
Liquids in The Croods

Jeff Budsberg Michael Losure Ken Museth Matt Baer
DreamWorks Animation *

Figure 1. Collection of different liquid scenarios from the animated feature: close character interaction in clear visibility, complex underwater phenomena,
and a large-scale whitewater splash.

Abstract

The Croods' world is under duress and presents the characters
with a plethora of grandiose obstacles at every turn. After a
torrential downpour, the Croods family is left stranded in the
middle of an expansive ocean, forced to swim out of trouble. The
art direction proved difficult, due to the clear tropical water and
characters in fur-covered outfits. In this talk, we cover the
technology and techniques for executing a challenging liquid
sequence.

Keywords: animation, liquids, production, simulation, vdb, water.

1. Primary simulation

Overall, our approach was to design a main liquid simulation near
the characters, embed it in the middle of a procedural ocean, and
layer a succession of secondary elements (splashes, aeration,
ripples, etc). We made a concerted effort to break problems down
into more simplified systems and tools, which empowered artists
to quickly iterate on more manageable pieces of the system.

The main liquid simulation was performed in Naiad. As typical
with production character meshes, our input models contained
self-intersections and rendertime geometry generators (hair/fur).
We converted to narrow-band VDB [Museth 2013] level sets and
back to an adaptive polygonal mesh in order to remove unwanted
interior geometry, retain high fidelity, and provide clean, water-
tight collision meshes.

2. Rasterize particles into VDB level sets

We decided against meshing in Naiad, due to relatively slow serial
execution, and instead opted for a time-independent solution with
our new VDB-based Houdini toolkit. However, we could simulate
far more particles in Naiad than we could bring into Houdini. As
such, we derived an importance metric in order to cull
unnecessary particles, but preserve the maximum resolution at the
interface. In Houdini, the footprints of the liquid particles are
rasterized into a high-resolution, sparse level set. We opted for
spherical footprints for speed, though in practice artists preferred
velocity-aligned teardrop shapes that are composed of a multitude

 * e-mail: {jeff.budsberg, michael.losure,
 ken.museth, matt.baer}@dreamworks.com

of advected spheres with attenuating radii. This conversion
process is fully multithreaded and our 8-core workstations could
process on the order of a few million particles per second
depending on the particle velocity and size. We also found that
VDB allowed artists to generate level sets at far higher resolutions,
per significantly smaller memory footprints, than existing third-
party tools based on conventional dense or tiled data structures.

3. Filtering / Morphological operations

While the rasterization of particles proved to be very fast, it only
serves as an initial surface that requires post-processing to obtain
the desired artistic look. Visually, an artist would want to
selectively accentuate peaking and sharp features, remove
artifacts, fill holes, and smooth flat areas, for example.

We performed this post-processing by means of various
combinations of costume filtering and morphological operations.
This unique workflow allows artists to carefully art-direct the final
look instead of relying on slower and more complex monolithic
turn-key solutions that attempt to produce the final high-quality
surface of the particles in a single step. Instead, our artists had fast
turn-around with small incremental steps that could easily be
modified, reverted, and precisely sculpt the desired look.

Figure 2. Surfacing of the base simulation, using a VDB level set as an
intermediate representation. This permits user-controlled morphological
operations for art direction, followed by fast adaptive meshing.

In practice, the VDB toolset is exposed as a collection of Houdini
nodes (SOPs) that allows artists a significant degree of flexibility
in combining the various techniques to manipulate the level set
surface. This toolset for processing the level set surface can be
grouped in three types of techniques. The first group of tools is

based on morphological operators like dilation, erosion, closing
and opening. They effectively allow the artist to fill holes, remove
small isolated particles, and sharpen, peak or blur surface details.
Next, are smoothing operators that are based on higher-order
differential properties of the level set. This includes mean-
curvature flow and Laplacian smoothing that perform second-
order smoothing operations. Finally, we use various types of
kernel-based convolution filters that can smooth (or sharpen)
surface details in a very computationally efficient way. Examples
hereof include Gaussian, mean-value and median-value 3D filters.

4. Level set to mesh conversion

After the high-resolution and quality level set surface was
produced, we applied an adaptive dual-contouring algorithm to
tessellate the surface with a mesh that best captures surface details
while limiting the polygon count. Since the Naiad simulation
domain only covered a portion of the ocean surface, it was tricky
to maintain a seamless blend across the boundary. The naïve
approach is to deform the large ocean plane with a procedural
ocean shader in Houdini, merge it with our liquid simulation, and
bake out a heavy per- frame polygonal model. Unfortunately, this
is computationally expensive, has a very large footprint on disk,
and the resolution would likely never be high enough for the
movie’s close-up shots.

Figure 3. Breakdown of the mesh generation. Liquid simulation as
particles (only displaying particles near interface) (A); numerical analysis
dictates procedural ocean displacement application, no displacement
(yellow), deferred until rendertime (blue) or baked into levelset (white)(B);
seamless application of ocean displacement (C); Additional geometric
elements per artistic demand, driven via simulation analysis (D)

Instead, we developed a hybrid approach to selectively apply (or
defer evaluation of) the ocean displacement shader. Clearly, it is
desirable to apply rendertime deformation to the ocean outside the
simulation domain. However, inside the domain proves to be more
complicated. Some ocean shader deformation must be applied
inside the domain, otherwise it is evident that there is no
correspondence to the outside motion. However, this deformation
cannot be applied uniformly, as collisions would no longer be
accurate and ballistics would exhibit strange mid-air behavior.

Therefore, the effect of the ocean shader was reduced or
eliminated in regions we identified via a weighted metric (level set
value, curvature, ballistics probability, obstacle proximity, etc).
Further, it was important to bake in this deformation to the

primary simulation level set, as every subsequent processing stage
depended on an accurate representation of the final geometry
(foam riding the surface, splash re-entry collisions, ripples, etc).

To resolve the seam, we selectively flattened the outskirts of the
simulation domain to match the un-deformed ocean plane. We
stored the flattening delta and importance mask as polygonal
vertex attributes in order to selectively apply the procedural ocean
shader at rendertime. Ultimately, we found this method very
successful; we retained our hard-earned simulation detail, the
simulation was successfully embedded in the procedural ocean,
and we could apply rendertime deformation at virtually infinite
resolution.

Additional data-driven rendertime deformations furthered the
complexity. We found that no simulator could capture the regions
of very high visual frequency that occur on the surface after
severe disturbance; hence we amplify the turbulence artificially.
We computed a temporal decay of the vorticity at the interface
(calculated via VDB operators, stored as another vertex attribute)
in order to drive regions of micro-detail displacement. Also, a
shallow-water solver assisted in providing action to unify the
simulation domain and the procedural ocean.

Figure 4. Additional micro-detail displacement added at rendertime,
driven by a temporal vorticity heuristic.

5. Ballistic splashes

We did not try to capture the entire behavior in one liquid
simulation, and secondary elements were completely decoupled
from the main simulation for maximum artistic control. We
analyzed the level set and velocity fields for important features
(curvature, local velocity deviation, divergence, computed via
VDB operators) in order to dictate the emission into wedged
particle/SPH ballistics simulations. Artists responded well to this
workflow, as they could quickly turn around high-detailed
particle-tendril simulations that were catered to each shot’s art
direction (as evidenced by character sheeting, dripping hair, etc),
and they were not bound to a restrictive fluid simulation domain.

This served us well to marry the ballistics and main simulation; as
upon splash re-entry, we emitted further ballistics in the air, as
well as utilized our 2D ripple solver to provide high frequency
details in concert with the splash. Near the interface, we injected
bubbles and particle foam using similar event-driven triggers. On
the surface, we transitioned into clustering bubble dynamics, via
constrained advection in VDB fields and local neighborhood
surface tension.

Further, since ballistics took up far less spatial real estate than the
main simulation, they could be rasterized into significantly higher-
resolution VDB level sets. Morphological/filtering operations are
very important with ballistics (to fill gaps/remove lumps), and we
devised a successive resolution schema to maximize detail prior to
extracting the adaptive mesh.

6. Volumetric elements

Highly turbulent events in the water (or air) triggered volumetric
churn and aeration (or mist), which we simulated in a fast gas
solver [Henderson 2012] with divergence control, explicit fluid
velocity, and low dissipation. Our gas toolset allowed for precise
control over every aspect of the simulation: easy flow fields,
creative control over emission, and even directly via
extracting/reinserting grids mid-simulation-step. For medium-
scale texture, bubbles were advected through the velocity fields
(often blended with other fields for control). We would often
adjust bubbles post-simulation in relation to the stereo camera rig,
to meet artistic goals and compose the space's 3D composition.

Many additional environmental volumetric elements were crafted
in collaboration with Lighting. To capture the mysterious haze
typical of underwater visibility, we created location-based volume
setups to assist in art-directing light penetration, depth attenuation
and hue-shifting, as well as artistic vignetting of the frame.
Further, we provided a flexible shader approach to underwater
god-rays, as that effect proved to be very camera specific. Of
course, no water would be complete without “crap in the water”;
millions of suspended particles and tiny plankton all at the whim
of the ocean’s currents, generated at rendertime.

Figure 5. Examples of volumetric elements: whitewater (A); refracted
aeration (yellow), foam (red), underwater churn (blue); gaseous mist (C)

7. Lighting and integration

All rendering was done in DreamWorks’ Reyes-based renderer via
a multipass solution and ultimately composited in Nuke.
Geometric elements included the main water mesh, ballistics
mesh (and other secondary meshes), large underwater bubbles,
crap in the water, and tiny droplets as particles. Volumetric
elements included surface foam, aeration, near-interface bubbles,
aerial mist, underwater haze, silt, god-rays, and whitewater
(suspended inside the meshes). We made much use of simulation
data in vertex attributes and extra volume fields for our shader
networks per flexibility in compositing. Rendering VDB volumes
proved very successful, as the hierarchical data structure is both
fast and memory efficient. FX prototyped the majority of the
shader networks, and Lighting/FX worked in unison for the final
composite.

Figure 6. A sampling of render passes that comprise the effect: graded
refraction (A), graded reflection (B), refracted volumetric elements (C),
graded aeration (D), graded whitewater (E), final composite (F)

References

HENDERSON, R. Scalable fluid simulation in linear time on shared
memory multiprocessors. 2012. ACM DigiPro Symposium.

MUSETH, K. VDB: High-resolution sparse volumes with dynamic
topology. 2013. ACM Transactions On Graphics 32, 3.

