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Abstract

This chapter describes level set techniques for extracting surface models from a

broad variety of biological volume datasets. These techniques have been incor-

porated into a more general framework that includes other volume processing

algorithms. The volume datasets are produced from standard 3D imaging de-

vices, and are all noisy samplings of complex biological structures with bound-

aries that have low and often varying contrasts. The level set segmentation

method, which is well documented in the literature, creates a new volume from

the input data by solving an initial value partial differential equation (PDE)

with user-defined feature-extracting terms. Given the local/global nature of

these terms, proper initialization of the level set algorithm is extremely im-

portant. Thus, level set deformations alone are not sufficient, they must be

combined with powerful pre-processing and data analysis techniques in order

to produce successful segmentations. This chapter describes the pre-processing

and data analysis techniques that have been developed for a number of segmen-

tation applications, as well as the general structure of our framework. Several

standard volume processing algorithms have been incorporated into the frame-

work in order to segment datasets generated from MRI, CT and TEM scans.

A technique based on moving least-squares has been developed for segmenting

multiple non-uniform scans of a single object. New scalar measures have been

defined for extracting structures from diffusion tensor MRI scans. Finally, a

direct approach to the segmentation of incomplete tomographic data using den-

sity parameter estimation is described. These techniques, combined with level

set surface deformations, allow us to segment many different types of biological

volume datasets.

0.1 Introduction

This chapter addresses the common problem of building meaningful 3D models

of complex structures from noisy datasets generated from 3D imaging devices.

In certain circumstances such data can be visualized directly [1, 2, 3, 4]. While

direct techniques can provide useful insights into volume data, they are in-

sufficient for many problems. For instance, direct volume rendering techniques

typically do not remove occluding structures, i.e., they do not allow one to “peel

back” the various layers of the data to expose the inner structures that might
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be of interest. They also do not generate the models needed for quantitative

study/analysis of the visualized structures. Furthermore, direct visualization

techniques typically do not perform well when applied directly to noisy data,

unless one filters the data first. Techniques for filtering noisy data are abundant

in the literature, but there is a fundamental limitation—filtering that reduces

noise tends to distort the shapes of the objects in the data. The challenge is

to find methods which present the best tradeoff between fidelity and noise.

Level set segmentation relies on a surface-fitting strategy, which is effective

for dealing with both small-scale noise and smoother intensity fluctuations in

volume data. The level set segmentation method, which is well documented

in the literature [5, 6, 7, 8], creates a new volume from the input data by

solving an initial value partial differential equation (PDE) with user-defined

feature-extracting terms. Given the local/global nature of these terms, proper

initialization of the level set algorithm is extremely important. Thus, level

set deformations alone are not sufficient, they must be combined with powerful

initialization techniques in order to produce successful segmentations. Our level

set segmentation approach consists of defining a set of suitable pre-processing

techniques for initialization and selecting/tuning different feature-extracting

terms in the level set algorithm. We demonstrate that combining several pre-

processing steps, data analysis and level set deformations produces a powerful

toolkit that can be applied, under the guidance of a user, to segment a wide

variety of volumetric data.

There are more sophisticated strategies for isolating meaningful 3D struc-

tures in volume data. Indeed, the so called segmentation problem constitutes

a significant fraction of the literature in image processing, computer vision,

and medical image analysis. For instance, statistical approaches [9, 10, 11, 12]

typically attempt to identify tissue types, voxel by voxel, using a collection of

measurements at each voxel. Such strategies are best suited to problems where

the data is inherently multi-valued or where there is sufficient prior knowledge

[13] about the shape or intensity characteristics of the relevant anatomy. Al-

ternatively, anatomical structures can be isolated by grouping voxels based on

local image properties. Traditionally, image processing has relied on collections

of edges, i.e. high-contrast boundaries, to distinguish regions of different types

[14, 15, 16]. Furthermore deformable models, incorporating different degrees

of domain-specific knowledge, can be fitted to the 3D input data [17, 18].
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This chapters describes a level set segmentation framework, as well as the

the pre-processing and data analysis techniques needed to segment a diverse

set biological volume datasets. Several standard volume processing algorithms

have been incorporated into framework for segmenting conventional datasets

generated from MRI, CT and TEM scans. A technique based on moving least-

squares has been developed for segmenting multiple non-uniform scans of a

single object. New scalar measures have been defined for extracting structures

from diffusion tensor MRI scans. Finally, a direct approach to the segmen-

tation of incomplete tomographic data using density parameter estimation is

described. These techniques, combined with level set surface deformations,

allow us to segment many different types of biological volume datasets.

0.2 Level Set Surface Models

When considering deformable models for segmenting 3D volume data, one is

faced with a choice from a variety of surface representations, including triangle

meshes [19, 20], superquadrics [21, 22, 23], and many others [18, 24, 25, 26,

27, 28, 29]. Another option is an implicit level set model, which specifies the

surface as a level set of a scalar volumetric function, φ : U 7→ IR, where U ⊂ IR3

is the range of the surface model. Thus, a surface S is

S = {s|φ(s) = k} , (1)

with an isovalue k. In other words, S is the set of points s in IR3 that composes

the kth isosurface of φ. The embedding φ can be specified as a regular sampling

on a rectilinear grid.

Our overall scheme for segmentation is largely based on the ideas of Osher

and Sethian [30] that model propagating surfaces with (time-varying) curvature-

dependent speeds. The surfaces are viewed as a specific level set of a higher-

dimensional function φ – hence the name level set methods. These methods

provide the mathematical and numerical mechanisms for computing surface

deformations as isovalues of φ by solving a partial differential equation on the

3D grid. That is, the level set formulation provides a set of numerical methods

that describes how to manipulate the greyscale values in a volume, so that the

isosurfaces of φ move in a prescribed manner (shown in Figure 1). This pa-

per does not present a comprehensive review of level set methods, but merely
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Figure 1a: Level set models represent

curves and surfaces implicitly using

greyscale images. For example an el-

lipse is represented as the level set of

an image shown here.

Figure 1b: To change the shape of the

ellipse we modify the greyscale values

of the image by solving a PDE.

introduces the basic concepts and demonstrates how they may be applied to

the problem of volume segmentation. For more details on level set methods see

[7, 31].

There are two different approaches to defining a deformable surface from a

level set of a volumetric function as described in Equation 1. Either one can

think of φ(s) as a static function and change the isovalue k(t) or alternatively fix

k and let the volumetric function dynamically change in time, i.e. φ(s, t). Thus,

we can mathematically express the static and dynamic model respectively as

φ(s) = k(t) (2a)

φ(s, t) = k. (2b)

To transform these definitions into partial differential equations which can be

solved by standard numerical techniques, we differentiate both sides of Equa-

tion 2 with respect to time t, and apply the chain rule:

∇φ(s)
ds

dt
=

dk(t)
dt

(3a)

∂φ(s, t)
∂t

+∇φ(s, t) · ds

dt
= 0. (3b)

The static Equation 3a defines a boundary value problem for the time-independent

volumetric function φ. This static level set approach has been solved [32, 33]

using “Fast Marching Methods”. However it inherently has some serious limi-

tations following the simple definition in Equation 2a. Since φ is a function (i.e.

single-valued), isosurfaces cannot self intersect over time, i.e. shapes defined

in the static model are strictly expanding or contracting over time. However,
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the dynamic level set approach of Equation 3b is much more flexible and shall

serve as the basis of the segmentation scheme in this paper. Equation 3b is

sometimes referred to as a “Hamilton-Jacobi-type” equation and defines an

initial value problem for the time-dependent φ. Throughout the remainder of

this paper we shall for simplicity refer to this dynamical approach as the level

set method – and not consider the static alternative.

Thus, to summarize the essence of the (dynamic) level set approach; let

ds/dt be the movement of a point on a surface as it deforms, such that it can

be expressed in terms of the position of s ∈ U and the geometry of the surface

at that point, which is, in turn, a differential expression of the implicit function,

φ. This gives a partial differential equation on φ: s ≡ s(t)

∂φ

∂t
= −∇φ · ds

dt
= ‖∇φ‖ F(s,n, φ, Dφ,D2φ, . . .) (4a)

F() ≡ n · ds

dt
, (4b)

where F() is a user-created “speed” term that defines the speed of the level set

at point s in the direction of the local surface normal n at s. F() may depend

on a variety of local and global measures including the order-n derivatives of

φ, Dnφ, evaluated at s, as well as other functions of s, n, φ and external data.

Because this relationship applies to every level set of φ, i.e. all values of k, this

equation can be applied to all of U , and therefore the movements of all the

level set surfaces embedded in φ can be calculated from Equation 4.

The level set representation has a number of practical and theoretical advan-

tages over conventional surface models, especially in the context of deformation

and segmentation. First, level set models are topologically flexible, they easily

represent complicated surface shapes that can, form holes, split to form multiple

objects, or merge with other objects to form a single structure. These models

can incorporate many (millions) of degrees of freedom, and therefore they can

accommodate complex shapes such as the dendrite in Figure 6. Indeed, the

shapes formed by the level sets of φ are restricted only by the resolution of the

sampling. Thus, there is no need to reparameterize the model as it undergoes

significant changes in shape.

The solutions to the partial differential equations described above are com-

puted using finite differences on a discrete grid. The use of a grid and discrete

time steps raises a number of numerical and computational issues that are im-

portant to the implementation. However, it is outside of the scope of this paper
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to give a detailed mathematical description of such a numerical implementa-

tion. Rather we shall provide a summary in a later section and refer to the

actual source code which is publicly available1.

Equation 4 can be solved using finite forward differences if one uses the

up-wind scheme, proposed by Osher and Sethian [30], to compute the spatial

derivatives. This up-wind scheme produces the motion of level set models

over the entire range of the embedding, i.e., for all values of k in Equation

2. However, this method requires updating every voxel in the volume for each

iteration., which means that the computation time increases as a function of

the volume, rather than the surface area, of the model. Because segmentation

requires only a single model, the calculation of solutions over the entire range

of iso-values is an unnecessary computational burden.

This problem can be avoided by the use of narrow-band methods, which

compute solutions only in a narrow band of voxels that surround the level set

of interest [34, 35]. In previous work [36] we described an alternative numerical

algorithm, called the sparse-field method, that computes the geometry of only

a small subset of points in the range and requires a fraction of the computation

time required by previous algorithms. We have shown two advantages to this

method. The first is a significant improvement in computation times. The

second is increased accuracy when fitting models to forcing functions that are

defined to sub-voxel accuracy.

0.3 Segmentation Framework

The level set segmentation process has two major stages, initialization and level

set surface deformation, as seen in Figure 2. Each stage is equally important

for generating a correct segmentation. Within our framework a variety of core

operations are available in each stage. A user must “mix-and-match” these

operations in order to produce the desired result [37]. Later sections describe

specialized operations for solving specific segmentation problems that build

upon and extend the framework.

1The level set software used to produce the morphing results in this paper is available

for public use in the VISPACK libraries at http://www.cs.utah.edu/∼whitaker/vispack.
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Figure 2: Level set segmentation stages – initialization and surface deformation.

0.3.1 Initialization

Because level set models move using gradient descent, they seek local solutions,

and therefore the results are strongly dependent on the initialization, i.e., the

starting position of the surface. Thus, one controls the nature of the solu-

tion by specifying an initial model from which the surface deformation process

proceeds. We have implemented both computational (i.e. “semi-automated”)

and manual/interactive initialization schemes that that may be combined to

produce reasonable initial estimates directly from the input data.

Linear filtering: We can filter the input data with a low-pass filter (e.g.

Gaussian kernel) to blur the data and thereby reduce noise. This tends

to distort shapes, but the initialization need only be approximate.

Voxel classification: We can classify pixels based on the filtered values of

the input data. For greyscale images, such as those used in this paper,

the classification is equivalent to high and low thresholding operations.

These operations are usually accurate to only voxel resolution (see [12] for

alternatives), but the deformation process will achieve sub-voxel results.

Topological/logical operations: This is the set of basic voxel operations

that takes into account position and connectivity. It includes unions or

intersections of voxel sets to create better initializations. These logical

operations can also incorporate user-defined primitives. Topological oper-

ations consist of connected-component analyses (e.g. flood fill) to remove

small pieces or holes from objects.

Morphological filtering: This includes binary and greyscale morpholog-

ical operators on the initial voxel set. For the results in the paper we
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implement openings and closings using morphological propagators [38, 39]

implemented with level set surface models. This involves defining offset

surfaces of φ by expanding/contracting a surface according to the follow-

ing PDE,

∂φ

∂t
= ±|∇φ|, (5)

up to a certain time t. The value of t controls the offset distance from

the original surface of φ(t = 0). A dilation of size α, Dα, corresponds to

the solution of Equation 5 at t = α using the positive sign, and likewise

erosion, Eα, uses the negative sign. One can now define a morphological

opening operator Oα by first applying an erosion followed by a dilation of

φ, i.e. Oαφ = Dα ◦ Eαφ, which removes small pieces or thin appendages.

A closing is defined as Cαφ = Eα ◦ Dαφ, and closes small gaps or holes

within objects. Both operations have the qualitative effect of low-pass

filtering the isosurfaces in φ—an opening by removing material and a

closing by adding material. Both operations tend to distort the shapes

of the surfaces on which they operate, which is acceptable for the initial-

ization because it will be followed by a surface deformation.

User-specified: For some applications it is desirable and easier for the

user to interactively specify the initial model. Here, the user creates a

Constructive Solid Geometry (CSG) model which defines the shape of

the initial surface. In Figure 3a the CSG model in blue is interactively

positioned relative to a Marching Cubes mesh extracted from the orig-

inal dataset. The CSG model is scan-converted into a binary volume,

with voxels simply marked as inside (1) or outside (0), using standard

CSG evaluation techniques [40]. An isosurface of the initialization vol-

ume dataset generated from the torus and sphere is presented in Figure

3b. This volume dataset is then deformed to produce the final result seen

in Figure 3c.

0.3.2 Level Set Surface Deformation

The initialization should position the model near the desired solution while

retaining certain properties such as smoothness, connectivity, etc. Given a
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a b c

Figure 3: (a) Interactively positioning a CSG model relative to a Marching

Cubes mesh. (b) Isosurface of a binary scan conversion of the initialization

CSG model. (c) Final internal embryo structures.

rough initial estimate, the surface deformation process moves the surface model

toward specific features in the data. One must choose those properties of the

input data to which the model will be attracted and what role the shape of the

model will have in the deformation process. Typically, the deformation process

combines a data term with a smoothing term, which prevents the solution from

fitting too closely to noise-corrupted data. There are a variety of surface-motion

terms that can be used in succession or simultaneously, in a linear combination

to form F(x) in Equation 4.

Curvature: This is the smoothing term. For the work presented here we

use the mean curvature of the isosurface H to produce

Fcurv(x) = H =
(
∇ · ∇φ

|∇φ|

)
. (6)

The mean curvature is also the normal variation of the surface area (i.e.,

minimal surface area). There are a variety of options for second-order

smoothing terms [41], and the question of efficient, effective higher-order

smoothing terms is the subject of on-going research [7, 42, 31]. For the

work in this paper, we combine mean curvature with one of the following

three terms, weighting it by a factor β, which is tuned to each specific

application.

Edges: Conventional edge detectors from the image processing literature

produce sets of “edge” voxels that are associated with areas of high con-
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trast. For this work we use a gradient magnitude threshold combined with

non-maximal suppression, which is a 3D generalization of the method of

Canny [16]. The edge operator typically requires a scale parameter and

a gradient threshold. For the scale, we use small, Gaussian kernels with

standard deviation σ = [0.5, 1.0] voxel units. The threshold depends on

the contrast of the volume. The distance transform on this edge map

produces a volume that has minima at those edges. The gradient of this

volume produces a field that attracts the model to these edges. The edges

are limited to voxel resolution because of the mechanism by which they

are detected. Although this fitting is not sub-voxel accurate, it has the

advantage that it can pull models toward edges from significant distances,

and thus inaccurate initial estimates can be brought into close alignment

with high-contrast regions, i.e. edges, in the input data. If E is the set

of edges, and DE(x) is the distance transform to those edges, then the

movement of the surface model is given by

Fedge(x) = n · ∇DE(x). (7)

Greyscale features—gradient magnitude: Surface models can also be

attracted to certain greyscale features in the input data. For instance, the

gradient magnitude indicates areas of high contrast in volumes. By fol-

lowing the gradient of such greyscale features, surface models are drawn

to minimum or maximum values of that feature. Typically greyscale fea-

tures, such as the gradient magnitude are computed with a scale operator,

e.g., a derivative-of-Gaussian kernel. If models are properly initialized,

they can move according to the gradient of the gradient magnitude and

settle onto the edges of an object at a resolution that is finer than the

original volume.

If G(x) is some greyscale feature, for instance G(x) = |∇I(x)|, where

I(x) is the input data (appropriately filtered—we use Gaussian kernels

with σ ≈ 0.5), then

Fgrad(x) = n · (±∇G(x)), (8)

where a positive sign moves surfaces towards maxima and the negative

sign towards minima.
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Isosurface: Surface models can also expand or contract to conform to

isosurfaces in the input data. To a first order approximation, the distance

from a point x ∈ U to the k-level surface of I is given by (I(x)− k) /|∇I|.
If we let g(α) be a fuzzy threshold, e.g., g(α) = α/

√
1 + α2, then

Fiso(x) = g

(
I(x)− k

|∇I|

)
(9)

causes the surfaces of φ to expand or contract to match the k isosurface

of I. This term combined with curvature or one of the other fitting terms

can create “quasi-isosurfaces” that also include other considerations, such

as smoothness or edge strength.

0.3.3 Framework Results

Figure 4 presents one slice from an MRI scan of a mouse embryo, and an iso-

surface model of its liver extracted from the unprocessed dataset. Figure 5

presents 3D renderings of the sequence of steps performed on the mouse MRI

data to segment the liver. The first step is the initialization, which includes

smoothing the input data, thresholding followed by a a flood fill to remove

isolated holes, and finally applying morphological operators to remove small

gaps and protrusions on the surface. The second (surface deformation) step

first involves fitting to discrete edges and then to the gradient magnitude. This

produces a significant improvement over the result in Figure 4. Figure 8a

presents several other structures that were segmented from the mouse embryo

dataset. The skin (grey) and the liver (blue) were isolated using computational

initialization. The brain ventricles (red) and the eyes (green) were segmented

with interactive initialization.

The same set of initialization and surface deformation steps may be com-

bined to extract a model of a spiny dendrite from the transmission electron

microscopy (TEM) scan presented in Figure 6a. An iso-surface extracted from

the scan is presented in Figure 6b. Figures 7 shows the results of the pro-

posed method compared to the results of a manual segmentation, which took

approximately 10 hours of slice-by-slice hand contouring. The manual method

suffers from slice-wise artifacts, and, because of the size and complexity of the

dataset, the manual segmentation is unable to capture the level of detail that

we obtain with the surface-fitting results. Manual segmentation can, however,

form connections that are not well supported by the data in order to complete
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Figure 4: (left) One slice of a 256×128×128 MR scan of a mouse embryo. The

central dark structure is its liver. (right) A dual-threshold surface rendering

hightlights the segmentation problem.

Figure 5: (left) The initialization of a mouse liver dataset using morphology

to remove small pieces and holes. (center) Surface fitting to discrete edges.

(right) The final fit to maxima of gradient magnitude.

the “spines” that cover this dendrite. These types of “judgments” that humans

make when they perform such tasks by hand are a mixed blessing. Humans can

use high-level knowledge about the problem to fill in where the data is weak,

but the expectations of a trained operator can interfere with seeing unexpected

or unusual features in the data.

Figure 8 presents models from four samples of an MR series of a developing

frog embryo. The top left image (Hour 9) shows the first evident structure,

the blastocoel, in blue, surrounded by the outside casing of the embryo in grey.

The top right image (Hour 16) demonstrates the expansion of the blastocoel

and the development of the blastoporal lip in red. In the bottom left image

(Hour 20) the blastoporal lip has collapsed, the blastocoel has contracted, and

the archenteron in green has developed. In the bottom right image (Hour

30) the blastocoel has collapsed and only the archenteron is present. For this
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Figure 6a: One slice of a 154 ×
586 × 270 TEM scan of a spiny den-

drite shows low contrast and high

noise content in a relatively complex

dataset.

Figure 6b: An isosurface rendering,

with prefiltering, shows how noise

and inhomogenieties in density inter-

fere with visualizing the 3D structure

of the dendrite.

Figure 7: (top) Rendering of a dendrite segmented using our the proposed

method. (bottom) Rendering of a manual segmentation of the same dendrite.
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Figure 8a: Final mouse embryo

model with skin (grey), liver (blue),

brain ventricles (red), and eyes

(green).

Figure 8b: Hour 16 dataset.

Figure 8c: Geometric structures ex-

tracted from MRI scans of a de-

veloping frog embryo, with blasto-

coel (blue), blastoporal lip (red), and

archenteron (green). Hour 9 (top

left). Hour 16 (top right). Hour

20 (bottom left). Hour 30 (bottom

right).
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dataset it was difficult to isolate structures only based on their voxel values.

We therefore used our interactive techniques to isolate (during initialization)

most of the structures in the frog embryo samples.

Table 1 describes for each dataset the specific techniques and parameters

we used for the results in this section. These parameters were obtained by first

making a sensible guess based on the contrasts and sizes of features in the data

and then using trial and error to obtain acceptable results. Each dataset was

processed between 4 and 8 times to achieve these results. More tuning could

improve things further, and once these parameters are set, they work moder-

ately well for similar modalities with similar subjects. The method is iterative,

but the update times are proportional to the surface area. On an SGI 180MHz

MIPS 10000 machine, the smaller mouse MR dataset required approximately

10 minutes of CPU time, and the dendrite dataset ran for approximately 45

minutes. Most of this time was spent in the initialization (which requires sev-

eral complete passes through the data) and in the edge detection. The frog

embryo datasets needed only a few minutes of processing time, because they

did not require computational initialization and are significantly smaller than

the other example datatsets.

0.4 Segmentation From Multiple Non-Uniform

Volume Datasets

Many of today’s volumetric datasets are generated by medical MR, CT and

other scanners. A typical 3-D scan has a relatively high resolution in the scan-

ning X − Y plane, but much lower resolution in the axial Z direction. The

difference in resolution between the in-plane and out-of-plane samplings can

easily range between a factor of 5 to 10, see Figure 9. This occurs both be-

cause of physical constraints on the thickness of the tissue to be excited during

scanning (MR), total tissue irradiation (CT), and scanning time restrictions.

Even when time is not an issue, most scanners are by design incapable of sam-

pling with high resolution in the out-of-plane direction, producing anisotropic

“brick-like” voxels.

The non-uniform sampling of an object or a patient can create certain prob-

lems. The inadequate resolution in the Z direction implies that small or thin

structures will not be properly sampled, making it difficult to capture them

xvi



Dataset Initialization Surface Fitting

Dendrite

1. Gaussian blur

σ = 0.5

2. Threshold:

I < 127

3. Fill isolated holes

4. Morphology:

O0.5 ◦ C1.5

1. Edge fitting:

σ = 0.75,

threshold = 6,

β = 0.1

2. Gradient magnitude

fitting: σ = 0.5,

β = 1.0

Mouse

1. Gaussian blur

σ = 0.5

2. Threshold:

I > 3, I < 60

3. Fill isolated holes

4. Morphology:

O2.0 ◦ C3.0

1. Edge fitting:

σ = 0.75,

threshold = 20,

β = 2

2. Gradient magnitude

fitting: σ = 0.5,

β = 16.0

Frog 1. Interactive

1. Gradient magnitude

fitting: σ = 1.25,

β = 1.0

Table 1: Parameters for processing example datasets.
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during surface reconstruction and object segmentation. One way to address

this problem is to scan the same object from multiple directions, with the hope

that the small structures will be adequately sampled in one of the scans. Gen-

erating several scans of the same object then raises the question of how to

properly combine the information contained in these multiple datasets. Sim-

ply merging the individual scans does not necessarily assemble enough samples

to produce a high resolution volumetric model. To address this problem we

have developed a method for deforming a level set model using velocity infor-

mation derived from multiple volume datasets with non-uniform resolution in

order to produce a single high-resolution 3D model [43]. The method locally

approximates the values of the multiple datasets by fitting a distance-weighted

polynomial using moving least-squares (MLS) [44, 45]. Directional 3D edge

information that may be used during the surface deformation stage is readily

derived from MLS, and integrated within our segmentation framework.

The proposed method has several beneficial properties. Instead of merg-

ing all of the input volumes by global resampling (interpolation), we locally

approximate the derivatives of the intensity values by MLS. This local versus

global approach is feasible because the level set surface deformation only re-

quires edge information in a narrow band around the surface. Consequently the

MLS calculation is only performed in a small region of the volume, rather than

throughout the whole volume, making the computational cost proportional

to the object surface area [36]. As opposed to many interpolation schemes

the MLS method is stable with respect to noise and imperfect registrations

[46]. Our implementation also allows for small intensity attenuation artifacts

between the multiple scans thereby providing gain-correction. The distance-

based weighting employed in our method ensures that the contributions from

each scan is properly merged into the final result. If a slice of data from one

scan is closer to a point of interest on the model, the information from this

scan will contribute more heavily to determining the location of the point.

To the best of our knowledge there is no previous work on creating de-

formable models directly from multiple volume datasets. While there has been

previous work on 3D level set segmentation and reconstruction[41, 6, 5, 8, 47],

it has not been based on multiple volume datasets. However, 3D models have

been generated from multiple range maps [48, 49, 36, 29], but the 2D nature of

these approaches is significantly different from the 3D problem being addressed
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here. The most relevant related projects involve merging multiple volumes to

produce a single high-resolution volume dataset [50, 51], and extracting edge

information from a single non-uniform volume [52]. Our work does not attempt

to produce a high-resolution merging of the input data. Instead, our contri-

bution stands apart from previous work because it deforms a model based on

local edge information derived from multiple non-uniform volume datasets.

We have demonstrated the effectiveness of our approach on three multi-

scan datasets. The first two examples are derived from a single high resolution

volume dataset that has been sub-sampled in the X, Y and Z directions. Since

these non-uniform scans are extracted from a single dataset they are therefore

perfectly aligned. The first scan is derived from a high resolution MR scan

of a 12-day-old mouse embryo, which has already had its outer skin isolated

with a previous segmentation process. The second example is generated from a

laser scan reconstruction of a figurine. The third example consists of multiple

MR scans of a zucchini that have been imperfectly aligned by hand. The first

two examples show that our method is able to perform level set segmentation

from multiple non-uniform scans of an object, picking up and merging features

only found in one of the scans. The second example demonstrates that our

method generates satisfactory results, even when there are misalignments in

the registration.

0.4.1 Method Description

We have formulated our approach to 3D reconstruction of geometric models

from multiple non-uniform volumetric datasets within our level set segmen-

tation framework. Recall that speed function F() describes the velocity at

each point on the evolving surface in the direction of the local surface nor-

mal. All of the information needed to deform a surface is encapsulated in the

speed function, providing a simple, unified approach to evolving the surface. In

this section we define speed functions that allow us to solve the multiple-data

segmentation problem. The key to constructing suitable speed terms is 3D

directional edge information derived from the multiple datasets. This problem

is solved using a moving least-squares scheme that extracts edge information

by locally fitting sample points to high-order polynomials.
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0.4.1.1 Level Set Speed Function for Segmentation

Many different speed functions have been proposed over the years for segmen-

tation of a single volume dataset [41, 6, 5, 8]. Typically such speed functions

consist of a (3D) image-based feature attraction term and a smoothing term

which serves as a regularization term that lowers the curvature and suppresses

noise in the input data. From computer vision it is well known that features,

i.e. significant changes in the intensity function, are conveniently described by

an edge-detector [53]. There exists a very large body of work devoted to the

problem of designing optimal edge detectors for 2D images [14, 16], most of

which are readily generalized to 3D. For this project we found it convenient to

use speed functions with a 3D directional edge term that moves the level set

toward the maximum of the gradient magnitude. This gives a term equivalent

to Equation 8,

Fgrad(x,n, φ) = αn · ∇‖∇Vg‖ (10)

where α is a scaling factor for the image-based feature attraction term ∇‖∇Vg‖
and n is the normal to the level set surface at x. Vg symbolizes some global

uniform merging of the multiple non-uniform input volumes. This feature term

is effectively a 3D directional edge-detector of Vg. However there are two prob-

lems associated with using this speed function exclusively. The first is that we

cannot expect to compute reliable 3D directional edge information in all regions

of space simply because of the nature of the non-uniform input volumes. In

other words Vg cannot be interpolated reliably in regions of space where there

are no nearby sample points. Hence the level set surface will not experience

any image-based forces in these regions. The solution is to use a regularization

term that imposes constraints on the mean curvature of the deforming level

set surface. We include the smoothing term from Equation 6 and scale it with

parameter β, in order to smooth the regions where no edge information exists

as well as suppress noise in the remaining regions thereby preventing excessive

aliasing.

Normally the feature attraction term, ∇‖∇Vg‖, creates only a narrow range

of influence. In other words, this feature attraction term will only reliably move

the portion of the level set surface that is in close proximity to the actual edges

in Vg. Thus, a good initialization of the level set surface is needed before

solving Equation 10. A reasonable initialization of the level set surface may be

obtained by computing the CSG union of the multiple input volumes, which
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are first tri-linearly resampled to give a uniform sampling. However, if the

input volumes are strongly non-uniform, i.e. they are severely undersampled in

one or more directions, their union produces a poor initial model. To improve

the initialization we attract the CSG union surface to the Canny edges [16]

computed from Vg using the distance transform produced from those edges.

See Equation 7. This approach allows us to move the initial surface from a

long range, but only with pixel-level accuracy.

Canny edges are non-directional edges defined from the zero-crossing of the

second derivative of the image in the direction of the local normal. In 3D this

is
∂2

∂n2
g

Vg = 0 (11)

where ng ≡ ∇Vg/‖∇Vg‖ is the local normal vector of Vg. Using the expression

∂/∂ng = ng · ∇ we can rewrite Equation 11 as

∂2

∂n2
g

Vg = ng · ∇ [ng · ∇Vg] = ng · ∇‖∇Vg‖. (12)

The next section focuses on the methods needed to reliably compute the

vectors ng and ∇‖∇Vg‖. In preparation, the latter may be explicitly expressed

in terms of the derivatives of the merged volume Vg

∇‖∇Vg‖ =
∇Vg ĤVg

‖∇Vg‖
(13)

where we have defined the gradient vector and the Hessian matrix,

∇̂Vg = (
∂Vg

∂x
,
∂Vg

∂y
,
∂Vg

∂z
) (14a)

ĤVg =


∂2Vg

∂x2
∂2Vg

∂y∂x
∂2Vg

∂z∂x
∂2Vg

∂x∂y
∂2Vg

∂y2
∂2Vg

∂z∂y
∂2Vg

∂x∂z
∂2Vg

∂y∂z
∂2Vg

∂z2

 . (14b)

Thus, in closing we note that the level set propagation needed for segmentation

only needs information about the first and second order partial derivatives of

the input volumes, not the interpolated intensity values themselves.

0.4.1.2 Computing Partial Derivatives

As outlined above the speed function F in the level set equation, Equation 4,

is based on edge information derived from the input volumes. This requires
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estimating first and second order partial derivatives from the multiple non-

uniform input volumes. We do this by means of moving least-squares (MLS),

which is an effective and well established numerical technique for computing

derivatives of functions whose values are known only on irregularly spaced

points [44, 45, 46].

Let us assume we are given the input volumes V̂d, d = 1, 2, .., D which

are volumetric samplings of an object on the non-uniform grids {x̂d}. We

shall also assume that the local coordinate frames of {x̂d} are scaled, rotated

and translated with respect to each other. Hence, we define a world coordinate

frame (typically one of the local frames) in which we solve the level set equation.

Now, let us define the world sample points {xd} as

xd ≡ T(d)[x̂d] (15)

where T(d) is the coordinate transformation from a local frame d to the world

frame. Next we locally approximate the intensity values from the input volumes

V̂d with a 3D polynomial expansion. Thus, we define the N-order polynomials

V
(d)
N (x) = C

(d)
000 +

N∑
i+j+k=1

C
(0)
ijkxiyjzk, d = 1, 2, . . . , D (16)

where the C coefficients are unknown. Note that these local approximations to

the intensity values share coefficients C
(0)
ijk of order higher than zero, i.e. all of

the functions V
(d)
N , d = 1, 2, .., D have the same edges. The fact that the zero-

order term in Equation 16 is input volume dependent means we allow for local

constant offsets between the input volumes V̂d. This effectively provides built-

in gain-correction in the scheme, since it can handle small intensity attenuation

artifacts between the multiple scans.

Moving Least-Squares To solve for the expansion coefficients C in Equa-

tion 16 we define the moving least-squares functional

E(x0) =
D∑

d=1

∑
xd

wd(xd−x0)
[
V

(d)
N (xd−x0)− Vd(xd)

]2
(17)
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where x0 is the expansion point from where we are seeking edge information,

Vd(xd) ≡ V̂d(x̂d) and where

wd(x) ≡


1− 2(‖x‖/∆)2 for 0 ≤ ‖x‖ ≤ ∆/2

2(‖x‖/∆− 1)2 for ∆/2 < ‖x‖ < ∆

0 for ‖x‖ ≥ ∆

(18)

is a “moving filter” that weights the contribution of different sampling points,

xd, according to their Euclidean distance, ‖xd − x0‖, to the expansion point,

x0. Other expressions for this weighting function could of course be used, but

Equation 18 is fast to compute, has finite support (by the window parameter

∆), and its tangent is zero at the endpoints. After substitution of Equation 16

into Equation 17 we obtain the functional

E(x0) =
D∑

d=1

∑
xd

wd(xd − x0)
[
C

(d)
000 − V̂d(xd) (19)

+
N∑

i+j+k=1

C
(0)
ijk(xd − x0)i(yd − y0)j(zd − z0)k

]2
.

The minimization of this moving least-squares functional with respect to the

expansion coefficients C requires the partial derivatives to vanish, i.e.

∂Ê(x0)

∂C
(d)
000

= 0 = 2
∑
xd

wd(xd−x0)
[
C

(d)
000 − V̂d(xd) (20a)

+
N∑

i+j+k=1

C
(0)
ijk(xd − x0)i(yd − y0)j(zd − z0)k

]
∂Ê(x0)

∂C
(0)
lnm

= 0 = 2
D∑

d=1

∑
xd

wd(xd − x0)
[
C

(d)
000 − V̂d(xd)

+
N∑

i+j+k=1

C
(0)
ijk(xd − x0)i(yd − y0)j(zd − z0)k

]
× (xd − x0)l(yd − y0)m(zd − z0)n. (20b)

This defines a system of linear equations in the expansion coefficients C
(r)
ijk, that

can be solved using standard techniques from numerical analysis, see Equa-

tion 21 and Equation 23.
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Equation 20a and Equation 20b can then be conveniently expressed as∑
q

Ap,q cq = bp (21)

where A is a diagonal matrix, and b, c are vectors. In this equation we have

also introduced the compact index notations p ≡ (i, j, k, r) and q ≡ (l, m, n, s)

defined as

p ∈
{

i, j, k, r ∈ N+
∣∣ i = j = k = 0, 1≤r≤D

}
∪
{

i, j, k, r ∈ N+
∣∣ 1 ≤ i+j+k≤N, r = 0

}
(22a)

q ∈
{

l,m, n, s ∈ N+
∣∣ l = m = n = 0, 1≤s≤D

}
∪
{

l,m, n, s ∈ N+
∣∣ 1 ≤ l+m+n≤N, s = 0

}
. (22b)

The diagonal matrix A, and the vectors b, c in Equation 21 are defined as

Ap,q ≡
∑

d

(δr,d + δr,0) (δs,d + δs,0)
∑
xd

wd(xd−x0)

× (xd − x0)i(yd − y0)j(zd − z0)k (23a)

× (xd − x0)l(yd − y0)m(zd − z0)n

bp ≡
∑

d

(δr,d + δr,0) wd(xd−x0)V̂d(xd)

× (xd − x0)i(yd − y0)j(zd − z0)k (23b)

cp ≡ C
(r)
ijk. (23c)

Next the matrix equation Ac = b must be solved for the vector c of dimen-

sion
(
N+3

3

)
+ D− 1, where N is the order of the expansion in Equation 16 and

D is the number of non-uniform input volumes. As is well known for many

moving least-square problems it is possible for the condition number of the

matrix A to become very large. Any matrix is singular if its condition number

is infinite and can be defined as ill-conditioned if the reciprocal of its condition

number approaches the computer’s floating-point precision. This can occur

if the problem is over-determined (number of sample points, xd greater than

number of coefficients C) and under-determined (ambiguous combinations of

the coefficients C work equally well or equally bad). To avoid such numerical

problems, a singular value decomposition (SVD) linear equation solver is rec-

ommended for use in combination with the moving least-squares method. The
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SVD solver identifies equations in the matrix A that are, within a specified

tolerance, redundant (i.e. linear combinations of the remaining equations) and

eliminates them thereby improving the condition number of the matrix. We

refer the reader to reference [54] for a helpful discussion of SVD pertinent to

linear least-squares problems.

Once we have the expansion coefficients c we can readily express the Hessian

matrix and the gradient vector of the combined input volumes as

∇V = (C(0)
100, C

(0)
010, C

(0)
001) (24a)

HV =


2C

(0)
200 C

(0)
110 C

(0)
101

C
(0)
110 2C

(0)
020 C

(0)
011

C
(0)
101 C

(0)
011 2C

(0)
002

 (24b)

evaluated at the moving expansion point x0. This in turn is used in Equation 13

to compute the edge information needed to drive the level set surface.

0.4.1.3 Algorithm Overview

Algorithm 1 describes the main steps of our approach. The initialization rou-

tine, Algorithm 2, is called for all of the multiple non-uniform input volumes,

Vd. Each non-uniform input dataset is uniformly resampled in a common co-

ordinate frame (V0’s) using tri-linear interpolation. Edge information and the

union, V0, of the Vd’s is then computed. Algorithm 2 calculates Canny and 3D

directional edge information using moving least-squares in a narrow band in

each of the resampled input volumes, Vd, and buffers this in Vedge and V grad.

Next Algorithm 1 computes the distance transform of the zero-crossings of the

Canny edges and takes the gradient of this scalar volume to produce a vector

field V edge, which pulls the initial level set model to the Canny edges. Finally

the level set model is attracted to the 3D directional edges of the multiple in-

put volumes, V grad, and a Marching Cubes mesh is extracted for visualization.

The level set solver, described in Algorithm 3, solves Equation 4 using the “up-

wind scheme” (not explicitly defined) and the sparse-field narrow-band method

of [36], with V0 as the initialization and V edge and V grad as the force field in

the speed function.
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Algorithm 1: Main(V1, . . . , VD)

comment: V1, . . . , VD are non-uniform samplings of object V

global Vedge,V grad

do



V0 ← uniform sampling of empty space

for d← 1 to D

do V0 ← V0 ∪ Initialization(Vd)

V edge ←∇[distance transform[zero-crossing[Vedge]]]

V0 ← SolveLevelSetEQ(V0,V edge, α, 0)

V0 ← SolveLevelSetEQ(V0,V grad, α, β)

return (Marching Cubes mesh of V0)

Algorithm 2: Initialization(Vd)

comment: Pre-processing to produce good LS initialization

do



Vd ← Uniform tri-linear resampling of Vd

Γd ← Set of voxels in narrow band of iso-surface of Vd

for each x0 ∈ Γd

do


Solve moving least-squares problem at x0

Vedge(x0)← scalar Canny edge, cf. Equation 12

V grad(x0)← 3D directional edge, cf. Equation 13

return (Vd)

Algorithm 3: SolveLevelSetEQ(V0,V , α, β)

comment: Solve Equation 4 with initial condition φ(t=0) = V0

do



φ← V0

repeat

Γ← Set of voxels in narrow band of iso-surface of φ

∆t← γ/ supx∈Γ ‖V (x)‖, γ ≤ 1

for each x ∈ Γ

do


n← upwind scheme[−∇φ(x)/‖∇φ(x)‖]
φ̇(x)← ‖∇φ(x)‖(αV (x) · n + β∇ · n)

φ(x)← φ(x) + φ̇(x)∆t

until supx∈Γ ‖φ̇(x)‖ ≤ ε

return (φ)
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Figure 9: Non-uniform datasets merged to produce high resolution level set

models, (top) laser scan of a figurine, (bottom) MR scan of a mouse embryo.

Figure 10: Three low resolution MR scans of a zucchini that have been indi-

vidually colored and overlaid to demonstrate their imperfect alignment. The

level set model on the right is derived from the three low resolution scans.
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0.4.2 Multiple Volume Results

We have applied our segmentation method to several multi-scan non-uniform

datasets to produce high resolution level set models. The parameters used for

these segmentations are listed in Table 2. α and β are weights that the user

adjusts to balance attraction to edges with curvature-based smoothing during

the level set deformation process.

Table 2: Maximum in-plane to out-of-plane sampling ratios of non-uniform

input datasets, and parameters for the two level set speed terms defined in

Equation 6 and Equation 10.

Model Origin Ratio α β

Griffin Laser scan 6/10:1 1.0 0.5

Mouse MR scan 10:1 1.0 0.5

Zucchini MR scan 10:1 1.0 0.5

0.4.2.1 Griffin Dataset

The griffin dataset was created with a volumetric laser scan reconstruction algo-

rithm [49]. This algorithm creates a high resolution volumetric representation

of an object by merging multiple depth maps produced via a laser scan. The

original griffin dataset has a resolution of 312×294×144. We have extracted

two non-uniform datasets from this high resolution representation by copying

every sixth plane of data in the X direction and every tenth plane in the Y

direction. The two derived non-uniform griffin datasets have the following res-

olution: 52×294×144 and 312×30×144. Iso-surfaces have been extracted

from these datasets, appropriately scaled in the low resolution direction, and

are presented in the first two images in Figure 9 (top). Each low resolution

scan inadequately captures some important geometric feature of the griffin. We

have performed a reconstructions from the undersampled non-uniform scans to

produce the result in Figure 9 (top). The method produces a high resolution

(312×294×144) level set model that contains all of the significant features of

the original scan.
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0.4.2.2 Mouse Embryo Dataset

The first three scans in Figure 9 (bottom) are derived from a high resolution

MR scan of a mouse embryo. They are subsampled versions of a 256×128×128

volume dataset, and have the following resolutions: 26×128×128, 256×16×128

and 256×128×13. The last image in Figure 9 presents the result produced by

our multi-scan segmentation method. The information in the first three scans

has been successfully used to create a level set model of the embryo with a

resolution of 256×128×130. The finer features of the mouse embryo, namely

its hands and feet, have been reconstructed.

0.4.2.3 Zucchini Dataset

The final dataset consists of three individual MRI scans of an actual zucchini.

The separate scans have been registered manually and are presented on the left

side of Figure 10, each with a different color. The resolutions of the individual

scans are 28×218×188, 244×25×188 and 244×218×21. This image highlights the

rough alignment of the scans. The right side of Figure 10 presents the result of

our level set segmentation. It demonstrates that our approach is able to extract

a reasonable model from multiple datasets that are imperfectly aligned.

0.5 Segmentation of DT-MRI Brain Data

Diffusion tensor magnetic resonance imaging[55, 56] (DT-MRI) is a technique

used to measure the diffusion properties of water molecules in tissues. Anisotropic

diffusion can be described by the equation

∂C

∂t
= ∇ · (D∇C) (25)

where C is the concentration of water molecules and D is a diffusion coefficient,

which is a symmetric second order tensor

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 . (26)

Figure 11 presents a “slice” of the diffusion tensor volume data of human brain

used in our study. Each sub-image presents the scalar values of the associated

diffusion tensor component for one slice of the dataset.
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Figure 11: Slice of a tensor volume where every “element” of the image matrix

corresponds to one component of the tensor D.

Tissue segmentation and classification based on DT-MRI offers several ad-

vantages over conventional MRI, since diffusion data contains additional phys-

ical information about the internal structure of the tissue being scanned. How-

ever, segmentation and visualization using diffusion data is not entirely straight-

forward. First of all, the diffusion matrix itself is not invariant with respect to

rotations, and the elements that form the matrix will be different for different

orientations of the sample or field gradient and therefore cannot themselves

be used for classification purposes. Moreover, 3D visualization and segmen-

tation techniques available today are predominantly designed for scalar and

sometimes vector fields. Thus, there are three fundamental problems in tensor

imaging: a) finding an invariant representation of a tensor that is independent

of a frame of reference, b) constructing a mapping from the tensor field to a

scalar or vector field, and c) visualization and classification of tissue using the

derived scalar fields.

The traditional approaches to diffusion tensor imaging involve converting

the tensors into an eigenvalue/eigenvector representation, which is rotationally
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invariant. Every tensor may then be interpreted as an ellipsoid with princi-

pal axes oriented along the eigenvectors and radii equal to the corresponding

eigenvalues. This ellipsoid describes the probabilistic distribution of a water

molecule after a fixed diffusion time.

Using eigenvalues/eigenvectors one can compute different anisotropy mea-

sures [55, 57, 58, 59] that map tensor data onto scalars and can be used for

further visualization and segmentation. Although eigenvalue/vector compu-

tation of the 3x3 matrix is not expensive, it must be repeatedly performed

for every voxel in the volume. This calculation easily becomes a bottleneck

for large datasets. For example, computing eigenvalues and eigenvectors for a

5123 volume requires over 20 CPU-minutes on a powerful workstation. Another

problem associated with eigenvalue computation is stability - a small amount of

noise will not only change the values but also the ordering of the eigenvalues[60].

Since many anisotropy measures depend on the ordering of the eigenvalues, the

calculated direction of diffusion and classification of tissue will be significantly

altered by the noise normally found in diffusion tensor datasets. Thus it is

desirable to have an anisotropy measure which is rotationally invariant, does

not require eigenvalue computations and is stable with respect to noise. Tensor

invariants with these characteristics were first proposed by Ulug and Zijl[61].

In Section 0.5.1 we formulate a new anisotropy measure for tensor field based

on these invariants.

Visualization and model extraction from the invariant 3D scalar fields is

the second issue addressed in this paper. One of the popular approaches to

tensor visualization represents a tensor field by drawing ellipsoids associated

with the eigenvectors/values[62]. This method was developed for 2D slices and

creates visual cluttering when used in 3D. Other standard CFD visualization

techniques like tensor-lines do not provide meaningful results for the MRI data

due to rapidly changing directions and magnitudes of eigenvector/values and

the amount of noise present in the data. Recently Kindlmann[63] developed

a volume rendering approach to tensor field visualization using eigenvalue-

based anisotropy measures to construct transfer functions and color maps that

highlight some brain structures and diffusion patterns.

In our work we perform iso-surfacing on the 3D scalar fields derived from

our tensor invariants to visualize and segment the data [64]. An advantage of

iso-surfacing over other approaches is that it can provide the shape information

xxxi



Figure 12: Isotropic C1 (left) and anisotropic Ca (right) tensor invariants for

the tensor slice shown in Figure 11.

needed for constructing geometric models, and computing internal volumes and

external surface areas of the extracted regions. There has also been a number

of recent publications[65, 66] devoted to brain fiber tracking. This is a different

and more complex task than the one addressed in this paper and requires data

with a much higher resolution and better signal-to-noise ratio than the data

used in our study.

0.5.1 Tensor Invariants

Tensor invariants (rotational invariants) are combinations of tensor elements

that do not change after the rotation of the tensor’s frame of reference, and thus

do not depend on the orientation of the patient with respect to the scanner when

performing DT imaging. The well known invariants are the eigenvalues of the

diffusion tensor (matrix) D, which are the roots of corresponding characteristic

equation

λ3 − C1 · λ2 + C2 · λ− C3 = 0, (27)

with coefficients

C1 = Dxx + Dyy + Dzz

C2 = DxxDyy −DxyDyx + DxxDzz −DxzDzx +

DyyDzz −DyzDzy (28)

C3 = Dxx(DyyDzz −DzyDyz)

− Dxy(DyxDzz −DzxDyz) + Dxz(DyxDzy −DzxDyy).
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Since the roots of Equation (27) are rotational invariants, the coefficients C1,

C2 and C3 are also invariant. In the eigen- frame of reference they can be easily

expressed through the eigenvalues

C1 = λ1 + λ2 + λ3

C2 = λ1λ2 + λ1λ3 + λ2λ3 (29)

C3 = λ1λ2λ3

and are proportional to the sum of the radii, surface area and the volume of

the “diffusion” ellipsoid. Then instead of using (λ1, λ2, λ3) to describe the

dataset, we can use (C1, C2, C3). Moreover, since Ci are the coefficients of the

characteristic equation, they are less sensitive to noise, then roots λi of the

same equation.

Any combination of the above invariants is, in turn, an invariant. We

consider the following dimensionless combination: C1C2/C3. In the eigenvector

frame of reference it becomes

C1C2

C3
= 3 +

λ2 + λ3

λ1
+

λ1 + λ3

λ2
+

λ1 + λ2

λ3
(30)

and we can define a new dimensionless anisotropy measure

Ca =
1
6

[
C1C2

C3
− 3
]

. (31)

It is easy to show that for isotropic diffusion, when λ1 = λ2 = λ3, the

coefficient Ca = 1. In the anisotropic case, this measure is identical for both

linear, directional diffusion (λ1 >> λ2 ≈ λ3) and planar diffusion (λ1 ≈ λ2 >>

λ3) and is equal to

Climit
a ≈ 1

3

[
1 +

λ1

λ3
+

λ3

λ1

]
. (32)

Thus Ca is always ∼ λmax/λmin and measures the magnitude of the dif-

fusion anisotropy. We again want to emphasize that we use the eigenvalue

representation here only to analyze the behavior of the coefficient Ca, but we

use invariants (C1, C2, C3) to compute it using Equations (5) and (31).

0.5.2 Geometric Modeling

Two options are usually available for viewing the scalar volume datasets, di-

rect volume rendering[1, 4] and volume segmentation[67] combined with con-
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ventional surface rendering. The first option, direct volume rendering, is only

capable of supplying images of the data. While this method may provide

useful views of the data, it is well-known that it is difficult to construct the

exact transfer function that highlights the desired structures in the volume

dataset[68]. Our approach instead focuses on extracting geometric models of

the structures embedded in the volume datasets. The extracted models may

be used for interactive viewing, but the segmentation of geometric models from

the volume datasets provides a wealth of additional benefits and possibilities.

The models may be used for quantitative analysis of the segmented structures,

for example the calculation of surface area and volume; quantities that are

important when studying how these structures change over time. The models

may be used to provide the shape information necessary for anatomical studies

and computational simulation, for example EEG/MEG modeling within the

brain[69]. Creating separate geometric models for each structure allows for the

straightforward study of the relationship between the structures, even though

they come from different datasets. The models may also be used within a surgi-

cal planning/simulation/VR environment[70], providing the shape information

needed for collision detection and force calculations. The geometric models

may even be used for manufacturing real physical models of the structures[71].

It is clear that there are numerous reasons to develop techniques for extracting

geometric models from diffusion tensor volume datasets.

The most widely used technique for extracting polygonal models from vol-

ume datasets is the Marching Cubes algorithm[72]. This technique creates a

polygonal model that approximates the iso-surface embedded in a scalar vol-

ume dataset for a particular iso-value. While the Marching Cubes algorithm is

easy to understand and straightforward to implement, applying it directly to

raw volume data from scanners can produce undesirable results, as seen in the

first images in Figures 13 and 16. The algorithm is susceptible to noise and

can produce many unwanted triangles that mask the central structures in the

data. In order to alleviate this problem, we utilize the tools in our level set

framework to smooth the data and remove the noise-related artifacts.

0.5.3 Segmentation

In this section we demonstrate the application of our methods to the segmenta-

tion of DT-MRI data of the human head. We use a high resolution dataset from
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a human volunteer which contains 60 slices each of 128x128 pixels resolution.

The raw data is sampled on a regular uniform grid.

We begin by generating two scalar volume datasets based on the invariants

described in Section 0.5.1. The first scalar volume dataset (V1) is formed by

calculating the trace (C1) of the tensor matrix for each voxel of the diffusion

tensor volume. It provides a single number that characterizes the total dif-

fusivity at each voxel within the sample. Higher values signify greater total

diffusion irrespective of directionality in the region represented by a particular

voxel. A slice from this volume can be seen in Figure 12 (left). The second

scalar volume dataset (V2) is formed by calculating (C1, C2, C3) invariants for

each voxel and combining them into Ca. It provides a measure of the mag-

nitude of the anisotropy within the volume. Higher values identify regions of

greater spatial anisotropy in the diffusion properties. A slice from the second

scalar volume is presented in Figure 12 (right). The measure Ca does not by

definition distinguish between linear and planar anisotropy. This is sufficient

for our current study since the brain does not contain measurable regions with

planar diffusion anisotropy. We therefore only need two scalar volumes in order

to segment the DT dataset.

We then utilize our level set framework to extract smoothed models from

the two derived scalar volumes. First the input data is filtered with a low-pass

Gaussian filter (σ ≈ 0.5) to blur the data and thereby reduce noise. Next, the

volume voxels are classified for inclusion/exclusion in the initialization based

on the filtered values of the input data (k ≈ 7.0 for V1 and k ≈ 1.3 for V2).

For grey scale images, such as those used in this paper, the classification is

equivalent to high and low thresholding operations. The last initialization

step consists of performing a set of topological (e.g. flood fill) operations in

order to remove small pieces or holes from objects. This is followed by a level

set deformation that pulls the surface toward local maxima of the gradient

magnitude and smooths it with a curvature-based motion. This moves the

surface toward specific features in the data, while minimizing the influence of

noise in the data.

Figures 13 and 14 present two models that we extracted from DT-MRI

volume datasets using our techniques. Figure 13 contains segmentations from

volume V1, the measure of total diffusivity. The top image shows a Marching

Cubes iso-surface using an iso-value of 7.5. In the bottom we have extracted
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Figure 13: Segmentation from isotropic measure volume V1 for the first DT-

MRI dataset. The first row is the marching cubes iso-surface with iso-value

7.5. The second row is the result of flood-fill algorithm applied to the same

volume and used for initialization. The third row is the final level set model.
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Figure 14: Model segmentation from volume V2. Top left image is an iso-

surface of value 1.3, used for initialization of the level set. Clockwise, are the

results of level set development with corresponding β values of 0.2, 0.4 and 0.5.

just the ventricles from V1. This is accomplished by creating an initial model

with a flood-fill operation inside the ventricle structure shown in the middle

image. This identified the connected voxels with value of 7.0 or greater. The

initial model was then refined and smoothed with a level set deformation, using

a β value of 0.2.

Figure 14 again provides the comparison between direct iso-surfacing and

and level set modeling, but on the volume V2. The image in the top-left corner is

a Marching Cubes iso-surface using an iso-value of 1.3. There is significant high-

frequency noise and features in this dataset. The challenge here was to isolate

coherent regions of high anisotropic diffusion. We applied our segmentation

approach to the dataset and worked with neuroscientists from LA Childrens

Hospital, City of Hope Hospital and Caltech to identify meaningful anatomical

structures. We applied our approach using a variety of parameter values, and

presented our results to them, asking them to pick the model that they felt

best represented the structures of the brain. Figure 14 contains three models

extracted from V2 at different values of smoothing parameter β used during
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Figure 15: Combined model of ventricles and (semi-transparent) anisotropic

regions: rear, exploded view (left), bottom view (right), side view (bottom).

Note how model of ventricles extracted from isotropic measure dataset V1 fits

into model extracted from anisotropic measure dataset V2.

segmentation. Since we were not looking for a single connected structure in

this volume, we did not use a seeded flood-fill for initialization. Instead we

initialized the deformation process with an iso-surface of value 1.3. This was

followed by a level set deformation using a β value of 0.2. The result of this

segmentation is presented on the bottom-left side of Figure 14. The top-right

side of this figure presents a model extracted from V2 using an initial iso-surface

of value 1.4 and a β value of 0.5. The result chosen as the “best” by our

scientific/medical collaborators is presented on the bottom-right side of Figure

14. This model is produced with an initial iso-surface of 1.3 and a β value of

0.4. Our collaborators were able to identify structures of high diffusivity in this

model, for example the corpus callosum, the internal capsul, the optical nerve

tracks, and other white matter regions.
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Figure 16: Segmentation using anisotropic measure V2 from the second DT-

MRI dataset. (left) Marching cubes iso-surface with iso-value 1.3. (middle)

Result of flood-fill algorithm applied to the volume and used for initialization.

(right) Final level set model.

We can also bring together the two models extracted from datasets V1 and

V2 into a single image. They will have perfect alignment since they are derived

from the same DT-MRI dataset. Figure 15 demonstrates that we are able

to isolate different structures in the brain from a single DT-MRI scan and

show their proper spatial inter-relationship. For example, it can be seen that

the corpus callosum lies directly on top of the ventricles, and that the white

matter fans out from both sides of the ventricles.

Finally, to verify the validity of our approach we applied it to the second

dataset from a different volunteer. This dataset has 20 slices of the 256x256

resolution. We generated the anisotropy measure volume V2 and performed the

level set model extraction using the same iso-values and smoothing parameters

as for V2. The results are shown in Figure 16, and demonstrate the generality

of our approach.
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0.6 Direct Estimation of Surfaces in

Tomographic Data

The radon transform is invertable (albeit, marginally so) when the measured

data consists of a sufficient number of good quality, properly spaced projections

[73]. However, for many applications the number of realizable projections is

insufficient, and direct greyscale reconstructions are susceptible to artifacts.

We will refer to such problems as under-constrained tomographic problems.

Cases of under-constrained tomographic problems usually fall into one of two

classes. The first class is where the measuring device produces a relatively

dense set of projections (i.e. adequately spaced) that do not span a full 180

degrees. In these cases, the sinogram contains regions without measured data.

Considering the radon transform in the Fourier domain, these missing regions

of the sinogram correspond to a transform with angular wedges (pie slices) that

are null, making the transform noninvertable. We assume that these missing

regions are large enough to preclude any straight-forward interpolation in the

frequency domain. The second class of incomplete tomographic problems are

those that consist of an insufficient number of widely spaced projections. We

assume that these sparse samples of the sinogram space are well distributed

over a wide range of angles. For this discussion the precise spacing is not

important. This problem is characterized by very little data in the Fourier

domain, and direct inversion approaches produce severe artifacts. Difficulties

in reconstructing volumes from such incomplete tomographic datasets are often

aggravated by noise in the measurements and misalignments among projections.

Under-constrained problems are typically solved using one or both of two

different strategies. The first strategy is to choose from among feasible solu-

tions (those that match the data) by imposing some additional criterion, such

as finding the solution that minimizes an energy function. This additional cri-

terion should be designed to capture some desirable property, such as minimum

entropy. The second strategy is to parameterize the solution in a way that re-

duces the number of degrees of freedom. Normally, the model should contain

few enough parameters so that the resulting parameter estimation problem is

over constrained. In such situations solutions are allowed to differ from the

data in a way that accounts for noise in the measurements.

In this section we consider a special class of under constrained tomographic
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problems that permits the use of a simplifying model. The class of problems

we consider are those in which the imaging process is targeted toward tissues

or organs that have been set apart from the other anatomy by some contrast

agent. This agent could be an opaque dye, as in the case of transmission

tomography, or an emissive metobolite, as in nuclear medicine. We assume that

this agent produces relatively homogeneous patches that are bounded by areas

of high contrast. This assumption is reasonable, for instance, in subtractive

angiography or CT studies of the colon. The proposed approach, therefore,

seeks to find the boundaries of different regions in a volume by estimating

sets of closed surface models and their associated density parameters directly

from the incomplete sinogram data [74]. Thus, the reconstruction problem is

converted to a segmentation problem. Of course, we can never expect real

tissues to exhibit truly homogeneous densities. However, we assert that when

inhomogeneities are somewhat uncorrelated and of low contrast the proposed

model is adequate to obtain acceptable reconstructions.

0.6.1 Related Work

Several areas of distinct areas of research in medical imaging, computer vision,

and inverse problems impact this work. Numerous tomographic reconstruction

methods are described in the literature [75, 76], and the method of choice de-

pends on the quality of projection data. Filtered back projection (FBP), the

most widely used approach, works well in the case the fully constrained recon-

struction where one is given enough high-quality projections over 180 degree

angular range. Statistical, iterative approaches such as maximum likelihood

(ML) and maximum a posteriori (MAP) estimation have been proven to work

well with noisy projection data, but do not systematically address the under

constrained reconstruction problem and generally rely on complete datasets.

An exception is [77], which proposes an iterative algebraic approach that in-

cludes some assumptions about the homogeneity of the solution to compute a

full greyscale reconstruction. Also, some hybrid approaches [78, 79] are specif-

ically developed to deal with limited-angle tomography by extrapolating the

missing sinogram data.

Other tomographics reconstruction techniques have been proposed, for ex-

ample those that utilize discrete tomagraphy strategies [80, 73, 81, 82], and

deformable models [83, 84, 85, 86, 87]. The literature also describes many
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examples of level sets as curve and surface models for image segmentation

[7, 6, 41, 88]. The authors have examined their usefulness for 3D segmentation

of TEM reconstructions [37]. Several authors have proposed solving inverse

problems using level sets [89, 90, 91, 92, 93, 94, 95], but are mostly limited to

solving 2D problems.

We make several important contributions to this previous body of work;

first we give a formal derivation of the motion of deformable surface mod-

els as the first variation of an error term that relates the projected model to

the noisy tomographic data. This formulation does not assume any specific

surface representation, and therefore applies to a wide range of tomographic,

surface-fitting problems. Second we present a level set implementation of this

formulation that computes incremental changes in the radon transform of the

projected model only along the wave front, which makes it practical on large

datasets. Third we examine the specific problem of initializing the deformable

surface in the absence of complete sinogram data, and demonstrate, using real

and synthetic data, the effectiveness of direct surface estimation for a specific

class of tomographic problems which are under constrained.

0.6.2 Mathematical Formulation

As an introduction, we begin with the derivation of surface estimation problem

in two dimensions. The goal is to simultaneously estimate the interface between

two materials and their densities, β0 and β1. Thus we have a background, with

density β0 and collection of solid objects with density β1. We denote the (open)

set of points in those regions as Ω, the closure of that set, the surface, as S.

The projection of a 2D signal f(x, y) produces a sinogram given by the

radon transform as

p(s, θ) =
∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(Rθx− s)dx , (33)

where Rθx = x cos(θ)+y sin(θ) is a rotation and projection of a point x = (x, y)

onto the imaging plane associated with θ. The 3D formulation is the same,

except that the signal f(x, y, z) produces a collection of images. We denote

the projection of the model, which includes estimates of the objects and the

background, as p̂(s, θ). For this work we denote the angles associated with a

discrete set of projections as θ1, . . . θN and denote the domain of each projection

as S = s1, . . . sM . Our strategy is to find Ω, β0, and β1 by maximizing the
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Figure 17: The model is the interface between two densities, which are pro-

jected onto the imaging plane to create p̂(s, θi).

likelihood.

If we assume the projection measurements are corrupted by independent

noise, the log likelihood of a collection of measurements for a specific shape

and density estimate is the probability of those measurements conditional on

the model.

lnP (p(s1, θ1), p(s2, θ1), . . . , p(sM , θN )|S, β0, β1) =∑
i

∑
j lnP (p(sj , θi)|S, β0, β1). (34)

We call the negative log likelihood the error and denote it Edata. Normally,

the probability density of a measurement is parameterized by the ideal value,

which gives

Edata =
N∑

i=1

M∑
j=1

E (p̂ij , pij) , (35)

where E(p̂i,j , pi,j) = − lnP (p̂i,j , pi,j) is the error associated with a particular

point in the radon space, and pi,j = p(sj , θi). In the case of independent

Gaussian noise, E is a quadratic, and the log likelihood results in a weighted

least squares in the radon space. For all of our results, we use a Gaussian

noise model. Next we apply the object model, shown in Figure 17, to the

reconstruction of f . If we let g(x, y) be a binary inside-outside function on Ω,
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Figure 18: The reconstruction strategy starts with an initial surface estimate

and iteratively modifies its shape and the associated density parameters to

achieve a good fit to the input data.

then we have the following approximation to f(x, y):

f(x, y) ≈ β0 + [β1 − β0]g(x, y). (36)

Applying the radon transform to the model and substituting for p̂, gives

Edata =
N∑

i=1

M∑
j=1

E

(
β0K(sj , θi) + [β1 − β0]

∫
Ω

δ(Rθi
x− sj)dx, pij

)
, (37)

where K(sj , θi) is the projection of the background— it depends on the geome-

try of the region over which the data is taken, and is independent of the surface

estimate. For some applications we know that β0 = 0, and the term β0K is

zero. The integral over Ω results from integrating g over the entire domain.

The proposed strategy is to alternately (i.e. separately) update the shape of

the surface model and the density parameters. For the surface shape, a gradient

descent minimization approach describes the deformation of the surface, with

respect to an evolution parameter t, as it progressively improves its fit to the

sinogram data. The incremental change in the likelihood is

dEdata

dt
=
∫
S

N∑
i=1

M∑
j=1

d

dt
E (p̂ij , pi,j) dx =

∫
S

N∑
i=1

M∑
j=1

E′ (p̂ij , pij)
dp̂ij

dt
dx, (38)

where E′ = ∂E/∂p̂, which, for Gaussian noise, is simply the difference between

p̂ and p. Next we must formulate dp̂/dt, which, by the transport equation, is

dp̂ij

dt
= [β1 − β0]

d

dt

∫
Ω

δ(Rθi
x− sj)dx

= [β1 − β0]
∫
S

δ(Rθi
x− sj)n(x) · v(x)dx, (39)
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where n is an outward pointing surface normal and v(x) is the velocity of the

surface at the point x. The derivative of Edata with respect to surface motion

is therefore

dEdata

dt
= [β1 − β0]

∫
S

N∑
i=1

M∑
j=1

E′ (p̂i,j , pij) δ(Rθi
x− sj)n(x) · v(x) dx. (40)

Note that the integral over dx and the δ functional serve merely to associate sj

in the ith scan with the appropriate x point. If the samples in each projection

are sufficiently dense, we can approximate the sum over j as an integral over

the image domain, and thus for every x on the surface there is a mapping back

into the ith projection. We denote this point si(x). This gives a closed-form

expression for the derivative of the derivative of Edata in terms of the surface

velocity.
dEdata

dt
= [β1 − β0]

∫
S

N∑
i=1

ei(x)n(x) · v(x)dx, (41)

where ei(x) = E′(p̂(si(x), θi), p(si(x), θi)) is the derivative of the error associ-

ated with the point si(x) in the ith projection. The result shown in (41) does

not make any specific assumptions about the surface shape or its representa-

tion. Thus, this equation could be mapped onto any set of shape parameters

by inserting the derivative of a surface point with respect to those parameters.

Of course one would have to compute the surface integral, and methods for

solving such equations on parametric models (in the context of range data) are

described in [96].

For this work we are interested in free-form deformations, where each point

on the surface can move independently from the rest. If we let xt represent

the velocity of a point on the surface, the gradient descent surface free-form

surface motion is

xt = −dEdata

dx
= (β0 − β1)

N∑
i=1

ei(x)n(x). (42)

Thus, at a point x ∈ S, the ith projection has the effect of causing the surface

to expand or contract according to the difference between the projected model

values and the measured data at the point si(x), the projection of x (Figure 19).

The surface motion prescribed by a collection of projections is the sum of

motions from the individual projections. In the case of continuous set of angles,

the surface motion at a point is proportional to the sinusoidal line integral on

the error sinogram, which is e(s, θ).
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Figure 19: The model expands or contracts based on the difference in the

sinograms between the projected model and the measured data.

0.6.2.1 Density Parameter Estimation

The density parameters also affect the error term in equation (37). We propose

to update the estimate of the surface model iteratively, and at each iteration

we re-estimate the quantities β0 and β1 in such a way that the energy, Edata is

minimized. Treating Ω as fixed, (37) has two unknowns, β0 and β1, which are

computed from the following system:

∂Edata

∂β0
= 0,

∂Edata

∂β1
= 0. (43)

In the case of a Gaussian noise model (43) is a linear system. Because of

variations in instrumentation, the contrast levels of images taken at different

angles can vary. In such cases we estimate sets of such parameters, i.e., β0(θi)

and β1(θi) for i = 1 . . . N .

To extend the domain to higher dimensions, we have x ∈ IRn, and S ⊂
IRn−1 and the mapping si : IRn 7→ S models the projective geometry of the

imaging system (e.g. orthographic, cone beam, or fan beam). Otherwise the

formulation is the same as 2D.

One important consideration is to model more complex models of density.

If β0 and β1 are smooth, scalar functions defined over the space in which the
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surface model deforms, and g is a binary function, the density model is:

f(x) = β0(x) + (β1(x)− β0(x)) g(x, y). (44)

The first variation of the boundary is simply

dx

dt
= [β1(x)− β0(x)]

N∑
i=1

ei(x)n(x). (45)

Note, this formulation is different from that of Yu and Fessler [95], who address

the problem of reconstruction from noisy tomographic using using a single

density function f with a smoothing term that interacts with a set of deformable

edge models Γ. The edges models are surfaces, represented using level sets. In

that case variational framework for deforming Γ requires differentiation of f

across the edge, precisely where the proposed model exhibits (intentionally) a

discontinuity.

0.6.2.2 Prior

The analysis above maximizes the likelihood. For a full MAP estimation, we

include a prior term. Because we are working with the logarithm of the likeli-

hood, the effect of the prior is additive:

xt = −dEdata

dx
− dEprior

dx
. (46)

Thus in addition to the noise model, we can incorporate some knowledge about

the kinds of shapes that give rise to the measurements. With appropriately

fashioned priors, we can push the solution toward desirable shapes or density

values, or penalize certain shape properties, such as roughness or complexity.

The choice of prior is intimately tied to the choice of surface representation and

the specific application, but is independent of the formulation that describes

the relationship between the estimate and the data, given in (37).

Because the data are noisy and incomplete it is useful to introduce a simple,

low-level prior on the surface estimate. We therefore use a prior that penalizes

surface area, which introduces a second-order smoothing term in the surface

motion. That term introduces a free parameter C, which controls the relative

influence of the smoothing term. The general question of how best to smooth

surfaces remains an important, open question. However, if we restrict ourselves

to curvature-based geometric flows, there are several reasonable options in the

xlvii



literature [7, 31, 97]. The following subsection, which describes the surface

representation used for our application, gives a more precise description of our

smoothing methods.

0.6.3 Surface Representation and Prior

Our goal is to build an algorithm that applies to a wide range of potentially

complicated shapes with arbitrary topologies—topologies that could change as

the shapes deform to fit the data. For this reason, we have implemented the

free-form deformation given in (42) with an implicit level set representation.

Substituting the expression for dx/dt (from Equations 45 and 46) into the

ds/dt term of the level set equation (Equation 4a), and recalling that n =

∇φ/|∇φ|, gives

∂φ

∂t
= −|∇φ|

(
M∑
i=1

ei(x) + Cκ(x)

)
, (47)

where κ represents the effect of the prior, which is assumed to be in the normal

direction.

The prior is introduced as a curvature-based smoothing on the level set

surfaces. Thus, every level set moves according to a weighted combination of

the principle curvatures, k1 and k2, at each point. This point-wise motion is in

the direction of the surface normal. For instance, the mean curvature, widely

used for surface smoothing, is H = (k1 + k2)/2. Several authors have proposed

using Gaussian curvature K = k1k2 or functions thereof [97]. Recently [98] have

proposed using the minimum curvature, M = AbsMin(k1, k2) for preserving

thin, tubular structures, which otherwise have a tendency to pinch off under

mean curvature smoothing.

In previous work [41], the authors have proposed a weighted sum of mean

curvatures that emphasizes the minimum curvature, but incorporates a smooth

transition between different surface regions, avoiding the discontinuities (in the

derivative of motion) associated with a strict minimum. The weighted curvature

is

W =
k2
1

k2
1 + k2

2

k2 +
k2
2

k2
1 + k2

2

k1 =
2HK

D2
, (48)

where D =
√

k2
1 + k2

2 is the deviation from flatness [99].

For an implicit surface, the shape matrix [100] is the derivative of the normal

map projected onto the tangent plane of the surface. If we let the normal map
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be n = ∇φ/|∇φ|, the derivative of this is the 3× 3 matrix

N =
(

∂n

∂x

∂n

∂y

∂n

∂z

)T

. (49)

The projection of this derivative matrix onto the tangent plane gives the shape

matrix B = N(I − n⊗ n), where ⊗ is the exterior product and I is the 3× 3

identity matrix. The eigenvalues of the matrix B are k1, k2 and zero, and the

eigenvectors are the principle directions and the normal, respectively. Because

the third eigenvalue is zero, we can compute k1, k2 and various differential

invariants directly from the invariants of B. Thus the weighted-curvature flow

is computing from B using the identities D = ||B||2, H = Tr(B)/2, and K =

2H2 − D2/2. The choice of numerical methods for computing B is discussed

in the following section.

0.6.4 Implementation

The level set equations are solved by finite differences on a discrete grid, i.e.

a volume. This raises several important issues in the implementation. These

issues are the choice of numerical approximations to the PDE, efficient and

accurate schemes for representing the volume, and mechanisms for computing

the sinogram-based deformation in (47).

0.6.4.1 Numerical Schemes

Osher and Sethian [30] have proposed an up-wind method for solving equations

of the form φt = ∇φ ·v, of which φt = |∇φ|
∑

i ei(x), from (47), is an example.

The up-wind scheme utilizes one-sided derivatives in the computation of |∇φ|,
where the direction of the derivative depends, point-by-point, on the sign of the

speed term
∑

i ei(x). With strictly regulated time steps, these scheme avoids

overshooting (ringing) and instability.

Under normal circumstances, the curvature term, which is a directional dif-

fusion, does not suffer from overshooting; it can be computed directly from

first- and second-order derivatives of φ using central difference schemes. How-

ever, we have found that central differences does introduce instabilities when

computing flows that rely on quantities other than the mean curvature. There-

fore we use the method of differences of normals [101, 102] in lieu of central

differences. The strategy is to compute normalized gradients at staggered grid
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Figure 20: The shape matrix B is computed by using the differences of stag-

gered normals.

points and take the difference of these staggered normals to get centrally lo-

cated approximations to N (as in Figure 20). The normal projection operator

n ⊗ n is computed with gradient estimates from central differences. The re-

sulting curvatures are treated as speed terms (motion in the normal direction),

and the associated gradient magnitude is computed using the up-wind scheme.

0.6.4.2 Sparse-Field Method

The computational burden associated with solving the 3D, second-order, non-

linear level set PDE is significant. For this reason several papers [34, 35]

have proposed narrow-band methods, which compute solutions only a rela-

tively small set of pixels in the vicinity of k level set. The authors [36] have

proposed a sparse-field algorithm, which uses an approximation to the distance

transform and makes it feasible to recompute the neighborhood of the level

set model at each time step. It computes updates on a band of grid points,

called the active set, that is one point wide. Several layers around this active

set are updated in such a way to maintain a neighborhood in order to calculate
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derivatives. The position of the surface model is determined by the set of active

points and their values.

0.6.4.3 Incremental Projection Updates

The tomographic surface reconstruction problem entails an additional compu-

tational burden, because the measured data must be compared to the projected

model at each iteration. Specifically, computing p̂ij can be a major bottleneck.

Computing this term requires re-computing the sinogram of the surface/object

model as it moves. In the worst case, we would re-project the entire model

every iteration.

To address this computational concern, we have developed the method of

incremental projection updates (IPU). Rather than fully recompute p̂ at every

iteration, we maintain a current running version of p̂ and update it to reflect

the changes in the model as it deforms. Changes in the model are computed

only on a small set of grid points in the volume, and therefore the update time

is proportional to the area of the surface, rather than the size of the volume it

encloses.

The IPU strategy works with the the sparse-field algorithm as follows. At

each iteration, the sparse-field algorithm updates only the active layer (one

voxel wide) and modifies the set of active grid points as the surface moves.

The incremental projection update strategy takes advantage of this to selec-

tively update the model projection to reflect those changes. At each iteration,

the amount of change in an active point’s value determines the motion of that

particular surface point as well as the percentage of the surrounding voxel that

is either inside or outside of the surface. By the linearity of projection, we can

map these changes in the object shape, computed at grid points along the sur-

face boundary, back into the sinogram space and thereby incrementally update

the sinogram. Notice that each 3D grid point has a weighting coefficient (these

are precomputed and fixed), which is determined by its geometric mapping of

the surrounding voxel back into the sinogram, as in Figure 21. In this way the

IPU method maintains sub-voxel accuracy at a relatively low computational

cost.
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Figure 21: A weighting coefficient for each voxel determines the portions of the

discrete sinogram influenced by incremental changes to a grid point.

0.6.4.4 Initialization

The deformable model fitting approach requires an initial model, i.e. φ(x, t =

0). This initial model should be obtained using the “best” information available

prior to the surface fitting. In some cases this will mean thresholding a greyscale

reconstruction, such as FBP, knowing that it has artifacts. In practice the

initial surface estimate is impacted by the reconstruction method and the choice

of threshold, and because we perform a local minimization, these choices can

affect the final result. Fortunately, the proposed formulation is moderately

robust with respect to the initial model, and our results show that the method

works well under a range of reasonable initialization strategies.

0.6.5 Results

0.6.5.1 Transmission Electron Microscopy

Transmission electron microscopy is the process of using transmission images

of electron beams to reveal biological structures on very small dimensions.

Typically transmission electron microscopy (TEM) datasets are produced us-

ing a dye that highlights regions of interest, e.g. the interior of a microscopic

structure, such as a cell (see Figure 22a). There are technical limits to the

projection angles from which data can be measured. These limits are due to

lii



Emitter

Detector
2D Images

Specimen
Contrast
Agent

+90 deg.

-90 deg.

0 
de

g.

Data
Available
120-140
Degrees

(a) (b)

Figure 22: a) Transmission electron microscopy is used to image very small

specimens that have been set apart from the substrate by a contrast agent. b)

TEM imaging technology provides projections over a limited set of angles.

the mechanical apparatus used to tilt the specimens and the trade off between

the destructive effects of electron energy and the effective specimen thickness,

which increases with tilt angle. Usually, the maximum tilt angle is restricted

to about ±60–70 degrees. Figure 22b shows an illustration of the geometry of

this limited-angle scenario. The TEM reconstruction problem is further aggra-

vated by the degree of electron scattering, which results in projection images

(sinograms) that are noisy relative to many other modalities, e.g. X-ray CT.

Finally, due to the flexible nature of biological objects and the imperfections in

the tilting mechanism, the objects undergo some movements while being tilted.

Manual alignment procedures used to account for this tend to produce small

misregistration errors.

We applied the proposed algorithm to 3D TEM data obtained from a 3

MeV electron microscope. This 3D dataset consists of 67 tilt series images,

each corresponding to one view of the projection. Each tilt series image is of

size 424x334. The volume reconstructed by FBP is of size 424x424x334. Figure

23a and 23b show the sinogram corresponding to a single slice of this dataset

and the estimate of the same sinogram created by the method. Figure 23e

shows the surface estimate intersecting this slice overlaid on the back projected

slice. Some structures not seen in the back projection are introduced in the

final estimation, but the orientation of the structures introduced suggests that

these are valid features that were lost due to reconstruction artifacts from the

FBP. Also, the proposed method captures line-by-line brightness variations in
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Figure 23: 2D slice of dendrite data: (a) Sinogram of one slice (b) Sinogram

estimated by the proposed method (c) Back projection showing artifacts (d)

Initial model obtained by thresholding the back projection (white curve overlaid

on the back projection) (e) Final surface estimate.

the input sinogram (as explained in section 0.6.2.1). This suggests that the

density estimation procedure is correct.

Figure 24 shows the 3D initialization and the final 3D surface estimate. The

figure also shows enlarged initial and final versions of a small section of the sur-

face. Computing the surface estimate for the TEM dendrite with 150 iterations

took approximately 3 hours on a single 300MHz processor of a Silicon Graph-

ics Onyx2 workstation. We consider these results positive for several reasons.

First, the biology is such that one expects the spines (small protrusions) to be

connected to the dendrite body. The proposed method clearly establishes those

connections, based soley on consistency of the model with the projected data.

The second piece of evidence is the shapes of the spines themselves. The re-

constructed model shows the recurrence of a characteristic shape—a long thin

spine with a cup-like structure on the end. This characteristic structure, which

often fails to show up in the FBP reconstruction, does appear quite regularly

in hand-segmentations of the same datasets.

0.6.5.2 Sinogram Extrapolation

The fitting of surfaces to this data is a simplification. It is justified in the con-

text of segmentation, but there are underlying inhomogeneities in the density of
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Figure 24: 3D results: (a) Surface initialization (b) Final surface estimated after

150 iterations (c) A portion of the initial surface enlarged (d) The corresponding

portion in the final surface

this specimen, which could be indicative of relevant structures. Thus for some

applications direct visualization of the measured data, by volume rendering,

offers advantages over the segmented surfaces. We propose to use the surface

estimation algorithm as a mechanism for estimating the missing data in the

sinograms.

Figure 25a and 25b show the input sinogram and the sinogram of the esti-

mated model (for one slice) of the TEM dendrite data. The estimated sinogram

demonstrates that the surface estimation method recovers the missing informa-

tion in a reasonable way. Thus, we combine the sinograms from the model with

original sinograms to produce a “full” sinogram that still contains all of the

orginal, measured data. FBP reconstructions from such augmented sinograms

should have fewer limited-angle streak artifacts.

We demonstrate this by comparing volume renderings with and without

the augmentation. We create augmented sinograms by using sinogram data

from the estimated model only where the data is missing from the measured
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Figure 25: Sinogram extrapolation for slice number 150 of dendrite data: (a) In-

put sinogram (b) Sinogram estimated by the proposed method (c) Augmented

sinogram constructed using original data and estimating missing data from the

segmentation (d) FBP reconstruction of the augmented sinogram.

sinograms. The augmented sinogram for a single slice is shown in Figure 25c.

The slice reconstructed (FBP) from the augmented sinogram is shown in Fig-

ure 25d. Note that this reconstructed slice does not contain the limited-angle

artifacts that appear in the slice in Figure 23c. Maximum intensity projection

(MIP) volume renderings of the volume created from original sinograms and

the volume created from augmented sinograms are compared in Figure 26. The

main body of the dendrite, which exhibited a very convoluted and fuzzy bound-

ary, shows better definition. Also, several of the spines which were dangling in

the original reconstruction are now connected.

Conclusions

This chapter has described a level set segmentation framework and the pre-

processing and data analysis techniques needed for a number of segmentation

applications. Several standard volume processing algorithms have been incor-

porated into the framework in order to segment datasets generated from MRI,

CT and TEM scans. A technique based on moving least-squares has been

developed for segmenting multiple non-uniform scans of a single object. New
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Figure 26: Sinogram extrapolation results: (a) MIP volume rendering of volume

reconstructed from original sinograms (b) MIP volume rendering of volume re-

constructed from augmented (extrapolated) sinograms (c) A portion of original

MIP enlarged (d) The corresponding portion in augmented MIP enlarged
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scalar measures have been defined for extracting structures from diffusion ten-

sor MRI scans. Finally, a direct approach to the segmentation of incomplete

tomographic data using density parameter estimation is described. These tech-

niques, combined with level set surface deformations, allow us to segment many

different types of biological volume datasets.
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