
Investigations of Tensor Voting Modeling

Joanna Beltowska†‡ Ken Museth‡ David Breen†

†Computer Science Department
Drexel University

Philadelphia, PA USA

‡Science and Technology Department
Linköping University
Norrköping, Sweden

ABSTRACT

Tensor voting (TV) is a method for inferring geometric structures from sparse, irregular and possibly
noisy input. It was initially proposed by Guy and Medioni [GM96] and has been applied to several
computer vision applications. TV generates a dense output field in a domain by dispersing information
associated with sparse input tokens. In 3-D this implies that a surface can be generated from a set of
input data, giving tensor voting a potential application in surface modeling. We study the tensor voting
methodology in a modeling context by implementing a simple 3-D modeling tool. The user creates a
surface from a set of points and normals. The user may interact with these tokens in order to modify the
surface. We describe the results of our investigation.

Keywords: implicit surface modeling, surface reconstruction, tensor voting

1 INTRODUCTION

As the use of implicit 3D representations gains pop-
ularity, the need for modeling software that pro-
vides implicit model editing capabilities increases.
New surface editing approaches are continually be-
ing explored and much research is being conducted
to find ways to interactively modify implicit models.
Towards these ends we investigated tensor voting as
a possible technology that could provide a new and
interesting approach for editing implicit models.

Tensor voting is a method for grouping geomet-
ric features [MLT00]. It can be used to generate
surfaces from a sparse set of possibly noisy and ir-
regular input data, and therefore may provide novel
editing capabilities within a 3-D modeling context.
The goal of our work was to investigate TV as
a technique for interactive surface modeling. We
were interested in determining if TV can be used
to model simple objects, edit them interactively
and control their shape via TV “input tokens.” To
achieve this, we developed a TV modeling system
(TVMS) based on an already existing TV frame-
work and conducted experiments to evalute TV in
a 3-D modeling context. Spheres were used to ex-
amine the parameters of TVMS and two models
were sculpted in order to get an evaluate the poten-
tial capabilities and limitations of the TV modeling
process.

1.1 Related Work

We looked to other novel modeling systems for ideas
and inspiration. In general, these are systems that
model 3-D objects with geometry other than polyg-
onal meshes. The Vector Field Based Shape Defor-
mations of von Funck et al. [vFTS06, vFTS07] is
an interactive method for shape modeling with vol-
ume preservation. Guo et al.[GHQ04] use scalar–
fields to drive a point-set surface editing process.
The point-sample based shape modeling presented
by Pauly, Keiser, Kobbelt and Gross [PKKG02] is
a hybrid system which couples the benefits of im-
plicit and parametric surface representations, us-
ing the implicit surface definition of moving least
squares projection along with point-based visual-
ization. Pointshop 3D is a framework developed by
Zwicker et al. [ZPKG02] that transfers the func-
tionality of 2D image editing operations to 3D, De-
waele and Cani [DC04] present a virtual clay mod-
eling approach, which implements interactive shape
modeling capabilities which may be based on haptic
feedback. Museth et al. [MBWB02, MBW+05] de-
veloped interactive editing operators for a relatively
new type of implicit surface, level set models.

In our approach, as in many of the approaches de-
scribed above, the object is represented using con-
trol points, which can be modified by the user in
order to edit the surface. By using the TV method-
ology in a novel context, we have employed the ideas
of local and global editing operators, point-based
surface representation and a physical analogy for
modeling surfaces.

1

2 TENSOR VOTING

This section provides an introduction to
the Tensor Voting methodology. More de-
tails about the methodology can be found in
[GM97, TM98, MLT00, TMMS01, TTMM04].

TV has its background in early computer vision
problems where the available data often is sparse
and noisy, making it difficult to extract relevant in-
formation and structures. TV identifies local fea-
ture descriptions by spreading the information as-
sociated with shape-related input within a neigh-
borhood while enforcing a smoothness constraint.
This process refines the information and accentu-
ates local features. By doing so, coherent, locally
smooth, geometric features are defined and noise is
discarded. Each data point communicates its infor-
mation in a neighborhood through a voting process.
The more information that is received at each data
point, the stronger is the likelihood of a geometric
feature being present at a certain location. This
likelihood is expressed through a confidence mea-
sure, saliency, which is used in the feature extrac-
tion process.

TV is based on two elements; data representa-
tion, which is obtained by means of tensor calculus,
and communication of data through linear voting,
a process similar to linear convolution. The input
elements, referred to as input tokens, are encoded
into tensor form and communicate their informa-
tion to their neighboring tokens via pre-calculated
tensor voting fields. After this initial voting step,
each token has its confidence and surface orienta-
tion encoded into a generic second order symmetric
tensor. The tokens vote a second time to propagate
their information throughout a neighborhood. The
result is a dense tensor field which assigns a mea-
sure of confidence and saliency to each point in the
domain. This dense map is decomposed into three
dense maps, each representing a geometric feature
(junction, curves or surface), which are analyzed
during feature extraction. TV can be generalized to
N-D [TMMS01]. The 3-D case, specifically surface
voting, is sufficient for our needs and will therefore
be the focus of this paper.

2.1 Tensor Representation

Diagonalizing a second order symmetric tensor,
which can be represented by a 3 × 3 matrix,
produces the associated characteristic equation.
Solving this equation leads to a representation
based on the eigenvalues λ1, λ2, λ3 (in descreasing
order) and the associated eigenvectors ê1, ê2, ê3 of
the tensor. A second order symmetric tensor may
be graphically represented as an ellipse in 2-D or

an ellipsoid in 3-D. The eigenvalues describe the
general size and shape of the ellipsoid and the
eigenvectors describe its principal directions. Be-
cause of the properties of second order symmetric
tensors, the eigenvalues are real and positive, or
zero, and the eigenvectors form an orthonormal
basis. The tensor can be decomposed into three
components defined by

T = (λ1 − λ2)ê1ê1
T + (1)

(λ2 − λ3)(ê1ê1
T + ê2ê2

T) +
λ3(ê1ê1

T + ê2ê2
T + ê3ê3

T).

The first term corresponds to a 3-D stick tensor,
which implies a surface patch with normal ê1. The
second term corresponds to a plate tensor and im-
plies a curve or surface intersection with tangent
ê3 that is perpendicular to the plane defined by ê1

and ê2. The last term corresponds to a 3-D ball
tensor and implies a structure with no orientation
preference.

2.2 Tensor Communication

The voting process is similar to convolution with the
difference that convolution produces scalar values
and tensor voting produces tensors. Voting kernels
which encode certain constraints such as smooth-
ness and proximity are used. These voting kernels
are continuous tensor fields which assign a value to
every point within the domain. Any voting ker-
nel, regardless of dimension, can be derived from
the 2-D stick tensor, which is therefore referred to
as the fundamental 2-D stick voting field (VF) and
is presented in Figure 1 (left). For its derivation,
see [MLT00] and [TMMS01]. Given an input point
and normal at O, the most likely normal at P to
a curve passing through O and P is defined by the
osculating circle connecting O and P , because it
keeps curvature constant. The 3-D VF is produced
by rotating the 2-D VF around N .

The magnitude of the field is described by a decay
function, which is expressed in spherical coordinates
in Equation 2 and is presented in Figure 1 (right),

DF (γ, ϕ, σ) = e(γ2+cϕ2

σ2). (2)

γ is the arc length of the curve OP , ϕ the curva-
ture, c the curvature scale factor and σ the scale
of analysis. c provides additional control on the in-
fluence of curvature. σ determines the size of the
voting neighborhood and is the only free parameter
adjusted by a user. In practice the range of influ-
ence of a particular VF is eliminated once its mag-
nitude drops below some value, e.g. 1%. Therefore
the value of σ determines the extent of the voting
field.

2

. �2 corresponds to 2D junction saliency, with total
uncertainty in orientation as indicated by the ball
tensor, or �ê1ê

T
1 � ê2ê

T
2 �.

In N-D, we have similar geometric interpretation: The

eigenvectors effectively encode orientation (un)certainties:

A normal to a hypersurface is described by the stick tensor,

which indicates certainty along a single, N-D direction.

Orientation uncertainty is indicated by the ball tensor, where

many intersecting hypersurfaces are present and, thus, no

single orientation is preferred. The eigenvalues encode the

magnitudes of orientation (un)certainties:

. ��1 ÿ �2� corresponds to N-D hypersurface saliency,
with ê1ê

T
1 indicating the normal direction,

. for 2 � i < N , ��i ÿ �i�1�, and
Pi

j�1 êjê
T
j correspond

to orientation uncertainty in i directions, which
actually defines a �N ÿ i�-D feature whose direc-
tion(s) are given by êi�1; � � � ; êN . For example, given
N � 3; i � 2, ��2 ÿ �3��ê1ê

T
1 � ê2ê

T
2 � defines a plate

tensor in 3D, which describes a 1D feature, a curve
element, with tangent direction given by ê3. Here,
the normal orientation uncertainty only spans a plane
perpendicular to ê3, indicated by a plate tensor
defined as

P2
j�1 êjê

T
j .

. �N
Pn

j�1 êjê
T
j corresponds to N-D hyperjunction sal-

iency, with the N-D ball tensor specifying total
orientation uncertainty.

2.2.3 Uniform Encoding

Therefore, given an N-D point, with or without orientation,

we can unify the input into a tensor field by the following: If

the input token is a point without any directional information,

it is encoded as a N-D ball tensor (�1 � �2 � � � � � �N � 1)

since initially there is no preferred orientation. �ê1 ê2 � � � êN �T
is an N �N identity matrix.

If the input token is a curve element in N-D, it is encoded

as a plate tensor (�1 � �2 � � � � � �Nÿ1 � 1; �N � 0), with êN
equal to the direction of the curve tangent. Other plates are

encoded accordingly.
If the input tokenis aN-Dhypersurface patch element, then

it is encoded as a stick tensor (�1 � 1; �2 � �3 � � � � � �N � 0),

with ê1 equal to the direction of the surface normal to the given

hypersurface patch.
In implementation, we first encode the input uniformly

into a tensor field. Each input tensor token then commu-

nicates, by a voting algorithm, in order to obtain a generic

tensor, which describes the orientation preference (or no

preference) at that site.

2.3 N-D Tensor Communication: N-D Tensor Voting

Each input token votes, or is made to align, with

precomputed, discrete versions of the basis tensors in a

convolution-like way, propagating preferred direction in a

neighborhood. We call these precomputed basis tensors

voting fields. As a result, preferred orientation information is

propagated and gathered at each input site. This voting

process consists of two phases:

. token refinement (ªtensorizationº): tensor votes are
collected at input sites only and

. dense extrapolation (ªdensificationº): tensor votes
fill the volume for feature extraction.

2.3.1 Token Refinement and Dense Extrapolation

Given a set of input tokens, they are first encoded as tensors as

described in Section 2.2.3. These initial tensors communicate

with each other by token refinement and dense extrapolation.
In essence, in token refinement, each token collects all the

tensor values cast at its location by all the other tokens in a

neighborhood. The resulting tensor value is the tensor sum

of all the tensor votes cast at the token location. In dense

extrapolation, each token is first decomposed into its

corresponding N elements. By using an appropriate voting

field, each token broadcasts the information in a neighbor-

hood. The size of the neighborhood is given by the size of

the voting field used. As a result, a tensor value is put at

every location in the neighborhood. The resulting dense

information can be used for feature extraction in which first

derivatives are computed.
In fact, these two tasks can be implemented by a voting

process, which in essence involves having each input token
aligned with precomputed, dense, N-D voting fields. The
alignment is simply a translation followed by rotation in the
N-D space.

Therefore, it remains to describe the N-D voting fields,
which can be derived from the most basic, fundamental
2D stick voting field.

2.3.2 Derivation of N-D Voting Fields

The fundamental 2D stick voting field. Voting fields of any
dimensions can be derived from the 2D stick tensor and,
therefore, it is called the fundamental 2D stick voting field.
Fig. 5 shows this fundamental 2D stick voting field.

In 2D, a direction can be defined by either the tangent
vector, or the normal vector, which are orthogonal to each
other. We can therefore define two equivalent fundamental
fields, depending on whether we assign a tangent or normal
vector at the receiving site.

Here, we describe the normal version of the 2D stick
kernel. The tangent version is similar. Given a point at the
origin with a known normal (N), we ask the following
question: For a given point P in space, what is the most likely
normal (at P) to a curve passing through O and P and normal to
N? Fig. 6 illustrates this situation. We claim that the
osculating circle connecting O and P is the most likely one
since it keeps the curvature constant along the hypothesized
circular arc. For a detailed theoretical treatment, please refer
to [12]. The most likely normal is given by the normal to the
circular arc at P . The length of the normal vector at P , which
represents the saliency of the vote, is inversely proportional

834 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 8, AUGUST 2001

Fig. 6. The design of fundamental 2D stick voting field.

equivalent 2 � 2 eigensystem, with its two unit eigenvectors

ê1 and ê2 and the two corresponding eigenvalues �1 � �2:

��1 ÿ �2�S� �2B; �3�
where S � ê1ê

T
1 defines a stick tensor, and B � ê1ê

T
1 � ê2ê

T
2

defines a ball tensor, in 2D. Note that these tensors define the

two basis tensors for any 2D ellipse.
Analogously in N-D, in hypersurface detection, a point in

the N-D space can either be: on hypersurface (smooth), at a

discontinuity of order between two and N , or is an outlier.

Consider the two extremes: an N-D point on a hypersurface

is very certain about its normal direction, whereas a point at

a junction has absolute orientation uncertainty. As in 2D,

this whole continuum can be abstracted as a second order

symmetric N-D tensor, or equivalently, a hyperellipsoid. This

hyperellipsoid can be equivalently described by the

corresponding eigensystem with its N eigenvectors

ê1; ê2; � � � ; êN and the N corresponding eigenvalues,

�1 � �2 � � � � � �N . Rearranging the N �N eigensystem,

the N-D ellipsoid is given by:

��1 ÿ �2�S�
XNÿ1

i�2

��i ÿ �i�1�
Xi
j�1

êjê
T
j � �NB: �4�

In particular, S � ê1ê
T
1 and B �PN

i�1 êiê
T
i defines an

N-D stick and ball, respectively, among all the N basis
tensors. We call the rest of N ÿ 2 basis tensors

Pi
j�1 êjê

T
j

plate tensors. Any hyperellipsoid in N-D can be represented
by a linear combination of these N basis tensors.

2.2.2 N-D Tensor Interpretation

We now explain the geometric meaning of the eigensystem

we derived in the previous section. Return to the 2D case.

The eigenvectors encode orientation (un)certainties: Tangent

direction is described by the stick tensor, indicating certainty

along a single direction. At point junctions, where more than

two intersecting lines converge, a ball tensor is used since

there is no preferred orientation. The eigenvalues encode the

magnitude of orientation (un)certainties since they indicate

the size of the ellipse. Hence, given a generic ellipse and its

equivalent eigensystem, we have the following geometric

interpretation:

. ��1 ÿ �2� corresponds to 2D curve saliency, with a
stick tensor ê1ê

T
1 indicating the curve tangent

direction,

TANG ET AL.: N-DIMENSIONAL TENSOR VOTING AND APPLICATION TO EPIPOLAR GEOMETRY ESTIMATION 833

Fig. 4. A second order symmetric 2D tensor.

Fig. 5. The fundamental 2D stick voting field.

Figure 1: (left) The design of fundamental 2D stick voting field. (right) Magnitude (saliency) of the funda-
mental 2D stick voting field. From [TMMS01]

The field has an analogy with particle physics,
motivating the choice of a Gaussian function for
the energy decay function. The voting kernel shows
the same behavior as an anisotropic energy field,
where an emitting particle Ps, radiates energy in
all directions and a receiving particle Pr receives
energy from all directions, but with a preference
for a straight path. Therefore received energy is in-
versely proportional to distance traveled and curva-
ture, producing a loss of energy along curved paths.

After voting, the saliency tensor T(i, j, k) at each
location (i, j, k) is the tensor sum of the contribu-
tions from each voting token within range,

T(i, j, k) =
∑

m,n,o

V (S(m,n, o), ((i, j, k)− (m,n, o)))

(m,n, o) ∈ N(i, j, k), (3)

where N(i, j, k) returns the neighboring locations of
(i, j, k) and V is a function that returns a tensor
field corresponding to the ball, stick and surface
voting kernel components of S at (m,n, o) using the
vector (i, j, k)− (m,n, o), which is expressed in the
(ê1, ê2, ê3) coordinate system of S.

2.3 Feature Extraction

After the voting process, each point in the domain
has been assigned a second order symmetric tensor
that estimates the structure of the feature type(s)
and the associated saliency. Thus, information is
collected at each location in the domain, building
a saliency map for each feature type. Salient fea-
tures can be located by finding local extrema in this
dense tensor map, which in 3-D is decomposed into
three dense vector maps, expressing the occurance
of junctions, curves and surfaces in the domain. For
each feature type, the dense tensor map can be
broken into a scalar field, expressing the saliency
(strength) of the tensor field at any given point,
and a vector field, expressing the direction of the
feature corresponding to the saliency value. Thus,
at any given location there is a scalar and a unit
vector < s, n̂ > present. These dense saliency and
vector maps are then used for vote interpretation.

Since we are only interested in the surface features
produced by tensor voting, we only examine the the
Surface Map < s, n̂ > extracted from the tensor
field. For this case,

s = (λ1 − λ2) n̂ = ê1, (4)

where s is the surface saliency and n̂ is the normal
to the most likely surface at each point in space.

The most likely surface produced by a set of input
tokens (points and normals) is an extremal surface
embedded in the Surface Map. A point is on the
extremal surface when the saliency s is extremal in
the normal direction n̂ at that point, i.e. ds/dn̂ =
0. Reformulating this equation, the surface may
be found by identifying zeros of the the scalar field
n̂ · ∇s, defined as g field. For practical reasons the
Surface Map is calculated on a regular grid and the
zero crossings of the extremal surface are identified
along grid lines.

3 TENSOR VOTING
MODELING SYSTEM

The tensor voting modeling system, TVMS, is based
on the TV3D framework for tensor voting developed
by the USC Computer Vision Group1, and uses QS-
plat2 [RL00] for point-based visualization. It has
been developed on a MacBook Pro with a 2.2 GHz
Intel Core 2 Duo processor. Functionality has been
added to both frameworks and only surface voting
is used from the TV3D framework. Since our goal
is to extract a surface from a given input, we have
omited the point and curve voting functionality of
TV3D.

TV3D uses an input of oriented or unoriented
points, curvels and surfels. In TVMS, the in-
put is restricted to points with associated normals.
While a surface may be constructed from unoriented
points only, we have chosen to include direction in-
formation in the input data set. The reason for this

1 http://www.cs.ust.hk/∼cstws/research/TensorVoting3D
2 http://graphics.stanford.edu/software/qsplat

3

Figure 2: Translating the right-most token one unit at a time. Left: σ = 7. Right: σ = 10.

is that it gives more accurate results, allows us to
omit the first voting step, which estimates and as-
signs a direction to all unoriented input tokens, and
finally, it provides the user with an additional tool
for manipulating the resulting surface.

These points can be translated and their corre-
sponding normals rotated, as well as added to and
removed from the scene. Translation is done by
first rotating the normal of a selected point and
then translating the point along the normal. This
is a simple yet intuitive interaction that meets our
needs. The user can either create an entirely new
model on his or her own, or read an existing model
from a file. A new point is inserted by clicking be-
tween two existing points; the new point is inserted
at the position halfway between the two points clos-
est to the user’s mouse click. Each input token has
a position, a normal, a weight and a local voting
neighborhood size, which can be modified by the
user.

Once the user is satisfied with the initial configu-
ration of input tokens, (s)he selects an initial global
sigma value and runs the tensor voting process to
extract a surface. The surface is quickly rendered
as points by default, but, given more time, the user
can also render the surface as a mesh.

3.1 Modeling Parameters

The original TV framework only has one free pa-
rameter, namely σ, which is a coefficient in the
saliency decay function and sets the scale of analy-
sis. σ is a positive scalar which determines the size
of the voting fields used in the voting process and
is set with an initial global value. Having a single
global σ value will create a model with a one level
of detail. In TVMS, σ has been divided into two
parameters, a local σ, σL which is assigned individ-
ually for each token and a global σ, σG, which is
assigned to all tokens which have not had their lo-
cal sigma value changed. By default, σL is set to -1
so that the system can distinguish modified tokens

from unmodified. Instead of a single global voting
field, up to n, where n is the number of input to-
kens, individual voting fields can be used to vote for
a surface. This allow for the level of detail of the
surface to be varied by using a smaller σL in those
regions where the user desires finer details.

A weight has been added as a third modeling pa-
rameter. The weight is a scaler value associated
with each input token. The token’s normal is mul-
tiplied by the weight before voting and surface ex-
traction. Increasing the weight value strengthens
the influence of the plane defined by the token; thus
flattening the resulting surface near the token. The
default value is set to 1.0.

4 RESULTS

In order to investigate the geometric modeling po-
tential of tensor voting we conducted a number of
experiments. Our experiments were performed in
two parts. In the first part, we looked at the lo-
cal influence of the individual modeling parameters
on a simple shape. In the second part, we exam-
ined overall effectiveness of the TV modeling pro-
cess when attempting to model two specific shapes.

4.1 Influence of Modeling
Parameters

The scale of analysis parameter σ affects the radius
of the model and the cost of calculating a surface.
Because we wish to extract the surfaces as quickly
as possible, the size of the voting fields, and thus
the size of the models, have to be kept small. We
found that the radius of our models, in units of vox-
els, should be approximately the same as σ. Hav-
ing a value of σ between 8 and 10 produced results
in a reasonable amount of time, which implied a
model radius of slightly more than 10 units. Using
larger σ values would require bigger models, thus
a higher resolution computational grid, and would

4

Figure 3: Left: The 18 input tokens needed to define a sphere. The top and bottom tokens have been
highlighted and the extent of their voting fields (σG = 10) have been displayed. Center: The resulting sphere.
Right: The extent of the voting fields for the top and bottom points, after point translation. The two fields
no longer overlap and a disjoint surface has been formed.

Figure 4: Rotating the normal of the right-most point and voting with σG = 10. Starting at the top left, the
normal is rotated 0◦, 15◦, 30◦, 45◦, 60◦ and 75◦.

require significantly more time in the surface extrac-
tion step. Also, σ should not be set too large, since
this causes votes to cancel each other out [MLT00]
and produce surface holes, further motivating the
use of small σ values.

The model used in our parameter influence exper-
iments is a sphere with a radius of 12.5 units, that
was defined by 18 input tokens. See Figure 3 (left).

To demonstrate the effect of translating input to-
kens, we translate one single token on the sphere,
namely the right-most one, one unit at a time. The
results are presented in Figure 2, which consists of
spheres produced with σ = 7 and σ = 10. It can
be seen that the surface does begin to bulge out to
fit to the surface patch implied by the translated
token. But if the token is translated too far the
surface breaks up.

Insight into this unwanted artefact is provided in
Figure 3. Here, the extents of two of the sphere’s 18
tokens are displayed. As the top token is translated
away from the others the two displayed extents no

longer overlap. In this situation two disjoint sur-
faces are produced. The TV process interprets the
translated token as an isolated point and tries to
infer a separate plane from it. This clearly shows
that in order to produce a closed mesh, one needs
to ensure that there is significant overlap between
the voting fields of neighboring tokens.

Figure 2 also highlights the effect of σ on the sur-
face. On the left, with σ = 7, the resulting surface
has flatter, somewhat sharper, features. When σ is
increased to 10, more voting fields overlap because
the are larger. The increased number of contribut-
ing VF’s at any location creates a smoothing effect
on the surface. This is most evident in the top-right
and bottom-left surfaces in each of the examples.
As the right-most token is translated, the resulting
bump has a smoother transition to the sphere when
σ is greater.

To demonstrate the effect of rotating normals,
Figure 4 presents the changes to the sphere pro-
duced by rotating the normal of the right-most to-

5

Figure 5: To the left: Incrementing the weight while voting with σG = 10. Weight values, from left to right,
are 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5. To the right: Incrementing the weight while voting with σG = 7. Weight
values, from left to right, are 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0.

.

Figure 6: The bottle model created from 55 tokens. Left: Input tokens. Center: Resulting TV surface
displayed as points. Right: TV surface displayed as a mesh.

ken. It can be seen that applying small rotations
(angles less than 45◦) to a token can be easily ac-
commodated by the tensor modeling system. The
surface smoothly blends in the disoriented surface
patch implied by the rotated token. As the rotation
angles increases past 45◦ the surface breaks up. Us-
ing a higher σ gives slightly better results, but this
still cannot resolve the conflicting input information
that implies that a piece of surface is directed into
the sphere.

The weight parameter provides another way to
modify the influence of a token. The weight param-
eter may either enlongate or shorten the length of
the normal n̂ associated with a token after the vot-
ing process. Given a large weight the plane associ-
ated with the token’s normal has greater influence
on the surface; thus locally attracting and flattening
the surface, as seen in Figure 5. Tokens with small
weights lose some of their influence and nearby re-
gions are smoothed by the other tokens. Also, as
a weight is lowered, the nearby surface region be-
comes less sensitive to changes in the weight. This

is probably due to the increased influence of neigh-
boring tokens.

4.2 Creating Complete Models

To explore the overall tensor voting modeling pro-
cess, two complete models were created, a bottle
and a car. Both are fairly simple objects, but have
geometric properties, such as varying curvature and
level of detail, that potentially could reveal any
weaknesses or problems with our TV-modeling sys-
tem. Both models were created by initially defin-
ing the tokens needed to produce the basic shape.
The tokens were then modified to add details or fix
problem. To change the curvature of the surfaces, a
number of normals were rotated. To flatten regions
of the surfaces, weights of nearby tokens were in-
creased. To fill holes, new tokens were added or σL

of the neighboring tokens were increased. For the
car, the body was first created. The four wheels
were then added as details later.

The bottle model, defined with 55 tokens, is pre-
sented in Figure 6. The TV3D system evaluated its

6

Figure 7: The car model created from 149 tokens. Left: Input tokens. Center: Resulting TV surface displayed
as points. Right: TV surface displayed as a mesh.

Surface Map on X x X x X grid in FOO cpu-seconds.
The resulting surface may be displayed with points.
These are the zero-crossings of the computational
grid used to calculate the associated g field. The
Marching Cubes algorithm [LC87] may also be ap-
plied to the g field grid to produce a mesh. The
car model, defined with 149 tokens, is presented in
Figure 7. The TV3D system evaluated its Surface
Map on X x X x X grid in FOO cpu-seconds. The
resulting surface is displayed as points and a mesh.

5 DISCUSSION

During the modeling process, a significant prob-
lem quickly emerged. Small, densely sampled areas,
may produce asymmetric results, which we believe
is due to the TV3D surface extraction implemen-
tation. The algorithm begins at the most salient
input token and grows a surface from it until the
saliency of the neighborhood drops below a certain
threshold. It then goes to the second most salient
input point and so on. For the bottle, the asymme-
try can be seen on the neck, which is not perfectly
symmetric. When modeling the car, the asymme-
try problem imposed serious problems shaping the
more finely detailed areas. After creating the body,
one wheel at a time was added. When the second
wheel was added, its points influenced the points
of the first wheel, changing its shape. We changed
our strategy and modeled a full half of the car in
one go, which was then duplicated, mirrored and
merged with the first half. The resulting mesh was
not closed and after repairing one hole, new holes
emerged on other parts of the model. The surface
extraction of TV3D appears to propagate the influ-
ence of the tokens forward as they are processed;
thus the order in which tokens are processed affects
the final extracted surface. The current TV3D im-
plementation is elegant, but may not be the correct

computational engine for an interactive modeling
application.

The local influence of an individual input token
on the final surface is not as strong nor with the
type of properties as had been desired. Changing
the parameters of a particular input token will in
most cases render a change in the extracted surface,
but only if the parameters remain within a certain
range. For instance, if a token is translated far away
from the other tokens, it will lose its influence on
its neighbors and will produce a surface separated
from the rest of the model. Also, the influence of
a single token token decreases exponentially with
its distance. As a token is moved away from the
remaining tokens, the influence of its neighbors in-
creases and they smooth out the contribution of the
moved token. Determing these acceptable param-
eter ranges and including them as constraints will
be a neccessary part of a future TVMS.

Surface extraction and voting is costly. Each time
the model is modified and the surface must be up-
dated, TVMS recalculates the entire surface instead
of just the part that will be affected by the change.
If the system could re-vote only the modified input
tokens and update just the affected areas of the sur-
face, surface regeneration could possibly be done in
real-time. This will require a redesign of the surface
extraction algorithm.

6 CONCLUSION

This work has examined the tensor voting method,
a technique for geometric feature grouping, in a
3D-modeling context. The new system, which em-
ploys the TV3D framework for tensor voting and
the point-rendering functionality of QSplat for visu-
alization, extracts surfaces from sparse input data,
consisting of points and normals. These points
and normals can be interactively edited by the
user to change the resulting surface. The initial

7

goal of modeling simple objects using TV has been
achieved and two new modeling parameters, a local
σ, σL, and a weight w, have been introduced and
implemented.

Though the approach is promising, several limita-
tions have been found in our current system. There
is an asymmetry in the extracted surfaces, proba-
bly due to the surface extraction implementation
in TV3D. Modeling parameter values may be easily
set to produce unstable and unwanted results. Vot-
ing and surface extraction is slow for large models
and large scales of analysis. The curve and junc-
tion capabilities of tensor voting should be explored
for modeling sharp features and fine details. Each
of these limitations should be addressed for future
versions of a TV-based modeling system.

Acknowledgements We would like to thank
Wai-Shun Tong who provided us with the tensor
voting library and much technical assistance, and
Christoffer Westberg for programming our initial
point rendering software.

References

[DC04] G. Dewaele and M.-P. Cani. Interactive
global and local deformations for vir-
tual clay. Graphical Models, 66(6):352–
369, 2004.

[GHQ04] X. Guo, J. Hua, and H. Qin. Scalar-
function-driven editing on point set
surfaces. IEEE Computer Graphcs &
Applications., 24(4):43–52, 2004.

[GM96] G. Guy and G. Medioni. Inferring
global perceptual contours from lo-
cal features. International Journal
of Computer Vision, 20(1-2):113–133,
1996.

[GM97] G. Guy and G. Medioni. Inference of
surfaces, 3D curves, and junctions from
sparse, noisy 3D data. IEEE Transac-
tions on Pattern Analysis and Machine
Intelligence, 19(11):1265–1277, 1997.

[LC87] W.E. Lorensen and H.E. Cline. March-
ing Cubes: A high resolution 3D sur-
face construction algorithm. In Proc.
SIGGRAPH, pages 163–169, July 1987.

[MBW+05] K. Museth, D. Breen, R. Whitaker,
S. Mauch, and D. Johnson. Algo-
rithms for interactive editing of level
set models. Computer Graphics Forum,
24(4):821–841, 2005.

[MBWB02] K. Museth, D. Breen, R. Whitaker, and
A. Barr. Level set surface editing oper-
ators. In Proc. SIGGRAPH ’02, pages
330–338, 2002.

[MLT00] G. Medioni, M.-S. Lee, and C.-K. Tang.
Computational Framework for Segmen-
tation and Grouping. Elsevier Science
Inc., New York, NY, USA, 2000.

[PKKG02] M. Pauly, R. Keiser, L. Kobbelt, and
M. Gross. Shape modeling with point-
sampled geometry. In Proc. SIG-
GRAPH ’02, pages 322–329, 2002.

[RL00] S. Rusinkiewicz and M. Levoy. Qsplat:
a multiresolution point rendering sys-
tem for large meshes. In Proc. SIG-
GRAPH ’00, pages 343–352, 2000.

[TM98] C-K. Tang and G. Medioni. Infer-
ence of integrated surface, curve, and
junction descriptions from sparse 3D
data. IEEE Transactions on Pat-
tern Analysis and Machine Intelli-
gence, 20(11):1206–1223, 1998.

[TMMS01] C.-K. Tang, G. Medioni, and M.-
S.Lee. N-dimensional tensor voting
and application to epipolar geometry
estimation. IEEE Transactions on
Pattern Analysis and Machine Intelli-
gence, 23(8):829–844, 2001.

[TTMM04] W.-S. Tong, C.-K. Tang, P. Mordo-
hai, and G Medioni. First order aug-
mentation to tensor voting for bound-
ary inference and multiscale analy-
sis in 3D. IEEE Transactions on
Pattern Analysis and Machine Intelli-
gence, 26(5):594–611, 2004.

[vFTS06] W. von Funck, H. Theisel, and H.-P.
Seidel. Vector field based shape defor-
mations. ACM Transactions on Graph-
ics (Proc. SIGGRAPH), 25(3):1118–
1125, 2006.

[vFTS07] W. von Funck, H. Theisel, and H.-P.
Seidel. Explicit control of vector field
based shape deformations. In Proc. Pa-
cific Graphics, 2007.

[ZPKG02] M. Zwicker, M. Pauly, O. Knoll, and
M. Gross. Pointshop 3D: an interactive
system for point-based surface editing.
In Proc. SIGGRAPH ’02, pages 322–
329, 2002.

8

