
Computers & Graphics (2017)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/results-in-physics

Animation of Crack Propagation by means of an Extended Multi-body Solver for the
Material Point Method

Joel Wretborna,⇤, Rickard Armientob, Ken Musetha

a

DreamWorks Animation, Glendale, CA 91201, USA

b

Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden

A R T I C L E I N F O

Article history:
Received October 25, 2017

Keywords: Material Point Method,
cracks, contact

A B S T R A C T

We propose a multi-body solver that extends the Material Point Method (MPM) to sim-
ulate cracks in computer animation. We define cracks as the intersection between pieces
of bodies created by a pre-fracture process and held together by massless particle con-
straints (glue particles). These pieces are simulated using a MPM multi-body solver
extended by us to e�ciently handle N-body collisions. Benefits of the present work in-
clude (1) low computational overhead compared to a normal MPM algorithm; (2) good
scaling in three dimensions due to our use of sparse grids for background computations;
(3) allowing for an easy and controllable setup phase to simulate a desired material fail-
ure mode, which is especially useful for computer animation.

c� 2017 Elsevier B. V. All rights reserved.

1. Introduction

Some of the most interesting natural phenomena involve ma-
terial fracture, and it is a vital ingredient in simulations where
realism is desired. Hence, algorithms for object breakage using
various simulation techniques are a topic of high level of inter-
est, both for engineering applications and for computer graph-
ics and animation. Specifically for simulations using the ma-
terial point method (MPM) by Sulsky et al. (1995), simulation
of fracture via crack propagation appear to have been mostly
discussed in the engineering literature with a focus on numeri-
cal accuracy. The aim of these works is di↵erent from what is
needed for animation applications, where simulation speed and
art directability are prioritized. In the present paper we present
an algorithm for fracture that provides attractive features for use
in computer graphics while only adding a small overhead over
regular MPM simulation.

The MPM method is increasingly relevant for simulations of
materials due to improvements in hardware and algorithms. It
has proven useful in simulations involving large deformations,

⇤Corresponding author: Tel.: +64 021 023 53668; e-mail: joel@wbn.se;

where the approach of combining meshless particles with a
fixed computational background grid provides a robust frame-
work. Both viscoelastic and viscoplastic materials have been
simulated with impressive results. The MPM has also been used
for other materials like rubber and sponges, which can undergo
large elastic deformations. Inherent to the method is that these
materials will break naturally if the stress is too high at any
particular location. Normally, a simulated material is homoge-
neous and isotropic. This is often not the case for their real-
world counterpart, as small weaknesses and local inconsisten-
cies are important features for how a crack propagates through
a medium. Such irregularities could be introduced in the simu-
lation by modifying the parameters that govern the constitutive
model on a per-particle basis or by jittering the particles in their
initial configuration, but doing so in a way that both conserves
the original collective behaviour of the material while achieving
the desired break point is di�cult.

In the present work, we extend MPM by defining a crack via
pre-fracturing of a specimen into di↵erent bodies, which are
bound together by particle constraints scattered on the crack
surface. We call these particles glue particles, and their role
is to hold the object fragments connected until they break and

http://www.sciencedirect.com
http://www.elsevier.com/locate/results-in-physics

2 Preprint Submitted for review /Computers & Graphics (2017)

Fig. 1. Overview of the algorithm. The steps are classified as Lagrangian
and Eulerian to signify what entity is being manipulated, particles or grid

nodes. Explanation of the steps: (1) initialized particles are used as input;

(2) a background grid is created; (3) mass and velocity are rasterized onto

the grid, and internal forces are calculated using the constitutive model; (4)

new velocities are calculated using external and internal forces (red values

are inside a boundary); (5) boundary collisions are resolved; (6) velocity is

transferred back to the particles; (7) particle position and deformation are

updated.

a crack is formed. The focus of this paper is on simulation of
bodies with a single crack, and where the crack propagation is
dominated by an opening mode. The pieces from a fractured
body are allowed to interact freely in the simulation, and we
also present an extension to the contact algorithm by Huang
et al. (2011) to allow for arbitrarily many colliding bodies in
the same solver.

The rest of the paper is organized as follows. A review of
related works is discussed in 2. In section 3 we present the
extended contact algorithm, which is utilized for the crack al-
gorithm in section 4. Simulations based on the two algorithms
will be shown in section 5, followed by a discussion in section
6 that points out current artefacts and limitations. Final conclu-
sions then follow in section 7.

2. Related work

Early works on the simulation of deformable plasticity and
fracture in computer graphics were undertaken by Terzopou-
los and Fleischer (1988). Such approaches to dynamic fracture
propagation often involved mesh-based finite element methods
due to the ease of calculating stress coe�cients along connected
points. O’Brien and Hodgins (1999) introduced an element
splitting approach to increase numerical accuracy and avoid vis-
ible artefacts for brittle fracture, which was later extended by
O’Brien et al. (2002) to include ductile fracture. However, mesh
based methods can have problems handling large deformations,
which may easily occur in fracture scenarios due to high inter-
nal stresses needed for a crack to surface. Pauly et al. (2005)
suggested a meshfree method where the surface of a material is
modeled using unconnected points. A crack is explicitly rep-
resented by a crack front of surface particles, which are added
continuously to the crack front during the simulation. Kauf-
mann et al. (2009) proposed a method for fracture of thin sheets
that requires a pre-defined crack. Explicitly declared cracks are
flexible and give great control over how the material breaks.

However, visible artefacts will arise if stresses are not properly
aligned to the fracture surface, as the resulting crack will look
unrealistic. Müller et al. (2013) shows great results combining
a pre-computed compound mesh dynamically applied based on
the impact location of a projectile, where resulting pieces are
simulated by a rigid-body solver.

The MPM was created by Sulsky et al. (1995), and has since
then proven to be useful for a range of di↵erent phenomena. It
was later introduced to computer graphics by Stomakhin et al.
(2013) with their work on snow. Ram et al. (2015) and Yue et al.
(2015) modified their method to simulate viscoplastic materials
like foam. Stomakhin et al. (2014) added a heat solver to simu-
late phase change of materials. Klar et al. (2016) and Daviet and
Bertails-Descoubes (2016) used MPM together with a Drucker-
Prager plasticiy model to simulate sand and other granular ma-
terials. Yue et al. (2015) complemented MPM with a particle
re-sampling scheme to handle potential non-uniform particle
distributions due to high shearing strain. Jiang et al. (2015)
proposed to track a locally a�ne transformation on each parti-
cle that would enable conservation of angular momentum; an
improvement over the normally used PIC/FLIP [Zhu and Brid-
son (2005)] update scheme.

In MPM, all particles discretized to the same grid will share
the same description of internal stresses on the Eularian grid.
This will yield non-physical contact forces when two distinct
bodies collide, but this can be avoided by complementing MPM
with a contact algorithm. Due to the particles in MPM being
meshless, contact is often resolved on the grid, and any Eularian
contact method can be used. Levin et al. (2011) resolves con-
tact of overlapping Eularian grids by formulating the problem
by the principle of least constraints. A similar approach was
employed by Fan et al. (2013), who uses this Eularian formu-
lation to simulate contact for a Lagrangian mesh. Huang et al.
(2011) proposes a method targeted at MPM. They discretize
each body to separate background grids, and an impenetrability
condition is imposed with respect to the relative grid velocity
to resolve collisions. Hegemann et al. (2013) uses this contact
scheme on a purely grid based level set method. However, due
to the grid being a smeared representation of the current parti-
cle configuration, all purely Eularian methods will observe that
collisions are detected prematurely. This artefact is discussed
in the context of our solver in section 6.

One existing method to handle the lack of an inherent way
to represent cracks in MPM is CRAMP (CRAcks with Mate-
rial Points) [Nairn (2003); Guo and Nairn (2006)]. CRAMP
introduces cracks on the Eulerian grid by allowing grid nodes
to have multiple velocity fields. Particles from opposite sides
of a crack are rasterized to di↵erent grids, which is determined
by a line-crossing algorithm from the particle to the grid. The
crack is explicitly represented as a Lagrangian mesh of mass-
less particles, which in 2D constitutes of connected line seg-
ments and in 3D a polygon mesh. CRAMP is primarily used
for engineering applications to investigate the stress response
of a specimen with a non-propagating crack, but was recently
extended by Bardenhagen et al. (2011) to allow for dynami-
cally propagating cracks. The authors, however, also say that
their dynamic crack propagation algorithm “... [requires] sub-

Preprint Submitted for review /Computers & Graphics (2017) 3

stantial computational e↵ort even for two-dimensional calcu-

lations.” The importance of speed and art directability makes
CRAMP di�cult to use in graphics applications. Our goal is
a crack algorithm capable of simulating realistic looking crack
propagation, with lower computational requirements more suit-
able for computer graphics. Daphalapurkar et al. (2007) have
also developed a scheme for crack growth in generalized inter-
polation MPM (GIMP) which targets engineering applications.
They simulate a crack along a pre-defined cohesive zone in a
2D specimen, where particles from opposite sides of the crack
interface interact. The glue particles presented in this paper re-
semble their use of a cohesive zone.

3. Multi-body solver for MPM

MPM is a hybrid method in that it combines an Eulerian
mesh with Lagrangian particles. First, a continuous material
is discretized into material points. The particles store all infor-
mation that will be carried on through the simulation such as,
position, velocity, deformation, and other potential properties
related to the constitutive model. The Eulerian grid is used in
the background to perform certain types of calculations. A par-
ticle is rasterized onto the grid by means of a weighting func-
tion, which transfers its attributes to the grid nodes. The inter-
nal and external forces are solved on the grid, and the attributes
are transferred back to the particles and their positions are up-
dated. Afterwards, the grid is discarded and a new simulation
step is initialized. An overview of the algorithm can be seen
in fig. 1. We follow closely the implementation by Stomakhin
et al. (2013), with the exception that we use an explicit time
step integration scheme to simplify the grid update.

Our approach to crack propagation is to pre-fracture a speci-
men into separate bodies that are held together by glue particles.
When these particle constraints break, each body must interact
with every other body in the simulation. Section 3.1 first de-
scribes a two-body collision scheme founded upon the work of
Huang et al. (2011). This two-body algorithm is a reformu-
lation of the same method they present in their paper, but we
introduce a di↵erent notation which we use for our extension
to N-body collisions. The di↵erence stems from the way we
handle surface normals. A normal is typically calculated by a
finite di↵erence of the mass on the background grid, and forces
are distributed along these normals when bodies collide. For
two bodies, conservation of momentum can only occur when
the surface normals are collinear. In general this is not the case,
and Huang et al. (2011) suggest multiple methods to ensure that
this condition is kept. However, when increasing the number of
colliding bodies to more than two, we were not able to adapt
their algorithm to keep momentum conserved (as collinearity
does not scale to more than two vectors). We propose instead to
iteratively solve 2-body collision problems until all pair colli-
sions have been resolved. See fig. 2. This allows for arbitrarily
many colliding bodies to interact in the same solver, while still
guaranteeing conservation of momentum. In section 3.2 we de-
scribe the required changes from the 2-body case to the N-body
case.

3.1. Two-body systems

To avoid loss of information at the collision interface, each
body b will be rasterized to its own set of grids, storing mass
m

k

bi, force f k

bi, and velocity vk

bi and vk+
bi , for each grid node i

at time k. We use a combined PIC/FLIP scheme to transfer
grid attributes back to the particles [Zhu and Bridson (2005)],
which requires us to store on the grid both initial velocity vk

bi,
and updated velocity vk+

bi after grid forces have been applied. We
use the PIC/FLIP blend ratio ↵ = 0.95 for all our simulations
(see e.g., Stomakhin et al. (2013) for an explanation of ↵). The
grids must be aligned to allow for comparisons between grid
values of di↵erent bodies, i.e., m

k

bi and m

k

di must refer to the
masses of body b and d respectively at the same world space
coordinate. To avoid confusion, we will from here on refer to
a grid node as a node corresponding to a grid position xi. That
means that m

k

bi and m

k

di contribute to the same grid node, but to
di↵erent grids.

Two colliding grids at a grid node i are required to fulfill the
impenetrability condition

v
bi · n(b,d)i + v

di · n(d,b)i = 0 (1)

where n(b,d)i are outwards pointing normals from b to d and
vice versa. To ensure conservation of momentum we require
the normals to be collinear, namely

n(b,d)i = �n(d,b)i. (2)

Combining eq. 2 and eq. 1 yields

0 = (v
bi � vcm

i) · n(b,d), (3)

where we use the center of mass velocity vcm

i =P
b

m

bivbi/
P

b

m

bi as in Huang et al. (2011). Thus, two grids
are considered to be colliding at a grid node if

(v
bi � vcm

i) · n(b,d) > 0 () (v
di � vcm

i) · n(d,b) > 0. (4)

The normal n
bi must be derived from the current configura-

tion of the body. We will derive it from the mass grid as

n
bi = �

rm

bi

|rm

bi|
, (5)

where the minus sign was introduced to create an outwards fac-
ing normal. In general, letting n(b,d)i = n

bi and n(d,b)i = n
di

will not satisfy eq. 2 (see fig. 2). There are multiple methods
proposed in Huang et al. (2011) to ensure collinearity. All sim-
ulations in this paper use the method of averaging normals with

n(b,d)i = �n(d,b)i =
n

bi � n
di

|n
bi � n

di|
. (6)

3.1.1. Resolving collisions

Contact is said to occur if eq. 4 is satisfied for any of the bod-
ies using the next nodal velocities vk+

bi or vk+
di . The superscript

will be omitted in the following derivation for brevity. If bodies
are in contact at a grid node i, collision is resolved by applying

4 Preprint Submitted for review /Computers & Graphics (2017)

Fig. 2. Contact nodes. Three bodies in contact, and separated for clarity.

The red vectors are normals calculated from a finite di↵erence on the grid.

Recalculated pairwise vectors using eq. 6 are shown from each body, along

which contact forces are distributed.

the impulse f ⇤
bi and f ⇤

di to the respective bodies. By virtue of
Newton’s third law

f ⇤
bi + f ⇤

di = 0. (7)

The impulse is employed in the direction of the normal by f ⇤
bi =

f

⇤
b

n(b,d)i and it is added to the grid force, f̄
bi = f

bi + f ⇤
bi. The

purpose of the impulse force is to calculate a correction velocity
v⇤

bi such that the grid node velocity satisfies eq. 1. The velocity
relates to the force as

v⇤
bi =

�t

m

bi
f ⇤
bi, (8)

and we update the velocity by v̄
bi = v

bi+ v⇤
bi. Using the impene-

trability condition in eq. 1, with the corrected velocities v̄
bi and

v̄
di, it is possible to calculate the impulse required to deflect the

bodies as,

f

norm

bi ⌘ f ⇤
bi · n(b,d)i =

m

bimdi

(m
bi + m

di)�t

(v
di � v

bi) · n(b,d)i. (9)

If no friction is desired the collision algorithm is completed.
However, the additional work to include friction follows steps
very similar to the ones above. Let the tangential unit vector in
the direction of the relative velocity at the contact node be s(b,d)i
and s(b,d)i = �s(d,b)i. Then, the friction equivalent of eq. 9 is

f

tan

bi ⌘ f ⇤
bi · s(b,d)i =

m

bimdi

(m
bi + m

di)�t

(v
di � v

bi) · s(b,d)i. (10)

Using the Coulumb friction law, the resulting expression for f

⇤
bi

reads as

f ⇤
bi = f

norm

bi n(b,d)i +min(µ f

norm

bi , f

tan

bi)s(b,d)i. (11)

The velocity is now calculated by eq. 8. The most e�cient way
to compute f ⇤

di is by means of eq. 7. This concludes the contact
algorithm.

3.2. N-body systems

The core idea for our treatment of N-body collisions is to in-
troduce pairwise comparisons between bodies. This is straight-
forward using the notation we introduced in the last section, as
the initial assumptions of impenetrability and collinearity still
hold. However, due to the additional bodies some calculations
are not valid. Most notably,

(v
bi � v

di) · n(b,d)i , (v
bi � vcm

i) · n(b,d)i, (12)

and as a result

(v
bi � vcm

i) · n(b,d)i , (v
di � vcm

i) · n(d,b)i, (13)

which means that the condition eq. 4 is no longer valid. As
before, the velocity of the node is defined as the center of mass
velocity, and the velocity of b should be changed if it would
penetrate d with respect to v

cm

i . Consequently we require for
colliding nodes that

(v
bi � vcm

i) · n(b,d)i > 0. (14)

Equation 14 is a generalized statement of eq. 4 despite their
similarities, as the latter assumes only two bodies. Now there
might exist cases where

(v
bi � vcm

i) · n(b,d)i > 0,
(v

di � vcm

i) · n(d,b)i < 0
(15)

and it is unclear whether any impulse forces should be applied
or not. To ensure that eq. 14 is being correctly identified for
each pair, we state as a definition that two bodies b, d are in
contact if b is in contact with d or d is in contact with b. That
is, two bodies are in contact if

max((v
bi � vcm

i) · n(b,d)i, (vdi � vcm

i) · n(d,b)i) > 0. (16)

3.2.1. Resolving collisions

As previously, contact is determined using the next nodal ve-
locity vk+

bi but with eq. 16 instead of eq. 4. The total impulse for
a body b is the sum of all pairwise impulses

f ⇤
bi =
X

d,b

f ⇤(b,d)i. (17)

Now, f ⇤
bi , � f ⇤

di in general. Newton’s third law states that

0 =
X

b

f ⇤
bi =
X

b

X

d,b

f ⇤(b,d)i. (18)

Solving this equation for 2-body collisions has already been
done, as for two bodies eq. 18 turns into the previous eq. 7.
For more than two bodies the system is degenerate and multiple
solutions that fulfill eq. 18 exist. Posing this as a minimiza-
tion problem of

P
b

| f ⇤
bi| given eq. 18 and f ⇤(b,d)i · n(b,d)i 0,

we ensure that the collision is resolved without interpenetration
of objects and while minimizing the virtual work done by the
multi-body solver . A similar optimization problem is solved
by Fan et al. (2013). We simplify the problem, as mentioned,
by doing pairwise collision comparisons and impulse adjust-
ments independently of each other. Mathematically, this is an

Preprint Submitted for review /Computers & Graphics (2017) 5

approximation that corresponds to treating all pairwise contact
normals for a grid node as if they were orthogonal to each other.
This, in practice, is rare, however, the simplification speeds up
computation and does not create any apparent visual artefacts.
As a result, the algorithm for 2-body collisions can be repeat-
edly applied for all pairs at a grid node until all pairs have been
resolved. This extension is straightforward given the previous
2-body scheme, and only a few steps need to be revised. The
full N-body collisions algorithm is presented in the list below.

1. Rasterize each particle group to a distinct grid.
2. For each grid, calculate mi, fi, vi, and v+i by the normal

MPM algorithm.
3. Locate potential collision nodes, where mi > 0 for more

than one grid.
For each potential collision node i:

4. Calculate all body normals n
bi by eq. 5.

5. Determine if grids are colliding by eq. 16.
For each grid pair at a collision node:

6. Make normals collinear by eq. 6.
7. Calculate correction forces along pair normals by eq. 11.
8. Apply correction forces to grid pair.

Afterwards, particles are updated from the grids by the normal
MPM algorithm.

4. Cracks with the Material Point Method

MPM is a versatile method, and by exerting increasing
amounts of stress to a body it will eventually break without spe-
cial treatment. However, after the material has cracked the dif-
ferent pieces still belong to the same body and will be rasterized
to the same grid, and the result will be visible artefacts due to
non-physical interaction forces. For example, the bodies may
merge together again if kept in contact. Additionally, art di-
rectability of a crack is hard and cumbersome. Weaknesses can
be introduced by modifying the material properties at places,
but these are often unreliable and do not look realistic.

In this work we present a simple but novel algorithm for sim-
ulating cracks with MPM. Our approach consists of the follow-
ing steps. (1) Pre-facture the simulated object by splitting it
into di↵erent pieces, (2) glue the pieces together using mass-
less material points scattered at the interface between pieces
by defining a particle based criterion for when pieces should
break apart, and (3) use the multi-body solver to simulate the
interaction between separated pieces. These proposed steps are
outlined in sections 4.1-4.4, and an algorithmic overview is pro-
vided in section 4.5.

4.1. Pre-fracture

The pre-fracturing stage provides the possibility to directly
manipulate when and where a certain material breaks. If we
split the initial body into di↵erent pieces we have created a dis-
continuity at the surface interface where they meet, and a crack
is defined. Figure 3 shows an example of a possible discretiza-
tion.

Fig. 3. Split. Glue particles (yellow) are scattered at the crack interface.

4.2. Merging grids

By virtue of the fact that particles are split into separate
groups, they will each be rasterized to their own grids. The dif-
ferent pieces, as created by the pre-fracturing process, will thus
be seen as separate objects by the multi-body solver, and hence
the solver will apply the collision scheme to resolve contact.
This is desired in cases where the material have been broken
apart, but initially we want to consider the pieces as a single
body. This is done by merging the two grids, in the sense that
the grids behave as if the particles of each body has been ras-
terized to the same grid. This can be done by introducing the
following operations;

mJOINi = m

bi + m

di,

fJOINi = f
bi + f

di,

vJOINi =
m

bivbi + m

divdi

m

bi + m

di
.

(19)

The joint grid now represents the combined body of b and d.

4.3. Glue particles

In order to manage a dynamic fracture scenario it is necessary
to encapsulate localized information on whether two grids are
connected (and should be merged) or separate (and should be
treated as such). We introduce a new set of particles G to all
particles P, such that G ⇢ P. We denote these particles glue

particles and will reference them by a running index g. A glue
particle

• is massless, and will thus transform with the body while
not a↵ecting any grid calculations,
• contains a criterion c

g

for the material failure mode. The
criterion is a value threshold, and the value will need to be
transferred to the grid,
• has a radius of influence in which it will a↵ect grid

nodes (and will glue grids together by merging them us-
ing eq. 19).

These particles are scattered in the intersection between two
particle groups where a crack is desired, and an additional grid
property ci will be used for comparisons on the grid. If the
crack criterion is violated for a particle, it will be invalidated
and removed from the set P (and G).

6 Preprint Submitted for review /Computers & Graphics (2017)

4.4. Crack failure mode

Only grid nodes where at least two grids collide are consid-
ered for cracks. We determine if a node is cracked or not using
a force based glue criteria with respect to the relative grid force
� f k

gi. For our purposes we will disregard forces due to compres-
sion and we remove the inwards force component with respect
to the contact normal nk

(b,d)i. This limits us to considering only
tensile crack forces. The relative grid force is then

� f k

gi =
�
f k

bi �min(0, f k

bi · nk

(b,d)i)nk

(b,d)i
�

� � f k

di �min(0, f k

di · nk

(d,b)i)nk

(d,b)i
�
.

(20)

The state of the node is determined by comparing the size of
� f k

g

with the nodal threshold criterion c

k

i , as acquired by raster-
izing the glue particles to the grid:

c

k

i =

P
g

c

g

w

k

gi

P
g

w

k

gi
. (21)

The introduction of the weight average in eq. 21 makes the
threshold independent of the number of nearby glue particles.
As a result it becomes easier to achieve the desired material
break point. Lastly, we can determine if two grids should be
merged at a grid node. If

|� f k

gi| < c

k

i , (22)

eq. 19 is used to merge grid node i. Otherwise, the node is
cracked and contact is automatically resolved by the multi-body
solver. Additionally, if the crack criterion was violated, all glue
particles that contributed to that grid node must be invalidated
and removed from the set P. This information is backtracked
from the recently cracked grid node using a particle index grid,
which allows for fast grid-to-particle look-up, and the related
glue particles are deleted from the simulation domain.

One can regard crack formation as composed of three lin-
early independent modes: an opening mode and two shear type
modes. The present version of the crack algorithm only aims
at proper simulation of cracks dominated by the opening mode.
There are presently two issues that complicate the extension of
the algorithm to properly simulate cracks where other modes
dominate: (1) The crack failure criteria, eqs. 20, 21, are only
accurate for tensile stress normal to the (pre-generated) crack.
Such forces are only present for cracks of the opening-mode
type, and it prevents cracks from forming when the other modes
dominate. This could be resolved by, e.g., using a stress based
criterion instead. However, stress calculations are normally
done per particle before grid calculations take place, and no
knowledge of contact normals exist yet. (2) However, with a
crack failure criterion that allows shear-mode cracks to open,
the resulting surfaces that now barely touch will trigger the im-
penetrable condition, eq. 1, giving artificial normal forces that
push the crack open slightly. The situation is identical for in-
ternal cracks, which would leave a visual artefact similar to that
seen in the fractured torus example in section 5.5. This problem
of 0-width cracks is similar to, and discussed more thoroughly
in, Mitchell et al. (2015) with level sets as the frame of refer-
ence.

4.5. The crack algorithm

In the present work we focus on simulation of bodies with a
single crack. For the algorithm to allow branching cracks and
bodies that break apart into more than two segments, in addi-
tion to what has been presented above, every glue particle must
be assigned to exactly two bodies, and its crack failure critera,
eqs. 20, 21, should be evaluated only with respect to those two
bodies. While this seems a trivial extension of what has been
presented so far, we have not implemented that extension.

The changes necessary to extend the proposed contact algo-
rithm in section 3.2 for cracks are now few. See the steps below.
Items with overlapping numbers are additions to the same step
in the contact algorithm.

2. Additionally, glue particles need to be rasterized to a grid
by eq. 21.
...

8. If the node is cracked as determined by eq. 22, delete glue
particles that contributed to the grid node. Then, apply
correction forces to grid pair.

9. Otherwise, merge grids at the node by eq. 19.

Fig. 4. A moving sphere colliding with three stationary spheres.

Sphere y value [m] |v| [m/s]
Blue �9.04 1.46
Red �8.93 1.45
Brown �8.76 1.44

Table 1. Colliding sphere data after 10 seconds of simulation.

5. Results

We present the results of our method as follows: Sections 5.1,
5.2, and 5.3 relate to the contact algorithm. Our algorithm will
perform in a manner identical to that of Huang et al. (2011) for

Preprint Submitted for review /Computers & Graphics (2017) 7

two-body collisions, and we will solely focus on collisions with
more than two bodies. Sections 5.4 and 5.5 show our algorithm
for simulating cracks.

By using one separate grid for every body, b1, ..., bn

, there
will e↵ectively need to be n sets of values at every grid node.
Implementing this using a pre-allocated dense grid would ren-
der the method impractical for even modest sized simulations
due to rapid increase in memory usage. We recommend using
sparse grids, which dynamically allocate memory and typically
reduce the overall memory footprint of the simulation. All the
simulations were performed using the OpenVDB framework
[Museth (2013)].

Fig. 5. 98 Kubbs dropped on the ground.

5.1. Colliding spheres

We first consider a moving sphere colliding with three sta-
tionary spheres positioned each with its center on a vertex of
an equilateral triangle as in fig. 4. Even though the particles
of each sphere are separated their grids connect. In the second
picture (top right) there are grid nodes where the three grids are
colliding. The triangle lies in the horizontal plane, defined as
y = 0. The colliding sphere has been positioned in the middle
of the triangle 3 meters above, and is advancing with a speed
of 3 m/s. No gravity is applied. Each sphere has a radius of
1 m and has been discretized into 3 911 points each using an
uniform grid spacing of 20 cm. The friction has been set to µ =
0.2. After 10 seconds the y values of the initially non-moving
spheres and their velocities can be seen in table 1.

5.2. Kubb

Two sets of slightly jittered bricks, kubbs1, are stacked on top
of each other separated by a small distance. See fig. 5. They
are dropped from an average distance of 0.4 and 0.9 meters re-
spectively, with gravity applied. The dimensions of one brick is
15 ⇥ 30 ⇥ 15cm3, and it is discretized by 735 points with a grid

1Kubb is a lawn game frequently played in Sweden. The game involves
knocking over a set of wooden blocks, similar in shape to the bricks shown in
the image.

spacing of 4 cm. There are a total of 98 separate bodies (and 98
separate grids) and a total of 72 030 particles in the simulation.
The cubic kernel from Stomakhin et al. (2013) rasterizes each
particle to 4 grid nodes in each dimension, and the grid rep-
resentation of each brick will extend around 8 cm further than
the particles in each direction. As a result, it is not uncommon
to find grid nodes where 5 or 6 bodies collide. The bricks are
dropped from a standstill.

The ground has a small mound to create a more interesting
simulation (barely visible in the top left image). After 10 sec-
onds the bricks have come to a rest.

5.3. Sand brush

Our method is not restricted to merely one type of material.
Consider fig. 6; here we have coupled an elastic brush together
with plastic sand. These will interact dynamically in the simu-
lation using our collision algorithm without any extra coupling.
The sand has been modelled using the Drucker-Prager plasticity
model as described by Klar et al. (2016). It consists of 230 913
particles, and they have been colored depending on their initial
y-displacement to create a sand-like feeling.

The motion of the brush is determined by the shaft which has
been modelled as a boundary. The boundary imposes the condi-
tion vk

bi = vk

ci for all touched grid nodes, and the elastic material
will loosely follow the boundary. The brush is discretized into
3 603 points with a Young’s modulus of 1 MPa and Poisson’s
ratio of 0.1 to emulate a rubbery-like material.

Fig. 6. An elastic brush moving through sand.

5.4. Controlled tearing

The first example aims to investigate if our method is suc-
cessful in directing how a material cracks. Consider a rectangu-
lar brick as in fig. 7. It is discretized into 35 301 material points,
and a small cut-out has been created on one side to create a ma-
terial weakness that will help initiate the crack. The same simu-
lation with identical material parameters was run three di↵erent
times, with the only di↵erence being how the material has been
pre-fractured.

The left-most specimen has not been pre-fractured at all.
As can be seen the material still breaks in the middle as ex-
pected, and it has smaller fractures close to the top plate due
to high forces close to the boundary. The other two simula-
tions have the crack interface modified by the pre-fracture pro-
cess; the middle has a diagonal cut and the right-most has a
crack in a zigzag pattern. Glue particles with a threshold of

8 Preprint Submitted for review /Computers & Graphics (2017)

c

g

2 [140, 160] N have been uniformly scattered over the crack
surface.

Fig. 7. Tearing of a sponge-like material. The left most setup have not

been pre-fractured, and represents how normal MPM will behave. The

blue and red has been pre-fractured using a diagonal and zigzag pattern re-

spectively, thus demonstrating that this method can be used for controlled

crack propagation.

5.5. Internal cracks

Consider a torus as in fig. 8. It has been pre-fractured into
two pieces by a horizontal plane splitting it in the middle and
consists of two symmetric halves; one as the bottom and one on
top. Glue particles have been scattered on the outer half of both
disks that represent the interface where the bottom and top parts
meet. As a result, the inner halves of the two disks constitute
two open internal cracks. The torus approaches the right wall
with a velocity of 10 m/s and consists of 37 100 points. The
outer radius is 50 cm and the internal is 25 cm. The simulation
is performed without gravity.

6. Discussion

6.1. Multi-body solver

The colliding sphere example, fig. 4, shows largely a natu-
ral many-body collision. However, seemingly separate bodies
are colliding, which is the result of our impenetrability condi-
tion, eq. 1. This is an artifact of the method—grid nodes should
in reality be allowed to penetrate each other, but doing so ef-
fectively forces contact to be resolved on a particle level. This
proves di�cult, as previous simple operations such as deter-
mining contact and calculating normals instead become unfea-
sible. Furthermore, there is a notable discrepancy in vertical
displacement due to di↵erent velocities, see table 1. This er-
ror is introduced with the assumption that all contact normals
at a grid node are orthogonal, which in practice is rare, and
could be resolved by solving the optimization problem eq. 18.

Fig. 8. A fractured torus colliding with a wall. The simulation time frames

are ordered top to bottom, left to right.

Alternatively, another Eularian contact algorithm, like the one
presented in Levin et al. (2011), could be employed instead.

Our collision algorithm is indi↵erent to the constitutive
model and is a standalone addition to the MPM framework. As
such it can be used in conjunction with any number of di↵er-
ent materials, and it allows for an easy coupling of materials
to create dynamic scenarios as can be seen by the Sand brush

example. Combining more than one material type in the same
simulation is not something specific to our collision resolution
scheme, however, by introducing separate grids we can ensure
that no blending of the materials will occur. As such, running
the Sand brush simulation without our algorithm would result
in sand particles (unnaturally) sticking to the brush.

6.2. Cracks

The focus of this development was to create realistic look-
ing fracturing. Figure 7 shows that it is possible to direct the
fracture process using our technique. Emphasis has been given
especially to making the setup phase of pre-fracturing easy. Due
to eq. 21 not much thought has to be given to the distribution of
glue particles in the crack intersection; as long as all distances
to nearby glue particles are less than the radius of the glue par-
ticles, the setup will function properly.

However, the torus example in fig. 8 demonstrates a short-
coming with our method. The problem of contact being de-
termined prematurely by the multi-body solver was previously
discussed. The same artefact is present also in the simulation
of the torus, and is seen by noticing that a crack never fully
closes after the initial rupture when the torus collides with the
wall. Nairn (2003) addresses the problem of premature contact
by detecting collisions with respect to volume change instead of

Preprint Submitted for review /Computers & Graphics (2017) 9

relative velocity. For internal cracks, this would allow the two
contact surfaces to approach closer before numerical contact.

It would be beneficial to move the crack test to a Lagrangian
frame of reference. Particle stress is calculated as part of the
force update, and the method would improve from using a stress
based measure instead of the current force based one in eq. 20,
as shearing and rotating forces are not treated properly. Addi-
tionally, this would simplify the removal of glue particles after
they have been invalidated, as the particle criterion c

g

could be
used instead of the grid based one. The di�culty is in transfer-
ring the information of contact normals from the grid to the par-
ticles. CRAMP solves this issue by a line crossing algorithm,
as that e↵ectively gives contact information in the Lagrangian
frame.

The removal of the line crossing algorithm is the main com-
putational speedup that this work provides over CRAMP, to-
gether with the fact that no crack release rates are calculated for
crack propagation, as done in e.g., Bardenhagen et al. (2011).
For real materials, a propagating crack tip is normally followed
by a plastic deformation in the crack region, that absorbs some
of the potential energy released when the crack forms. The
method presented here does not take this deformation into ac-
count, and it may cause erroneous fracturing as a result. In our
experiments, the overhead generated by our crack and multi-
body extensions appears to be negligible, i.e. below a couple of
percent of the run time of a standard MPM (see e.g., Stomakhin
et al. (2013)).

7. Conclusions

We extended the basic MPM solver with a contact algorithm
that can handle, in theory, any number of colliding bodies. Our
method will produce the same result for 2-body collisions as
Huang et al. (2011). When increasing the number of colliding
bodies, artefacts may be introduced due to the approximation
that pairwise contact normals are orthogonal, but the end re-
sult nevertheless tends to look natural. We have leveraged the
multi-body solver to model cracks, defined as the intersection
between parts of a body that have been pre-fractured. To indi-
cate where a material is cracked glue particles are introduced.
These are scattered in the crack intersection and resemble the
Lagrangian mesh as used in CRAMP, however, glue particles
are unconnected and do not represent a crack, but they are used
by the Eulerian grid to determine if a grid node should be treated
as cracked or not. A tearing scenario was presented in section 4
to show the applicability of this procedure.

Acknowledgments

This work was conducted as an internship at DreamWorks
Animation. We thank Mihai Alden for valuable input and for
help with the implementation, and Gergely Klar for insightful
discussions on MPM. We also thank the anonymous reviewers
for their helpful comments and improvement suggestions.

References

Sulsky, D, Zhou, S, Schreyer, H. Application of a particle-in-
cell method to solid mechanics. Computer Physics Communica-
tions 1995;87(1):236 – 252. URL: http://www.sciencedirect.

com/science/article/pii/0010465594001707. doi:http:
//dx.doi.org/10.1016/0010-4655(94)00170-7; particle Simu-
lation Methods.

Huang, P, Zhang, X, Ma, S, Huang, X. Contact algorithms for the material
point method in impact and penetration simulation. International journal for
numerical methods in engineering 2011;85:498–517.

Terzopoulos, D, Fleischer, K. Modeling inelastic deformation: Viscolelas-
ticity, plasticity, fracture. SIGGRAPH Comput Graph 1988;22(4):269–278.
URL: http://doi.acm.org/10.1145/378456.378522. doi:10.1145/
378456.378522.

O’Brien, J, Hodgins, J. Graphical modeling and animation of brittle frac-
ture. In: Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’99; New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co. ISBN 0-201-48560-5; 1999, p. 137–
146. URL: http://dx.doi.org/10.1145/311535.311550. doi:10.
1145/311535.311550.

O’Brien, J, Bargteil, A, Hodgins, J. Graphical modeling and animation of duc-
tile fracture. ACM Trans Graph 2002;21(3):291–294. URL: http://doi.
acm.org/10.1145/566654.566579. doi:10.1145/566654.566579.

Pauly, M, Keiser, R, Adams, B, Dutré, P, Gross, M, Guibas,
L. Meshless animation of fracturing solids. ACM Trans Graph
2005;24(3):957–964. URL: http://doi.acm.org/10.1145/1073204.
1073296. doi:10.1145/1073204.1073296.

Kaufmann, P, Martin, S, Botsch, M, Grinspun, E, Gross, M.
Enrichment textures for detailed cutting of shells. ACM Trans
Graph 2009;28(3):50:1–50:10. URL: http://doi.acm.org/10.1145/
1531326.1531356. doi:10.1145/1531326.1531356.

Müller, M, Chentanez, N, Kim, T. Real time dynamic fracture with volumetric
approximate convex decompositions. ACM Trans Graph 2013;32(4):115:1–
115:10. URL: http://doi.acm.org/10.1145/2461912.2461934.
doi:10.1145/2461912.2461934.

Stomakhin, A, Schroeder, C, Chai, L, Teran, J, Selle, A. A material
point method for snow simulation. ACM Trans Graph 2013;32(4):102:1–
102:10. URL: http://doi.acm.org/10.1145/2461912.2461948.
doi:10.1145/2461912.2461948.

Ram, D, Gast, T, Jiang, C, Schroeder, C, Stomakhin, A, Teran,
J, et al. A material point method for viscoelastic fluids, foams and
sponges. 2015. URL: http://doi.acm.org/10.1145/2786784.

2786798. doi:10.1145/2786784.2786798.
Yue, Y, Smith, B, Batty, C, Zheng, C, Grinspun, E. Continuum

foam: A material point method for shear-dependent flows. ACM Trans
Graph 2015;34(5):160:1–160:20. URL: http://doi.acm.org/10.1145/
2751541. doi:10.1145/2751541.

Stomakhin, A, Schroeder, C, Jiang, C, Chai, L, Teran, J, Selle, A.
Augmented mpm for phase-change and varied materials. ACM Trans
Graph 2014;33(4):138:1–138:11. URL: http://doi.acm.org/10.1145/
2601097.2601176. doi:10.1145/2601097.2601176.

Klar, G, Gast, T, Pradhana, A. Drucker-prager elastoplasticity for sand ani-
mation. ACM Trans Graph 2016;35:4.

Daviet, G, Bertails-Descoubes, F. A semi-implicit material point
method for the continuum simulation of granular materials. ACM Trans
Graph 2016;35(4):102:1–102:13. URL: http://doi.acm.org/10.1145/
2897824.2925877. doi:10.1145/2897824.2925877.

Jiang, C, Schroeder, C, Selle, A, Teran, J, Stomakhin, A. The a�ne particle-
in-cell method. ACM Trans Graph 2015;34(4):51:1–51:10. URL: http:
//doi.acm.org/10.1145/2766996. doi:10.1145/2766996.

Zhu, Y, Bridson, R. Animating sand as a fluid. ACM Trans Graph 2005;.
Levin, D, Litven, J, Jones, GL, Sueda, S, Pai, DK. Eulerian solid simula-

tion with contact. ACM Trans Graph 2011;30(4):36:1–36:10. URL: http:
//doi.acm.org/10.1145/2010324.1964931. doi:10.1145/2010324.
1964931.

Fan, Y, Litven, J, Levin, D, Pai, D. Eulerian-on-lagrangian simulation.
ACM Trans Graph 2013;32(3):22:1–22:9. URL: http://doi.acm.org/
10.1145/2487228.2487230. doi:10.1145/2487228.2487230.

Hegemann, J, Jiang, C, Schroeder, C, Teran, J. A level set method for ductile
fracture. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation. SCA ’13; New York, NY, USA: ACM.

http://www.sciencedirect.com/science/article/pii/0010465594001707
http://www.sciencedirect.com/science/article/pii/0010465594001707
http://dx.doi.org/http://dx.doi.org/10.1016/0010-4655(94)00170-7
http://dx.doi.org/http://dx.doi.org/10.1016/0010-4655(94)00170-7
http://doi.acm.org/10.1145/378456.378522
http://dx.doi.org/10.1145/378456.378522
http://dx.doi.org/10.1145/378456.378522
http://dx.doi.org/10.1145/311535.311550
http://dx.doi.org/10.1145/311535.311550
http://dx.doi.org/10.1145/311535.311550
http://doi.acm.org/10.1145/566654.566579
http://doi.acm.org/10.1145/566654.566579
http://dx.doi.org/10.1145/566654.566579
http://doi.acm.org/10.1145/1073204.1073296
http://doi.acm.org/10.1145/1073204.1073296
http://dx.doi.org/10.1145/1073204.1073296
http://doi.acm.org/10.1145/1531326.1531356
http://doi.acm.org/10.1145/1531326.1531356
http://dx.doi.org/10.1145/1531326.1531356
http://doi.acm.org/10.1145/2461912.2461934
http://dx.doi.org/10.1145/2461912.2461934
http://doi.acm.org/10.1145/2461912.2461948
http://dx.doi.org/10.1145/2461912.2461948
http://doi.acm.org/10.1145/2786784.2786798
http://doi.acm.org/10.1145/2786784.2786798
http://dx.doi.org/10.1145/2786784.2786798
http://doi.acm.org/10.1145/2751541
http://doi.acm.org/10.1145/2751541
http://dx.doi.org/10.1145/2751541
http://doi.acm.org/10.1145/2601097.2601176
http://doi.acm.org/10.1145/2601097.2601176
http://dx.doi.org/10.1145/2601097.2601176
http://doi.acm.org/10.1145/2897824.2925877
http://doi.acm.org/10.1145/2897824.2925877
http://dx.doi.org/10.1145/2897824.2925877
http://doi.acm.org/10.1145/2766996
http://doi.acm.org/10.1145/2766996
http://dx.doi.org/10.1145/2766996
http://doi.acm.org/10.1145/2010324.1964931
http://doi.acm.org/10.1145/2010324.1964931
http://dx.doi.org/10.1145/2010324.1964931
http://dx.doi.org/10.1145/2010324.1964931
http://doi.acm.org/10.1145/2487228.2487230
http://doi.acm.org/10.1145/2487228.2487230
http://dx.doi.org/10.1145/2487228.2487230

10 Preprint Submitted for review /Computers & Graphics (2017)

ISBN 978-1-4503-2132-7; 2013, p. 193–201. URL: http://doi.acm.
org/10.1145/2485895.2485908. doi:10.1145/2485895.2485908.

Nairn, J. Material point method with explicit cracks. Tech Science Press:
CMES 2003;4(6):640–663.

Guo, Y, Nairn, J. Three-dimensional dynamic fracture analysis using the
material point method. Tech Science Press: CMES 2006;1:11–25.

Bardenhagen, S, Nairn, J, Lu, H. Simulation of dynamic fracture with the
material point method using a mixed j-integral and cohesive law approach.
International Journal of Fracture 2011;170:49–66.

Daphalapurkar, NP, Lu, H, Coker, D, Komanduri, R. Simulation
of dynamic crack growth using the generalized interpolation material
point (gimp) method. International Journal of Fracture 2007;143(1):79–
102. URL: https://doi.org/10.1007/s10704-007-9051-z. doi:10.
1007/s10704-007-9051-z.

Mitchell, N, Aanjaneya, M, Setaluri, R, Sifakis, E. Non-manifold
level sets: A multivalued implicit surface representation with applica-
tions to self-collision processing. ACM Trans Graph 2015;34(6):247:1–
247:9. URL: http://doi.acm.org/10.1145/2816795.2818100.
doi:10.1145/2816795.2818100.

Museth, K. Vdb: High-resolution sparse volumes with dynamic topology.
ACM Trans Graph 2013;32.

http://doi.acm.org/10.1145/2485895.2485908
http://doi.acm.org/10.1145/2485895.2485908
http://dx.doi.org/10.1145/2485895.2485908
https://doi.org/10.1007/s10704-007-9051-z
http://dx.doi.org/10.1007/s10704-007-9051-z
http://dx.doi.org/10.1007/s10704-007-9051-z
http://doi.acm.org/10.1145/2816795.2818100
http://dx.doi.org/10.1145/2816795.2818100

	Introduction
	Related work
	Multi-body solver for MPM
	Two-body systems
	Resolving collisions

	N-body systems
	Resolving collisions

	Cracks with the Material Point Method
	Pre-fracture
	Merging grids
	Glue particles
	Crack failure mode
	The crack algorithm

	Results
	Colliding spheres
	Kubb
	Sand brush
	Controlled tearing
	Internal cracks

	Discussion
	Multi-body solver
	Cracks

	Conclusions

