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Abstract We propose a storage efficient, fast and parallelizable out-of-core framework for
streaming computations of high resolution level sets. The fundamental techniques are skew-
ing and tiling transformations of streamed level set computations which allow for the com-
bination of interface propagation, re-normalization and narrow-band rebuild into a single
pass over the data stored on disk. When combined with a new data layout on disk, this im-
proves the overall performance when compared to previous streaming level set frameworks
that require multiple passes over the data for each time-step. As a result, streaming level set
computations are now CPU bound and consequently the overall performance is unaffected
by disk latency and bandwidth limitations. We demonstrate this with several benchmark tests
that show sustained out-of-core throughputs close to that of in-core level set simulations.
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1 Introduction

While the idea of using implicit functions for interface capturing can be dated back as far
as [9, 10], the level set method and the underlying numerical schemes were first proposed
in [46]. Since then, it has been applied to a wide range of interface capturing problems in
scientific computing and related fields. Examples hereof include the simulation of multi-
phase flows [53] such as bubbles and drops, solidification [14], Willmore flow [8], partial
differential equations and variational problems on manifolds [3], geometric optics [45] as
well as fluid animation [12] and geometric modeling in computer graphics [35].

The propagation of a time-dependent level set interface is given by partial differential
equations e.g. of the Hamilton-Jacobi type. In most cases the scalar function is sampled on
a regular Eulerian grid, although recent work has also employed fully Lagrangian represen-
tations [16]. In order to adequately capture interface details and obtain sufficient numerical
accuracy, a combination of high order discretization schemes and/or high resolution Eule-
rian grids is often required.

In cases where only a single level set is of interest (e.g. the zero-crossing of the interface)
computations can be restricted to a narrow band of grid points surrounding the interface [2,
6, 47, 61]. More recent work combines the idea of restricting the computations to a narrow
band with sparse data structures in order to reduce storage requirements and enable inter-
faces to be sampled on higher resolution grids. These narrow-band data structures include
blocked grids [5, 31, 37, 40], dynamic tubular grids (DT-Grid) [42, 43] and hierarchically
run-length encoded grids [17]. Several authors have developed adaptive methods that do not
restrict computations to a narrow band but instead refine the computational grid, typically
closer to the interface [30, 38, 39, 49, 55].

1.1 Problem Statement

Although these level set data structures enable computations on high resolution grids, they
are all limited by the available main memory. Despite the fact that modern 64-bit operat-
ing systems allow for a virtual address space of 16 exabytes, RAM modules remain a rela-
tively expensive commodity. In comparison, disk storage is two to three orders of magnitude
cheaper per byte, consumes about two orders of magnitude less power per byte and offers a
capacity that is typically several orders of magnitude larger [29]. Hence algorithms capable
of utilizing disk space, often referred to as out-of-core or external memory algorithms, have
the potential of higher resolution simulations at lower costs. However, disk storage has much
higher latency (referencing a single data item is four to five orders of magnitude slower than
main memory access), and the development and study of efficient external memory algo-
rithms has emerged into a field of its own [57, 60]. Note that the ongoing development
of solid-state drive technology offers promising speed improvements for random access to
external memory in the future.

Nielsen et al. [44] proposed an out-of-core framework for narrow band level set sim-
ulations based on the DT-Grid data structure, and this paper improves on that work. The
main contributions of the out-of-core framework presented in [44] are prefetching and page-
replacement algorithms designed for stencil based level set computations. Whilst allowing
for grid resolutions only limited by the available disk storage, that method remains IO lim-
ited, and the throughput (measured in computed grid points per second) drops to 42% of
in-core simulation throughput for some numerical schemes. One of the main reasons for the
IO limitation in [44] is the fact that each step in the level set simulation requires the data to
be streamed to and from disk multiple times. A typical time-step actually requires between
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5 to 10 passes over the data. In contrast, the method proposed in this paper requires data to
be streamed only once per time-step. In fact, for simulations with certain properties, data
is only required to be streamed once for a number of subsequent time-steps, hence reduc-
ing bandwidth usage further. As a result, our new out-of-core algorithms are CPU limited
as opposed to IO limited and exhibit a sustained, i.e. resolution independent, throughput
of 77–92% (depending on the numerical scheme) of the throughput obtainable by internal
memory simulations.1

Our general approach is to leverage on established theory from the area of compiler al-
gorithms which performs code transformations, such as skewing (i.e. shearing the iteration
space by a linear transform) and tiling (i.e. partitioning). These code transformations try to
optimize cache locality, i.e. minimize the number of times a given data element is loaded
into the cache from main memory. In particular, we employ the mathematical model of reuse
and locality developed by Wolf and Lam [62]. Applying code transformations to out-of-core
as opposed to in-core level set simulations poses unique challenges since our goal is to mini-
mize the number of times a given data element is transferred from disk to main memory. The
ratio of disk to main memory latency is much higher than the corresponding ratio of main
memory to cache latency. Consequently a data layout that works well in-core may need to
be redesigned for an out-of-core application, although they may have the same asymptotical
IO complexity.

1.2 Contributions

In this paper we prove and demonstrate by implementation that the finite difference (FD)
schemes used for level set simulations, HJ ENO [15], HJ WENO [19, 21, 33], BFECC
[7] and TVD RK [52], have data reuse both temporally and spatially. However, locality is
not directly implied. To improve locality we derive code transformations based on well-
established skewing and tiling transformations and prove that these transformations maxi-
mize locality both spatially and temporally in the model of Wolf and Lam [62]. In particular,
tiling alone is not sufficient to optimize locality for the FD stencil based level set simula-
tions. Code transformations are applied to all steps in the narrow band level set computation,
including propagation/advection, re-distancing and narrow band rebuild. In this way only a
single pass over the data is required for each time-step or sequence of time-steps. Addition-
ally we propose a tiled version of the Fast Iterative Method [22] which enables fast out-
of-core solution of the Eikonal re-distancing equation |∇φ| = 1 for narrow band level sets.
To reduce memory requirements during simulation, we propose an in-core storage mapping
for the intermediate values associated with the skewing transformation that is linear in the
number of intermediate values. Furthermore, we also propose a linear out-of-core storage
mapping associated with the tiling transformations that partitions the narrow band into tiles
and boundary grids and facilitates computation on each tile independently and in parallel.
Our framework is optimal with respect to streaming to and from disk in both the IO model
[1] and the Cache Oblivious model [13], as only sequential stencil access is required. The se-
quential access enables utilization of the DT-Grid in combination with the page-replacement
and prefetching algorithms from [44]. Finally, the resolution of the computational grids uti-
lized in our method is limited only by the amount of disk space available.

1Our out-of-core technique introduces a computational overhead due to an increase in implementation com-
plexity compared to regular in-core simulations. This explains why the efficiency is still below 100% even
though the method is not IO limited.
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To illustrate the feasibility of our new out-of-core framework we document its perfor-
mance with benchmarks of several different types of level set simulations and numerical
schemes. Additionally, we have used our framework for several applications of the level set
method on high resolution computational grids. This includes advection in a divergence free
velocity field and surface smoothing by mean-curvature flow of a model with an effective
grid resolution of 17149 × 9987 × 5734. In order to further improve simulation times, we
also demonstrate a multi-core implementation of our out-of-core framework.

The remainder of this article is organized as follows: Sect. 2 first summarizes related
work. In Sect. 3 we provide an overview of our out-of-core framework and its individual
components, and introduce the terminology. Next we describe our proposed skewing and
tiling transformations and the associated storage mapping schemes. Detailed descriptions
of the transformations along with proofs of their locality properties are provided in the
Appendix. Section 4 then proceeds to present benchmark results. Finally, Sect. 5 demon-
strates some applications of our framework and Sect. 6 concludes and outlines directions for
future work.

2 Related Work

In this section we review related work in the areas of out-of-core algorithms, simulation
and loop transformation theory and algorithms. Out-of-core, or streaming, algorithms are
applicable in all areas of computational science and scientific computing that involve mas-
sive data sets not feasible for storage in main memory due to hardware and cost limitations.
These application domains include image repositories, digital libraries, relational and spatial
databases, computational geometry, simulation, linear algebra and computer graphics. For a
general survey of external memory algorithms see [60], and for a specific survey in the area
of linear algebra and simulation we refer to [57].

2.1 Out-of-Core Simulations

Despite its potential for large scale simulation, we are only aware of a surprisingly small
body of previous work directly related to out-of-core simulations. Pioneering work was done
by Salmon and Warren [56] for N-body simulation in astrophysics. Their work was based
on tree data structures and applied reordered traversals and a Least-Recently-Used page-
replacement policy for efficiency. Bibireata et al. [4] use loop fusion and tiling (see below)
to perform out-of-core tensor contractions for simulations of electron structures. Trac and
Pen [18] proposed an out-of-core algorithm for Eulerian grid based cosmological simulation.
In their method, global information is computed on a low resolution grid that fits entirely in
memory, whereas local information is computed on an out-of-core high resolution grid tiled
into individual blocks that fit into memory. The individual blocks are loaded and simulated
in parallel for a number of time-steps and then written back to disk. More recently Nielsen
et al. [44] proposed a combined framework for compression and out-of-core simulation of
Eulerian grid based level sets and fluids based on the DT-Grid data structure [42] (to be
discussed in more detail in Sect. 2.3). A fundamental property of their work is that existing
level set and fluid simulation code does not have to be re-written. More specifically they
introduce additional software layers that contain modules for storing and retrieving data
on disk as well as compressing and decompressing data. Hence the focus of the article is
on developing prediction schemes for statistically based compression as well as prefetching
and replacement strategies for stencil based access. However, a consequence of this property
is that the method remains IO limited, as the Eulerian grids need to be streamed through
memory several times for each step of the simulation.



J Sci Comput

2.2 Loop Transformation

In the field of compiler algorithms and cache locality a lot of attention has been devoted
to the so-called “loop transformation theory”—see [26] for a comprehensive overview. In
particular Wolf and Lam [62] propose a theory of reuse and locality as well as an automatic
algorithm for improving the data locality of loop nests by applying a sequence of loop
transformations. The loop nest is analyzed for reuse and the resulting loop transformation
is found as the maximum of an objective function measuring data locality of equivalence
classes of localized iteration spaces. This theory formed the basis for the optimized loop
transformations suggested by [36].

Wonnacott [63] introduced a particular type of transformation denoted time skewing and
an associated storage scheme that takes advantage of the available cache memory. The trans-
formation results in locality both in the spatial and temporal dimensions of the iteration
space and is proposed for in-core time-step stencil computations. Computations are active
only on a wavefront of grid points—the wavefront of execution—that can be fitted into the
cache via the proposed storage scheme. Since this wavefront is skewed with respect to time
in all spatial dimensions it is not well suited for implementation on a sparse narrow band
data structure such as the DT-Grid. This is due to the fact that the skewed wavefront iteration
order does not correspond to sequential access into the underlying data structure. In contrast
the loop transformations we propose in this article can be implemented as sequential access
which is faster than random access for this type of data structure. Time skewing along with
various other optimization approaches for stencil computations, both cache aware and cache
oblivious, were also studied by Kamil et al. [25].

Kandemir et al. [24] present a unified optimization framework that targets perfectly
nested loops of computations running out-of-core and in parallel. In particular their frame-
work is intended for integration in a compiler and it optimizes for locality of data refer-
ences, array file layout, parallelism and reduction of communication overhead simultane-
ously. Their method considers only tiling for improving data locality and constructing file-
layouts, which is too restrictive in order to obtain temporal locality for stencil-based level
set computations. More recently, Kandemir et al. proposed an I/O-Conscious Tiling Strat-
egy for Disk-Resident Data Sets [23]. Their method focuses on adapting traditional tiling
algorithms for scientific computation loop nests to out-of-core computations in order to ob-
tain higher IO performance. In particular, they show that both loop and data transformations
are often required to achieve this goal. Again only tiling transformations are considered, and
the class of algorithms investigated does not include stencil-based computations.

Song and Li [51] present a scheme which optimizes cache locality for a certain class
of nontrivial imperfectly-nested loops. They propose a number of loop transformations to
enable tiling. Specifically, they provide a compiler algorithm for optimizing skewing of the
spatial dimensions subject to dependencies, automatically selecting the optimal tile size, and
deducing an efficient storage scheme through array duplication. Their method is, however,
limited to computations which only depend on references to values from the same or the
previous iteration of the time-step loop. When using higher order temporal schemes such as
TVD RK, our computations do not adhere to this limitation.

2.3 Dynamic Turbular Grid

Similar to the out-of-core simulation framework in [44], the improved framework proposed
in this paper is based on the compact data structure, DT-Grid, introduced in [42]. For the
sake of completion we shall briefly summarize its most important characteristics, but refer
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Fig. 1 Illustration of a narrow-band level set of a Stanford Bunny in a DT-Grid, see text

Fig. 2 (Color online) This figure gives an overview of our out-of-core level set framework that applies skew-
ing and tiling transformations. Rightmost: Shows the components handling streaming to and from memory
and/or disk, including prefetching and page-replacement [44]. Middle: Illustrates the central data structure,
the Tiled DT-Grid, that implements our tiled storage mapping. The level set inside each tile (yellow) and
the level sets at each tile boundary (red) are stored separately as narrow bands in DT-Grid data structures
(middle-right) and continuously merged into a single narrow band during simulation (middle-left). Leftmost:
The skewed level set algorithms process one slice of a narrow band tile at a time

the reader to the original paper for full details. Figure 1 illustrates a narrow-band level set of
the “Stanford bunny” represented in a DT-Grid. It essentially works by separately encoding
the signed distance values of all the narrow-band voxels (green and red) stored in lexico-
graphic order, as well as the topology of all the boundary voxels (red, yellow and cyan)
obtained by progressive projection onto the axes. This effectively means the z-coordinate
is only stored for the red voxels in Fig. 1, the y-coordinates for the yellow voxels and the
x-coordinate for the (two) magenta voxels. The cyan voxels between the two magenta vox-
els in the 1D projection encode pointers into the y-columns in the 2D projection. In turn
the blue voxels enclosed by the yellow voxels in the 2D projection encode pointers to the z-
columns bounded by the red voxels (see slice of z-columns to the right). Overall this leads to
a compact volumetric data structure that offers constant-time sequential (i.e. lexicographic)
data access and logarithmic random-access.

3 Skewing and Tiling Level Set Computations and Data Structures

Figure 2 provides an overview of our out-of-core level set framework, where the compo-
nents corresponding to our contributions are highlighted in blue. Central to this framework
is a tiled DT-Grid data structure shown in the middle of Fig. 2 and in Fig. 3. This data struc-
ture partitions a narrow band level set into a number of axis aligned tiles, storing only grid
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Fig. 3 (Color online) This figure illustrates how a level set surface of the Stanford Bunny is divided into axis
aligned tiles. To maximize locality it is only necessary to tile along the y- and z-axes. The boundary grids of
each tile are illustrated in red in the rightmost image

points that are part of the narrow band inside each tile (shown in yellow). Boundary grids
(shown in red) are extracted from the narrow band on the boundary of each tile and used
by the skewed level set computations on adjacent tiles. This effectively reduces bandwidth
requirements since level set computations on a single tile only access the tile itself plus a
number of small boundary grids, as opposed to streaming all the adjacent tiles. The size
of the boundary grids is a function of the size of the stencil used in the FD computations
as well as the number of level set steps performed on each tile. Generally the width of a
boundary grid is small compared to the size of a tile. Hence, the overhead associated with
the boundary grids is a fraction of the total storage requirements and computation time.
As we show in the Appendix, given an N -dimensional grid, it is only necessary to tile in
N − 1 directions in order to maximize locality in both the temporal and spatial dimensions.
Hence we always leave the x-direction untiled as shown in Fig. 3. Note that the choice of
untiled direction is arbitrary, see the discussion in Sect. 3.2.2. Generally we tile in as few
spatial dimensions as possible to minimize the computational overhead and at most N − 1
dimensions as noted above. For example, if the required (N − 1)-dimensional slices of the
N -dimensional grid fit in memory, we do not tile the grid. The level set surfaces in each
tile and boundary are stored separately as narrow bands in DT-Grid data structures using the
out-of-core framework introduced by Nielsen et al. [44]. This is illustrated by the separated
tile and boundaries beneath the rightmost arrows in the center of Fig. 2. The topology and
values of each DT-Grid are stored independently as indicated by the layered boxes in the
rightmost part of Fig. 2. Storing a particular component (values or topology) is managed by
a Storage Handler which streams data either to memory or disk. In the case of streaming
to disk, pre-fetching and page-replacement algorithms designed for stencil-based access are
implemented by a Storage Cache [44]. Note that the level sets stored in tiles and boundaries
may not represent closed surfaces. As long as the level set surface is intersected by convex
tiles (e.g. axis aligned boxes), the DT-Grid data structure supports this [41].

Skewed level set computations can be performed on each tile independently and hence
multiple computational threads can process separate tiles in parallel as indicated by the
layered boxes in the leftmost part of Fig. 2. All computations take place on a single and
partially in-core DT-Grid data structure storing only the active (N − 1)-dimensional slices.
This ensures that the in-core level set computations are cache efficient [41]. The in-core
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DT-Grid data structure is generated on the fly by merging the grid points from the tile and
the boundary grids generated from adjacent tiles. This is facilitated by the lexicographic
storage order of the grid points utilized by the DT-Grid. The merging process is illustrated
by the concatenated tile and boundary grids beneath the leftmost arrow in the center of
Fig. 2. The level set computations are skewed in the spatial dimensions with respect to both
the level of computation i.e. propagation, re-distancing and narrow band rebuild, as well
as with respect to time. Hence all levels of computation, possibly at several time-steps, are
performed simultaneously on a tile, but in such a way that data is streamed from disk exactly
once, and such that data dependencies are not violated. As indicated in the leftmost part of
Fig. 2, computations are performed on (N −1)-dimensional slices of an N -dimensional tile.

3.1 Skewing

A time-step of the overall level set iteration—a level set step—typically consists of an
advection or propagation, a re-initialization and a narrow band rebuild step. In each of
these level set steps a stencil is iterated over the spatial domain of the level set function
to perform computations. An advection for example solves the hyperbolic level set equation
∂φ

∂t
− �V · ∇φ = 0, where φ is the level set function and �V is a velocity field. The advection

step is followed by a re-initialization of the level set function to a signed distance func-
tion which involves solving the PDE |∇φ| = 1. The signed distance function representation
has several advantages for numerical computations [47]. Finally the narrow band rebuild
involves including grid points into the narrow band that move into the vicinity of the inter-
face, as well as discarding grid points from the narrow band that move out of the vicinity
of the interface. Each of these steps consists of one or several sub-steps, which each re-
quire one pass over the data if skewing is not applied. For example, advection with third
order TVD Runge-Kutta time-integration consists of five sub-steps. In the context of code
transformation theory, this situation corresponds to an imperfect loop nest since there are
several loops (one for each sub-step) at the innermost nesting depth inside an outer time
loop. We can convert this to a perfect loop nest by introducing a fictitious time variable and
use it to distinguish which sub-step to perform in the loop body. Thus, one sub-step counts
as one fictitious time-step. In the leftmost side of Fig. 4 the front of active computations,
or wavefront of execution, progressing through a level set step is illustrated by the sketched
orange row. The front is moving upwards, and the thick blue arrow indicates the progress
of computations or iterations inside the front itself. To determine where the intermediate
results of this execution must be stored, one employs a storage mapping which maps each
computation on the wavefront to the address where it should store the value it produces [63].
This mapping results in a wavefront of temporaries which determines how much memory is

Fig. 4 (Color online) A number of steps on a 1D level set using the traversal outlined in the pseudocode.
The sketched orange row indicates the wavefront of execution travelling parallel to the t -axis. The thin black
arrows indicate the dependencies of one computation
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required. Recall, the goal is to reduce the number of passes over the level set data (thereby
minimizing data traffic) to one for a sequence of M steps. The motivation is that we want to
eliminate the IO limitation of the previous out-of-core framework [44]. Hence, we want to
perform as many steps using in-core temporaries as made possible by the amount of main
memory. Therefore we need transformations of the code to make the wavefront of execution
independent of the grid dimensions, such that the wavefront of temporaries fits in memory.

We perform the following analyses and transformations on full grids in one dimension
for simplicity, and then generalize to N -dimensional grids in the end. In the Appendix, we
provide proofs of the validity of these transformations. In practice, the algorithms are imple-
mented on sparse DT-Grids which provide constant time sequential access to neighboring
grid points within a stencil.

3.1.1 Transforming the Iteration Space

Figure 4 shows the pseudocode of a number of sub-steps on a one-dimensional level set
using simple first order upwinding in space and first order Forward Euler integration in time.
The yellow box illustrates the iteration space of the nested loop. To simplify the following
explanation, we assume that we have expanded the one-dimensional array which represents
φ with a dimension containing the time axis, thus obtaining an array A of size (T + 1) × X,
where T is the number of fictional time-steps and X is the size of the spatial domain. The
traversal order of the iteration space is indicated by the coloring of the individual iterations,
starting from white over red to black. In Fig. 4, the entire spatial domain is traversed in each
time-step before moving on to the next. Not all traversals of the iteration space are valid,
since a given computation [t, x] has dependencies which limits the traversal possibilities. In
this example, we employ a computational stencil with a width of three grid points, needed
to implement the first order upwind scheme for advection and reinitialisation. As illustrated
by the thin black arrows in Fig. 4 this means for example, that the result at iteration [2,3]
cannot be computed before the results for iterations [1,2], [1,3] and [1,4] are known. See
the Appendix for a rigorous definition and analysis of dependencies. One consequence of
the dependencies is that we cannot immediately interchange the t and x loops in the shown
algorithm.

The algorithm cannot just iterate over the entire spatial domain for each fictional time-
step since the references to A in previous steps will be evicted from memory before they
can be reused due to the large number of intermediate computations. We transform the code
to improve this by skewing the spatial dimension of the iteration space just enough to be
able to interchange the loops. Specifically, we transform the loop bounds using the transfor-
mation T1 : [t, x] → [t, x + t] and then apply T −1

1 to the array references. As explained in
the Appendix, this skewing allows us to interchange the loops without violating the depen-
dencies of the algorithm. Figure 5 shows the resulting traversal of the iteration space along

Fig. 5 A number of steps on a 1D level set using the transformed traversal outlined in the pseudocode. Note,
that the skewed traversal order is depicted in the original iteration space
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Fig. 6 A number of steps on a 1D level set using the transformed traversal outlined in the pseudocode

with the transformed pseudocode. Iterations with references to the same entries of A are
much closer together using this traversal, thus increasing the locality. If T is of the same
magnitude as X, we have of course not achieved locality, and in general, loop skewing, loop
interchange, etc. must be combined with tiling transformations as explained in Sect. 3.2 [62,
63].

For computations with higher order spatial schemes such as the variable third to fifth
order accurate HJ WENO scheme, we can perform similar transformations to improve lo-
cality. The HJ WENO scheme employs a stencil of seven grid points, and thus each iteration
depends on as many as seven previous results. However, this merely means that we have
to skew the spatial dimension even more. In particular, the transformation T2 : [t, x] →
[t, x + 3t] ensures that the loops can be interchanged. The resulting traversal order is shown
in Fig. 6. Note how the “slope” of the skewed loops has changed to reflect the wider area of
dependence of the stencil. Also note that the transformation used in this example would be
perfectly “legal” in the previous example. The key observation is, that we seek the “legal”
transformation that optimizes the slope, i.e. minimizes the skew factor of each loop as this
provably minimizes memory reference costs [34]. In other words, we want to minimize the
width of the wavefront of execution projected onto the x-axis.

The third order accurate TVD Runge-Kutta scheme for temporal discretization consists
of five sub-steps in order to advance the solution one step forward in time [52]. More specifi-
cally it consists of two convex combinations of three Forward Euler time-steps. The separate
sub-steps in the method have different dependencies, e.g. the Euler steps have dependencies
corresponding to the stencil used in the first example, while the convex combination steps
only depend on earlier results on the same spatial position. These differences could be ig-
nored, and we could apply a legal skewing transformation like T1, but that would result in a
suboptimal slope and width of the wavefront of execution, since the averaging steps do not
require skewing in x. An optimal transformation must take this into account, and for a first
order upwind scheme, we propose T3 : [t, x] → [t, x +3� t

5 �+min(t mod 5,1)+� t mod 5
3 �)],

where �� denotes the floor function. Figure 7 shows the resulting traversal of the iteration
space, when the skewing has been combined with a loop interchange. Note that t is now
used as a fictitious time variable such that � t

5 � denotes the time-step and t mod 5 uniquely
identifies one of the five assignment statements or sub-steps in the loop body. The described
transformation goes beyond the framework of Wolf and Lam [62], and a careful analysis
of the validity of the proposed transformation is provided in the Appendix.2 Transforma-
tions and code for TVD Runge-Kutta and BFECC combined with HJ WENO as well as
generalizations to more spatial dimensions are also presented in the Appendix.

2The analysis is performed on the algorithmically similar Back and Forth Error Compensation and Correc-
tion (BFECC) scheme, and the validity of the transformation for the TVD Runge-Kutta scheme is derived
from that.



J Sci Comput

Fig. 7 An advection step on a 1D level set using the transformed traversal outlined in the pseudocode.
Dependencies are shown for all the sub-steps of the advection step

3.1.2 Storage Mapping

Using the above transformations (combined with tiling) we achieve a wavefront of execution
which permits locality. However, if each iteration writes to a separate entry in the expanded
array A, the memory usage scales with the size of the level set grid. Therefore, we do not
in practice store the entire temporal and spatial dimensions of A. Instead, each level set step
streams an out-of-core grid as input and another as output while everything in between is
stored in-core using a suitable storage mapping which maps each iteration to the address
where it should store the value it produces [63]. The goal is to minimize memory usage,
and at the very least ensure that it does not scale with the size of the level set grid. The
storage mapping applied in the first Euler example above (Fig. 5) is the trivial {[t, x] →
A[t +1, x − t]}, which is not independent of the size of the level set grid. Observing that the
computations only depend on the results of the previous step, one improvement would be to
only store the latest two rows of A and use the mapping {[t, x] → A[(t + 1) mod 2, x − t]}.
This storage mapping still writes to a number of memory locations which scales with X,
and thus the required memory does not fit in-core even though the wavefront of temporaries
does. To improve this, we propose a storage mapping which is skewed in the same manner as
the iteration space has been skewed. This idea leads to a small buffer of temporaries which
only holds the wavefront of temporaries [63].

While the storage mappings of the previous paragraph lend themselves to be described by
a simple formula, the skewed storage mappings which we propose are not as easily expressed
in this formalism. Therefore we shall use diagrams to illustrate the storage mappings. This
also provides the necessary intuition for code implementation.

In the following we present the mappings for some of the most popular level set dis-
cretization schemes. Figure 8 shows a “snapshot” of the execution of the Forward Euler
scheme with upwinding, and in particular all the computations on the wavefront of execu-
tion. Orange areas indicate results which are read in from and written to out-of-core grids
(labeled OOC Grid), while the yellow areas represent results stored in the in-core buffer
of temporaries (labeled Buffer). The greyed out area indicates results from iterations that
are not needed anymore, i.e. that are no longer part of the wavefront and buffer of tempo-
raries. Finally, the yellow areas with dotted outlines indicate that the result stored there can
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Fig. 8 (Color online) The storage requirements of a full level set step with advection and re-initialization
steps using the Forward Euler scheme and upwinding. Yellow areas with dotted outlines indicate that a com-
putation result replaces an entry in the buffer of temporaries corresponding to the same spatial position. The
entry being replaced, which is not needed anymore by the computations on the wavefront of execution, is
marked by a bold red letter

replace one of the other entries in the buffer of temporaries corresponding to the same spa-
tial position. These replaceable entries are marked by bold red letters. The numbered green
circles each correspond to a computation and the black arrows indicate the dependencies.
Two buffer entries above each other are needed to effectively propagate the wavefront of
computations through the iteration space. Suppose the first computation (i.e. the circle with
the number one) is about to advect entry 7 in the input out-of-core grid. It needs to store
the result in the buffer of temporaries and because it cannot overwrite entries needed by the
second through fifth computations, it stores the result as indicated. The second computation
can similarly not overwrite needed values and therefore its result is stored as indicated. It
should be noted that in one dimension it is possible that the second computation could use
the entry in the buffer of temporaries directly to the left of it to store its result. However,
it is important to stress that this does not generalize to N -dimensional level sets on DT-
Grids. When we perform this generalization, the entries in the buffer of temporaries are in
fact (N − 1)-dimensional slices of varying sizes, so the result from the second computation
would not necessarily fit.

Returning to Fig. 8, we note that the third computation can write its result to the entry in
the buffer of temporaries marked by the letter A, thus overwriting the entry which the second
computation on the wavefront does not need anymore. Since this result is of the same size
as the one overwritten, this does not pose a problem in N dimensions. Similarly, the fourth
computation can write its result in the buffer entry marked B. This behavior generalizes
to n advection/propagation and re-initialization steps, and the storage scheme works for
computations of any stencil width w. The required size of the buffer of temporaries is given
by 2r(n − 1) + 2, where r = (�w

2 �) is the effective radius of the stencil.
Figure 9 shows a similar “snapshot” of the TVD Runge-Kutta scheme, again with first

order upwinding. As can be seen from the grey and yellow areas with dotted outlines, we can
immediately overwrite the result of the second computation (stored in the entry marked A)
with the result of the first averaging computation (computation number 3), thus saving mem-
ory. Also, the fourth computation is able to write its result in the buffer entry marked B. Note
that the storage pattern is slightly different for the second step, because the values written
by the fifth computation cannot be overwritten as they are needed by the final averaging
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Fig. 9 The storage requirements of an advection and a re-initialization step with the TVD RK scheme and
upwinding. Note that the storage requirements are greater for subsequent steps than for the first step due to
the averaging computations

Table 1 The proposed memory requirements. r is the radius (or half the width rounded down) of the com-
putational stencil employed, while M is the total number of steps in the level set step. Each entry in the buffer
of temporaries is an (N − 1)-dimensional slice

Temporal scheme Buffer size

Forward Euler 2r(M − 1) + 2

TVD Runge-Kutta (7r + 1)(M − 1) + 4r + 2

BFECC (6r + 1)(M − 1) + 4r + 2

computation. The generalized formula for the size of the buffer of temporaries is given in
Table 1 along with the one for BFECC, which can be derived in a similar way. The pro-
posed mappings result in memory requirements which scale with the size of the wavefront
of execution rather than the size of the grid.

As mentioned, each entry in the out-of-core grids and the buffer of temporaries is actually
an entire (N − 1)-dimensional slice of the narrow band. In the one-dimensional examples
above, the values are therefore just scalars, which the computations can operate on directly.
In higher dimensions, we perform computations using sequential access on entire slices at a
time. Furthermore, when dealing with more spatial dimensions, we tile the space and utilize
the boundary grids mentioned in the overview. The specific storage mappings proposed for
doing this will be explained in Sect. 3.2.
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Fig. 10 (Color online) An illustration of a pathological case for our modified FIM. A level set intersecting
a number of grid cells is shown in red. Even though the maximal distance computed is limited by the width
of the narrow band, during computations, distance information may travel far on a micro-scale due to the
discrete star-stencil. In this particular example the computation of the distance value at the node furthest from
the level set (lower left node) is dependent on the computation of the distance values at all other nodes. Thus
it is not theoretically possible simply to divide the domain into blocks, and compute distance information in
each block separately

3.1.3 The Fast Iterative Method

In Sect. 3.1.1 we described how to solve the (pseudo time-dependent) re-initialization equa-
tion ∂φ/∂t + S(φ0)(|∇φ| − 1) = 0 to steady state in our out-of-core framework. In this sec-
tion we describe how to apply a tiling scheme to the recently proposed Fast Iterative Method
(FIM) [22] for solving the eikonal equation |∇φ| = 1. This enables an out-of-core imple-
mentation that requires data to be streamed to and from memory only once. Furthermore, it
can be combined with the skewing framework in Sect. 3.1, hence requiring streaming to and
from memory only once for all steps making up a level set iteration. The FIM has a number
of properties which makes it well-suited for an out-of-core parallel implementation. First
of all, it does not require a separate, heterogeneous data structure such as the heap required
by the Fast Marching Method (FMM) [50, 58, 59]. Secondly, it can simultaneously update
multiple grid points.

The FIM manages a list of active grid points which are iteratively updated until conver-
gence. This active list is updated by adding and removing grid points based on a convergence
measure. The main difference from the FMM is that grid points are updated independently
and that the active list can move over grid points previously removed from the list and re-
activate them as new information is propagated across the narrow band. This is in contrast
to the FMM which maintains a heap of grid points sorted after their current distance to the
zero-crossing and only removes them once they have the correct value. The consequence of
the FIM’s approach is that the grid points do not need to be updated in a strict order based
on their distance to the zero-crossing as they can be reactivated.

To enable a streaming implementation, we modify the original algorithm by partitioning
the level set slices into groups which are treated separately. In order to allow the correct
propagation of distance information between the groups, a band of slices is shared between
neighboring groups. The width of this band must be at least the same as the width of the
narrow band. The motivation behind this is that, in the continuous case, the distance value
at a certain point originates from points no further than ‘distance’ away from it. In our case
the maximum distance computed equals the width of the narrow band. However, due to the
seven-point star-stencils used for numerical computations, distance can, in the discretized
case, travel infinitely on a sub-scale. This means that the distance value at a certain grid point
may rely on the distance first being computed correctly at grid points further away than the
width of the narrow band. A pathological case is shown in Fig. 10. However, as is evident
from our numerical experiments in Table 2, the error introduced by limiting the width of
the shared band of slices appears to be below the truncation error in practice. Figure 11
shows three slice groups where the raised, middle group is currently being processed by our
algorithm. The orange slices indicate the region in which the active list can compute and
propagate distance information. We will call these the active slices. Notice that the last few
slices of the previous group remain active such that new information can correctly propagate
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Table 2 Error norms of the various FIM implementations on two different surfaces. Our sliced FIM imple-
mentations are as exact as the original algorithm

Model Reinitialization FIM Sliced FIM w/List Sliced FIM w/Mask
equation

| · |∞ | · |2 | · |∞ | · |2 | · |∞ | · |2 | · |∞ | · |2

0.00452 0.000148 0.00697 0.000200 0.00697 0.000196 0.00697 0.000197

0.0164 0.00251 0.0186 0.00203 0.0186 0.00200 0.0186 0.00200

Fig. 11 (Color online) Our modified FIM processes the slices one group at a time. The active list can only
propagate distance information within the orange slices. A band of slices from the previous group remain
active to ensure correct backward propagation of information

back to them. The yellow slice of the next slice group acts as a boundary slice and stores
grid points which should have been included in the current active list. They are then used as
the initial active list when treating the next group of slices.

We have experimented with two implementations of the active list. The main difference
lies in the access pattern of the grid points in the list. The first implementation simply stores
the points in a list and when processing them sequentially, it uses random access into the
DT-Grid which is logarithmic in the number of connected components of the DT-Grid [42].
The second implementation utilizes a bit mask to determine which grid points are in the list.
It then sequentially scans through all grid points in the current group of the DT-Grid and
updates the ones which are in the mask. This is done iteratively until convergence. We refer
to these implementations as Sliced FIM with List and Sliced FIM with Mask, respectively.

Table 2 shows that the accuracy of both Sliced FIM implementations is as good as for
regular FIM. For both these examples, we used a slice group width of 2× the narrow band
width. For the algorithm from Sect. 3.1, the initial φ was reset to ±γ away from the zero-
crossing and the algorithm was run for 40 iterations using Forward Euler and first order
upwind differencing for the temporal and spatial derivatives, respectively. Table 3 shows the
running times for a few bigger examples. It is evident that the Sliced FIM with List algorithm
outperforms Sliced FIM with Mask despite the slower access method.

3.1.4 Rebuild

To enable one or several complete level set steps to be implemented out-of-core in a single
streaming pass, we must also consider how to adapt the narrow band rebuild algorithm of
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Table 3 CPU times in seconds of the various FIM implementations. The examples were run with the same
settings as in Table 2

Algorithm

233 × 167 × 108 985 × 546 × 657

Reinit. eq. 5.9 61.8

Sliced FIM w/List 4.4 49.4

Sliced FIM w/Mask 6.8 108.6

Fig. 12 (Color online) Leftmost: Illustrates the skewed iteration space of the rebuild process with the wave-
front of execution sketched in orange. The thin black arrows indicate the dependencies. Rightmost: Illustrates
the steps involved in the rebuild process of a 1D DT-Grid. To emphasize the relationship with the skewed iter-
ation space (left), the figure should be read from the bottom and up. In this example the original grid consists
of two separate connected components. Grid points with numerical value less than γ are shown in green and
labeled α, β , χ and δ. Values larger than γ are shown in orange in the bottom row and new grid points are
shown in yellow in the top row

the DT-Grid. Similar to the substeps of computation in the TVD RK algorithm in Fig. 7,
the substeps of the rebuild algorithm can be skewed to maximize locality. We refer to the
original DT-Grid paper for full details on the rebuild algorithm [42], and present here only a
simplified version. In particular the rebuild algorithm consists of the following steps, where
we assume φ to be a signed distance function, γ to be the Euclidean width of the narrow
band, N to be the dimension, and H to be the width of the dilation measured in grid cells
(the rebuild process is illustrated in the rightmost part of Fig. 12 with N = 1 and H = 1):

1. Copy grid points with |φ| < γ to an intermediate grid.
2. Dilate the topology of the intermediate grid with a stencil shaped as a hypercube of

dimensions (2H + 1)N . This may change the topology of the grid. Then allocate unini-
tialized storage for the values of the grid.

3. Copy values of grid points that exist in the intermediate grid to the final grid, and initialize
new grid points to a numerical value of γ .

In the original paper each of these steps are completed before the next commences. How-
ever, as illustrated in the leftmost part of Fig. 12 the wavefront of execution can be made
independent of the grid dimensions. In particular steps 1 and 3 require no skewing since a
computation at these substeps depends only on the computation immediately below in the
original iteration space. Since step 2, the dilation step, utilizes a hypercube-shaped sten-
cil for dilation, a minimal skewing of H grid points is required in each spatial dimension
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Fig. 13 Two concatenated Euler level set steps. Notice how all intermediate values are stored in-core while
out-of-core grids are used only as input and for the final output. Also note that we have abstracted away the
sub-steps of the rebuild step for simplicity

at this level of computation. When including a rebuild step on the wavefront of execution,
where both the prior and the subsequent steps operate in the buffer of temporaries as op-
posed to out-of-core, the number of entries in the buffer of temporaries is increased by
(2H + 1) + (2�w

2 � + 1) for a simulation employing forward Euler. In particular step 1 re-
quires 2H + 1 additional entries corresponding to the width of the dilation stencil, and steps
2 and 3 require 2�w

2 �+1 additional entries corresponding the width of the propagation sten-
cil. Similar arguments hold for a simulation employing TVD RK or BFECC time stepping
thereby obtaining (2H + 1) + (3�w

2 � + 1) additional entries. If the result of the rebuild step
is placed out-of-core, the number of entries is only increased by (2H + 1), independent of
the time stepping approach, since there is no propagation stencil.

3.1.5 Concatenating Multiple Level Set Steps

In the previous sections, we have only dealt with performing one level set step during a
single pass over the level set. If the amount of main memory allows it, several level set
steps can be concatenated into one pass. Figure 13 shows a concatenation of two level set
steps with advection and re-initialization steps (for simplicity the rebuild steps have been
omitted). Note how the intermediate results of the first level set step are kept in memory as
opposed to in Fig. 8. This lowers the disk traffic and lessens the load on the bandwidth to
the disk, which facilitates using slower disks and/or faster processors with no performance
penalty as well as running several simulations or computing on several tiles at the same time.

This approach requires that a time-step size is chosen for some level set steps in the
simulation before the previous steps have been completed, which is not always possible. In
most cases, however, one can perform conservative estimates of or exactly determine the
allowed time-step size. This is the case for e.g. mean curvature flows where the latter is
possible and for analytical flows where only the former is an option. One notable exception
is fluid simulation flows where a guaranteed stable estimate can not be made.
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Fig. 14 (Color online) Leftmost: Shows the geometric outline (thick black lines) of the skewed tiles resulting
from tiling the iteration space. In this case a tiling of BT = 2 was used in the temporal dimension and a
tiling of BX = 3 was used in the spatial dimension. The wavefront of execution which is independent of the
grid dimensions is sketched in orange in the lower left tile. Rightmost: Shows the code corresponding to the
iteration space traversal on the left

Even when performing only a single level set step per pass, one does not want to perform
a separate pass over the data to determine the time-step size for the next step. If the velocity
field for the next step is available, one can combine the rebuild algorithm with an evaluation
of the field for all grid points in the new narrow band and thus determine the allowed time-
step size.

3.2 Tiling

In this section we first describe the tiling of the skewed iteration space and next explain the
storage mapping that tiles the actual data layout.

3.2.1 Tiling the Iteration Space

Whereas skewing of the iteration space is required to facilitate permutation of the iteration
directions, tiling is in general required to ensure locality of references to data. This is caused
by the fact that along a direction in the iteration space we may reference more data than can
fit into memory. Hence, even though later computations reuse data items, omitting skewing
will in the worst case have to load them into memory every time they are referenced. Tiling,
or blocking, is conceptually simple and illustrated in 1D for a first order spatial method com-
bined with Forward Euler in Fig. 14. The iteration along each direction of the iteration space
is divided into tiles of equal size by splitting the corresponding loop into two loops, where
the loop that steps over the tiles is called the controlling loop. As shown in the rightmost
part of Fig. 14 tiling is combined with loop interchange to place the controlling loops as the
outermost loops in order to ensure locality. More concretely, if a given level set simulation
takes T substeps then data has to be streamed to and from memory T times without skew-
ing and tiling. By introducing skewing and a tile size of BT in the temporal direction, the
number of times data has to be streamed is reduced to T/BT . In order for this to work, the
size of the wavefront of temporaries described in Sect. 3.1 must fit into memory. This poses
restrictions on how large BT can be and additionally a tiling in the spatial dimensions may
be required as well. In fact, for a simulation on a N -dimensional grid, tiling is required in at
most N − 1 spatial dimensions in order to make the wavefront of execution independent of
the grid dimensions. Consider the 1D example in Fig. 14. In this case it is not necessary to
tile in the x-direction to ensure locality because the dimensions of the wavefront of execu-
tion is independent of the spatial direction in which it travels (in this case the x-direction),
see Appendix .1 for a more elaborate theoretical justification of this. For the 3D simulations
considered in this article, we at most tile in the y- and z-directions and always leave the
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x-direction untiled. However, we note that in practice the optimal choice of the direction
to leave untiled depends on the level set geometry. Since the level set evolves dynamically
over time, the untiled direction should be able to change over time as well. Furthermore the
orientation of the level set on the computational grid will also impact the choice of direction.
We leave these issues as future work.

3.2.2 Tiled Storage Mapping

Skewing and tiling the iteration space optimizes locality for level set computations. How-
ever, these transformations are not sufficient to yield a fast practical implementation. Recall
that in order to obtain computational and storage efficiency we implement our proposed
framework on the DT-Grid data structure. Accessing data in tiles on a DT-Grid will result in
a large number of non-sequential access operations that have logarithmic time complexities.
In an out-of-core implementation the non-sequential access operation furthermore results in
a logarithmic IO complexity, as well as disk search operations which are expensive oper-
ations relative to sequential disk access. This suggests that in order to obtain feasible run
times a transformation of the layout of data on secondary storage is required in addition
to iteration space tiling. In particular, a tiling of the narrow band is required. Figure 15(a)
shows a 1D untiled grid with three connected components, and Fig. 15(b) shows a tiled ver-
sion of the same grid, where each tile is stored as a separate grid, and the tiles are indicated
by the thick vertical lines. The tile boundaries of the grid correspond to the tile boundaries
of the iteration space. Inside each tile, computations are skewed with respect to time and
temporary storage allocated as described in Sect. 3.1 and illustrated in Fig. 15(c). In order to

Fig. 15 (Color online) (a) Untiled 1D grid consisting of three connected components. (b) The grid in (a)
tiled using a fixed tile size. Note that due to the connected components the part of the narrow band inside each
tile may vary in size. (c) The enlargement of a single tile, shown in green (labeled OOC Grid). The boundary
data from neighboring tiles required for three complete computations on the tile is shown in orange (labeled
Boundary OOC Grid). The values allocated as temporaries are shown in yellow and blue (labeled Buffer and
Boundary buffer, respectively). Note that only the wavefront of temporaries are stored in-core at any time
during the simulation. The output from three complete computations on the tile is shown in green at the top.
The wavefronts are indicated by the skewed lines, and the exact order of computations is indicated by the
numbering
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complete several iterations inside each tile, boundary data from neighboring tiles is required
which is also illustrated in Fig. 15(c). A straightforward way to do this would be to also
stream parts of neighboring tiles through memory when performing computations on a spe-
cific tile. However, this is infeasible due to the aforementioned penalties of random access,
and further impeded by the fact that large page sizes are used when transferring data from
disk to memory. Thus we may in the worst case end up streaming all of the neighboring tiles
through memory when in fact only a relatively thin band of boundary data is needed. The
situation becomes more intractable for higher dimensional grids, e.g. in 3D we may end
up streaming the grid to and from memory nine times if tiling in two spatial dimensions.
The solution to this is to store separate boundary grids that contain only the boundary data
needed to complete the computations inside each tile. Note that the width of the boundary
grids is equal to the width of the wavefront of execution, and proportional to the number of
fictitious time-steps. In particular, a wavefront including M Forward Euler fictitious time-
steps has a width of (M − 1)�w

2 �, whereas a wavefront including M TVD RK or BFECC
fictitious time-steps has a width of (M − 1)(w − 1), where w is the width of the stencil.
Each rebuild step included in the wavefront adds one to the width. In all of our simulations
the boundary grids are very small compared to the size of the tiles, as BX is orders of magni-
tude larger than BT , where BX and BT are the tile sizes in space and time respectively. The
reason for this is that BT in most cases only includes a single level set step. If several level
set steps are concatenated as discussed in Sect. 3.1.5, there is a tradeoff between lowering
the requirements on IO bandwidth and the increased overhead arising from boundary grids.

We employ a data structure dubbed the Tiled DT-Grid. An example in 3D is depicted
in Fig. 2. The tiled DT-Grid consists of three components: A coarse grid, several tile grids
and several boundary grids. Each cell in the coarse grid corresponds to a tile in the spatial
dimensions. Since we always leave the x-direction untiled, the spatial extent of such a cell
will be infinite in at least one direction. A cell in the coarse grid essentially holds pointers
to a single tile grid and to a boundary grid for each boundary element (in 3D either an edge
or a face) along which two cells are adjacent. Hence for a 3D grid the number of boundary
grids for each cell will vary between zero and eight; zero if no tiling is applied and eight if
tiling in the y- and z-directions since there will be eight neighboring grids; one along each
of the four faces and one along each of the four edges of the tile (see Fig. 3). Both the coarse
grid, the tile grids and the boundary grids can be stored separately as out-of-core DT-Grids.
Since the intersection of the narrow band with the boundaries of a tile may result in a level
set that is not closed, special algorithmic care has to be taken for a DT-Grid implementation,
and how to handle iteration with a stencil and narrow band rebuild is described in [41].

Interleaved with computations on a specific tile, the grid points of the tile itself as well as
the grid points of adjacent boundary grids are merged into a single DT-Grid when streamed
into memory. This merging is performed on demand one slice of the computational grid at a
time as requested by the computation. Due to the lexicographic storage order of the DT-Grids
used for both tile and boundary grids, the merging can be performed in time linear in the
number of grid points. Specifically this is achieved using a heap which contains one element
for the tile and one for each boundary grid. Since we leave one direction untiled, at most nine
elements will be present in the heap at once. In each iteration of the merging, the minimal
element is deleted from the heap and inserted into the current slice being constructed. The
minimal element is then replaced by the next element of the grid it originates from and
the heap is reordered. In practice we do not merge on a grid point per grid point basis. In
particular we can exploit that our grids are disjoint and have a simple blocked structure.
Once we know that a certain grid point is the minimal element in the heap we can insert
not only that grid point but all grid points from the same column and grid (tile or boundary)
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into the current slice we are constructing. Note that the heap adds an overhead compared to
streaming alone.

Notice from Fig. 15(c) that computations on grid points that fall inside a boundary grid
will be performed twice on each tile if processed independently. The computational over-
head will be proportional to the narrow band volume inside the boundary grids. Generally
this will be small compared to the narrow band volume inside the tile grids, and this strategy
also has the advantage that each tile can be processed in parallel. If duplication of com-
putations on boundary grids is not desirable, the tiles can be processed sequentially and
computations performed on a boundary grid can be stored to disk temporarily and used for
initialization in adjacent tiles.

4 Results and Discussion

4.1 Single Threaded Performance

In this section we present benchmark evaluations of our out-of-core level set framework and
compare its throughput to the throughput of the out-of-core framework by Nielsen et al. [44]
as well as to the throughput obtainable for in-core simulations on the original DT-Grid data
structure [42]. We define throughput as the number of gridpoints/voxels computed per sec-
ond. Furthermore we define the relative throughput of a given simulation as the throughput
of the simulation divided by the throughput of a similar simulation on an in-core DT-Grid
at effective resolution 10003. The latter definition makes it easier to compare the throughput
of our proposed method against the peak thoughput of a fully in-core simulation and data
structure.

For the benchmark tests we have employed the following methodology. We consider
three different level set flows: (1) Constant normal propagation (exemplified by an erosion),
φt −|∇φ| = 0. (2) Advection in a velocity field where the maximal velocity is known prior to
each level set step (exemplified by a translation), φt + �V · ∇φ = 0. (3) Mean curvature flow,
φt − κ|∇φ| = 0. Each of these flows are simulated using two different numerical schemes:
(1) A forward Euler temporal discretization combined with a spatial discretization of first
order one-sided differences for the hyperbolic terms and second order central differences
for the parabolic terms. (2) A third order TVD RK discretization in time combined with a
spatial discretization of HJ WENO for the hyperbolic terms and second order central differ-
ences for the parabolic terms. We evaluate each combination of flow and numerical scheme
on a narrow band DT-Grid based level set representation of the Stanford Bunny (see Fig. 2)
at increasing resolution. For the high order numerical scheme (2), the maximal width of the
narrow band corresponds to 7 grid cells, and for the low order numerical scheme (1) a width
of 4 grid cells is used. For numerical scheme 1, we have run the simulations on narrow band
grids ranging roughly over effective resolutions from 10003 (0.085 GB and 20.10 M voxels)
to 140003 (17 GB and 4188 M voxels). For numerical scheme 2, the effective resolution of
the narrow band grids range roughly from 10003 (0.13 GB and 34.27 M voxels) to 100003

(14 GB and 3568 M voxels). In each case the highest resolution corresponds roughly to the
narrow band that allows for the maximal number of degrees of freedom representable in 32
bit. Since the narrow band is wider for numerical method 2, the largest model employed here
is smaller in terms of resolution. Note that during simulation roughly twice the storage is
required, since an input and an output out-of-core grid must be represented simultaneously.
Hence our benchmark computations require up to roughly 34 GB of storage. The simula-
tions were run on a computer with 32Bit Windows XP Pro, a single-core 2.41 GHz AMD
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Fig. 16 Benchmarks from a propagation in the normal direction (top), advection (middle) and mean cur-
vature flow (bottom). The left column shows results from numerical scheme 1 and the right column shows
results from numerical scheme 2 (Sect. 4.1). Results are reported as the ratio of throughputs obtained by our
framework (DTGrid Skewed, OO) and the framework in [44] (DTGrid, OO) to the throughput obtained by
an in-core DT-Grid simulation at 10003

CPU, 1 GB of memory and a 10000 RPM Western Digital Raptor disk. The benchmark
programs were implemented in C++ and compiled using Visual Studio 2005 with maxi-
mal optimization enabled. In our implementations of the framework proposed in this paper
and the framework in [44], only the code for the level set algorithms differed. The underly-
ing DT-Grid as well as the prefetching and page-replacement schemes all utilized the exact
same code. For the single threaded benchmarks we utilized only a single tile and hence no
boundary grids.

4.1.1 Performance of Skewed Simulations

As illustrated in Fig. 17, the performance of the DT-Grid drops notably as the main memory
limit is reached. The out-of-core framework in [44] improves the performance, but remains
IO limited as shown in Fig. 18 left. In contrast the framework proposed in this paper is CPU
limited as depicted in Fig. 18 right.
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Fig. 17 The performance of the
in-core DT-Grid drops when the
main memory limit is exceeded

Fig. 18 This figure shows the CPU utilization over the course of a single time-step of an out-of-core simu-
lation on the Stanford Bunny at resolution ≈80003. Left: The framework of [44] is IO limited for both low
and high order methods. Right: Our framework utilizes the CPU 100% and is thus CPU limited although the
data is streamed to and from memory

Results from the benchmarks are shown in Fig. 16. The left column of Fig. 16 shows
results obtained using numerical scheme 1. A relative performance of 1.0 corresponds to
absolute throughputs of 1.4 M, 1.4 M and 1.2 M for the erosion, translation and mean cur-
vature flow tests, respectively. For numerical scheme 1 there seems to be the following ten-
dency: For our proposed framework, the relative throughput is roughly constant and appears
to rise slightly for the propagation and advection tests. In all cases, our new framework out-
performs that in [44] and the relative throughput of our method stays within 77–84 percent
of peak in-core performance (a relative throughput of 1.0). In particular the performance of
the framework in [44] drops as the resolution is increased, a consequence of an increasing
IO bottleneck. We expect the performance to converge asymptotically to some fixed ratio of
throughputs not reached within the resolutions spanned by our tests.

The right column of Fig. 16 shows results obtained using numerical scheme 2. A relative
performance of 1.0 corresponds to absolute throughputs of 0.11 M, 0.12 M and 0.12 M for
the erosion, translation and mean curvature flow tests, respectively. For numerical method 2,
performance is roughly constant for both frameworks, but our framework outperforms that
in [44] and the relative throughput of our method stays within 89–92 percent of peak in-core
performance (a relative throughput of 1.0). The reason for this is that the framework in [44]
is IO limited. Contrary to the case of numerical method 1, the ratio of throughputs has in this
case converged for the framework in [44]. Performance is higher in the case of numerical
method 2 than numerical method 1. This is due to the fact that numerical method 2 is of
higher order, and the CPU overhead associated with our proposed framework is constant per
byte streamed to and from disk. Since the higher order schemes require more CPU time, the
relative overhead of our framework is lower for a higher order than a lower order method.
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We conclude that for both numerical methods, the throughput of our framework appears
to be sustained, independently of resolution and numerical method.

As we have argued above, the current framework is CPU bound with an overhead be-
tween 8–23% compared to the DT-Grid in-core narrow band level set method. The question
is if this overhead can be reduced further. From analyzing the framework, it appears that
about two thirds of the introduced overhead arises from checks in the code that ensure that
iterators are updated correctly whenever they move to data in a new disk page. Because these
checks have to be done for each access into the topology and value data, they comprise a
substantial part of the overhead compared to a fully in-core method which does not have to
perform these checks. We believe that most of the overhead associated with these checks
can be eliminated on a 64 bit operating system, if the narrow band level set is not larger
than the virtual address space. The strategy is to essentially memory map the file into the
virtual address space, but in such a way that only active pages are actually allocated and
that pre-fetching and page-replacement is done using the methods in [44]. We are currently
investigating this.

4.2 Multi Threaded Performance

Parallelization techniques are required in order to run simulations within feasible time
constraints. In this section we evaluate the performance of our framework in a multi-
threaded environment. In particular we evaluate its performance when running several out-
of-core simulations on the same disk and compare performance to the out-of-core frame-
work by Nielsen et al. [44]. Furthermore we evaluate the parallelization overhead intro-
duced by combining skewing and tiling transformations and benchmark the parallel per-
formance of our framework. For single threaded applications we have not found it nec-
essary to tile the grid in practice. The reason is that the computation-time becomes in-
feasible before the memory limit is exceeded by the number of slices required in-core
by the computation. For this reason we only apply tiling for multi-threaded applica-
tions.

The multi-threaded experiments were run on a computer with 64Bit Windows Vista Busi-
ness, two Intel Xeon 2.8 GHz quadcore processors (8 cores in total) and three 7200 RPM
disks. All experiments utilized less than 2 GB of memory. Our framework was parallelized
using Intel Thread Building Blocks [48], and boundary grids were kept in-core for these
tests.

4.2.1 Performance of Multiple Simulations on the Same Disk

In this experiment we compare the performance of the framework in [44] to our frame-
work in the situation where several concurrently running simulations utilize and share
the bandwidth of the same disk. As test case we consider mean curvature flow on the
Stanford Bunny at resolution ≈80003 combined with numerical method 1 described in
Sect. 4.1. In our framework we concatenated two level set steps as described in Sect. 3.1.5
to obtain better IO-efficiency. In Fig. 19 we report the change in simulation performance
when increasing the number of instances of the same simulation running simultaneously
on the same computer and using the same disk. The framework of Nielsen et al. is IO-
limited for a single simulation, and the throughput drops significantly as the number of
simulations utilizing the same disk is increased. On the contrary, the throughput of our
framework by and large stays constant, except for a slight drop (≈1%) at the begin-
ning.
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Fig. 19 This figure shows the
change in performance as the
number of instances of the same
simulation running
simultaneously on the same
computer and utilizing the same
disk is increased

Fig. 20 This figure shows the tiling/parallelization overhead of our framework as a function of the number
of tiles along each tiling-direction. TileZ tiles only in the Z-direction whereas TileZY tiles in both the Y - and
Z-directions. The tiling/parallelization overhead is defined as percentage increase in execution time resulting
from a single-threaded run of our framework using both tiling and skewing versus a single-threaded run of
our framework using only skewing transformations. As test case we consider advection of the Stanford Bunny
at resolution ≈80003 combined with numerical method 1 described in Sect. 4.1

4.2.2 Parallelization Overhead

The best serial algorithm is seldom the best parallel algorithm [48], and a parallelization
overhead is introduced by the tiling transformation which in turn is required in order to
facilitate multi-threading. For a given dataset, the overhead grows as the number of tiles
grows, as this will cause an increase in the number of boundary grids and hence redun-
dant computations. Additionally, the overhead depends on the size of the boundary grids
which depends on the number of concatenated level set steps as well as the size of the nu-
merical stencils. Finally the cost of merging grid points from boundary grids and tiles will
increase since the heap used to sort these will contain more elements. Figure 20 shows the
tiling/parallelization overhead for two different blocking schemes. The overhead in this case
lies between 23% and 30% when compared to single-threaded performance. A conclusion
to be drawn from Fig. 20 is that tiling in only one direction is preferable over tiling in two
directions, if memory requirements permit it.

4.2.3 Performance of Skewed and Tiled Simulations

Once the simulation is set up, there are virtually no serial sections in our framework imple-
mentation, except for the code that logs performance and saves level set data to disk. Hence
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Fig. 21 This figure shows the parallel performance scaling as a function of the number of cores. To em-
phasize the scaling trend, the parallel performance scaling is computed as the execution time divided by the
execution time of the parallel version of our framework (using both skewing and tiling) running on a sin-
gle core. As test case we consider advection of the Stanford Bunny at resolution ≈80003 combined with
numerical method 1 described in Sect. 4.1

according to Amdahl’s law, our framework should have good theoretical parallel perfor-
mance scaling properties. As can be seen from Fig. 21, the parallel performance of our cur-
rent framework implementation scales sub-optimally as the number of cores are increased,
obtaining a parallel speedup of 6.75 using 8 cores and using roughly 104 seconds per level
set time-step. The reason for not obtaining 8×-performance is not due to IO limitations,
since our framework remains CPU limited. In fact we observed similar scaling properties
when keeping all components (values and topology) in-core on smaller data sets. For the
tests in this section we also attempted to diminish load-imbalancing by applying a simple
non-uniform tiling strategy in which the number of tiles equals the number of cores used for
the computations. Each core is then assigned to a specific tile, and the tiles are constructed
in such a way that the number of grid points in each tile is roughly constant. Furthermore the
data was distributed evenly on the computer’s three disks. We leave an investigation of us-
ing more cores, a different architecture as well as improvements of the parallel performance
scaling of our framework for future work.

5 Applications

5.1 The Divergence-Free Advection Test

In this section we demonstrate an extreme level set deformation by advecting 8 spheres
through the incompressible, periodic velocity field originally proposed in [11, 28]:

u(x, y, z) = 2 sin2(πx) sin(2πy) sin(2πz) cos

(
tπ

T

)

v(x, y, z) = − sin(2πx) sin2(πy) sin(2πz) cos

(
tπ

T

)

w(x,y, z) = − sin(2πx) sin(2πy) sin2(πz) cos

(
tπ

T

)

where T = 3 is the period of t . The velocity field is reversed at t = 1.5, and the advected
level set should return to its original shape at time t = 3. The spheres have radius 0.125 and
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Fig. 22 Results of the
divergence-free advection test on
8 spheres at resolution 20483

requiring up to 1.4 GB of storage
(and twice as much during
simulation). At the peak
(t = 1.5), the narrow band
contains approximately 343
million voxels. From top left to
bottom right the images are from
t = 0, 0.3, 0.8, 1.5, 2.7, 3,
i.e. the lower right image shows
the result of advecting forwards
and then backwards

are placed in a unit computational domain at positions (0.15,0.15,0.85), (0.15,0.85,0.15),
(0.35,0.35,0.35), (0.35,0.65,0.65), (0.65,0.35,0.65), (0.65,0.65,0.35), (0.85,0.15,

0.15) and (0.85,0.85,0.85). The advection equation ∂φ/∂t +∇φ · (u, v,w) = 0 where φ is
the level set function and t is time is solved using a third order accurate TVD RK discretiza-
tion in time and a three—fifth order accurate HJ WENO discretization in space. Figure 22
shows the surfaces at various times during the deformation with the lower right image show-
ing the final result after advecting forwards and backwards, i.e. a full period. For the simu-
lation in this figure, the unit computational domain is sampled at resolution 20483, and the
DT-Grid narrow band peaks at approximately 343 million voxels requiring 1.4 GB of storage
(and roughly twice as much is needed during simulation). We have also run this simulation
at resolution 40963, where the DT-Grid narrow band takes up 1.4 GB of storage at the begin-
ning (t = 0). At t = 1.5 the storage requirements peak at 6.1 GB (i.e. around 12.2 GB dur-
ing simulation) and approximately 1.4 billion voxels are contained in the narrow band. Both
simulations were run on a Mac Pro work station with two Intel Xeon quad core 2.80 GHz
CPUs, 4 GB of memory and 4 7200 rpm hard drives, which were all utilized. Tiling was
performed in the Z-direction with a core assigned to each tile (8 cores/tiles in total), and
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Fig. 23 Results of the mean
curvature motion on the lucy
statue scan converted into a
DT-grid at resolution
17149 × 9987 × 5734 taking up
11.5 GB of storage (note that
during simulation roughly twice
the storage is required). Initial
surface to the left and after 200
iterations to the right. The first
row shows the whole statue, the
second a zoom in on the head
region and the third depicts an
even closer zoom to the eye

each iteration of the former (latter) simulation took from 103 (339) seconds in the beginning
and end (t = 0 and t = 3) to 390 (1436) seconds around the peak (t = 1.5). The rendering
of the former simulation was performed by in-core ray tracing on a different machine.

5.2 Mean Curvature Flow of Surfaces

The applications of curvature-based surface flows are vast. In this section we illustrate the
use of mean curvature motion for surface smoothing expressed by the simple level set equa-
tion ∂φ/∂t = κ|∇φ|, where κ is the mean curvature of the surface, φ is the level set function
and t is time. We discretized the equation using first order accurate Forward Euler in time
and second order accurate central differences in space. Figure 23 shows the Lucy statuette
from the Stanford Scanning Repository [54] scan converted into a DT-grid narrow band level
set at resolution 17149 × 9987 × 5734 using the method for manifold meshes proposed in
[17]. Each instance of the DT-Grid is 11.5 GB, and during simulation roughly twice the
storage is required. The simulation was run on a Dell Inspiron 8600 Laptop with 1 GB of
memory and a 7200 rpm hard drive. Even on this hardware configuration, our out-of-core
framework remains CPU limited, one iteration taking approximately 108 minutes. While
not necessarily feasible for simulations requiring many iterations, due to time constraints,
this illustrates that our framework is applicable even on architectures with limited resources.
Notice that in the initial surface on the left, the triangulation of the original Lucy polygonal
model, from which the level set was scan converted, is visible. However, since the model is
super-sampled using the level set, and hence has a larger number of degrees of freedom, the
mean curvature motion effectively results in a smooth interpolation of this model to higher
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resolution. The rendering was done by Gouraud shading of triangles, streamed to the graph-
ics card and extracted from the level set using the marching cubes algorithm [27]. Since the
marching cubes algorithm will produce many more triangles for this 11.5 GB level set than
can be stored on the graphics card, a draw command is repeatedly issued whenever a fixed
number of triangles have been streamed to the graphics card.

6 Conclusion and Future Work

We have presented a fast, storage efficient and parallelizable out-of-core framework for per-
forming computations on level sets at resolutions only limited by the size of disk space. The
framework utilizes code transformations to allow the combination of multiple passes over
the data into a single pass. As a result, the level set algorithms become CPU limited and
maintain a throughput between 77% and 92% of peak in-core performance, independently
of the level set resolution.

The framework still incurs an overhead compared to a strictly in-core level set method.
As mentioned in Sect. 4.1.1, we believe that a careful engineering effort can reduce this
overhead. In the future, we wish to further investigate and improve the performance of
our out-of-core framework for parallelization and multi-threading. In particular, given the
high resolutions enabled by our framework, computation times are now the main bottleneck
in achieving results at a desired resolution within a desired time frame. Investigating our
framework in the context of parallelization over more cores and CPUs as well as in com-
bination with implicit methods for solving PDEs, which would allow for larger time-steps,
are promising directions for future work. Additionally, an automatic determination of the
number of computations that can be concatenated in order to fully utilize internal memory
would ensure that no excess disk bandwidth is used. It would probably require an initial pass
through the data coupled with a statistical model of the upcoming memory requirements re-
sulting from the computation. Similarly, determining and adjusting tiling-directions as well
as tile sizes automatically depending on the amount of memory available, would be useful.
Currently, we assume it is possible to set up a configuration at the beginning that will remain
valid throughout the lifespan of the simulation. This has been the case for all the simulations
presented in this paper, however the ability to adjust the tile sizes dynamically could prove
useful for load balancing the CPUs.

While we have focused entirely on level set computations, our techniques are also rele-
vant for general out-of-core stencil based computations, and it would be interesting to in-
vestigate similar strategies for stencil-based computations such as fluid simulation and the
solution of linear equation systems arising from an implicit discretization.
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partially funded by the Danish Agency for Science, Technology and Innovation.

Appendix: Data Locality Analysis

In the following appendices we perform data locality analysis of level set FD schemes using
the model of Wolf and Lam [62]. For the sake of completeness, we briefly introduce the
model and explain how to use it for analysis.

Considering a perfectly nested loop of depth n, we look at the iteration space which
corresponds to a convex polyhedron in Z

n bounded by the loop bounds. We can identify
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each iteration by a node inside this polyhedron using a vector �p = (p1,p2, . . . , pn), where
pi is the loop index of the i’th loop in the nest. An execution of the loop-nest corresponds
to visiting all nodes in the polyhedron in lexicographic order. We have reuse of a data item
if it is accessed in several iterations of the loop. Thus, reuse is inherent in a computation
and does not depend on the execution order of the loops in the nest. However, reuse does
not guarantee temporal or spatial memory locality since accesses to a particular data item
might be separated by many accesses to other data. This means that in the worst case the
data item will have to be loaded each time it is used. The space spanned by the iteration
space directions in which reuse is found is called the reuse vector space. We can transform
our iteration space which corresponds to performing loop transformations such as skewing.
These transformations change the way the iteration space is traversed and thus the way we
exploit reuse. We must however be sure that the data dependencies of the algorithm are not
violated. The dependence vectors, which define dependencies between two nodes �p1 and �p2

in the iteration space, must be transformed as well. A dependence vector points from �p1 to
�p2 if the execution of the statement at �p2 depends on the result from �p1. Hence a valid code

transformation T must satisfy T ( �p1) < T ( �p2), where < is the lexicographic ordering.
While transformations might improve our utilization of reuse, they cannot alone exploit

reuse in multiple dimensions. Therefore we also need to perform tiling. We can tile loops i

through j (for i < j ) if they are fully permutable, i.e. can be interchanged freely: A prop-
erty satisfied if the dependence vectors are non-negative and have either lexicographically
positive components d1 through di−1, or components di through dj which are non-negative.
Thus we can also use transformations to enable tiling since the dependence vectors change.

The result of applying the transformations is a vector space spanned by the iteration di-
rections in which reuse can be exploited. This vector space is called the localized vector
space. The goal of our data locality analysis thus is: Given an iteration space and corre-
sponding data dependence vectors, we want to apply skewing and tiling transformations in
order to obtain a localized vector space which completely contains the reuse vector space.
By ensuring this, data reuse will result in data locality allowing data to be accessed multiple
times whilst in memory, thus avoiding data to be loaded from disk multiple times.

.1 Forward Euler

Algorithm 1 Euler with first order upwind (original)
1: for t ← 0, T do
2: for x ← 0, X do
3: A[t + 1, x] ← step(A[t, x],A[t, x − 1],A[t, x + 1])
4: end for
5: end for

In this appendix we analyze the forward Euler algorithm in the model of Wolf and Lam
[62]. In particular we derive the reuse vector space, propose specific loop transformations
and then show that these transformations result in a localized vector space that includes the
reuse vector space, hence exploiting maximal reuse. For the sake of simplicity, we carry out
the analysis in one spatial dimension and explain how this analysis generalizes to higher
spatial dimensions.

Consider the pseudo-code for forward Euler in Algorithm 1. To facilitate the analysis, we
assume the existence of an array A that includes both the spatial and temporal dimensions.
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Furthermore we assume that the initial data is present in A[0, x] for all x in the spatial
dimension, and that the upper loop bounds are not included in the iteration space (i.e. zero-
based indexing). Note that in the actual implementation, our algorithms retain the iteration
order illustrated in Algorithm 1, but only a thin narrow band is traversed, and iterators into
the DT-Grid data structure are used to abstract away the details of topology encoding and
streaming to and from disk. Furthermore we use the storage allocation scheme described in
Sect. 3.1.

As explained in the previous appendix, we need to adhere to the dependencies of the
algorithm when we transform the iteration space, i.e. we must ensure that an iteration
does not execute before an iteration which it depends on. The dependence vectors are
{(1,0), (1,−1), (1,1)}. To find the reuse vector space, we classify the memory references
in terms of how they reuse memory. To facilitate this, we put two references A[f (�i)] and
A[g(�i)] in the same equivalence class, called a uniformly generated set, if it for some
linear transformation H and constant vectors �cf and �cg holds that f (�i) = H�i + �cf and
g(�i) = H�i + �cg .

All references in Algorithm 1 are uniformly generated with H = Id and constant vectors

c1 = (1,0)T , c2 = (0,0)T , c3 = (0,−1)T , c4 = (0,1)T ,

respectively. We wish to compute the reuse vector space containing all the directions of
reuse, and therefore we look at group-spatial reuse (i.e. reuse as a result of references that
are close in either time or space), as the associated reuse space RGS contains all the other
types of reuse. RGS is defined as span{r2, . . . , r4} + kerHS , where HS denotes H with the
last row replaced by the zero-vector, and rj for j = 2, . . . ,4 is a particular solution of the
linear equation H �rj = �cS,1 − �cS,j where �cS,i is �ci with the last component set to 0. Since
kerHS = span{(0,1)}, and the particular solutions all lie in span{(1,0)}, we get that RGS =
span{(1,0), (0,1)}. We can thus see that there is reuse in the entire iteration space. The
localized vector space for the original loops is however only L = span{(0,1)}. Hence RGS

is not fully contained in L, and in particular we only exploit reuse in the innermost loop.
To improve this, we want to tile our loop nest in all necessary directions. However, it is
not possible to do tiling in both loops as they are not fully permutable. Therefore, we have
to skew our loops using the following transformation T : [t, x] → [t, x + t]. The result is
shown in Algorithm 2. This also transforms our dependence vectors: {(1,1), (1,0), (1,2)},
and we can now clearly see, that our loops are fully permutable. Tiling the t and x loops
with tile sizes BT and BX respectively, reveals the pseudocode in Algorithm 3 for which the
localized vector space completely coincides with RGS thus demonstrating that our skewing
and tiling scheme exploits all reuses.

To minimize the IO latency and bandwidth of our computations in practice, we do not
tile in the x-direction, independent of the number of spatial dimensions involved in the
computations. Note that by not tiling in the x-direction we do not alter the localized vector
space. This is due to the fact that the loop within the tile in the x-direction can become the
outermost loop—among those loops that iterate within a tile—by simple loop-interchange.
Furthermore, the innermost controlling loop can trivially be coalesced with the loop over its
individual tiles since all loops are fully permutable. Algorithm 4 shows our final algorithm
for forward Euler.

Generalization to higher order spatial schemes and higher spatial dimensions is straight-
forward. To use the Hamilton-Jacobi Weighted ENO (HJ WENO) [20, 21, 32] scheme,
the transformation would skew by three instead of one, and thus becomes T : [t, x] →
[t, x + 3t]. In higher spatial dimensions, we skew identically and tile in each additional
spatial dimension.
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Algorithm 2 Euler with first order upwind (skewed)
1: for t ← 0, T do
2: for x ← t , X + t do
3: A[t + 1, x − t] ← step(A[t, x − t],A[t, x − 1 − t],A[t, x + 1 − t])
4: end for
5: end for

Algorithm 3 Euler with first order upwind (skewed and tiled)
1: for t2 ← 0, T , BT do
2: for x2 ← 0, X + T , BX do
3: for t ← t2, min(T , t2 + BT ) do
4: for x ← max(t, x2), min(X + t, x2 + BX) do
5: A[t + 1, x − t] ← step(A[t, x − t],A[t, x − 1 − t],A[t, x + 1 − t])
6: end for
7: end for
8: end for
9: end for

Algorithm 4 Euler with first order upwind (final)
1: for t2 ← 0, T , BT do
2: for x ← 0, X + T do
3: for t ← t2, min(T , t2 + BT ) do
4: if max(t, x) < min(X + t, x + 1) then
5: A[t + 1, x − t] ← step(A[t, x − t],A[t, x − 1 − t],A[t, x + 1 − t])
6: end if
7: end for
8: end for
9: end for

.2 BFECC and TVD RK

We now proceed to analyze the Back and Forth Error Compensation and Correction
(BFECC) [7] and Total Variation Diminishing Runge Kutta (TVD RK) [52] algorithms. The
procedure of the analysis is similar for the two algorithms as they both consist of a number
of propagation and weighted averaging steps. Due to the relative simplicity of the BFECC
algorithm we will focus on this algorithm and only provide an outline of the TVD RK anal-
ysis along with the proposed transformations. Again, we carry out the analysis in one spatial
dimension and then generalize it to higher spatial dimensions.

Consider the pseudo-code for the BFECC algorithm shown in Algorithm 5. To facilitate
the analysis we have formulated the BFECC algorithm as a perfect loop nest by introducing
the fictitious time variable t such that � t

4� denotes the time-step and t mod 4 uniquely iden-
tifies one of the four assignment statements in the loop body. Furthermore, we have again
assumed the existence of an array A that includes both the spatial and temporal dimension,
and holds the initial data in A[0, x] for all x in the spatial dimension. The storage mapping
scheme can be found in Sect. 3.1.

Assuming the j’th array reference is expressed as H [t, x]T + �cj , only a single uni-
formly generated set of references is present as represented by the identity matrix H =
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Algorithm 5 BFECC with first order upwind (original)
1: for t ← 0, 4T do
2: for x ← 0, X do
3: if t mod 4 = 0 then
4: A[t + 1, x] ← step(A[t, x − 1],A[t, x],A[t, x + 1])
5: else if t mod 4 = 1 then
6: A[t + 1, x] ← backstep(A[t, x − 1],A[t, x],A[t, x + 1])
7: else if t mod 4 = 2 then
8: A[t + 1, x] ← average(A[t, x],A[t − 2, x])
9: else

10: A[t + 1, x] ← step(A[t, x − 1],A[t, x],A[t, x + 1])
11: end if
12: end for
13: end for

Algorithm 6 BFECC with first order upwind (skewed)
1: for t ← 0, 4T do
2: xstart ← 3� t

4 � + min(t mod 4,1) + � t mod 4
3 �

3: for x ← xstart, X + xstart do
4: w ← x − xstart

5: if t mod 4 = 0 then
6: A[t + 1,w] ← step(A[t,w − 1],A[t,w],A[t,w + 1])
7: else if t mod 4 = 1 then
8: A[t + 1,w] ← backstep(A[t,w − 1],A[t,w],A[t,w + 1])
9: else if t mod 4 = 2 then

10: A[t + 1,w] ← average(A[t,w],A[t − 2,w])
11: else
12: A[t + 1,w] ← step(A[t,w − 1],A[t,w],A[t,w + 1])
13: end if
14: end for
15: end for

Id. Since ker HS = span{(0,1)}, and span{�rj } = span{(1,0)}, we conclude that RGS =
span{(1,0), (0,1)}, hence the BFECC algorithm has reuse in both the temporal and spa-
tial dimensions.

To fully exploit reuse, we must find loop transformations that result in a localized vector
space L, such that RGS ⊂ L without violating the dependencies of the BFECC algorithm.
Note that since the loop body has four separate cases, t mod 4 = {0,1,2,3}, we must con-
sider the dependence vectors of each of these cases locally. For cases 0 and 2 they are
{(1,−1), (1,0), (1,1)}, for case 1 the dependence vector is {(1,0)} and for case 3 the de-
pendence vectors are {(1,−1), (1,0), (1,1), (3,0)} as depicted to the left in Fig. 24. Recall
that the loops are fully permutable, and hence tilable, if all entries in the transformed depen-
dence vectors are non-negative. Thus we see from the dependence vectors that by skewing
by one in the x-direction from one case to the next, except from case 1 to case 2, we obtain a
fully permutable loop nest. Specifically, we propose the skewing transformation T : [t, x] →
[t, x +3� t

4�+min(t mod 4,1)+� t mod 4
3 �] which results in dependence vectors, (t, x), equal

to {(1,0), (1,1), (1,2), (3,2)} for case 3, {(1,0), (1,1), (1,2)} for cases 0 and 2, and {(1,0)}
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Algorithm 7 BFECC with first order upwind (skewed and tiled)
1: for t2 ← 0, 4T , Bt do
2: for x2 ← 0, X + 3� 4T −1

4 � + 2, Bx do
3: for t ← t2, min(4T , t2 + Bt) do
4: xstart ← 3� t

4� + min(t mod 4,1) + � t mod 4
3 �

5: for x ← max(x2, xstart), min(x2 + Bx,X + xstart) do
6: w ← x − xstart

7: if t mod 4 = 0 then
8: A[t + 1,w] ← step(A[t,w − 1],A[t,w],A[t,w + 1])
9: else if t mod 4 = 1 then

10: A[t + 1,w] ← backstep(A[t,w − 1],A[t,w],A[t,w + 1])
11: else if t mod 4 = 2 then
12: A[t + 1,w] ← average(A[t,w],A[t − 2,w])
13: else
14: A[t + 1,w] ← step(A[t,w − 1],A[t,w],A[t,w + 1])
15: end if
16: end for
17: end for
18: end for
19: end for

Algorithm 8 BFECC with first order upwind (final)
1: for t2 ← 0, 4T , Bt do
2: for x ← 0, X + 3� 4T −1

4 � + 2 do
3: for t ← t2, min(4T , t2 + Bt) do
4: xstart ← 3� t

4� + min(t mod 4,1) + � t mod 4
3 �

5: if max(x, xstart) < min(x + 1,X + xstart) then
6: w ← max(x, xstart) − xstart

7: if t mod 4 = 0 then
8: A[t + 1,w] ← step(A[t,w − 1],A[t,w],A[t,w + 1])
9: else if t mod 4 = 1 then

10: A[t + 1,w] ← backstep(A[t,w − 1],A[t,w],A[t,w + 1])
11: else if t mod 4 = 2 then
12: A[t + 1,w] ← average(A[t,w],A[t − 2,w])
13: else
14: A[t + 1,w] ← step(A[t,w − 1],A[t,w],A[t,w + 1])
15: end if
16: end if
17: end for
18: end for
19: end for

for case 1 as depicted to the right in Fig. 24. Note that the proposed transformation is not con-
stant throughout the iteration space. However the proposed transformation is invariant in the
x-direction for each case, since T ((t1, x1))−T ((t2, x2)) = T ((t1, x1 +d))−T ((t2, x2 +d)),
so we can transform the end-points of the dependence vectors independent of their absolute
position in the x-direction.
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Fig. 24 Dependence vectors for
the BFECC algorithm with first
order spatial derivatives. The
numering on the T axis is
t mod 4. Left: Before skewing
transformation. Right: After
skewing transformation

Algorithm 6 shows the code resulting from skewing the iteration space. In particular
the loop bounds are transformed using T and the array indices are transformed using T −1.
To obtain an optimal localized vector space, tiling and loop interchange is performed in
Algorithm 7. To do the actual loop interchange in Algorithm 7 between the controlling
loop in the x-direction and the loop within the tile for the temporal dimension we do the
following: The bounds of the controlling loop in the x-direction are made independent of t

by exchanging the minimum value for t in the lower bound and the maximum value for t

in the upper bound. When doing this it is important to change the lower bound of the loop
within the tile in the x-direction to max(x2, xstart), since this ensures that the loop within
the tile starts at either the lower bound of the iteration space or at the lower bound of a tile
within the iteration space. As in the case of the forward Euler algorithm, we do not tile in the
x-direction, and the localized iteration space remains unchanged. In Algorithm 8 we show
the BFECC algorithm that results from only tiling in the temporal dimension.

Generalization to higher order spatial schemes and higher spatial dimensions is again
straightforward. To use the HJ WENO scheme, the transformation would skew by three in-
stead of one in each case (except case 3 in which there is still no skewing), and thus becomes
T : [t, x] → [t, x + 9� t

4 �+ 3min(t mod 4,1)+ 3� t mod 4
3 �]. In higher spatial dimensions, we

skew identically and tile in each additional spatial dimension, in two dimensions for ex-
ample we obtain T : [t, x, y] → [t, x + 3� t

4 � + min(t mod 4,1) + � t mod 4
3 �, y + 3� t

4� +
min(t mod 4,1) + � t mod 4

3 �].
For a TVD RK method the analysis proceeds analogously. Take for example the third

order accurate TVD RK scheme which consists of three advection steps and two averaging
steps, as opposed to three advection steps and one averaging step in the case of the BFECC
scheme. In particular the fictitious time includes a multiplicative factor of 5 (instead of 4
for BFECC), and the transformation for 1D TVD RK combined with a first order upwind
scheme in the spatial dimension becomes T : [t, x] → [t, x + 3� t

5� + min(t mod 5,1) +
� t mod 5

3 �]. This can readily be seen from a diagram similar to the one shown in Fig. 24. The
generalization to higher spatial dimensions and higher order spatial schemes is identical to
that of the BFECC scheme. In particular skewing is applied in each spatial dimension and
the magnitude of skewing increases respectively.
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