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Abstract

This paper presents a technique for creating a smooth, closed surface from a set of 2D
contours, which have been extracted from a 3D scan. The technique interprets the pixels
that make up the contours as points in R3 and employs Multi-level Partition of Unity (MPU)
implicit models to create a surface that approximately fits to the 3D points. Since MPU
implicit models additionally require surface normal information at each point, an algorithm
that estimates normals from the contour data is also described. Contour data frequently
contains noise from the scanning and delineation process. MPU implicit models provide
a superior approach to the problem of contour-based surface reconstruction, especially in
the presence of noise, because they are based on adaptive implicit functions that locally
approximate the points within a controllable error bound. We demonstrate the effectiveness
of our technique with a number of example datasets, providing images and error statistics
generated from our results.

Key words: Surface reconstruction, contours, implicit models, Multi-level Partition of
Unity, normal estimation

1 Introduction

With the enhancement of computer, scanning and imaging technology, increasing
amounts of sampled biological data are being generated. The data comes from such
sources as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and
histologic imaging of objects such as mouse and frog embryos, bones, brains, and
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even fossils. These data consist of a regular 3D lattice of sample points that can be
interpreted as a stack of 2D images. Each image represents a thin, cross-sectional
slice of the specimen. Depending on the scanning method used, each sample may
be a scalar (producing grey-scale images), a vector (producing color images), or
possibly a tensor.

Biological specimens are routinely scanned/imaged in order to produce information
about the specimen’s internal 3D structure for further analysis. Given a complete
scan of the specimen, or more commonly a sparse subsampling, the desired 3D
structure must be extracted from the raw 3D data produced by the scanning process
in order to create a model. Frequently the segmentation process begins with the
manual delineation of the structure in the individual 2D slices of the 3D volume
dataset. This step produces a contour, an outline of the structure that is visible in
the cross-section, for each slice. The contour for a single slice may have multiple
components, and is represented as a binary image, where contour pixels are white
and all other pixels are black. Contours generated via manual delineation contain
slight inaccuracies as a result of hand and sampling jitter, producing noisy outlines
that do not exactly represent the boundaries of the specimen.

If not properly filtered, the set of reconstructed Volumes of Interest (VOIs) will
contain high-frequency noise due to the small jitter invariably associated with man-
ual 2D delineation [23]. It is therefore necessary to have an effective algorithm
for smoothing the sequential parallel 2D contours and, in the common case of
sparsely sampled sectional material, for fitting a surface over missing data, in order
to produce acceptable 3D visualization of, as well as arbitrary cutting plane views
through, the VOIs. This noise also reduces the accuracy of the shape analysis and
automated segmentation techniques used within a common family of atlas-guided
parcellation algorithms, which are of significant importance in the construction of
large anatomical neuroinformatics resources [56]. In atlas-guided segmentation ex-
perimental material is registered to a reference atlas containing anatomical tem-
plates [16]. By this process, experimental material inherit the anatomical labels
contained in the atlas and it is imperative that those templates are as noise-free
as possible. In the vast majority of studies using non-human material, the exper-
imental data is sectional material and the task is one of aligning an ordered 2D
section set to a 3D atlas. With the latest techniques, this nonlinear warping defines
an oblique plane [29] or, with more advanced tools, a curved surface [30] in the ref-
erence atlas corresponding to each given experimental section. If the atlas contours
are not smoothed in 3D, the resulting region of interest (ROI) inherited from the
atlas can be significantly misshaped. In a strategy adopted in the Drexel Labora-
tory for Bioimaging and Anatomical Informatics, the registration is further refined
using the inherited templates as seeds for automated segmentation [16] which in
turn are used in guiding a further local warp [31,32]. However, if the original seed
is poorly shaped the initialization is ineffective and the automated segmentation
routines often fail.
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Fig. 1. Overview of contour-based reconstruction with MPU implicit models. A point set
is extracted from a stack of contours and filled to produce a binary volume. The object’s
boundary is blurred and gradients are calculated at exterior voxels (boundary points) to
estimate surface normals. An MPU implicit model is fit to the points and normals to produce
a 3D scalar field. A mesh of the zero iso-surface is then extracted from the volume.

The solution described in this paper produces a closed 3D reconstructed surface
while reducing the noise originally present in the input contours. The approach
takes as its input parallel 2D ROIs and generates smooth 3D surfaces. It does not at-
tempt to interpolate the input data, which would have the undesirable consequence
of incorporating the noise into the reconstructed model. Instead, it approximately
fits a point-based implicit surface to the contour data, while allowing the user to
control the amount of smoothing applied to the model.

Our general approach involves interpreting contour information as points in 3D.
Recent advances in computer graphics have developed a number of techniques for
creating surface models from sets of unstructured, unconnected 3D points that sam-
ple some underlying surface. Our work exploits these advances in point set surfaces
to provide a contour-based surface reconstruction technique that can effectively
handle noisy input contours. We show that the technique can produce smooth 3D
models from this kind of data and that the errors resulting from the approximating,
rather than interpolating, surface are controllable and acceptable. Results and anal-
ysis based on numerous examples are provided. In addition, once a 3D model is
created we are able to arbitrarily slice the 3D model in order to produce new sets
of contours parallel to a user-specified cutting plane.

1.1 Approach Overview

An overview of our approach to contour-based surface reconstruction is illustrated
in Figure 1. The process begins with a set of contours, where each contour is rep-
resented by a binary image of one or more closed curves, and produces a smooth
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3D mesh as output. The individual slices (images) are stacked to produce a 3D
dataset. The indices of the contour pixels along with the slice number allow us to
convert the contour data into a set of points in R3. Point set models lie at the heart
of our reconstruction process. We employ Multi-level Partition of Unity (MPU) im-
plicit surfaces [50] to create an approximating surface based on the contour point
set [15]. While a number of techniques do exist for creating surfaces from points
(See Section 2), MPU implicits were chosen for a number of reasons. Firstly, they
adaptively conform to local features and details, which provides control over sub-
sequent approximation errors. MPU implicit calculations are computationally ef-
ficient and scale favorably for large datasets. When dealing with high resolution
biological data, these two characteristics are important for real-world applications.
Additionally, MPU implicits provide a good approximation to the Euclidean dis-
tance field near the zero iso-surface, a feature utilized in another reconstruction
project [45] and our error analysis (See Section 5.1). While MPU implicits may
oscillate or show sampling/subdivision artifacts, none of these problems were ev-
ident in our results. Methods for triangulating the input data were not considered,
because these approaches in general interpolate and therefore include the noise of
the contours in the reconstructed surface; thus necessitating a smoothing operation
as a post-process.

MPU implicit surfaces, however, also require that a surface normal be defined for
every point in the point set. This information is not readily available from the input
binary contours. We therefore need to estimate surface normals from the contours.
Our approach for estimating normals begins by creating a 3D binary volume with
explicit inside and outside information that is calculated from the closed contour
data using a 2D flood-fill algorithm. The voxels inside and on the contours are set to
1. All other voxels are set to zero. Next, a Gaussian filter is applied to the volume
blurring the boundary of the 3D binary segmentation. The negative gradient of
the blurred segmented volume is calculated at every original contour voxel. The
calculated gradient is then used to estimate the surface normal at each contour
voxel.

Given the point and normal information, MPU implicits generate a smooth 3D
surface. MPU implicits use a partition of unity approach, where surface estimation
is performed locally and the local implicit functions are blended together globally
to produce the overall surface. They also allow for adaptive error control based on
octree subdivision. See Section 3 for more details. The reconstruction quality is
examined in detail through analysis and error measurements of the reconstructed
models. We use an artificially created dataset with added noise in order to measure
the quality of our reconstruction when the ground truth is known. Additionally, we
compare our results with those produced by other methods.

4



2 Related Work

The problem of reconstructing 3D models from 2D contours has been studied since
the 1970’s [26,38]. Numerous techniques have been proposed since that time, and
fall into two main categories, contour stitching and volumetric methods. We also
survey techniques for creating surfaces from sets of unorganized points.

2.1 Contour Stitching

Most of the research on contour-based surface reconstruction has focused on meth-
ods for connecting (stitching) the vertices of neighboring contours into a mesh.
There are three general problems that contour stitching attempts to solve (as de-
fined by Meyers et al. [47] and Bajaj et al. [8]):

Correspondence – Given a set of vertices in contour A and a set of vertices in
contour B, a correspondence (connection) between the vertices in A must be found
to the vertices in B.

Branching – Branching is a significant problem in mesh-based approaches. It oc-
curs when one contour slice contains only one closed contour, while the next slice
contains two or more closed contours. Robust techniques must be developed to de-
termine what branches are formed between the two slices. Various methods have
been proposed for this problem, while other reconstruction techniques ignore it.

Tiling – Tiling produces a mesh between two adjacent slices. The tiling process
joins two slices by creating a strip of triangles using the correspondences between
vertices. Most of the progress in mesh-based approaches has been made in this area.

Keppel [38] and Fuchs et al. [26] perform contour stitching between two contours
P and Q by successively connecting either a vertex on P with two vertices on Q, or
by connecting a vertex on Q with two vertices on P to form a triangle strip between
the two contours. They use algorithms that minimize or maximize an objective
function to choose the exact ordering of the vertices. Keppel’s approach attempts
to maximize a function based on the volume of the polyhedron that is formed by
the triangle strip. Fuchs uses a minimum path cost algorithm to find the optimal
triangulation that minimizes the surface area. However, these early techniques do
not deal with handling special cases such as branching. Ganapathy [28] uses a sim-
ilar approach to Fuchs, but instead parameterizes each contour with a parameter
t ∈ [0,1]. This parametric value is then used to guide the greedy selection of ver-
tices on either the upper or lower contour, such that the difference between the
parameter values of the current position in each contour is minimized.

Other methods that have improved on these approaches include Boissonnat [14],
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who uses Delaunay triangulation in the plane and then “raises” one of the contours
to give the surface its 3D shape. However, this approach fails to deal effectively with
some contour stitching problems such as contour pairs that are either too different
from each other, or that overlap. Barequet et al. utilize a partial curve matching al-
gorithm to connect most portions of the contours [10,11]. Then they apply a multi-
level approach to triangulate the remaining portions. In later work they utilized
straight skeletons to guide the inter-contour triangulation process [9]. Non-convex
contour polygons also cause problems for some algorithms. Ekoule et al. [24] claim
to handle dissimilar and non-convex polygons well, but use a heuristic algorithm.
Meyers et al. [47] introduce a method that deals with yet more contour stitching
problems. Their algorithm handles narrow valleys and branching structures using a
Minimum Spanning Tree (MST) of a contour adjacency graph. Bajaj et al. [8] use
various constraints on the triangulation procedure combined with contour augmen-
tation to solve the three problems of contour triangulation (correspondence, tiling,
branching) simultaneously. Fujimura and Kuo [27] use an isotropy-based method
that introduces new vertices (besides those on the contours) to produce smoother
meshes. They also propose to solve the branching problem by introducing an inter-
mediate slice at the branch point between two adjacent contours. Klein et al. [40]
use hardware to compute 2D distance fields. The distance fields are then used to
solve the correspondence problem before surface tiling. Contours are also deci-
mated (simplified) to a user specified level before processing. Gibson [33] creates
somewhat smooth surface models from binary volume data, which we will show
can be produced from stacked contours, by linking surface nodes (vertices) that are
constrained within voxel regions.

Techniques for stitching together surfaces from sets of unorganized points have
been studied since the early 1990’s. Edelsbrunner and Mücke [22] present a family
of shapes (α-shapes) that can be defined by a point set and generated by a Delau-
nay triangulation-based algorithm. Bernardini et al. [13] describe an algorithm for
creating surfaces from unstructured points by connecting three points that solely
lie within a sphere of user-specified radius to form a triangle. The sphere is piv-
oted around one of the triangle’s edges until comes in contact with another point.
Amenta et al. [2,3] developed a surface reconstruction algorithm based on Delau-
nay triangulation and 3D Voronoi diagrams. Given sufficient sampling of the un-
derlying surface the reconstruction is guaranteed to be topologically correct. Later,
Amenta et al. [5] perform surface reconstruction by first calculating a piecewise-
linear approximation of the underlying surface’s medial axis transform (MAT). The
surface is constructed by applying an inverse transform to the MAT. Dey et al. [4]
extend this work with the Cocone algorithm, which uses complemented cones of
the Voronoi diagram to provide additional guarantees about the reconstructed sur-
face. The Cocone algorithm itself has been extended to produce water-tight surfaces
[20] and to handle noisy input data [21].
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2.2 Volumetric Methods

Levin [41] presents the seminal volumetric approach to surface reconstruction from
a series of parallel contours. Given a distance field 2 for each contour, the 2D fields
are stacked and interpolated in the z-direction with cubic B-splines, producing a
R3 7→ R function whose zero set is the reconstructed surface. However, the recon-
struction’s smoothness depends on the smoothness of the distance field, which in
general only has C0 continuity. Raya and Udupa [55] treat the problem of time-
varying, anisotropic data by interpolating intermediate contours in order to pro-
duce an isotropic sampling before performing the reconstruction. They segment
greyscale volume data into contours, then convert them into 2D distance fields.
These 2D distance fields are then linearly interpolated in the z-direction. Jones
and Chen [37] suggest that Voronoi diagrams be used to minimize the computa-
tion needed for calculating the 2D distance fields. Barrett et al. [12] recursively
apply morphological operators (dilation and erosion) to contour images in order to
interpolate intermediate gray level values. This approach works well on topology
maps with nested contours. Savchenko et al. [57] utilize a volume spline based on
Green’s functions to create a 3D function representation of the reconstructed sur-
face. Cohen-Or et al. [18,19] introduce the concept, without supporting results, of
creating a 3D object from contours by morphing one contour into the next using
warp-guided distance field interpolation. They specifically address the problem of
successive contours being too far from each other (in the xy-plane). The proposed
approach creates “links” between contours (features) and uses these links to guide
interpolation. Chai et al. [17] present a gradient-controlled partial differential equa-
tion method for producing C1 continuous surfaces from nested contours. Nilsson
et al. [49] utilize 2D level set morphing with cross-contour velocity continuity to
sweep out smooth surfaces from contour images. Whitaker [63] employs 3D level
set models to partially smooth binary volumes.

2.3 Point Set Surfaces

The use of point sets as a display primitive was originally proposed by Levoy and
Whitted [43]. When the screen area of the individual rendered triangles within a
mesh is smaller than a pixel, it becomes more prudent to represent the model by
just a set of points, e.g. its vertices. Levoy and Whitted introduced an efficient
method for rendering continuous surfaces from point data.

Hoppe et al. [36] proposed one of the first implicit reconstruction methods, which
produces a surface mesh from unorganized points in R3 by creating a signed dis-
tance function. The distance function is estimated by the closest distance from an

2 A distance field is an implicit representation of an object, where the value of a point in
the field is defined to be the signed distance from that point to the object.
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input point and the sign (inside/outside status) is determined by a tangent plane that
locally approximates the point data. Levin [42] uses moving least squares (MLS)
to approximate point sets with polynomials. Alexa et al. [1] also use point sets to
represent shapes. They use the MLS approach, and introduce techniques to allow
for upsampling (creating new points) or downsampling (removing points) of the
surface. They also introduce a point sample rendering technique that allows for the
visualization of point sets at interactive frame rates with good visual quality. Fleish-
man and Cohen-Or [25] extend the MLS procedure and introduce Progressive Point
Set Surfaces (PPSS) to generate a base set of points that are refined to an arbitrary
resolution. Xie et al. [64] further extend MLS surfaces with local implicit quadrics
that allow more accurate discovery of the local topology and geometry from noisy
input data. Zhao et al. [67] have employed level set models [52], represented by a
distance field representation, to construct surfaces from sets of points. Amenta and
Kil [6] project points onto the “extremal” surface defined by a vector field and an
energy function. However, this approach requires (undirected) surface normals to
be present in the point set. Another popular approach by Ohtake et al. use Radial
Basis Functions [51] to define point set surfaces. In a different and much faster
approach, Ohtake et al. propose the Multi-level Partition of Unity (MPU) implicit
models [50]. We have chosen to build upon the MPU implicit approach in our work
and describe it in detail in Section 3.

3 MPU Implicit Surfaces

Since MPU implicits approximate the input point set and have controllable error
bounds, they provide a robust and effective method for reconstructing surfaces
from noisy input contours. In this approach contour vertices or pixel coordinates
(depending on the representation of the contours) are interpreted as points in R3,
i.e. a point set. The MPU function operates on the point set and reconstructs a
surface that approximately fits to the input data. MPU implicit surfaces provide ad-
vantages over previous contour-based reconstruction techniques because they use
local piecewise quadric functions and adapt to surface detail through the use of re-
cursive octree subdivision. They are able to deal with unstructured points that vary
in sampling density, do not require input points from a specific contour to lie on a
plane, use an adaptive technique that confines the reconstruction to a specified error
parameter, and are both space and time efficient.

Unlike other point set surface reconstruction algorithms [36], which utilize surface
normal estimates, the MPU function requires normals to be present in the input
for every data point. Ohtake et al. [50] claim that this is not a significant issue as
normals can be easily obtained from a mesh representation, least-squares fitting,
or obtained automatically from range acquisition devices. However, in practice this
is rarely the case. Given a set of points in R3 with no other information about
the object on which they lie, finding surface normals for the point set is a prob-
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f(x) = 0Q1(x) = 0

Q2(x) = 0

Fig. 2. Two local approximations (red) blended to form the global function (blue).

lem on its own. Such is the case during contour reconstruction because there is no
explicit structure that provides surface normals at each point. Without accurate sur-
face normals information associated with the point set, the MPU function is unable
to properly reconstruct the surface.

An MPU surface is implicitly defined by an MPU function. The MPU function de-
fines a distance field around the surface that it represents. Globally, the MPU func-
tion is composed of overlapping local functions that are blended together, summing
to one (partition of unity). A partition of unity is a set of nonnegative compactly
supported functions ωi where ∑i ωi ≡ 1, on a bounded Euclidean domain Φ. The
global function is then

f (x) = ∑
i

ωi(x)Qi(x), (1)

where Qi(x) is a local approximation function, see Figure 2. Each ωi is generated
by

ωi(x) = wi(x)/
n

∑
j=1

w j(x), (2)

where the set {wi} is a set of nonnegative compactly supported weight functions
such that Φ ⊂ ∪isupp(wi). In the current MPU implicits implementation, each
weight function wi(x) is a quadratic B-spline. The weight functions are centered
at the midpoint of each octree cell ci in the subdivision process, and have a support
radius of Ri.

MPU implicits use an adaptive octree-based subdivision scheme in order to selec-
tively refine areas of higher detail. There are several parameters that control this
subdivision process. There is a support radius R for the weight functions that is
centered at the midpoint (c) of each octree cell. This support radius is initialized to
R = αd, where d is the length of the diagonal of the current cell and α = 0.75. R
can be enlarged if the enclosing sphere does not contain enough points, as specified
by a parameter Nmin. In that case, R is automatically scaled with a parameter λ :
R′ = λR (λ > 1) until Nmin points are enclosed by the sphere.
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Fig. 3. Left: bivariate quadric is used. Right: general 3D quadric is used.

At each step of the algorithm, a local function Q(x) is fit to the points in the ball
defined by R and centered in a cell on a leaf node of the octree. The local func-
tion’s accuracy is evaluated by calculating the Taubin distance [60], an accurate
and easily-computed approximation to the shortest distance between a point and an
implicit surface. It is defined by the following:

ε = max
x

|Q(x)|
|∇Q(x)|

, ∀x ∈ {ball defined by R}. (3)

If ε is greater than a user-specified tolerance value (tol), the subdivision process
continues (i.e. the current cell is divided into eight child cells and the approximation
procedure is performed within each of the child cells).

The local function Q(x) is approximated in one of three ways. It can either be a
3D quadric, a bivariate quadric polynomial, or a piecewise quadric surface used for
edges and corners. The function is chosen based on local surface features implied
by the input normals. Our work involves biological data which by its nature does
not contain sharp features. Therefore, sharp feature detection is not utilized, and as
a result, only the first two quadrics are used.

The selection of one of the two functions is governed by examination of the surface
normals associated with the points within the radius R. If all normals point in the
same direction then a bivariate quadric is used, otherwise a general 3D quadric
(which is capable of constructing two sheet functions) is used. Figure 3 explains
this process in 2D: in the circle on the left, all of the normals point in the same
relative direction indicating that only a bivariate quadric is needed, while in the
circle on the right a two sheet general quadric is used.

4 Surface Reconstruction

Our approach to contour-based surface reconstruction interprets contour informa-
tion (edge vertices or contour pixels) as a point set in R3. We approximate the
surface defined by the point set with MPU implicit models. In order to generate
the surface, MPU implicits require not only the input points, but also normals as-
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(a) (b)

(c) (d)

Fig. 4. 2D example of normal estimation. (a) Original contour. (b) Inside region filled.
(c) After Gaussian filtering (σ = 3). (d) Normals calculated from gradient.

sociated with the underlying surface at each point. These normals are not provided
with the raw input contours, and calculating them is the major technical issue to be
addressed when applying MPU implicits to this problem domain. The generation of
normals for an arbitrary set of points in space has been studied by Mitra et al. [48].
However, it is possible to exploit the structure and properties of the contour points
in order to generate satisfactory, approximate normals at each point. Once normals
are calculated the parameters for the MPU implicit model are adjusted to produce
the desired, smooth reconstructed surface.

4.1 Surface Normal Estimation

Approximate surface normals are produced in a three step process [65]: creating a
binary volume, volume filtering [59,62], and calculating the gradient of the blurred
data [35] at the input points.
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(a) (b)

Fig. 5. Isosurfaces extracted from binary volumes produced from stacked contours.
(a) mouse embryo. (b) mouse embryo stomach.

In our data each contour is defined by a closed set of pixels in an image. The pixels
may be converted to points by using their image coordinates [i, j] as x,y coordi-
nates and the image slice number as a z coordinate. The images themselves may be
stacked to produce a 3D binary volume VΩ that has integer indices. Before stacking
the images, each image is separately processed and segmented into inside and out-
side regions, with every pixel given an inside/outside status. Since the contours are
closed a flood-fill algorithm starting at a pixel known to be outside the contours,
e.g. [0,0] may be used for the classification. Those pixels accessible from [0,0] are
labeled “outside”, and the remaining pixels are labeled “inside”. See Figure 4(a)
and (b). Extra care must be taken to cope with nested contours within an image. In
the resulting volume each voxel is therefore classified as lying in or on the object
Ω (value 1) or outside the object (value 0). Figure 5 presents isosurfaces extracted
from two binary volumes produced from stacked segmented images. The inside
voxels of the resulting volume correspond directly to the points inside of each of
the 2D contours.

The segmented/classified images are stacked to produce a binary volume VΩ. A
3D Gaussian filter is applied to VΩ in order to blur the boundary between inside
and outside voxels, producing non-integer voxel values around the boundary and a
smoother result. We utilize a 3×3×3 kernel defined by the 3D Gaussian function
with standard deviation σ [34],

F(x,y,z) =
1√

2πσ
exp

(
−x2 + y2 + z2

2σ2

)
(4)

to perform the blurring.

12



A 3D Sobel filter [44] is applied to the blurred volume V ′ at the voxel locations
associated with the original contour pixels pl to calculate the gradient ∇V ′(pl) at
those locations. The Sobel filter was chosen because it takes into account informa-
tion on the diagonals surrounding the processed point in addition to the information
along the volume’s axes. However, it does place more emphasis on the axis-aligned
information. The resulting gradient is normalized and negated to produce the nor-
mal associated with each input contour point,

n̂l =− ∇V ′(pl)
|∇V ′(pl)|

. (5)

Using this approach, it is not necessary to estimate the orientation of the normals
as is needed in other techniques, such as Mitra et al. [48] and Hoppe et al. [36].
Since the values of the blurred volume range from high on the inside to low on the
outside of the model, the negative gradient points away from the model’s interior,
which is the correct orientation for the normals. The complete process is presented
in a 2D example in Figure 4.

4.2 Point and Normal Transformation

Due to the nature of some scanning processes, e.g. histologic imaging, it is possi-
ble to produce highly anisotropic data where the imaging resolution in the xy-plane
is significantly greater than the slice resolution. For example, imaging resolution
is only accurate to the pixel, whereas slices can be two, three, or more pixels apart
from each other. Non-uniformly sampled contour data must be appropriately scaled
in the z direction to ensure that points are correctly positioned in R3. The transfor-
mation either increases or decreases the z component of the points to produce a
consistent physical scale in all three dimensions. For example, if the in-plane xy
sampling resolution is four times greater than the slicing resolution, the z compo-
nent of the resulting points should be scaled by four to create points with the correct
physical locations.

Since each point is simply a point in R3 and not necessarily constrained to a vol-
umetric grid, scaling each point is a straightforward procedure. However, it is first
necessary to calculate surface normals from the initial binary volume before any
scaling takes place. After the non-uniform scaling, the grid layout of the voxels in
the volume is lost, and with it the ability to construct normals using a method based
on data stored in a uniform grid. Thus the point scaling procedure must occur after
the normals generation phase of the reconstruction process. Once a normal is ob-
tained for each input point, the underlying grid structure of the points is no longer
necessary and can be discarded, leaving only a list of points and their corresponding
normals.
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If the input points are scaled their associated normals must also be transformed.
A surface normal is not a vector, but a property of the surface; normals are not
invariant under anisotropic scaling. Therefore, special care must be taken to prop-
erly scale normals. For a given transformation matrix M that is applied to points
on a surface, the corresponding transformation matrix A that must be applied to the
normals is A = (M−1)T [61].

4.3 MPU Implicit Surface Fitting

Once the 3D point and surface normal information is obtained, the surface is re-
constructed using an MPU implicit model. Two parameters control the quality and
smoothness of the reconstructed MPU surface. The first is the minimum number
of points (Nmin) that must be included in every ball of radius R that is centered at
each octree cell. The second is an error tolerance value (tol) that guarantees that
the reconstructed surface lies within tol distance of the input data points. Both of
these parameters are set by the user and control the quality of the reconstruction.
Increasing either of the two parameters results in a higher degree of smoothing.
A smaller tolerance value results in a locally tighter approximation (closer to the
original data points), where the local region is defined by R. Increasing the Nmin
parameter while keeping tol constant results in smoother, wider regions that are
still subject to the tolerance constraint. Experimentation has also shown that some
values of these parameters can cause spurious surface artifacts. For example, set-
ting the tol parameter to extremely low values can cause interpolation (as opposed
to approximation) artifacts such as small protrusions or dents in the surface when
reconstructing noisy data. Since reconstruction and error analysis is rapidly com-
puted, the user is able to easily and repeatedly adjust the two MPU parameters until
a visually acceptable result with reasonable error statistics is produced. Currently,
a heuristic approach based on experimentation is used to choose these parameter
values. Future work will involve exploration of methods for automatic parameter
estimation that produce the best results. MPU implicit models are also designed to
deal effectively with sharp edges and corners. However, since we worked exclu-
sively with biological data that is smooth, this feature was not deemed necessary
and was disabled in our studies.

5 Reconstruction Results and Analysis

We tested and evaluated our reconstruction technique with a number of datasets.
Four of the datasets (embryo, heart, stomach and tongue) are isotropic, i.e. their
sampling resolutions are the same in all three dimensions. Three of the datasets
(mouse brain, ventricles and pelvis) are anisotropic, with their X −Y resolution
being greater than their slicing (Z) resolution. The quality of each reconstruction
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Table 1
Characteristics of input datasets

name # of slices resolution xy:z # of data points

embryo 186 122×128 1 : 1 46,204

heart 34 89×98 1 : 1 4,528

stomach 34 90×63 1 : 1 4,088

tongue 32 90×120 1 : 1 6,842

mouse brain 157 730×525 2 : 1 247,267

ventricles 36 195×285 8 : 1 19,800

pelvis 26 500×500 8 : 1 21,650

was quantified by calculating the distance between the input points and resulting
surface. Additionally we investigated the effectiveness of MPU-based methods to
reconstruct noisy input data, and compared the results from our approach to a num-
ber of other techniques and systems.

The datasets used for our studies are:

• Mouse embryo, heart, stomach, and tongue – Contours extracted from an MRI
scan of a 12-day-old mouse embryo,

• Mouse brain – Contours extracted from histologic images of a mouse brain,
• Human brain ventricles – Contours extracted from a segmentation of a diffu-

sion tensor magnetic resonance imaging (DT-MRI) scan of a human brain [68],
• Pelvis – Contours acquired from a public database at the Technion.

Table 1 presents detailed information about these datasets including number of
slices, in-plane image resolution, ratio of in-plane to slice sampling rates, and total
number of points (pixels) that define the contours in the dataset.

All of the results from our technique presented here are displayed using flat shading,
not Gouraud shading which increases the apparent smoothness of a model. Thus we
present the geometry produced by our techniques as accurately as possible.

5.1 Evaluating Reconstruction Error

Although the reconstructions are visually appealing, it is necessary to quantify the
quality of the reconstructions in order to determine how faithfully MPU implicit
models fit to the input data. This is accomplished by calculating an error metric
at the input data points that determines how well the reconstructed surface fits to
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Table 2
Approximation quality of reconstructed surfaces for isotropic data with specified MPU tol
and Nmin parameters. Metrics are calculated in units of voxels.

name min max median mean st dev % < 1.0 % < 0.5 tol Nmin

embryo 3.0E-06 1.7273 0.2788 0.3079 0.2126 99.49 81.08 3.5 200

heart 1.5E-04 1.3217 0.2403 0.2782 0.2052 99.51 85.53 2.5 100

stomach 5.7E-05 1.4921 0.2306 0.2670 0.1994 99.73 86.33 2.5 100

tongue 6.6E-05 1.4534 0.2777 0.3151 0.2247 99.34 78.88 2.5 100

mouse brain 4.0E-06 4.2910 0.4396 0.5619 0.4794 84.14 55.30 14 350

ventricles 7.0E-06 3.6074 0.4808 0.5859 0.4652 82.01 51.62 6.5 200

pelvis 0.00 3.1170 0.2181 0.2837 0.2587 98.12 83.25 6.0 200

the points. The metric is defined at each input point as the distance from the point
to the reconstructed surface. This error calculation also provides some insight into
the amount of smoothing applied by the approach to the data. Since the MPU im-
plicit function estimates the distance to the MPU model from an arbitrary point,
simply evaluating the function at each of the input data points gives the desired
error value. The error values are then gathered and statistics related to the complete
reconstruction are calculated. The minimum, maximum, median, arithmetic mean,
and standard deviation of the error values for each reconstructed model are given
in Table 2, as well as the percentage of points that are 1 and 1/2 voxel length away
from the surface. All of the error metrics that are presented here are in voxel units.
For example, a maximum error of 2 signifies that the contour dataset lies at most
two voxels away from the reconstructed surface. The MPU parameters for these
examples were determined iteratively by creating and viewing a small number of
surfaces with different values, until acceptable results were produced.

The reconstruction results and visualizations of the reconstruction errors are pre-
sented in Figures 6 and 7. The point sets extracted from the original datasets are first
shown, followed by a color-coded reconstruction with the reconstruction error dis-
played from yellow (low) to red (high). The final image presents the reconstruction
with areas that have errors greater than one voxel marked in red. Higher resolution
final results with no error markings are presented in Figures 8 and 9. The compu-
tation times for these results (given as system time on an Apple dual 2.0 GHz G5
with 1GB of RAM) are given in Table 3.

While the maximum error values for the isotropic models lie between 1 and 2 vox-
els, the error statistics indicate that almost all regions of the reconstructed surfaces
lie within the voxels defined by the original contours. For these models (embryo,
heart, stomach, and tongue) most contour points are less than half a voxel-length
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Point Set Error Error > 1 voxel

(a) Mouse embryo

(b) Embryo heart

(a) Embryo stomach

(b) Embryo tongue

Fig. 6. Reconstruction of isotropic mouse embryo skin, heart, stomach, and tongue data,
with approximation errors. (left) Point set extracted from the input contours. (center) Re-
construction error from yellow (low) to red (high). (right) Regions with errors greater than
1 voxel marked in red.
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Point Set Error Error > 1 voxel

(a) Mouse brain

(a) Ventricles

(b) Pelvis

Fig. 7. Reconstruction of anisotropic mouse brain, ventricles and pelvis data, with approx-
imation errors. (left) Point set extracted from the input contours. (center) Reconstruction
error from yellow (low) to red (high). (right) Regions with errors greater than 1 voxel
marked in red.

away from the resulting MPU surface (embryo - 81.08%, heart - 85.53%, stom-
ach - 86.33%, tongue - 78.88%). An even higher majority of points (with error
measurements within three to four standard deviations) lies within one voxel of
the reconstructed surface (embryo - 99.49%, heart - 99.51%, stomach - 99.73%,
tongue - 99.34%). This demonstrates that the reconstruction error is sub-pixel for
a vast majority of input points. The input data are provided as pixels in individual
images, which are then assembled, via stacking, into voxels. The information pro-
vided to the reconstruction is discrete and represents value intervals on the order of
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(a) Mouse embryo (b) Mouse embryo heart

(c) Mouse embryo stomach

Fig. 8. Reconstructions of the isotropic mouse embryo skin, heart and stomach datasets.
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(a) Mouse brain

(b) Ventricles

(c) Pelvis

Fig. 9. Reconstructions of the anisotropic mouse brain, ventricles and pelvis datasets.
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Table 3
Surface reconstruction execution times on an Apple dual 2.0 GHz G5 with 1GB of RAM.

name normals estimation surface reconstruction total

embryo 10 sec 6 sec 16 sec

heart 1 sec 3 sec 4 sec

stomach 1 sec 5 sec 6 sec

tongue 1 sec 2 sec 3 sec

mouse brain 3 min,14 sec 27 sec 3 min,41 sec

ventricles 6 sec 3 sec 9 sec

pelvis 13 sec 7 sec 20 sec

a pixel/voxel length. Sub-pixel errors are therefore acceptable, even when an “ac-
curate” reconstruction is desired because the surface still lies somewhere within the
bounds of the original pixels, just not necessarily at their centers.

The anisotropic datasets (mouse brain, ventricles and pelvis) not only have sam-
pling rates different from the isotropic datasets, but they also span a different range
of pixel/voxel values because the in-plane resolutions of their input images are
higher than the embryo datasets. In some cases, e.g. the mouse brain, the in-plane
sampling resolution is nearly an order of magnitude greater than the embryo stom-
ach dataset. Because of the difference in scales and sampling rates we have relaxed
the tolerance parameter (14 for the mouse brain, 6.5 for the ventricles, and 6.0 for
the pelvis datasets). This results in higher maximum values, but the means and stan-
dard deviations still stay relatively low. In fact, 84.14% of the input points for the
mouse brain and 82.01% of the input points for the ventricles datasets lie within 1
voxel of their reconstructions. The pelvis dataset performs even better, with 98.12%
of its input points lying within 1 voxel of the reconstructed surface. These error
statistics are comparable to the small-scale, isotropic embryo dataset.

Our work has been conducted jointly with the Drexel University College of Medicine.
Based on the reconstructions of the mouse brain dataset, it has been demonstrated
that our approach produces accurate models and deals effectively with real-world
input noise. The number of regions where the reconstruction errors are greater than
one voxel are well within acceptable ranges.

Table 3 shows that the MPU-based reconstruction procedure is very fast, requiring
only a few seconds to perform most surface reconstructions. The execution times
for the “surface reconstruction” phase include the evaluation of the MPU function
and the generation of a triangular mesh from the function. The execution time for
the “normals estimation” phase includes constructing a binary volume from the
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Table 4
Approximation quality for synthetic dataset, without and with noise. All error calculations
are performed with respect to the original point set.

name min max median mean st dev % < 1.0 % < 0.5 tol Nmin

original 5.0E-06 1.0412 0.2532 0.2633 0.1672 100.00 91.00 2.0 100

noisy 7.0E-06 1.2650 0.2509 0.2723 0.1821 99.90 87.88 2.0 100

noisy 1.2E-05 1.6549 0.2695 0.2944 0.1968 99.80 83.97 5.0 100

contours, filtering the volume and gradient calculations. The normals calculation
for the brain dataset is rather high. However, normals estimation is a one-time com-
putation. Once points and normals have been obtained, a surface reconstruction at
a desired level of quality can be achieved in only about 20 seconds. The user is able
to quickly change reconstruction parameters until the desired result is obtained.

5.2 Reconstructing Noisy Contours

Several of the examples presented in this paper are produced from “real-world,
noisy” datasets derived from delineations of MRI scans and histologic images,
namely the heart, stomach, tongue and brain. Even though these results are visually
acceptable, we also accurately measured our approach’s ability to deal with noisy
input by conducting a controlled experiment on an artificial dataset. By adding a
known amount of noise to an artificial dataset defined as the ground truth, we were
able to accurately measure the effect of the noise and to evaluate the effectiveness
of our approach on “clean” and “noisy” versions of the same dataset.

First, an artificial set of contours, defined by polylines, representing the ground
truth for a specimen was created. The dataset was corrupted by adding in-plane
noise as specified by [7] and [23]. The noise consists of a random in-plane shifting
of a contour vertex along its normal to the contour by up to 1.4 pixels. The contour
is pixelated and normals are calculated with a 2D version of the procedure described
in Section 4.1. The resulting noisy contour data consists of 174 slices, each having
a resolution of 204×231. The total number of contour points is 48,238.

Figure 10 and Table 4 present the results from our investigation. 10(a) is the original
point set. 10(b) is the reconstruction produced from the uncorrupted point set with
an Nmin value of 100 and a tolerance value of 2. The statistics for this reconstruction
in Table 4 show that 100% of the original surface (after rounding) lies within 1
voxel of the input points. The only point that lies farther away has a maximum
error value of 1.041. Figure 10(c) is the reconstruction produced from the “noisy”
point set with a tolerance of 2. Since it is produced with a relatively tight tolerance,
the noise is evident on the model’s surface. The associated statistics are calculated
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(a) point set (b) original

(c) noisy, tol = 2 (d) noisy, tol = 5

Fig. 10. Synthetic dataset. Point set and reconstruction without noise, and reconstruction
after contours are corrupted with noise.

with respect to the original point set and demonstrate that the reconstructed surface
faithfully fits to the “clean” data. Figure 10(d) is produced by relaxing the tolerance
parameter to 5. The surface is visibly smoother and the error statistics show that
83.97% of the original data are half a voxel length away and 99.80% are less than
1 voxel length from the reconstructed surface; thus providing evidence that the
MPU-based reconstruction method can effectively cope with noisy contours.

5.3 Comparison with Other Methods

Figure 11 presents three contour-based reconstruction methods applied to similar
datasets. The first result is created with a Delaunay triangulation technique provided
by NUAGES [53], and is displayed with flat-shading. The middle reconstruction is
produced via 2D distance field interpolation described by Klein [39,40], and is dis-
played with Gouraud smooth-shading. The final reconstruction is produced with
the MPU implicit method, and is displayed with flat-shading. The Klein result is
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(a) NUAGES reconstruction (b) Klein result (c) MPU reconstruction

Fig. 11. Comparing reconstruction results for similar (but not identical) pelvis datasets.
(a) NUAGES reconstruction. (b) Klein [39] reconstruction (Gouraud-shaded). (c) MPU
implicit reconstruction.

an image reproduced from [39], and uses a slightly different pelvis dataset from
the other two results. The NUAGES and MPU implicit results are based on the
same dataset. The NUAGES result demonstrates that meshing techniques produce
faceted surface models and require post-processing for smoothing. The faceted na-
ture of the Klein result is partially masked by the Gouraud-shading, but discrete
artifacts can still be seen at the bottom of the model and at various locations along
its silhouette. Our approach produces a naturally smooth surface without the need
for any additional post-processing.

6 Generating Contours on Arbitrary Cutting Planes

The ability to visualize contours in arbitrary cutting planes through the recon-
structed volume can aid in the analysis and understanding of a specimen. The
MPU-based contour reconstruction technique, in conjunction with a fast march-
ing method [46,58,66], produces a 3D signed distance field that may be sampled
at any location. This feature easily supports the arbitrary slicing of the reconstruc-
tion. Given a user-specified plane, the field can be evaluated at regular points on the
plane, producing a sampled 2D distance field. The zero contour of the 2D distance
field can then be extracted and displayed.

The user defines the cutting plane with a normal, N and a value h, which is the
height at which the plane crosses the centerline of the stacked contours. Given
that the bounds of the reconstructed volume are (0,0,0) and (xmax,ymax,zmax), the
centerline point z0 is (xmax/2,ymax/2,h). We currently restrict N to point generally
in the ’up’ direction; more specifically, the angle between N and the positive z-axis
(ẑ) is limited to be less than 90o. The value of h is constrained to lie between 0 and
zmax. The angle θ between N and ẑ is cos−1(ẑ ·N). N can be mapped into the z axis
by rotating θ degrees around the axis L defined by N× ẑ. Let the cutting plane have
its own coordinate system u,v,n. By assuming that the origin of u,v,n is coincident
with z0 and that n is parallel with N, conservative bounds on the cutting plane can
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Fig. 12. Generating contours on an arbitrary plane. Top - Through a mouse embryo recon-
struction. Bottom - Through a mouse embryo heart reconstruction.

be found by mapping the reconstructed volume into the u,v,n coordinate system.
This is accomplished by applying the transformation

Γ̄ = R̄(L,θ)T̄ (−z0) (6)

to the set A which contains the corners of the reconstructed volume, where R̄ is a
transformation that rotates a point θ degrees around axis L [54], and T̄ translates a
point in the given direction. A is transformed into u,v,n space,

B = Γ̄A , (7)

to produce a set B. The bounding box of B ((umin,vmin,nmin),(umax,vmax,nmax)) is
then calculated. The cutting plane is regularly sampled within the rectangle defined
by ((umin,vmin,0),(umax,vmax,0)) and the sample points are mapped back into x,y,z
space with the transformation

Ψ̄ = T̄ (z0)R̄(L,−θ). (8)

Evaluating the MPU function at these transformed points generates a 2D signed
distance field. A zero-contour is extracted from the field to produce the final, de-
sired result. Examples of contours generated from arbitrary cutting planes through
two different reconstructions are presented in Figure 12.
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7 Conclusion

The work in this paper demonstrates that point set and implicit surface models can
be applied effectively and efficiently to the problem of contour-based surface recon-
struction. We have shown that it is possible to create smooth, accurate 3D surface
reconstructions from contours using implicit models. In order to accomplish this, a
method for surface normal estimation has been developed and applied to a number
of datasets. The method uses Gaussian blurring with an edge detection algorithm in
order to accurately estimate normals. Once surface normals have been estimated,
Multi-level Partition of Unity (MPU) implicits are employed to reconstruct a sur-
face from a set of input contours.

Our approach produces smooth surface models that offer sub-pixel accuracy to the
original data while requiring low computation times. The reconstruction procedure
has also been shown to be relatively insensitive to the sampling resolution of the
original data, generating accurate reconstructions in every case. We have demon-
strated that implicit surface reconstruction techniques are an effective method for
processing both closely and widely spaced contours that contain noise, producing
superior results in comparison with other techniques. In closing, the idea of consid-
ering a set of contours as a point set in R3 creates possibilities for reconstruction
of non-traditional contour data, such as non-parallel or warped contours and irreg-
ularly sampled data.
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