
Geometric Texturing Using Level Sets
Anders Brodersen, Ken Museth, Member, IEEE,

Serban Porumbescu, and Brian Budge, Student Member, IEEE

Abstract—We present techniques for warping and blending (or subtracting) geometric textures onto surfaces represented by high-

resolution level sets. The geometric texture itself can be represented either explicitly as a polygonal mesh or implicitly as a level set.

Unlike previous approaches, we can produce topologically connected surfaces with smooth blending and low distortion. Specifically,

we offer two different solutions to the problem of adding fine-scale geometric detail to surfaces. Both solutions assume a level set

representation of the base surface, which is easily achieved by means of a mesh-to-level-set scan conversion. To facilitate our

mapping, we parameterize the embedding space of the base level set surface using fast particle advection. We can then warp explicit

texture meshes onto this surface at nearly interactive speeds or blend level set representations of the texture to produce high-quality

surfaces with smooth transitions.

Index Terms—Geometric texture mapping, parameterization, implicit surfaces, volume texturing, geometric modeling.

Ç

1 INTRODUCTION

WE present a novel 3D fine-scale explicit and implicit
geometry mapping technique based on level sets,

interpolation, and radial basis functions (Fig. 1). Our work is
motivated by the need to easily model fine geometric detail
in a convenient fashion. For years, the standard approaches
to increase geometric complexity have primarily been
2D texture [1], bump [2], and displacement mapping [3].
These techniques, while capturing a wide range of
geometric phenomena, are limited in the types of detail
they can represent. Kajiya and Kay [4] realized this early on
and introduced volumetric textures to represent more
topologically complex structures. Recently, the focus has
shifted toward more sophisticated volumetric and geo-
metric texturing approaches in an effort to capture a wider
range of complex geometric phenomena [5], [6], [7], [8].

Our contribution leverages the recent introduction of

DT-Grid data structures and algorithms [9] and the large

body of level set research to bridge the gap between existing

volumetric and explicit geometric mapping techniques. This

is achieved by providing a fast geometric mapping suitable

for modeling and previewing, as well as an implicit

mapping approach that complements existing explicit

mapping techniques (for example, [8]) by generating closed

smoothly blended surfaces. Our general approach uses an

implicit level set representation of both the base surface and

the texture geometry [10], [11], [12] (Fig. 2). This representa-
tion allows for robustness to topology changes during the
mapping, flexibility when defining the blend of the base
and texture geometry, and is amenable to high quality offset
surface generation (see Fig. 15 for a comparison of implicit
versus explicit offset surfaces). Additionally, level sets offer
a large body of advanced numerical techniques for easily
computing surface properties and performing arbitrary
deformations. In fact, as has been shown in previous work
[13], direct control of blended surface properties is easily
achievable with level sets. This high degree of robustness
and flexibility, however, comes at the price of increased
computational complexity when compared to purely ex-
plicit approaches. To address this issue, we have also
developed a fast semiimplicit technique that can conveni-
ently be used for near real-time previewing. It combines an
implicit level set representation of the base surface and an
explicit polygonal representation of the textures.

We assume that we are given a base surface as a compact
level set and a geometric texture either defined by a triangle
mesh or as a compact level set surface. If required,
conversion between triangle meshes and level sets can be
performed using a fast scan-conversion technique [14] or
marching cubes [15]. Given this geometry, our system
works as follows:

. First, the user manually outlines a patch on the base
level set, which defines the location of the geometric
textures. Given such a patch outline, we then
construct a parameterization of the space above the
patch. This effectively creates the mapping needed
to warp the texture into the space near our base level
set surface. The process of defining the patch and the
creation of the parameterization is described in
Section 2.

. Section 3 then presents a simple procedure that
maps the texture mesh onto the base level set at
nearly interactive rates.

. Alternatively, to produce a single topologically
connected surface with smooth blending between

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 1, JANUARY/FEBRUARY 2007 1

. A. Brodersen is with the Department of Computer Science, University of
Aarhus, IT-Parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
E-mail: rip@daimi.au.dk.

. K. Museth is with Lindköping University, Sweden and the University of
Aarhus, Denmark, Digital Domain, 300 Rose Avenue, Venice, CA 90292.
E-mail: museth@acm.org.

. S. Porumbescu and B. Budge are with the University of California, Davis,
1 Shields Ave., Davis, CA 95616.
E-mail: sdporumbescu@ucdavis.edu, budge@cs.ucdavis.edu.

Manuscript received 22 Aug. 2006; revised 27 Jan. 2007; accepted 7 May
2007; published online 4 June 2007.
Recommended for acceptance by R. Fedkiw.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0134-0806.
Digital Object Identifier no. 10.1109/TVCG.2007.70408.

1077-2626/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

the texture and base, the user can utilize a higher
quality implicit mapping. This is the topic of
Section 4.

1.1 Contributions

The techniques presented in this paper include the
following:

Implicit geometry mapping with smooth blending. We
complement existing explicit geometry mapping techniques
by using an implicit approach, which smoothly blends
mapped geometry to create closed surfaces suitable for
rendering and various surface property computation. We
do this using compact level set representations of the base
and texture surfaces. It is the first general texture space to
shell space mapping technique utilizing implicits that we
are aware of.

Fast semi-implicit geometry mapping. We also intro-
duce a near real-time semiimplicit mapping approach that
combines an implicit level set representation of the base
surface with an explicit polygonal representation of
mapped textures. This technique is useful as a preview
tool (prior to implicit mapping) and as a stand alone
method for mapping explicit geometry.

Flexible volumetric parameterization. We compute a
low-distortion parameterization with a minimum of user
interaction. Our parameterization is not dependent on prior
surface texture coordinates. Instead, it is based on a local
parameterization generated on the fly, using a simple and
easy to use point and click interface. Furthermore, our
parameterization is characterized by the distribution of a set
of particles, but is independent of the algorithm used to
distribute these particles. This means that the particles can
be distributed in a number of different ways, allowing for a
vast number of unique mapping effects. Finally, we include
results from a simple free-form variation of our mapping
technique where the texture warping is derived and
controlled by a deformable spline curve.

1.2 Related Work

Our work builds on level set, implicit surface modeling, and
volumetric and geometric texture research. A recent body of

work proposing various compact data structures and fast
algorithms for level set models [9], [16], [17], [18] is critical
to our work. We have chosen to base our texture mapping
technique on the “Dynamic Tubular Grid” (DT-Grid)
presented in [9]. This data structure has been shown to be
very CPU and memory efficient and allows us to represent
level set models of effective resolutions exceeding 1;0003

using less then 100 Mbytes.
Much effort has been put into deriving methods for

adding textures to unparameterized 3D models, specifically
implicit surfaces and level sets; these include vector field
driven texture synthesis [19] and methods based on
parameterizations of support surfaces of lower geometric
complexity [20], [21], [22]. These methods generally lack
flexibility and user control. Pedersen [23] presented an
interactive method to create a parameterization of implicit
surfaces by letting the user manually divide the surface into
rectangular and triangular texture patches. This method has
generally been considered state of the art since its
publication in 1995. Recently, Schmidt et al. presented a
local parameterization based on discrete exponential maps
(DEM) [24], producing a simple yet powerful interface for
texturing implicit surfaces, provided only that a local
parameterization is required.

Kajiya and Kay introduced the notion of volumetric
textures [4]. Their method utilizes volumetric data sampled
on a regular grid and traces rays through a shell volume on
a surface. Rays that intersect the shell are transformed to
texture space and traced through the sampled data grid.
Material properties were constrained across any region.
Neyret extended volume textures, allowing the use of
multiple different materials in a single region and objects of
different types to be tiled onto a surface [25]. Wang et al.
presented a generalization of displacement maps. For each
location in a grid surrounding the base surface, a distance is
computed to the geometric texture, called the mesostruc-
ture, for some discretization of all directions. Several other
variables are precomputed for rendering, including BRDF
information and local shadows [6]. Peng et al. [26] averaged
distance field functions to generate offset surfaces. Then, 3D
volumes are sliced into 2D textures, and the textures are
applied to various levels of the offset surface. The technique
allowed interactive rendering of the resultant volume. All of
these techniques map geometry by first 3D scan converting
models into a regular grid, which leads to data storage and
aliasing related issues.

Fleischer et al. proposed to use a cellular-texturing
technique to produce organic looking surface details [27].

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 1, JANUARY/FEBRUARY 2007

Fig. 1. Carving patterns into an irregular surface by subtracting a

geometric texture using the proposed technique.

Fig. 2. (a) Base geometry and (b) texture geometry used to create Fig. 1.

Although producing impressive results, their modeling
approach is not very intuitive due to a rather complicated
underlying biologically motivated simulation engine. Bhat
et al. demonstrated a volumetric extension of the image
analogies technique [7]. This allowed them to tile a surface
with semirepeatable patterns at high effective resolution.
The patterns do not need to be height fields and can
represent complex structures on the surface.

Recently, Shell Maps [8] generalized the notion of
volumetric textures by mapping explicit geometry without
converting models into regular grids. Shell maps are
invertible mappings between texture space and shell
space—the space near an object—that facilitate the transfer
of explicit geometry, procedural functions, and scalar fields
as fine scale detail near an object. The approach generates a
correspondence between texture space and shell space via a
tetrahedral tiling. Point location queries coupled with
barycentric mappings between corresponding tetrahedra
are used to transform objects between spaces. The technique
is powerful, but the resultant mappings are only C0

continuous at tetrahedral boundaries and can create
artifacts like the one shown in Fig. 12b. Furthermore, the
mapped geometry and the base mesh do not create a new
closed mesh, which can be problematic for applying
shaders over the entire surface. The level set approach
presented in this paper complements the explicit geometry
representation of Shell Maps by more naturally dealing
with sharp discontinuities and changes in topology neces-
sary to generate closed surfaces (when desired).

We present a novel technique for the mapping of
geometry onto surfaces. Although sharing some conceptual
similarities with other methods that map 2D textures (for
example, images, bump, or displacement maps) and
3D textures (that is, volumetric and geometric) onto meshes
there are some significant differences. Our technique can
map explicit geometry but can also treat geometry im-
plicitly, which allows us to create closed continuous meshes
(topological 2-manifolds). This nice property allows us to
define important surface properties like normals and
curvatures on the resulting surface. The method requires
no surface-wide parameterization, and our local parame-
terization only requires the user to select the region where
they want to map their geometry.

1.3 Notation

As a prelude to a more detailed discussion of our
techniques, we shall briefly introduce some terminology.
In this paper, the term geometry is used interchangeably for
both explicit meshes and implicit level sets. Assume we
wish to map a geometric texture A onto a base surface B.
We shall denote the explicit mesh representation of A as MA

and the implicit level set representation by �A. The
geometric representation of B is always implicit and will
therefore be denoted as �B. The embedding space of A (for
example, defined from its bounding box) will be called
texture space. The corresponding embedding space of A,
after it has been mapped onto B, is called patch space
(analogous to a portion of “shell space” in [8]). The semi-
implicit texture mapping then simply works by defining a
map of vertices of MA from texture space to patch space. In
contrast, the implicit texture mapping is based on a

resampling of �A into patch space, which amounts to
establishing a map from grid points in patch space to
texture space. Thus, both techniques are based on defining a
mapping between the two embedding spaces, but in
different directions (see Fig. 3).

2 PARAMETERIZING PATCH SPACE

Although the volumetric parameterization of texture space
is assumed known (for example, u ¼ x, v ¼ y, and w ¼ z),
we have to derive the warped parameterization of the
corresponding patch space. For this, we have developed a
number of techniques, based on an initial u, v parameter-
ization of a 2D patch of the base surface and using
Lagrangian tracker particles to sweep out u, v, and w in
the corresponding patch space. The specific distribution of
these tracker particles is created in different ways thereby
offering distinct features such as following the base surface
faithfully or lowering distortion for the resulting 3D texture
mapping. This flexibility is one of the strengths of our
system. In the following, we describe the common base for
our current particle distribution methods.

A common initial step for these mapping techniques is
the definition and parameterization of a 2D patch on the
base surface where the texture is to be applied. We define
this patch as a simple control quadrilateral1 on �B.
Constrained interaction with the vertices, Vi; i ¼ 1 . . . 4, of
this control quadrilateral is easily implemented since
projections of Vi onto �B amounts to the closest point
transform Vi � �BðViÞr�BðViÞ. This is a consequence of our
requirement that the level set �B must be represented by a
signed distance function. This control quadrilateral is
parameterized using a technique similar to Pedersen’s
[23]. In short, approximate geodesics are first computed

BRODERSEN ET AL.: GEOMETRIC TEXTURING USING LEVEL SETS 3

Fig. 3. The semi-implicit method uses a direct correspondence
between grid points in patch space and texture space. For a given
point xt, the corresponding eight surrounding points in texture space are
found. Weights are computed from these eight points, and the weights
are applied in a trilinear interpolation in patch space. The implicit
method uses the correspondence between points in patch space and
texture space to solve for the weights of a radial basis function. Patch
space can then be sampled with xps, finding corresponding points in
texture space using the radial basis function. Finally, a trilinear
interpolation on the texture volume is used to find the distance value.

1. Note that this is not a regular planar quadrilateral since the edges are
constrained to lie on the base surface.

between the vertices V1 and V2, V2 and V3, V3 and V4, and V1

and V4. These edges are then subdivided evenly with a
resolution determined by the roughness of the surface2 and
assigned u, v coordinates. Next, u and v are swept into the
interior of the quadrilateral by means of defining a 2D grid
of isoparametric curves of approximate geodesics connect-
ing the subdivided edges with each curve corresponding to
a unique u or v value. At each of the grid points of this 2D
isoparametric grid, we place a Lagrangian tracker particle,
that is, an infinitely small and massless particle, each
associated with a unique u, v, w coordinate. The u and v
values are obtained from the two curves intersecting at that
point, and the w value is set to zero. In the following, we
refer to these Lagrangian tracker particles as patch particles
or just particles. The position of the patch particles are then
optimized to reduce texture distortion. This is achieved by
means of a simple constrained mass-spring model [28],
where particles on the boundary curves of the patch
quadrilateral are fixed, and the remaining interior particles
are restricted to lie on the base surface.

Surface conforming parameterization. Once the patch
particles are generated on the base surface, we propagate
them along the gradient field of �B until they reach a
desired offset (that is, level of �B). The w texture coordinate
for the advected particles is then defined to be 1. In the case
of the implicit mapping described in Section 4, it is often
necessary to have intermediate layers of particles with
0 < w < 1. This is obtained by distributing a number of
particles evenly on the line segment between each advected
particle and its corresponding particle on the surface using
linear interpolation to determine the w value. Fig. 4
illustrates the particle set distributed for a single patch
using this method. Note that even though �B is defined as a
signed distance function, two particles with the same w
coordinate will generally not lie at the same distance away
from B (unless w ¼ 0). This is a consequence of the fact that
the gradients are, strictly speaking, not defined at points
that have more than one closest point transform to B since

here, �B is only C0. This occurs along the medial-axis of B
and numerically manifests itself as jr�Bj � 1 when using
central finite differences to compute the gradient. This has
the desired feature that although the advected particles
might reach other particles, they will never cross paths.3 As
the particles generated by this method are generally not
uniformly distributed in patch space, this can lead to
significant distortion of the geometric texture. We note that
depending on the application, this may or may not be a
desirable feature.

By distributing the tracker particles, as outlined above,
we end up with a mapping that essentially resembles shell
mapping [8]. Consequently, this distribution scheme is
hampered by most of the limitations of Shell Maps, in
particular, the sensitivity of the mapping with respect to the
curvature of the base surface (see Section 5). However, one
of the main strengths of our method is the flexibility with
respect to distributing the tracker particles. We next present
two alternative particle distribution schemes that offer
different and improved properties of the resulting geo-
metric texture mapping.

Reduced distortion level set parameterization. The
problem with the previous particle distribution method is
the (implicit) dependence of the curvature of the base
surface. As the tracker particles are advected away from the
surface in a direction normal to the surface, small
irregularities in the surface can cause severe distortion of
the texture. This is due to the fact that particles will
typically move closer together in concave regions and away
from each other in convex regions. To mend this, we
introduce a particle distribution scheme with a stronger
focus on the vertices of the user specified control quad-
rilateral. With this method, these vertices are the only
particles to be offset along the gradient field of �B. At
regular intervals, derived from the desired offset height and
the desired number of particle levels, a new level of
particles is created from the four advected control vertices.
We do this using the same technique as used for the
particles on the surface, only this time, we embed it on the
$th level set of �B, where $ is the (fictitious) time during
the propagation. The particles at this level are assigned a
w value $ divided by the desired offset height. The overall
result is a uniform parameterization of each discrete level in
the patch space, see Fig. 5, leading to geometric texture
mappings with significantly less distortion. This method
has an additional number of advantages over the first
particle distribution method. First, as a new set of particles
are generated at the individual levels, the number of
particles at each level are independent. Thus, if the surface
area of the patch changes with the distance to the base
surface, we can adjust the number of particles generated at
each level to maintain a desired particle density, thereby
enabling a sufficient sampling of each level. Furthermore,
we can optionally let the user specify the direction along
which each control vertex is offset rather than forcing it to
be in the normal direction. The effect of this is depicted in
Fig. 6. By allowing the user to specify the offset direction,
we add an extra level of control over the final result. This
allows, for example, the user to control the distortion of a
texture with a large offset in the w direction on a highly

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 1, JANUARY/FEBRUARY 2007

Fig. 4. The surface conforming parameterization propagates the ðu; vÞ
texture coordinates using a Lagrangian advection method. The particles

roughly follow the normal direction, and the time of arrival is used as the

third texture coordinate w.

2. As we assume �B is regularly sampled with dx ¼ dy ¼ dz, keeping the
sample distance below dx guarantees a sufficient sampling. If, however, the
surface is smooth, a lower sample rate is often sufficient.

3. Numerical round-off errors and inaccuracies in the finite difference
potentially breaks this guarantee, although such particles are still
guaranteed to remain close together.

curved surface, as seen in Fig. 6. We have used this extra
control in several examples in the following sections, most
notably in Fig. 12a.

The difference between the (initial) surface conforming
parametrization and the new low-distortion parameteriza-
tion is illustrated in Fig. 8. This example clearly shows how
the mapping based on individually advected particles
(Fig. 8a) follows the local curvature of the base surface
more closely than the mapping based on uniformly
distributed particles (Fig. 8b), whereas the latter reduces
the overall distortion of the mapped geometry.

Spline advection. The two particle distribution schemes
outlined above both rely on the distance transform of the base
surface (that is, the level set �B) to respectively propagate the
particles in the patch space. This effectively means that
texture information is propagated in a fixed direction away
from the base surface. To add more flexibility, we have
developed a third parameterization scheme where the
particles are propagated along a spline curve originating at
the center of the patch. It works as follows: As with the
previous distribution schemes, we start by generating the
particles on the base surface, assigningu, v-coordinates to each
particle. The particles are then propagated in small steps in
the direction defined by the spline curve. At each step, the
particles are furthermore rotated around the current spline
point to align with the tangent of the curve at that point, see

Fig. 7. The points are rotated by an angle corresponding to the
angle between the tangent to the spline at the previous point
and the tangent to the spline at the current point around the
axis perpendicular to both tangents. As in the previous
methods, copies of the particles are saved at regular intervals,
and a w-coordinate, derived from the normalized distance
traveled along the spline, is assigned to each particle. An
example mapping generated with this technique is shown in
Fig. 9.

We note that during the propagation of the particles
along the spline curve, care must be taken to avoid particles
crossing paths. This would potentially lead to nonmono-
tonic interpolations of the corresponding texture coordi-
nates, which in turn result in inconsistent texture mappings.
One possible solution to this problem is to treat the
advancing particles as small spheres and apply continuous
collision detection algorithms [29] to ensure that particles do
not cross. Continuous collision detection algorithms, even
though more difficult to implement, offer several advan-
tages over their discrete counterparts. Most notable are their
ability to compute the time of first contact versus the
discrete approach of simply sampling an object’s trajectory
and reporting intersections (small fast-moving objects could
pass through each other).

As a final remark we note that both the surface
conforming and the low distortion parameterization as-
sume that �B is defined throughout the patch space. Since
we employ a very storage-efficient level set representation
of �B, [9], distance information is only stored in a narrow
tube of B. Hence, as a prelude to the parameterization
methods outlined above, we first sweep out distances from
this narrow tube to the remaining patch space (which is
typically a very small subspace of the bounding volume of
B). This has been implemented very efficiently using the
fast sweeping method [30], which has linear time complexity
in the number of voxels in the patch space.

3 NEAR REAL-TIME SEMI-IMPLICIT MAPPING

We have developed a simple and efficient semiimplicit
technique, which can be used as a “preview mode” for our
implicit mapping to be described in the next section. The
semiimplicit method maps an (explicit) polygonal mesh,

BRODERSEN ET AL.: GEOMETRIC TEXTURING USING LEVEL SETS 5

Fig. 6. Specifying a different direction for the particles to evolve along
adds extra flexibility to the parameterization. The white particles are
obtained by specifying a custom direction of evolution, parallel to the
normal at the center point, at both control vertices. The orange particles
correspond to the surface conforming distribution.

Fig. 5. The low-distortion parameterization can be thought of as uniform

layers of an onion. The particles are advected as with the surface

conforming parameterization, but then they are relaxed to give each

level a uniform parameterization.

Fig. 7. Parameterization of a patch (simplified to 2D) using the spline

advection parameterization. Note how the particles move faster or

slower depending on the curvature of the spline curve.

MA, onto the implicit base surface, �B, by warping the
vertices of MA in texture space into patch space using fast
trilinear interpolation. The mesh connectivity is left un-
changed. This technique, as well as the implicit technique,
can be used in combination with any of the parameteriza-
tion methods described in Section 2.

The semiimplicit mapping makes use of the fact that the
patch particles form a semiregular 3D lattice in texture
space—see Fig. 10a. By this, we mean that, in texture space,
the particles are distributed into regularly spaced levels in
the w direction. Each of these levels consists of a 2D regular
grid of particles, but the number of particles need not be the
same at all levels (see Fig. 10 for a 2D example). Since the
texture value associated with each particle is given by their
position in patch space, we can define a mapping

�t!pðxtÞ ¼ xp of a vertex xt ¼ ðxu; xv; xwÞ 2MA as a trilinear

interpolation of the particle texture values. As the number

of particles may not be the same at each level in the patch

space, we need to apply the interpolation in a specific order:

We first interpolate at the two levels located immediately

above and below the vertex in texture space, followed by an

interpolation in between the levels. Fig. 10 illustrates this:

First, the patch space position of the blue dots is obtained

from interpolation along the green line segments. Next, we

interpolate the values (patch space position) of the blue dots

along the yellow line to get the patch space position of the

vertex (red dot). Because each particle level form a regular

2D grid and the levels are uniformly spaced, finding the

interpolants is a constant time operation. Thus, calculating

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 1, JANUARY/FEBRUARY 2007

Fig. 8. (a) Mapping a geometry texture to a bumpy part of the bunny using the surface conforming parameterization. (b) Using the low distortion

parameterization.

Fig. 9. The three images show a horse with wings mapped onto it in three different postures using the spline-based particle distribution scheme.

the patch space position of a single vertex is also a constant
time operation.

We briefly note that the proposed mapping is somewhat
reminiscent of the free-form deformation technique pre-
sented by Sederberg et al. [31]. The main difference is that
our scheme can handle semiregular samplings and is
strictly bounded to the patch space. These properties are
very important for our application and are not shared by
the higher order interpolation proposed in [31]. Fig. 5 in [31]
clearly illustrates that geometry is not bounded to the
control polygon, which in our application would result in
textures mappings that are not explicitly confined to the
base surface.

4 HIGH-QUALITY IMPLICIT MAPPING

The implicit mapping allows us to warp and subsequently
blend level set representations of both the geometric texture
and base surface. We use radial basis functions to perform
our mapping. The algorithm is given as follows. First, we
define a regular 3D grid, bounding the region of space
spanned by the patch particles. We call this the embedding
volume. The resolution of this grid is chosen to match the
resolution of the grid on which the texture level set is
sampled in texture space. Next, we define a mapping from
the patch space into the texture space by means of radial
basis function interpolation. This essentially allows us to
resample our texture geometry in patch space. More
specifically, for each grid point xp in the embedding
volume, we map it to texture space via the radial basis
function, resulting in the point xt. We then use the point xt
to perform an interpolation4 on the texture volume, thereby
getting the desired distance value. Once all points in the
grid are assigned a distance value, the embedding volume
will contain a warped instance of the texture geometry.

The method we use for our radial basis function is
similar to that of Dinh et al. [32], which is a good candidate
because of its robustness with respect to irregularities of the
sample points. Furthermore, it adds flexibility due to the
fact that it allows for both strict interpolation, as well as

approximation, simply by varying a parameter ð�iÞ. For the
sake of completeness, we will summarize this technique
below.

Assume the patch particles have Cartesian coordinates
fpi; i ¼ 1 . . .ng and texture coordinates fki; k ¼ u; v; w; i ¼
1 . . .ng, as described in Section 2. Now, we wish to establish a
mapping from Cartesian coordinates in patch space to texture
coordinates in texture space, �p!t. The key idea is to split the
mapping into three independent mappings:

�p!tðxpÞ ¼ xt)
�p!t;uðxpÞ ¼ xu
�p!t;vðxpÞ ¼ xv
�p!t;wðxpÞ ¼ xw

with each of the texture mapping functions, �p!t;k,
expressed as a sum of weighted radial basis functions:

�p!t;kðxpÞ ¼ PkðxpÞ þ
Xn
i¼1

!k;i’ðjxp � pijÞ; ð1Þ

where ’ðxpÞ is a radially symmetric basis function; n is the
number of basis functions; pi is the center of the ith basis;
!k;i are the weights for the ith basis for texture coordinate k;
and PkðxpÞ ¼ �k;0xx þ �k;1xy þ �k;2xz þ �k;3 is a polynomial
spanning the null space of the basis function. Similar to that
in [32], we center a basis function at each patch point.

To find the weights, !k;i, and polynomial coefficients,
�k;j ¼ f�k;0; �k;1; �k;2; �k;3g for each mapping, k ¼ fu; v; wg,
we apply (1) to each of the patch points. Since we already
have assigned a k coordinate to each patch point, this leads
to a linear system of nþ 4 equations with nþ 4 unknowns:

’ðjp1 � p1jÞ þ �1 � � � ’ðjp1 � pnjÞ p1 1

..

. ..
. ..

. ..
.

’ðjpn � p1jÞ � � � ’ðjpn � pnjÞ þ �n pn 1
p1;x � � � pn;x 0 0
p1;y � � � pn;y 0 0
p1;z � � � pn;z 0 0
1 � � � 1 0 0

2
6666666664

3
7777777775

!k;1

..

.

!k;n
�k;0
�k;1
�k;2
�k;3

2
6666666664

3
7777777775

¼

k1

..

.

kn
0
0
0
0

2
6666666664

3
7777777775

:

ð2Þ

After solving this linear system for each k ¼ fu; v; wg, the
resulting f!k;i; �k;jg and are next backsubstituted into (1) to
compute u, v, and w coordinates on the 3D grid in patch
space. The resampled texture level set is then simply
computed by interpolation in the texture space.

The � values on the diagonal of the matrix in (2) allow us
to control the smoothness of the mapping. As previously
mentioned, each particle, pi with position xp;i maps to a
specific position in the texture space xt;i. By adding the �i
values to (2), we can relax this correspondence leading to
the following inequality: j�p!tðxp;iÞ � xt;ij � �i, where the
constant �i is deducted from �i. The larger �i is, the larger �i
will be. Also, if �i is zero, then so is �i. As the � values
increase, the interpolation between the sample values

BRODERSEN ET AL.: GEOMETRIC TEXTURING USING LEVEL SETS 7

Fig. 10. Illustrating the semiimplicit mapping on a patch set with a
different number of particles at each level. To get the position of a given
vertex (red dot) in patch space (b) given its position in texture space (a),
we first interpolate along the green lines to get the patch space position
of the blue dots. These are then used to interpolate along the yellow line
to get the patch space position of the texture space vertex.

4. We typically employ trilinear, and occasionally tricubic, interpolation,
but essentially, any bounded interpolation scheme can be used.

becomes less restricted enabling a smoother interpolation,
and thereby also a smoother mapping. For the results in this
paper, we have typically used two different � values.
Particles on the interface (that is, particles with w ¼ 0) are
assigned small � values to ensure that the mapping follows
the interface closely. These values typically fall in the range
0.001 to 0.01. The remaining points are assigned a larger �
usually between 0.1 and 0.5 to ensure a smoother mapping
away from the interface.

Since the implicit mapping uses level set representations
for both the texture and the base geometry, we can easily
produce a single topologically connected surface by merging
and blending the two volumes. This can be achieved with
Boolean (constructive solid geometry (CSG)) operations like
union or difference of the two level sets. This, in turn, simply
amounts to a min/max operation of the distance fields
followed by a reinitialization in the resulting narrow band.
However, the result of Boolean CSG operations typically

create very visible C0 discontinuities along the intersection
seam. To further address this, we employ the techniques
described in [13] that performs localized mean curvature-
based smoothing in the vicinity of the intersection of the two
level sets. This approach allows for direct user control of
mean curvature and, thus, the smoothness, of the resulting
volume. Both the merging/CSG union and the smoothing of
the intersection are optional operators applied, if desired,
once the mapping is completed. Due to numerical issues, we
cannot guarantee that the base surface and the texture will
match up exactly. Thus, to ensure a sufficient overlap
between the two surfaces required to get a nice blending,
we push the texture slightly downwards by adding a small
offset to the w texture coordinate.

Fig. 11 shows a torus with several spikes mapped onto it
using this technique. Figs. 11b and 11c shows a close up of
the intersection of the torus and a single spike, one with the
merging and blending performed, Fig. 11c, and one with-

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 1, JANUARY/FEBRUARY 2007

Fig. 11. Mapping a number of spikes onto a torus. The closeups of a single spike shows the difference between not applying the CSG union (b) and

applying the CSG union, as well as the blending of the intersection (c). Notice the discontinuity in the shading in (b), which is a result of the spike and

torus being separate geometries. Merging (and blending) the two surfaces resolves the issue (c).

out, Fig. 11b. The texture maps are shaded isocontours of a
Euclidian distance field , computed by solving the Eikonal
equation, jrs j ¼ 1, where rs denotes the gradient pro-
jected on the surface, and ¼ 0 at the lower left spike. Since
the surfaces in Fig. 11b have not been merged to form a
single topologically connected surface, the resulting proce-
dural texture mapping is discontinuous along the intersec-
tions. An alternative approach is of course to use procedural
volumetric textures defined in the embedding space of the
surfaces like in [33]; however, such techniques severely
limits the sizes and resolutions of the models.

One potential issue with using radial basis function
interpolation as just described is that the mapping is no
longer guaranteed to be one to one but could potentially be
one to many. That is, two or more points in patch space may
potentially map onto the same point in texture space. We
have, however, not observed any artifacts related to this in
practice.

5 RESULTS AND APPLICATIONS

Fig. 12 shows an example of mapping a geometric texture
onto an object with a sharp edge. Due to the underlying
parameterization of shell space, which is based on an offset
surface generated by offsetting the base mesh vertices in the
direction of the vertex normals, the object mapped using the
shell-mapping technique in [8], Fig. 12b is severely
distorted. As our technique allows a guaranteed uniform
distribution of the patch points, our mapping, Fig. 12a,
guarantees a smooth mapping, even across such sharp
edges. Although the distortion minimization technique
presented in [34] can help reduce the distortion in the case
of shell mapping, it cannot completely resolve the problem
due to the linear interpolation in shell space. The only way
to completely resolve this problem is to generate a smoother
offset surface, which is exactly what our approach does. As
for the performance of the two techniques, both mappings
were done in roughly the same time, which is in less than
one second.

One major problem with using regularly sampled implicit
surfaces is the memory requirements of the 3D grid, which
imposes a problematic limit at high and useful resolutions.
This is the primary reason for using the DT-grid, which allows

us to use significantly higher volume resolutions. The large
dragon in Fig. 13 has an effective resolution of 512� 244�
350 and all of the 12 “baby” dragons are made using the same
resolution.

Although the two mapping schemes presented in
Sections 3 and 4 produce almost visually identical results
in many cases, they are in many ways very different
methods offering a different set of features in addition to
the obvious difference in the geometric representation of the
texture. The most important feature of the semiimplicit
method is its speed. Although the time complexity of the
implicit method scales with the number of particles times
the number of voxels in the embedding volume, the
semiimplicit mapping is linear in the number of vertices
on the texture geometry. The dragon in Fig. 12a contains
more than 400,000 vertices and was mapped in less than a
second using the semi-implicit method. Although the
semiimplicit method is often capable of producing good
results relatively fast, the implicit method offers some
distinct benefits. Most importantly, since both the texture
and base surface are represented using level sets, we can
readily produce a simple topologically connected surface by
means CSG operations—either prior to a mesh extraction or
alternatively during direct ray casting. Furthermore, we can
apply a smoothing operation (see [13]) on the intersection of

BRODERSEN ET AL.: GEOMETRIC TEXTURING USING LEVEL SETS 9

Fig. 12. Mapping a dragon onto a sharp corner using (a) our new geometric texture mapping technique (semi-implicit mapping) and (b) using the

technique in [8]. Both mappings were done in less than one second.

Fig. 13. Mapping a number of small dragons onto a mother dragon using

the proposed technique.

the base surface and the warped texture, if a smooth
intersection with continuous normals is desired. Another
advantage of the radial basis function interpolation is that it
is significantly less sensitive to the distribution of the patch
points. If the base surface has many high-frequency
features, these features will directly influence the result of
an explicit mapping. On the other hand, the implicit
mapping allows for direct control of the smoothness
through the parameters �i entering the linear system in
(2). By increasing �i, the implicit mapping will retain the
ability to produce a smooth mapping while still allowing for
lower frequency features of the base surface. Also, even
though the semiimplicit mapping is only C0, the implicit
mapping allows for multiple orders of continuity, although
the exact order is determined by the chosen basis function.
In our tests, we have seen the best results when using
fðrÞ ¼ r as our basis function. Still, the implicit mapping is
much slower than a semiimplicit scheme. Mapping a single
model takes 20-30 seconds for the two latches in Fig. 16
using 280 particles and an embedding volume of four
million voxels for the small latch and 660 particles and
5.6 million voxels for the larger. Mapping times vary
between 4-5 minutes per baby dragon in Figs. 13 (and 14)
using 3-400 particles and an embedding volume of 20-
30 million voxels.

Another benefit of our implicit approach is that we can
easily map new objects onto previously mapped objects.
Fig. 16 shows two latches and several bunnies mapped onto
a base surface and a previously mapped bunny. To achieve
a similar result, Shell Maps would have to fuse the two
bunnies together, generate new u, v coordinates, and finally
create a new offset surface.

Using the signed distance of the level set function for
generating offset surfaces offers several advantages. First of
all, the further we move away from the base surface, the
smoother the offset surface becomes. This means that the
influence of high-frequency details in the base geometry
decreases away from the surface, resulting in smoother
looking results, as shown in Fig. 12a. Previous approaches
have employed explicit geometry representations, which
can lead to problematic self-intersections of the dilated
offset surfaces. Consequently, these methods have been
limited to rather small offsets, which in turn only allows for
the mapping of small geometric textures. This self-intersec-
tion problem is illustrated in Fig. 15, where two offset
surfaces are generated from the bunny model using,
respectively, level sets and the technique presented in Shell
Maps [8]. It should be evident from this simple example
that our current method is significantly more robust with
surface offsets. The small bunnies in Fig. 16 is an example of
mappings using larger offsets (although our method allows
for even larger offsets).

6 CONCLUSIONS AND FUTURE WORK

We have presented fast and flexible techniques for warping
and blending (or subtracting) geometric details, in the form
of a geometric texture, onto level set surfaces. These
techniques are similar in nature to the shell-mapping
technique, though we have eliminated some of the limita-
tions of the shell-mapping approach. Our current approach
is based on using implicit geometry, which makes it easy to
merge the base and texture geometry into a single
topologically connected object, as well as smoothing the
intersection between the base and texture geometry
guaranteeing a smooth surface with smooth normals.
Furthermore, our mapping employs a flexible particle-
based parameterization. As the parameterization is char-
acterized by the distribution of the particles, we can change

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 1, JANUARY/FEBRUARY 2007

Fig. 14. Closeup of a single one of the baby dragons in Fig. 13. Notice

the high level of detail and topological change that results from blending.

Fig. 15. The offset on the left is a natural result of the level set’s implicit

representation. On the right, we see an explicit polygonal offset (note the

degeneracies in concave regions) using the method proposed in Shell

Maps [8].

Fig. 16. Recursive mapping: mapping a bunny onto another bunny,

which then again has several smaller bunnies mapped onto it. The

middle bunny is “held onto” the bigger bunny using a couple of metal

latches that is in fact texture-mapped cuboids.

the parameterization by changing the way the particles are
distributed. To demonstrate this flexibility, we have
presented three different methods for distributing the
particles including a method that reduces the overall
texture distortion.

Although the semiexplicit mapping proposed in this
paper is very fast, the implicit mapping is rather slow. The
problem is that the speed of the implicit mapping depends
not only on the size of the volume it is being mapped into
but also on the total number of particles defining the
parameterization. We are currently considering a different
approach to address this issue. One idea is to replace the
current global radial basis functions with functions that
have only local support. Another interesting approach
would be to only resample the level set of the geometric
texture in a local neighborhood of its surface. However, this
idea is far from simple, and so far, we have not been able to
devise a robust algorithm.

Another interesting idea for future work is to replace the
2D parametrization technique of Pedersen [23] with DEM in
[24]. The latter approach seems more intuitive and simpler
to use from an artist’s point of view.5

ACKNOWLEDGMENTS

The authors would like to thank Michael Nielsen and other
members of the Graphics Group at Linköping University
for allowing us to use their software—in particular, the DT-
Grid implementation. Additional thanks goes to Ola
Nilsson for assistance with rendering and Louis Feng for
help in generating illustrations. Finally, we would like to
acknowledge our reviewers for many good comments that
helped to improve our paper.

REFERENCES

[1] J.F. Blinn and M.E. Newell, “Texture and Reflection in Computer
Generated Images,” ACM Comm., vol. 19, no. 10, pp. 542-547, 1976.

[2] J.F. Blinn, “Simulation of Wrinkled Surfaces,” Proc. ACM
SIGGRAPH ’78, pp. 286-292, 1978.

[3] R.L. Cook, “Shade Trees,” Proc. ACM SIGGRAPH ’84, pp. 223-231,
1984.

[4] J.T. Kajiya and T.L. Kay, “Rendering Fur with Three Dimensional
Textures,” Proc. ACM SIGGRAPH ’89, vol. 23, no. 3, pp. 271-280,
July 1989.

[5] Y. Chen, X. Tong, J. Wang, S. Lin, B. Guo, and H.-Y. Shum, “Shell
Texture Functions,” ACM Trans. Graphics, vol. 23, no. 3, pp. 343-
353, Aug. 2004.

[6] X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y. Shum,
“Generalized Displacement Maps,” Proc. Eurographics Symp.
Rendering, pp. 227-233, 2004.

[7] P. Bhat, S. Ingram, and G. Turk, “Geometric Texture Synthesis by
Example,” Proc. Eurographics/ACM SIGGRAPH Symp. Geometry
Processing (SGP ’04), pp. 41-44, 2004.

[8] S.D. Porumbescu, B.C. Budge, L. Feng, and K.I. Joy, “Shell Maps,”
Proc. ACM SIGGRAPH ’05, vol. 24, no. 3, pp. 626-633, 2005.

[9] M.B. Nielsen and K. Museth, “Dynamic Tubular Grid: An Efficient
Data Structure and Algorithms for High Resolution Level Sets,”
J. Scientific Computing, vol. 26, no. 3, pp. 261-299, 2006.

[10] S. Osher and J.A. Sethian, “Fronts Propagating with Curvature-
Dependent Speed: Algorithms Based on Hamilton-Jacobi For-
mulations,” J. Computational Physics, vol. 79, pp. 12-49, 1988.

[11] J.A. Sethian, Level Set Methods and Fast Marching Methods, second
ed. Cambridge Univ. Press, 1999.

[12] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces. Springer, 2002.

[13] K. Museth, D. Breen, R. Whitaker, and A. Barr, “Level Set Surface
Editing Operators,” Proc. ACM SIGGRAPH ’02 (ACM Trans.
Graphics), vol. 21, no. 3, pp. 330-338, July 2002.

[14] S. Mauch, “Efficient Algorithms for Solving Static Hamilton-Jacobi
Equations,” PhD dissertation, California Inst. of Technology, 2003.

[15] W.E. Lorensen and H.E. Cline, “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,” Computer Gra-
phics, vol. 21, no. 4, pp. 163-168, July 1987.

[16] F. Losasso, F. Gibou, and R. Fedkiw, “Simulating Water and
Smoke with an Octree Data Structure,” ACM Trans. Graphics,
vol. 23, no. 3, Aug. 2004.

[17] B. Houston, M. Nielsen, C. Batty, O. Nilsson, and K. Museth,
“Hierarchical RLE Level Set: A Compact and Versatile Deform-
able Surface Representation,” ACM Trans. Graphics, vol. 25, no. 1,
pp. 1-24, 2006.

[18] S.F. Frisken, R.N. Perry, A.P. Rockwood, and T.R. Jones,
“Adaptively Sampled Distance Fields: A General Representation
of Shape for Computer Graphics,” Proc. ACM SIGGRAPH ’00, pp.
249-254, 2000.

[19] G. Turk, “Texture Synthesis on Surfaces,” Proc. ACM SIGGRAPH
’01, pp. 347-354, 2001.

[20] M. Tarini, K. Hormann, P. Cignoni, and C. Montani, “Polycube-
Maps,” ACM Trans. Graphics, vol. 23, no. 3, pp. 853-860, 2004.

[21] R. Zonenschein, J. Gomes, L. Velho, L. de Figueiredo, M. Tigges,
and B. Wyvill, “Texturing Composite Deformable Implicit
Objects,” Proc. Int’l Symp. Computer Graphics, Image Processing,
and Vision (SIBGRAPHI ’98), p. 346, 1998.

[22] R. Zonenschein, J. Gomes, L. Velho, and L. de Figueiredo,
“Controlling Texture Mapping onto Implicit Surfaces with Particle
Systems,” Proc. Third Int’l Workshop Implicit Surfaces, pp. 131-138,
1998.

[23] H.K. Pedersen, “Decorating Implicit Surfaces,” Proc. ACM
SIGGRAPH ’95, pp. 291-300, 1995.

[24] R. Schmidt, C. Grimm, and B. Wyvill, “Interactive Decal
Compositing with Discrete Exponential Maps,” ACM Trans.
Graphics, vol. 25, no. 3, pp. 605-613, 2006.

[25] F. Neyret, “Modeling, Animating, and Rendering Complex Scenes
Using Volumetric Textures,” IEEE Trans. Visualization and Com-
puter Graphics, vol. 4, no. 1, pp. 55-70, 1998.

[26] J. Peng, D. Kristjansson, and D. Zorin, “Interactive Modeling of
Topologically Complex Geometric Detail,” ACM Trans. Graphics,
vol. 23, no. 3, pp. 635-643, 2004.

[27] K.W. Fleischer, D.H. Laidlaw, B.L. Currin, and A.H. Barr,
“Cellular Texture Generation,” Proc. ACM SIGGRAPH ’95, pp.
239-248, 1995.

[28] X. Provot, “Deformation Constraints in a Mass-Spring Model to
Describe Rigid Cloth Behavior,” Proc. Graphics Interface Conf. (GI
’95), pp. 147-154, 1995.

[29] S. Hadap, D. Eberle, P. Volino, M.C. Lin, S. Redon, and C. Ericson,
“Collision Detection and Proximity Queries,” Proc. ACM SIG-
GRAPH ’04, p. 15, 2004.

[30] H. Zhao, “Fast Sweeping Method for Eikonal Equations,” Math. of
Computation, vol. 74, pp. 603-627, 2004.

[31] T.W. Sederberg and S.R. Parry, “Free-Form Deformation of Solid
Geometric Models,” Proc. ACM SIGGRAPH ’86, vol. 20, no. 4,
pp. 151-160, 1986.

[32] H.Q. Dinh, G. Turk, and G. Slabaugh, “Reconstructing Surfaces by
Volumetric Regularization Using Radial Basis Functions,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 10,
pp. 1358-1371, 2002.

[33] S. Worley, “A Cellular Texture Basis Function,” Proc. ACM
SIGGRAPH ’96, pp. 291-294, 1996.

[34] K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo, and
H.-Y. Shum, “Mesh Quilting for Geometric Texture Synthesis,”
ACM Trans. Graphics, vol. 25, no. 3, pp. 690-697, 2006.

BRODERSEN ET AL.: GEOMETRIC TEXTURING USING LEVEL SETS 11

5. For a single patch, our current approach requires the user to place four
particles on the surface, whereas an approach based on DEM would require
only two. Furthermore, changing the size or orientation of the patch
requires us to change the position of all four particles, as opposed to only
moving a single point around with the DEM approach.

Anders Brodersen received the MSc degree in
computer science from the University of Aarhus,
Denmark, in 2003 and is currently waiting to
defend his PhD dissertation. He is currently a
research assistant at the University of Aarhus,
Denmark. His research interests focus on geo-
metric modeling and real-time rendering. He is
also the cofounder of a small software company
(43D) specializing in architectural visualization,
where he is in charge of maintaining and

developing the 3D engine driving the company’s visualization software.

Ken Museth received the MSc degree in
physical chemistry and the PhD degree in
computational quantum dynamics from the Uni-
versity of Copenhagen in 1994 and 1997,
respectively. He is a full professor of computer
graphics at Linköping University, Sweden, and
an adjunct professor at Aarhus University, Den-
mark. From 1998 to 2003, he was a visiting
faculty member in the Chemical Physics Depart-
ment, then a research scientist in the Computer

Science Department at the California Institute of Technology. He has
also been a scientific consultant to the movie houses Digital Domain and
Rhythm & Hues, as well as worked on mission design and visualization
for NASA’s Jet Propulsion Laboratory. In 2003, he was appointed a chair
at Linköping University, where he is heading the Graphics Group. He
has published more than 50 papers, a significant portion of which are on
deforming geometry and level set methods. He is currently visiting
Digital Domain to work on fluid effects for the feature movie “Pirates of
the Caribbean: At Worlds End.” He is a member of the IEEE.

Serban Porumbescu received the bachelor’s
degrees in computer science engineering and
electrical engineering and the master’s and
PhD degrees in computer science from the
University of California, Davis. He completed a
stay as a visiting researcher at Sony Computer
Entertainment of America, where he focused
on real-time fluid simulations and dynamic
ambient occlusion for the Playstation 3. Cur-
rently, he is working at Nvidia as a member of

the OS X OpenGL driver team.

Brian Budge received the BS degree in mathe-
matics from the University of Utah and is
currently working toward the PhD degree in the
Department of Computer Science, working at
the Institute for Data Analysis and Visualization,
University of California, Davis. His research
interests involve computer-aided complexity
modeling and physically based rendering. He is
a student member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 1, JANUARY/FEBRUARY 2007

