimal
Hostlist 1
Hostlist 2
Hostlist 3
Hostlist 4

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Accumulated relative performance

S
pe

ed
up

Optimal
Hostlist 1
Hostlist 2
Hostlist 3
Hostlist 4

Figure 4: Benchmarking the scene in figure 1 at resolution 900×
900 with 16 samples per pixel partitioned using 81 buckets. The
rendering is performed on a heterogeneous cluster of 15 nodes.
Left: Pixel distribution. Right Sample distribution.

Handling errors arising from computations in a distributed envi-
ronment is a difficult problem. Implementations of MPI such as
FT-MPI [Dewolfs et al. 2006] are completely dedicated to building
stable systems. For a normal application such as ours the capabil-
ities of OpenMPI are adequate but still require careful design. We
wish to make our system as stable as possible.

Any parallel computation is bound to asymptotically saturate the
network when using the layout described in 2. So far we have not
seen this, but the amount of network traffic for distributing samples
is considerable already at 10-20 machines. Thanks to our modu-
lar design it is easy to implement different layouts. This will also
spread some of the computational overhead for the master node. We
attribute the surprisingly bad results for sample distribution (figure
4 right) to the relatively expensive sample position computations.
This can be efficiently solved by specialized routines for each sam-
pling pattern. As can be seen from the load balancing graphs, figure
1 and 5 with a complex scene and a heterogenous cluster it is dif-
ficult to get really good utilization. Our simple scheme is stable
and works asymptotically well (at least for sample distribution) but
has practical drawbacks. We want to benchmark balancing schemes
with better real world performance such as

• “Round robin” network style where each node only communi-
cates with its neighbors and share its current task. This should
decrease the network traffic to specific master nodes and dis-
tribute the workload better.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

Node

Number of blocks assigned
Relative performance

Figure 5: The load balance from the pixel distribution (figure 4 left)
using a random host file.

• “Optimal work load assignment”, currently each work unit is
equally large. Using a preprocessing step where the time com-
plexity of the scene is measured, as well as the relative perfor-
mance of the nodes, a better work load assignment should be
feasible. Stability issues when dealing with assumptions on
performance and complexity needs to be considered though.

• “Maximum utilization”, modify the current load balancing
scheme so that when idle nodes are detected the distributed
work units are recursively split into smaller parts and reas-
signed. This should ensure good utilization at a small over-
head.

In this work, we have described how to use existing open source
components to compose a high performance cluster used for dis-
tributed ray tracing with little effort and low budget. Initially, we
have tested a simple load balancing strategy based on a first-come-
first-served scheme. The tests indicate that for homogeneous con-
figurations the resulting speedup is close to optimal. However, for
heterogeneous scenes and cluster configurations sub-optimal results
were reported stressing a need for more sophisticated strategies, as
outlined above.

References

AMANATIDES, J. 1984. Ray tracing with cones. In SIGGRAPH
’84: Proceedings of the 11th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 129–135.

APPEL, A. 1968. Some techniques for shading machine renderings
of solids. In AFIPS 1968 Spring Joint Computer Conf., vol. 32,
37–45.

BURNS, G., DAOUD, R., AND VAIGL, J. 1994. LAM: An Open
Cluster Environment for MPI. In Proceedings of Supercomput-
ing Symposium, 379–386.

DEWOLFS, D., BROECKHOVE, J., SUNDERAM, V., AND FAGG,
G. 2006. Ft-mpi, fault-tolerant metacomputing and generic
name services: A case study. Lecture Notes in Computer Sci-
ence 4192, 133–140.

FORUM, M. P. I. 1994. MPI: A message-passing interface stan-
dard. Tech. Rep. UT-CS-94-230.

FREISLEBEN, B., HARTMANN, D., AND KIELMANN, T. 1997.
Parallel raytracing: A case study on partitioning and scheduling
on workstation clusters. In Hawai‘i International Conference on
System Sciences (HICSS-30), vol. 1, 596–605.

GABRIEL, E., FAGG, G. E., BOSILCA, G., ANGSKUN, T., DON-
GARRA, J. J., SQUYRES, J. M., SAHAY, V., KAMBADUR, P.,



1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of processors

S
pe

ed
up

Optimal
Photon shooting
Rendering

Figure 6: Above: A complex scene from a water simulation inserted
into the “cornell box” containing several difficult components. Be-
low left: The speedup from distributing the photon mapping pre-
processing step and the ray tracing. Below right: Time complexity
visualization of the scene measured in time spent per pixel, bright
pixels indicate complex regions.

BARRETT, B., LUMSDAINE, A., CASTAIN, R. H., DANIEL,
D. J., GRAHAM, R. L., AND WOODALL, T. S. 2004. Open
MPI: Goals, concept, and design of a next generation MPI im-
plementation. In Proceedings, 11th European PVM/MPI Users’
Group Meeting, 97–104.

GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND
BATTAILE, B. 1984. Modeling the interaction of light between
diffuse surfaces. In SIGGRAPH ’84: Proceedings of the 11th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 213–222.

HECKBERT, P. S., AND HANRAHAN, P. 1984. Beam tracing
polygonal objects. In Computer Graphics (SIGGRAPH ’84 Pro-
ceedings), H. Christiansen, Ed., vol. 18, 119–127.

JENSEN, H. W. 1996. Global Illumination Using Photon Maps.
In Rendering Techniques ’96 (Proceedings of the Seventh Euro-
graphics Workshop on Rendering), Springer-Verlag/Wien, New
York, NY, 21–30.

KAJIYA, J. T. 1986. The rendering equation. In SIGGRAPH ’86:
Proceedings of the 13th annual conference on Computer graph-
ics and interactive techniques, ACM Press, New York, NY, USA,
143–150.

101 102 103 104
90

100

110

120

130

140

150

160

170

Number of buckets (logarithmic)

R
en

de
rin

g 
tim

e 
(s

ec
on

ds
)

Pixel distribution
Sample distribution

Figure 7: Benchmarking pixel distribution versus sample distribu-
tion with an increasing number of buckets.

LEE, H. J., AND LIM, B. 2001. Parallel ray tracing using processor
farming model. icppw 00, 0059.

LEFER, W. 1993. An efficient parallel ray tracing scheme for
distributed memory parallel computers. In PRS ’93: Proceedings
of the 1993 symposium on Parallel rendering, ACM Press, New
York, NY, USA, 77–80.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

SQUYRES, J. M., AND LUMSDAINE, A. 2003. A Component
Architecture for LAM/MPI. In Proceedings, 10th European
PVM/MPI Users’ Group Meeting, Springer-Verlag, Venice, Italy,
no. 2840 in Lecture Notes in Computer Science, 379–387.

STONE, J. E. 1998. An Efficient Library for Parallel Ray Tracing
and Animation. Master’s thesis.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light transport.
In ACM SIGGRAPH ’97, ACM Press, 65–76.

WHITTED, T. 1980. An improved illumination model for shaded
display. Communications of the ACM 23, 6, 255–264.


