
Efficient Algorithms for Controllable
Fluid Simulations

and High-Resolution Level Set
Deformations

Brian Bunch Christensen

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Efficient Algorithms for Controllable Fluid
Simulations and High-Resolution Level Set

Deformations

A Dissertation
Presented to the Faculty of Science

of Aarhus University
in Partial Fulfillment of the Requirements for the

PhD Degree

by
Brian Bunch Christensen

March, 2010

ABSTRACT

During the past decade, we have seen a rapid escalation in the amount and scope of
computerized visual effects employed in feature films. This trend is in large due to
the advances of computational techniques for doing physically based animation. Level
sets, which are dynamic implicit surfaces developed for computational physics, are a
prime example of such a technique, that has found use in computer graphics, com-
puter vision and visual effects. Within computer graphics they have been used as
the underlying surface representation in water simulations, geometric modeling, shape
metamorphosis and several other applications. Among the most resource-demanding
effects in today’s feature films is the simulation of smoke and water. As a result, level
sets and their accompanying technology are constantly being pushed to the limits. Be-
sides being computationally expensive, the unpredictable behavior of the simulations
and lack of explicit artistic control result in a workflow marred by trials and errors.

In the first segment of this dissertation, I propose an out-of-core framework for ef-
ficient streaming of level set computations. It is motivated by the fact that increasingly
higher resolutions are desired in all level set application areas, and that disk space in
general offers much higher storage capacity and is two to three orders of magnitude
cheaper than internal memory. The framework is built on top of an existing out-of-core
framework and the new contributions include code transformations which decrease the
number of times data must be streamed from disk during simulation. As a result, the
framework is now CPU limited and can sustain a throughput of up to 92% of in-core
simulations on desktop computers with limited memory resources even for simula-
tions requiring several gigabytes of storage. Furthermore, the code transformations
allow for parallel processing of individual tiles of the level set which also reduces the
computation time required.

The second segment focuses on efficient algorithms for controlling the motion of
gaseous fluid phenomena. Normally a simulation is very sensitive to the resolution of
the simulation domain, and often the final behavior is changed completely when the
resolution is modified. I propose a control framework for smoke animations which
couples simulations of different resolution together in a way such that their bulk mo-
tions are similar. The control framework ideally allows a visual effects artist to tune
simulation parameters using a coarse, faster prototype simulation and then use that
simulation to guide a higher resolution simulation which has the desired amount of
details, but the same overall behavior.

v

ACKNOWLEDGEMENTS

First of all I want to thank my advisor Ken Museth for his guidance and support. He
has opened my eyes to the exciting fields of level set methods and fluids and has been a
source of inspiration for me. Because of the geographical distance and time difference,
he has devoted many off-hours to answering my questions and providing expert advice
on how to proceed. Furthermore, I thank him for initiating and handling the contact
to Digital Domain, where I spent three exciting and enlightening months. Secondly, I
acknowledge my advisor Susanne Bødker at Aarhus University. I am grateful to her for
providing advice on doing research, and for encouraging me to pursue a PhD degree.
Thirdly, I am indebted to Michael Bang Nielsen for providing ideas and inspiration,
and for answering my many questions on a daily basis. He has truly been my third,
unofficial “advisor”, and I would like to emphasize that without his and Ken’s guidance
the work presented in this dissertation would not have been possible.

Additionally, I thank the people of Digital Domain for giving me an opportunity
to experience the exciting world of visual effects and to see how computer graphics
can be applied in practice. It was a great professional and personal experience. In
particular, I wish to thank Doug Roble and Nafees Bin Zafar for collaborating with
me on the fluid control framework, and Michael Clive and Ryo Sakaguchi for helping
define the control problem. I generally thank all of my collaborators for many inspiring
discussions.

I would like to credit Ken Museth, Michael Bang Nielsen, Susanne Bødker, Clemens
Nylandsted Klokmose and Anja Hovgaard for commenting on drafts of this disserta-
tion. I furthermore thank Clemens Nylandsted Klokmose for providing an excellent
LATEX template.

Finally, I thank Anja for enduring the writing process with me and encouraging me
to hang in there. I am grateful to her and my parents Connie and Hans for their love
and support.

The research presented in this dissertation was funded by the Faculty of Science at
Aarhus University.

Brian Bunch Christensen,
Aarhus, March, 2010.

vii

PREFACE

This dissertation is divided into two parts: The first part provides a coherent overview
of the work of this PhD project as well as a more in-depth discussion of the background
material and related work. The second part is a collection of two published conference
papers and one submitted journal paper.

The overview is divided into eight chapters. Chapter 1 is an introductory chapter
that motivates the research, briefly introduces the visual effects pipelines, provides an
overview of the central contributions, and outlines the rest of the dissertation. Chap-
ters 2 and 3 serve as an introduction to level sets and the level set method that form the
basis upon which the submitted journal paper is built. In particular, chapter 2 presents
the original level set method whereas chapter 3 looks at relevant extensions and im-
provements. Chapter 4 supplements paper I by more thoroughly explaining some of
the concepts and background. Next, chapters 5 and 6 change focus to fluid simulations
in the context of computer graphics. This acts as a prelude to the work presented in
the two published papers. Chapter 5 serves as an introduction to fluid simulations and
explains a basic method for simulating fluids in visual effects, while chapter 6 presents
several improvements. Chapter 7 motivates the need for a method for controlling fluid
simulations, such as the control framework of papers II and III, and provides a dis-
cussion of a number of other control methodologies. Finally, chapter 8 concludes the
overview and discusses future work.

The recommended guideline for reading this dissertation is as following: Start with
chapters 1 – 4 for an introduction to the entire dissertation in general and the work on
high-resolution level sets in particular. Then read paper I. Continue with chapters 5 –
7 for an overview of the work on controlling fluid simulations. Lastly, read papers II
and III and conclude with chapter 8.

Video material from the papers mentioned above is available on the CD-ROM
accompanying this dissertation.

ix

INCLUDED PAPERS

[1] Brian B. Christensen, Michael B. Nielsen, and Ken Museth. Out-of-core compu-
tations of high-resolution level sets by means of code transformation. Journal of
Scientific Computing, 2010. Submitted.

[2] Michael B. Nielsen, Brian B. Christensen, Nafees Bin Zafar, Doug Roble, and Ken
Museth. Guiding of smoke animations through variational coupling of simulations
at different resolution. In ACM SIGGRAPH Symposium on Computer Animation
2009, pages 206–215, August 2009.

[3] Michael B. Nielsen and Brian B. Christensen. Improved variational guiding of
smoke animations. In Computer Graphics Forum / Proceedings of the Eurograph-
ics Conference 2010, pages x–(x+7), May 2010. To appear.

[4] Michael B. Nielsen, Brian B. Christensen, Nafees Bin Zafar, Doug Roble, and
Ken Museth. A variational framework for guiding of smoke animations. 2010. In
preparation. Segments included in chapter 7.

xi

CONTENTS

Abstract v

Acknowledgements vii

Preface ix

Included Papers xi

1 Introduction 1

1.1 Level Set Pipeline . 4

1.2 Fluid Simulation Pipeline . 5

1.3 Contributions . 7

1.4 Outline . 8

I Overview 13

2 Level Set Methods 15

2.1 Implicit Surfaces . 17

2.2 The Level Set Method in Theory 20

2.2.1 The Level Set Equations . 20

2.2.2 Reinitializing the Signed Distance Function 21

2.3 The Level Set Method in Practice 23

2.3.1 Finite Difference Approximations of Derivatives 23

2.3.2 Numerical Stability . 25

2.3.3 Solving the Level Set Equations Numerically 26

2.3.4 The Vanishing Viscosity Solution 29

xiii

3 Level Set Method Extensions 31

3.1 Narrow Band Level Set Methods 32

3.2 Octree Based Level Set Methods 34

3.3 Sparse Non-Tree Based Level Set Methods 35

3.4 Particle Level Set Methods . 37

3.5 Out-of-Core Level Set Methods 38

4 The Improved Out-of-Core Framework 39

4.1 Memory Hierarchies and Cache Locality 40

4.2 Code Transformations . 42

4.3 Contributions . 44

4.4 Further Discussion and Evaluation 45

5 Fluid Simulation for Computer Graphics 47

5.1 The Equations for Fluid Flow . 49

5.1.1 Derivation of the Inviscid Euler Equations 50

5.1.2 Pressure . 52

5.1.3 Boundary Conditions . 52

5.2 Solving the Inviscid Euler Equations Numerically 53

5.2.1 Spatial Discretization . 54

5.2.2 Semi-Lagrangian Advection 55

5.2.3 Ensuring Incompressibility 56

5.3 Simulating Smoke and Water . 57

5.4 An Alternative Method . 58

6 Fluid Simulation Extensions 59

6.1 Vorticity Confinement and Vortex Particles 59

6.2 Reducing Numerical Dissipation of Advection 60

6.3 More Accurate Boundaries . 62

7 Controlling Fluid Simulations 63

7.1 Control Methodologies . 65

7.2 Calculus of Variations . 66

7.3 Contributions . 68

xiv

7.4 Further Details on Customized Multigrid Solver 70

7.4.1 Interpolation and Restriction Operators 70

7.4.2 Coupling the Operators to the Linear System 72

7.5 Discussion and Evaluation . 73

8 Conclusion 77

8.1 Future Work . 77

8.2 Final Thoughts . 80

II Papers 83

I Out-Of-Core Computations of High-Resolution Level Sets by Means
of Code Transformation 85

1 Introduction . 85

2 Related Work . 88

3 Skewing and Tiling Level Set Computations and Data Structures . . 90

3.1 Skewing . 92

3.1.1 Transforming the Iteration Space 92

3.1.2 Storage Mapping 95

3.1.3 The Fast Iterative Method 98

3.1.4 Rebuild . 100

3.1.5 Concatenating Multiple Level Set Steps 101

3.2 Tiling . 102

3.2.1 Tiling the Iteration Space 102

3.2.2 Tiled Storage Mapping 103

4 Results and Discussion . 106

4.1 Single Threaded Performance 106

4.1.1 Performance of Skewed Simulations 106

4.2 Multi Threaded Performance 109

4.2.1 Performance of Multiple Simulations on the Same
Disk . 109

4.2.2 Parallelization Overhead 110

4.2.3 Performance of Skewed and Tiled Simulations . . . 111

5 Applications . 112

xv

5.1 The Divergence-Free Advection Test 112

5.2 Mean Curvature Flow of Surfaces 112

6 Conclusion and Future Work . 116

A Data Locality Analysis . 116

A.1 Forward Euler . 117

A.2 BFECC and TVD RK . 119

II Guiding of Smoke Animations Through Variational Coupling of Sim-
ulations at Different Resolutions 125

1 Introduction . 126

2 Related Work . 127

3 Algorithm Overview . 128

4 Variational Model of Guiding . 129

4.1 Preliminaries . 129

4.2 Guiding Equations . 130

4.3 The Discretization of the Guiding Equations 132

5 Boundaries . 133

5.1 The Penalization Method . 133

6 Filter Estimation, Upsampling and Downsampling 135

7 Multigrid Solver . 136

8 Results and Discussion . 137

9 Conclusion . 141

III Improved Variational Guiding of Smoke Animations 143

1 Introduction . 144

2 Related Work . 146

3 Guiding . 147

4 Implementation . 149

5 Time-Dependent Guiding Effects and Results 149

5.1 Time-Dependent Guiding with Smoke Density 150

5.1.1 Combining with Erosion of Densities 150

5.1.2 Combining with an Error Estimate 152

5.2 Time-Dependent Guiding with Curves 152

5.3 Discussion and Limitations 153

xvi

6 Conclusion . 153

A Full Derivation of the Guiding Equations 154

Bibliography 157

xvii

CHAPTER 1

INTRODUCTION

The main topic of this dissertation concerns level set and fluid simulations for com-
puter graphics. A method is proposed for efficiently performing computations on high-
resolution level sets that do not fit in main memory. In brief, the research presented
transforms the level set algorithms to require only a single pass over the data. Also, a
novel approach to controlling high-resolution fluid simulations based on coarse proto-
types is proposed and explored.

In recent years, we have seen an enormous escalation in the amount and sheer
scope of computerized special effects employed in major feature films. We are rapidly
approaching the point, where entire films are rendered and animated using comput-
ers without compromising the visual realism, as is showcased in recent epic efforts
such as “300” and “Avatar ”. The successful application of computers to achieve an
unprecedented amount of realism in these and other projects, is in large due to the
advances of computational techniques for doing physically based modeling and ani-
mation. Especially since films such as “The Day After Tomorrow” paved the way for
spectacular fluid animations, we have seen how far the combined talents of researchers,
developers and artists can go. It should be stressed, that while the results achievable
with the help of these methods often appear physically plausible, they are not merely
visualizations of actual physical simulations. The techniques strive for realistic and
directable appearance rather than physically accurate behavior, and they do so through
approximations of the underlying complex physics. This typically leads to improved
computational complexity while at the same time retaining the objective — to render
the appearance of reality rather than faithfully simulating it. This also means that spe-
cialized methods have been and are continually being developed, and there are still
many challenging problems which must be solved before physically based methods
and fluid simulations in particular can reach their full potential. One particular chal-
lenge is that some techniques only work in laboratory settings while others are too hard
to control in order to achieve a desired artistic vision. Another avenue which requires
even more efficiency and poses stricter constraints on time- and memory-requirements
is the rapidly evolving gaming industry. It continues to challenge contemporary tech-
niques as the demand for more realistic games becomes ubiquitous, and in many cases

1

2 Chapter 1 Introduction

Figure 1.1 Screenshots of level set and fluid simulations utilized in major film productions.
Top: The Sandman in “Spider-Man 3”. c©Columbia Pictures. Bottom left: Chaotic stream in
“Ratatouille”. c©Pixar Animation Studios. Bottom right: The giant maelstrom in “Pirates of
the Caribbean 3”. c©Walt Disney Pictures.

entirely new mathematical and algorithmic approaches to the problems posed have to
be taken.

The level set method, which was originally developed for capturing the propaga-
tion of curvature-driven fronts in computational physics [95], is an important example
of how well-established techniques from other sciences have found applications in
computer graphics and similar areas. Technically speaking, level sets are dynamic im-
plicit surfaces coupled with partial differential equations that govern their movement.
These partial differential equations are referred to as the level set equations. Level
sets are in many ways ideal for physically based simulations of dynamic surfaces such
as free surface fluids, since they handle both topological and geometrical changes in
a relatively simple way compared to traditional triangle-based representations. An-
other important example is the adaptation of Computational Fluid Dynamics (CFD)
to produce the movement of natural phenomena such as water, smoke and fire. These
methods are often coupled with level sets where they produce the velocity field which
drives the level set that represents e.g. the water surface [30, 88].

Figure 1.1 shows various applications of level sets and fluid dynamics in recent
film productions. In “Spider-Man 3” level sets were used extensively to portray the
Sandman as shown in the top row. This included complex erosions of surfaces, ge-
ometry blending, and efficient collision detection with millions of particles [3, 103],
which alone demonstrates the versatility of level sets. The bottom row of figure 1.1
highlights two important aspects of fluid simulations in production, both of which are
problematic with respect to using physical models. Firstly, the level of detail is very
high. Splashes, foam and mist are small-scale features, even in a relatively confined
simulation domain such as the one used in the leftmost scene from “Ratatouille”. Of-
ten these features are added manually during post-processing by an army of talented
artists using the result of the underlying simulation strictly as a coarse basis. This is
done simply because the simulation cannot be run at a resolution that is high enough to

3

capture the desired details. When the scope is as grand as in the rightmost scene from
“Pirates of the Caribbean 3”, the amount of post-processing work needed is only fur-
ther increased. In the original level set method [95], a level set surface, or interface, is
in fact embedded in a volume which is sampled on a dense, uniform three-dimensional
grid. Both storage and computational requirements scale as N3 in three dimensions,
where N is the number of grid points in each dimension of the grid. This is the rea-
son for the limitations of the physical simulation, since this complexity imposes a strict
barrier on the feasibility of the simulations in terms of both memory and computational
requirements. Preferably, the requirements should scale with the area of the surface
itself. Most productions solve the computational resource aspect by applying narrow
band methods [101] which only solve the level set equations near the surface instead
of treating the entire grid. The entire grid is still represented, though. The memory
aspect has also received a lot of attention with sparse approaches such as octrees, but
there has always been an incessant trade-off between efficient storage and fast compu-
tational times [11, 72]. Recently, the work of Nielsen and Museth [90] has remedied
both aspects of the problem by introducing the DT-Grid sparse data structure with ac-
companying algorithms, which both scales with the size of the interface rather than the
enclosing grid and allows fast sequential access. I have leveraged on this work in some
of the research presented in this dissertation, as will be explained in section 1.3.

The second important aspect of production-scale fluid simulations is control. Cur-
rently, it is very hard to control and modify animations produced from physical mod-
els to obtain a desired behavior or appearance of the fluid. The problem is twofold:
Firstly, these models employ numerous non-intuitive parameters that often require trial
and error, and secondly, they are very sensitive to the actual resolution of the simula-
tions. This leads to a frustrating situation where an animator will explore the parameter
space at a low resolution to maintain fast turnaround times but then realizes that the
appearance of the animation changes completely as the resolution is increased to add
more details. Concrete examples of this nuisance were encountered in the production
of “Ratatouille”:

We did a coarse low-resolution simulation of the entire length of the rapids
for several hundred frames of animation time, and the layout depart-
ment selected camera angles and animated camera moves based on that
[simulation]. [. . .] the intent was to simply increase the detail and qual-
ity of the simulation, while reproducing the overall motion of the coarse
simulation. In practice this proved to be impossible.

— Eric Froemling, Tolga Goktekin and Darwyn Peachey [36]

The artists were instead forced to “cheat” by inserting invisible obstacles to direct the
fluid’s overall motion and change the timing. Moreover, often the animator does not
want the physically correct solution or behavior, but would rather obtain a certain look
or characteristic. In the flooding of New York in “The Day After Tomorrow”, cum-
bersome modifications were employed in a repetitive, trial-and-error fashion in order
to prevent a certain building from being flooded. In “300” there is another example
of a gigantic simulation of a raving sea, where a very specific look from the comic,

4 Chapter 1 Introduction

Boundary
Surface

Representation

Volumetric
Surface

Representation

Repair and
Scan Conversion

Distance
Computation

Level Set
Representation

Application

Level Set Method

Deformation

Reinitialisation

Reconstruction

Rendering

Boundary
Surface

Representation

Rendering

Figure 1.2 The typical level set pipeline. Part of the contributions of this dissertation fall into
the area highlighted in green.

on which the film is based, had to be adhered to. A final example of a fluid simula-
tion required to behave in a completely non-physical manner is the tar monster from
“Scooby Doo 2: Monsters Unleashed” [133]. Here, the fluid simulation is coupled to
an animated character to create a living, breathing blob of tar.

Altogether the issues identified above impose limitations on the scale and amount
of detail achievable with existing methods. This is a problem since there is a clear
ongoing trend in scientific computing, computer vision, computer graphics and visual
effects of increasing simulation resolutions. For the engineering fields an improved
numerical accuracy is desired whereas the graphics researchers and artists desire an
improved visual accuracy. The epic scales and enormous amount of details present in
today’s fluid simulations for film productions must be topped by the next generation,
while the deadlines and schedules stay the same. While more efficient algorithms
and hardware will get us some of the way, facilitating more efficient workflows could
be another way of making large simulations more feasible within visual effects. The
contributions of this dissertation present and explore new methods for controlling fluid
simulations in order to improve the workflow of a visual effects artist.

As mentioned, higher resolutions are also in high demand in scientific comput-
ing. Within this field, the time limits are often less strict, and researchers can afford
to spend a long time on running e.g. level set simulations at high resolution. When
these simulations become too big to fit in main memory even when using sparse data
structures, special algorithms are required to deal with reading and writing the data to
disk. The contributions of this dissertation address this need by developing an efficient
framework for streaming level set computations to and from disk.

1.1 LEVEL SET PIPELINE

Above we have highlighted some of the applications as well as some of the limitations
of physically based animation, in particular for level sets and fluids. Before we pro-
ceed to describe our work and contributions, we will provide a brief overview of the
typical level set pipeline to give the reader an intuitive understanding of the workflow
associated with using this representation, see figure 1.2. One contribution of this dis-
sertation falls into the area highlighted in green in the figure: The level set method.
This area includes the algorithms that perform the dynamic deformation of the level
set surface, and we will return to them shortly. At the leftmost part of figure 1.2, we

1.2 Fluid Simulation Pipeline 5

see the most common surface representations in which almost all models and data are
represented. The boundary surface representation, also known as an explicit surface
representation, is the prevalent surface representation within computer graphics and is
what most artists use to store three-dimensional models. It typically takes the form
of triangular meshes, NURBS or subdivision surfaces. Volumetric surface represen-
tations are becoming quite common as medical and clinical research has started to
make use of models produced from CT or MRI scans. The level set representation —
the data structure used when performing level set deformations — is typically a dense
uniform grid (combined with a narrow band data structure), an octree grid or a sparse
non-tree based data structure (such as the DT-Grid by Nielsen and Museth [90]). The
level set surface is traditionally embedded in a volumetric signed distance function
since it offers numerical robustness. Very briefly, the signed distance function repre-
sents a surface by storing at each point the shortest distance to the surface, multiplied
by −1 if the point is inside the surface. Level sets are closed, non-self-intersecting
surfaces, while the models created by artists usually contain holes and overlapping tri-
angles. This means that level sets are always physically plausible whereas boundary
representations are not. Therefore these models often need to be repaired before they
can be scan converted to a signed distance field. Likewise, volumetric data must also
be converted to a signed distance field in order to be amenable for level set simulation.

Once the model is represented as a signed distance field, an application, such as
a fluid simulation or a shape metamorphosis, can utilize the level set representation
to deform the surface by means of the level set method. The method consists of two
logically separate parts. The deformation module advects or propagates the level set,
e.g. through an externally given velocity field or depending on differential properties
of the surface itself, while the reinitialization module reinitializes the deformed level
set representation to restore its signed distance field property. Depending on the rep-
resentation employed, other steps might be required. If a narrow band method is used,
for example, the narrow band data structure which follows the dynamic surface must
be rebuilt as the level set deforms (more on this in chapter 3). The resulting surface
of the level set simulation can either be rendered directly using a ray tracer [111], or
converted back to a boundary surface representation using a standard reconstruction
method such as the marching cubes algorithm [71]. It could also be used as the input
to another application, such as a fluid simulation.

1.2 FLUID SIMULATION PIPELINE

Faithfully reproducing fluid phenomena for visual effects is a challenging computa-
tional task with several, often conflicting goals such as producing a visually satisfying,
highly detailed result while retaining a controllable expression. In order to appreci-
ate how hard this can be, we will also briefly give an overview of the typical fluid
simulation pipeline. Figure 1.3 shows a basic view of the typical pipeline for simulat-
ing smoke and water. This particular pipeline utilizes a numerical scheme for solving
the incompressible Navier-Stokes equations which is referred to as the Stable Fluids
solver [114]. We will explain the equations in detail — including how they govern the
motion of fluids — in chapter 5, and for now give an overview of how they are solved

6 Chapter 1 Introduction

Stable Fluids Solver

Self-advection Body Forces Pressure
Projection

Velocity Field

Smoke

Smoke Density
Field Advection Sources

Water

Level Set
Surface Level Set Method Sources

RenderingIteration
Result

Figure 1.3 The typical fluid simulation pipeline. The same numerical solver is typically used
at the heart of both smoke and water simulations. Essentially this entire figure could be fitted
within the application box of figure 1.2 as level sets are typically used for representing solid
boundaries and water surfaces. Part of the contributions of this dissertation fall into the area
highlighted in green.

in practice.

We are simulating the motion of the fluid, which at any given time is represented
by a velocity field, and the task is thus to integrate this field over time. The Stable
Fluids solver consists of three modules that are applied in succession to perform this
integration: A self-advection module advects the velocity field through itself. Next,
body forces, i.e. forces that are applied in the entire fluid, accelerate the velocity field.
Examples of body forces are gravity and buoyancy. After these two modules have been
applied the velocity field will likely be diverging or compressible, i.e. the volume of
the fluid is changing, and a pressure projection module is needed to ensure that the ve-
locity field becomes incompressible again. This is a very important step as simulating
compressible fluids is very expensive and often unnecessary since the compressibility
of most fluids of interest in computer graphics is negligible1 [12]. There is some-
times an extra step involved in the Stable Fluids solver called diffusion. It is usually
placed just before the pressure projection module. It is required to simulate viscous
fluids such as honey or when simulating very small-scale fluid flows. However, many
fluids we are interested in animating in computer graphics, such as water or air, are
largely unaffected by viscosity. Such fluids are called inviscid. We will see in chapter
2 that any numerical method actually introduces some amount of numerical viscosity
or numerical dissipation which can dampen the liveliness of a simulation [12].

However, just having an evolving velocity field will not give us any visible behav-
ior. As indicated by the top and bottom rows of figure 1.3, the pipeline for simulating
smoke and water are usually slightly different. For smoke, we can advect soot parti-
cle densities (i.e. smoke densities) sampled on a grid through the velocity field from
the Stable Fluids solver. New smoke is added at sources. Note that other quantities,

1One example of an exception is explosions which cause shock waves that compress the fluid. How-
ever, from a visual viewpoint, they are nearly invisible and move extremely fast, and most audiences have
no idea how they behave. Therefore it seems like a better idea artistically to create something that works
visually rather than attempting to simulate them accurately.

1.3 Contributions 7

such as air temperature, can be integrated in the exact same manner. Also, note that
the various quantities can be used as input to compute for instance body forces in the
Stable Fluids solver, such as buoyancy resulting from temperature changes. This is
indicated with the arrow from the iteration result back to the Stable Fluids solver. For
water, a level set is typically used to represent and visualize the water surface. It is also
used to define a boundary condition on the Stable Fluids solver since we only integrate
velocities inside the water. The level set method is utilized to advect the surface using
the velocity field. The advected surface is then fed back into the Stable Fluids solver
in order to update the boundary conditions.

1.3 CONTRIBUTIONS

The overall goal for this dissertation has been to improve the management of large
computations within scientific computing, computer graphics and physically based
animation. I have approached this through a couple of focus points which can be
formulated as the following research objectives:

• To improve the feasibility of using level sets at high resolutions in computer
graphics and scientific computing applications.

• To improve artistic control and efficiency in the typical workflow surrounding
fluid simulations in visual effects.

I have been a major contributor to the design and implementation of algorithms and
models within both research projects (as documented by the co-author statements) ,
and I have enjoyed constructive and helpful discussions with my co-authors. Therefore
I will be using the pronouns we and our when referring to the work presented in this
dissertation. Below follows an overview of the contributions of the entire dissertation,
divided into two distinct categories corresponding to the research objectives.

OUT-OF-CORE LEVEL SET STREAMING FRAMEWORK

We propose an external memory framework for efficient streaming of level set compu-
tations. External memory or out-of-core algorithms utilize external memory, such as
disks, as a way of overcoming the limited internal (in-core) physical memory during
execution. In particular, the contributions include code transformations of the level set
algorithms in order to provably maximize locality of memory references. The trans-
formations allow us to reduce the number of passes over the data during computations.
Specifically, we only have to stream data once for each iteration of the level set compu-
tation, which consists of an advection, a reinitialization and a narrow band rebuild step.
For some level set simulations, we can even combine as many iterations into one pass
as allowed by the physical memory. Our transformations include a tiling which enables
computation on each tile independently and hence in parallel. The framework is built
upon the DT-Grid data structure and the out-of-core framework of Nielsen et al. [91]
which gives us a near optimal page-replacement algorithm and prefetching strategy

8 Chapter 1 Introduction

in the context of sequentially accessing out-of-core level sets with finite differences2.
The contributions of our new framework result in computations that are CPU limited
rather than Input/Output (I/O) limited, i.e. they are not stalled by I/O operations and
the CPUs are working at full capacity. This is because each I/O operation is amortized
over more CPU cycles. Extensive benchmarks show that our new framework sustains
a throughput of 77% – 92% of an internal memory simulation independent of the res-
olution of the level set. It is also demonstrated that the throughput is sustained when
several simulations are run on the same disk, and that the parallel computations exhibit
near-optimal scaling as the number of CPU cores are increased. Figure 1.4 shows an
example of a high-resolution simulation (20483) using our out-of-core framework.

FLUID SIMULATION CONTROL FRAMEWORK

We present a framework for controlling high-resolution fluid simulations using low-
resolution prototype simulations. The central idea is to support the typical workflow of
a visual effects artist in which a coarse prototype simulation is used for tuning param-
eters and simulation setup. When the coarse setup gives satisfactory results, additional
details are added by increasing the simulation resolution. However, in many cases in-
creasing the resolution completely changes the behavior of the simulation in addition
to adding the desired high-frequency detail. Our framework couples the velocity field
of a prototype to the low-frequency flow (i.e. the low frequencies of the high-resolution
velocity field) of a high-resolution simulation. We say that the low-resolution simu-
lation is guiding the high-resolution simulation. The assumption is that this ensures
an overall correspondence in the bulk movement of the high-resolution flow while al-
lowing new, dynamic high-frequency details to develop. Our main contributions are
two mathematical models for expressing this coupling based on calculus of variations
(see [63] for a good introduction). The models result in a modified pressure projec-
tion step while the rest of the fluid simulation pipeline remains unchanged. We have
implemented a customized memory-efficient, parallel multigrid solver in order to be
able to solve the resulting linear systems efficiently. We demonstrate the framework
by coupling several smoke simulations and exploring various artistic effects obtainable
by adjusting where and how tight the guiding should be. Figure 1.5 shows the results
obtainable by using our fluid control framework. Notice the high correspondence be-
tween the coarse, low-resolution prototype at the top and the high-resolution result at
the bottom.

1.4 OUTLINE

This dissertation consists of two parts: Part I: Overview which provides a coherent
presentation of the research done in this PhD project as well as the background material
needed to appreciate the methods employed. Part II: Papers collects the publications
that form the result of our work. As such, part II constitutes the more technical portion

2A finite difference is a robust numerical method for approximating derivatives. An elaborate expla-
nation will be given in chapter 2.

1.4 Outline 9

of this dissertation, while part I serves as a comprehensive introduction to the material
presented in the papers. The content of the individual chapters and papers is as follows.

Part I: Chapter 2 introduces implicit surfaces as well as the basic level set theory, in-
cluding the original level set method. It also presents a number of numerical schemes
for solving the level set equations. Chapter 3 provides an overview of previous and
concurrent extensions and improvements to the level set method relevant for the work
in this dissertation. Next, chapter 4 describes our out-of-core framework for streaming
computations on high-resolution level sets, and it supplements paper I by more thor-
oughly introducing memory hierarchies and code transformations as well as providing
further evaluations.

Having described the first major contribution of this dissertation in chapter 4 and
paper I, chapter 5 changes focus and motivates fluid simulations in the context of
computer graphics and visual effects. It furthermore introduces a basic method for
simulating incompressible fluids by solving the Navier-Stokes equations numerically.
Subsequently, chapter 6 gives an overview of previous and contemporary improve-
ments to this basic numerical method. Chapter 7 then motivates the need for methods
for controlling fluid simulations. It briefly introduces calculus of variations and ex-
plains how it can be used in the context of fluid simulations. A discussion of a number
of other control methodologies that complement and can be used in conjunction with
our control framework presented in papers II and III is also provided. In addition, it
presents further implementation details of the framework which will form part of an
upcoming journal paper.

Finally, chapter 8 discusses future work and concludes the dissertation.

Part II: Paper I is a journal paper which describes the out-of-core framework for
streaming computations on level sets of high resolution. It provides code transforma-
tions for the level set algorithms, such as advection, reinitialization and rebuilding of
the narrow band, which allows us to combine several passes over the data into one. It
also introduces the Tiled DT-Grid data structure which allows for simultaneous com-
putations on separate tiles. Furthermore, we show that the transformations maximize
data locality. We demonstrate that these transformations result in parallelizable, CPU
limited algorithms that retain a steady throughput independent of disk latency.

In paper II we present the first iteration of our fluid control framework. We de-
velop a mathematical model based on calculus of variations for ensuring correspon-
dence between a low-resolution prototype simulation and the low-frequency flow of
a high-resolution simulation. Guiding weights are introduced to specify the strength
of this coupling. We implement a customized, parallel multigrid solver for the result-
ing system of linear equations and derive a discretization of the penalization method
for handling boundary conditions. Finally, it is demonstrated that the method can be
used to couple high-resolution simulations to velocity fields obtained through physical
simulation as well as artistically created velocity fields.

Paper III improves upon and somewhat subsumes the work in paper II. In it the
mathematical model is improved by leaving the high-frequency components of the

10 Chapter 1 Introduction

high-resolution simulation completely out of the coupling with the low-resolution pro-
totype simulation. This results in a model where the matrix does not have to be recom-
puted for each iteration when the guiding weights change over time and effectively
makes time-dependent guiding weights feasible. We demonstrate that time-dependent
guiding allows for more high-frequency detail to develop, and we explore various cri-
teria for choosing the guiding weights.

Figure 1.4 Level set advection of eight spheres in a divergence-free and periodically symmet-
ric velocity field. The resolution is 20483. Due to the properties of the velocity field, the eight
spheres should return to their original shape after one period. This is illustrated in the bottom
row of pictures. The deformation results in very thin features which require a high resolution
in order to be resolved properly. If the resolution is not high enough the spheres will not return
to their original shapes.

Figure 1.5 Top: Smoke simulation prototype in which hot smoke is injected into the air
and glides over the column. The prototype represents the desired result but is too coarse and
lacking appropriate details. Bottom: High-resolution simulation which has been coupled with
the prototype to ensure resemblance while at the same time adding dynamic high-frequency
detail. Insert: Illustrates a normal, uncoupled high-resolution simulation which clearly does
not correspond very well with the prototype since the column is enveloped in smoke.

PART I

OVERVIEW

13

CHAPTER 2

LEVEL SET METHODS

In our everyday life we constantly interact with complex and beautiful surfaces and de-
formations. One of the best examples is our interaction with water which is so natural
to us that we hardly ever acknowledge or treasure the intricate ways in which it merges,
forms and breaks up. It is to a large degree the ambition of computer graphics to sim-
ulate and reproduce the appearance and dynamic behavior of phenomena in the world
around us. Simulation is particularly useful when the effect of a certain phenomenon
is not easily obtainable through the skills of an artist or animator. In order to lift this
task, computer graphics unites several different scientific disciplines. For instance, in
order to arrive at computational techniques capable of reproducing a realistic behavior
of water, one needs to resolve to theory and practice from the disciplines of mathemat-
ics and physics. Many ideas are also retooled from fields such as engineering. A level
set is a mathematical construction which captures a dynamic implicit surface that pos-
sesses the properties required to represent complex surface deformations such as those
water undergoes. The adjective dynamic refers to the ability of the surface to change
over time, while implicit refers to how the surface is represented. The level set method
was introduced by Osher and Sethian [95] in 1988 as a method for tracking interfaces
(i.e. surfaces) in computational physics. Since then considerable efforts have been and
still are put into the development of more accurate and robust numerical methods for
solving the accompanying equations which govern the dynamic behavior of a level
set. Level sets have also found use as a popular surface representation in several other
problem areas spanning multiple fields. In computer graphics and vision in particular
these areas include (but are certainly not limited to) fluid simulations of water and fire
[24, 30, 88], collision detection in particle simulations [3, 103], geometric modeling
[83], shape metamorphosis [10], and segmentation of volumetric data sets [64, 131].
Examples of the applications mentioned above can be found in figures 2.1 and 2.2.
Further examples of level set applications in image processing, computer vision, and
computational physics can be found in the book by Osher and Paragios [94] to which
we refer the interested reader.

Level sets provide a number of unique advantages compared to many other surface
representations. A level set cannot self-intersect, i.e. the surface cannot cross over it-

15

16 Chapter 2 Level Set Methods

Figure 7: Water being poured into a clear, cylindrical glass (55x55x120 grid cells). Our method makes possible the fine detail seen in
the turbulent mixing of the water and air.

Figure 8: View of wave breaking on a submerged shelf (540x75x120 grid cells). Note the ability to properly model the initial breaking
(top two frames) and secondary splash up (bottom two frames) phases. Rendered by proprietary software at ILM.

Figure 4: Blue reaction zone cores for large (left) and small
(right) values of the flame reaction speed S. Note the increased
turbulence on the right.

where v f is the speed the fuel is injected across the injection sur-
face with area Af , e.g. Af is the cross section of the cylindrical tube.
This equation results from canceling out the density in the equation
for conservation of mass. The left hand side is the fuel being in-
jected into the region bounded by the implicit surface, and the right
hand side is the fuel leaving this region crossing over the implicit
surface as it turns into gaseous products. From this equation, we see
that injecting more (less) gas is equivalent to increasing (decreas-
ing) v f resulting in a larger (smaller) blue core. Similarly, increas-
ing (decreasing) the reaction speed S results in a smaller (larger)
blue core. While we can turn the velocity up or down on our cylin-
drical jet, the reaction speed S is a property of the fuel. For example,
S is approximately .44m/s for a propane fuel that has been suitably
premixed with oxidizer [Turns 1996]. (We use S = .5m/s for most
of our examples.) Figure 4 shows the effect of varying the param-
eter S. The smaller value of S gives a blue core with more surface
area as shown in the figure.

This thin flame approximation is fairly accurate for premixed
flames where the fuel and oxidizer are premixed so that the injected
gas is ready for combustion. Non-premixed flames, commonly re-
ferred to as diffusion flames, behave somewhat differently. In a
diffusion flame, the injected fuel has to mix with a surrounding ox-
idizer before it can combust. Figure 5 shows the injection of fuel
out of a cylindrically shaped pipe. The cone shaped curve is the
predicted location of the blue core for a premixed flame while the
larger rounded curve is the predicted location of the blue core for
a diffusion flame. As can be seen in the figure, diffusion flames
tend to have larger cores since it takes a while for the injected fuel
and surrounding oxidizer to mix. This small-scale molecular diffu-
sion process is governed by a second order partial differential equa-
tion that is computationally costly model. Thus for visual purposes,
we model diffusion flames with larger blue cores simply by using
a smaller value of S than that used for a corresponding premixed
flame.

Figure 5: Location of the blue reaction zone core for a premixed
flame versus a diffusion (non-premixed) flame

Figure 6: Streamlines illustrating the path of individual fluid
elements as they across the blue reaction zone core. The curved
path is caused by the expansion of the gas as it reacts.

3.2 Hot Gaseous Products

In order to get the proper visual look for our flames, it is important
to track individual elements of the flow and follow them through
their temperature histories given by figure 2. This is particularly dif-
ficult because the gas expands as it undergoes reaction from fuel to
hot gaseous products. This expansion is important to model since it
changes the trajectories of the gas and the subsequent look and feel
of the flame as individual elements go through their temperature
profile. Figure 3.2 shows some sample trajectories of individual el-
ements as they cross over the reaction front. Note that individual
elements do not go straight up as they pass through the reaction
front, but instead turn outward due to the effects of expansion. It
is difficult to obtain visually full turbulent flames without modeling
this expansion effect. In fact, many practitioners resort to a num-
ber of low level hacks (and lots of random numbers) in an attempt
to sculpt this behavior, while we obtain the behavior intrinsically
by using the appropriate model. The expansion parameter is usu-
ally given as a ratio of densities, ρ f /ρh where ρ f is the density of
the gaseous fuel and ρh is the density of the hot gaseous products.
Figure 7 shows three flames side by side with increasing amounts
of expansion from left to right. Note how increasing the expansion
makes the flames appear fuller. We used ρ f = 1kg/m3 (about the

density of air) for all three flames with ρh = .2kg/m3, .1kg/m3 and
.05kg/m3 from left to right.
We use one set of incompressible flow equations to model the

fuel and a separate set of incompressible flow equations to model
the hot gaseous products and surrounding airflow. We require a
model for coupling these two sets of incompressible flow equations
together across the interface in a manner that models the expansion
that takes place across the reaction front. Given that mass and mo-
mentum are conserved we can derive the following equations for
the coupling across the thin flame front:

ρh(Vh−D) = ρ f (Vf −D), (2)

ρh(Vh−D)2+ ph = ρ f (Vf −D)2+ p f , (3)

Figure 7: Comparison of flame shapes for differing degrees of
gaseous expansion. The amount of expansion increases from
left to right making the flame appear fuller and more turbulent.

Figure 4: Blue reaction zone cores for large (left) and small
(right) values of the flame reaction speed S. Note the increased
turbulence on the right.

where v f is the speed the fuel is injected across the injection sur-
face with area Af , e.g. Af is the cross section of the cylindrical tube.
This equation results from canceling out the density in the equation
for conservation of mass. The left hand side is the fuel being in-
jected into the region bounded by the implicit surface, and the right
hand side is the fuel leaving this region crossing over the implicit
surface as it turns into gaseous products. From this equation, we see
that injecting more (less) gas is equivalent to increasing (decreas-
ing) v f resulting in a larger (smaller) blue core. Similarly, increas-
ing (decreasing) the reaction speed S results in a smaller (larger)
blue core. While we can turn the velocity up or down on our cylin-
drical jet, the reaction speed S is a property of the fuel. For example,
S is approximately .44m/s for a propane fuel that has been suitably
premixed with oxidizer [Turns 1996]. (We use S = .5m/s for most
of our examples.) Figure 4 shows the effect of varying the param-
eter S. The smaller value of S gives a blue core with more surface
area as shown in the figure.

This thin flame approximation is fairly accurate for premixed
flames where the fuel and oxidizer are premixed so that the injected
gas is ready for combustion. Non-premixed flames, commonly re-
ferred to as diffusion flames, behave somewhat differently. In a
diffusion flame, the injected fuel has to mix with a surrounding ox-
idizer before it can combust. Figure 5 shows the injection of fuel
out of a cylindrically shaped pipe. The cone shaped curve is the
predicted location of the blue core for a premixed flame while the
larger rounded curve is the predicted location of the blue core for
a diffusion flame. As can be seen in the figure, diffusion flames
tend to have larger cores since it takes a while for the injected fuel
and surrounding oxidizer to mix. This small-scale molecular diffu-
sion process is governed by a second order partial differential equa-
tion that is computationally costly model. Thus for visual purposes,
we model diffusion flames with larger blue cores simply by using
a smaller value of S than that used for a corresponding premixed
flame.

Figure 5: Location of the blue reaction zone core for a premixed
flame versus a diffusion (non-premixed) flame

Figure 6: Streamlines illustrating the path of individual fluid
elements as they across the blue reaction zone core. The curved
path is caused by the expansion of the gas as it reacts.

3.2 Hot Gaseous Products

In order to get the proper visual look for our flames, it is important
to track individual elements of the flow and follow them through
their temperature histories given by figure 2. This is particularly dif-
ficult because the gas expands as it undergoes reaction from fuel to
hot gaseous products. This expansion is important to model since it
changes the trajectories of the gas and the subsequent look and feel
of the flame as individual elements go through their temperature
profile. Figure 3.2 shows some sample trajectories of individual el-
ements as they cross over the reaction front. Note that individual
elements do not go straight up as they pass through the reaction
front, but instead turn outward due to the effects of expansion. It
is difficult to obtain visually full turbulent flames without modeling
this expansion effect. In fact, many practitioners resort to a num-
ber of low level hacks (and lots of random numbers) in an attempt
to sculpt this behavior, while we obtain the behavior intrinsically
by using the appropriate model. The expansion parameter is usu-
ally given as a ratio of densities, ρ f /ρh where ρ f is the density of
the gaseous fuel and ρh is the density of the hot gaseous products.
Figure 7 shows three flames side by side with increasing amounts
of expansion from left to right. Note how increasing the expansion
makes the flames appear fuller. We used ρ f = 1kg/m3 (about the

density of air) for all three flames with ρh = .2kg/m3, .1kg/m3 and
.05kg/m3 from left to right.
We use one set of incompressible flow equations to model the

fuel and a separate set of incompressible flow equations to model
the hot gaseous products and surrounding airflow. We require a
model for coupling these two sets of incompressible flow equations
together across the interface in a manner that models the expansion
that takes place across the reaction front. Given that mass and mo-
mentum are conserved we can derive the following equations for
the coupling across the thin flame front:

ρh(Vh−D) = ρ f (Vf −D), (2)

ρh(Vh−D)2+ ph = ρ f (Vf −D)2+ p f , (3)

Figure 7: Comparison of flame shapes for differing degrees of
gaseous expansion. The amount of expansion increases from
left to right making the flame appear fuller and more turbulent.Figure 2.1 Top: Even a mundane act such as pouring a glass of water results in a highly

complex and detailed behavior. The water surface is represented by a level set. Reprinted from
[24]. Bottom: A physically based simulation of fire. The blue core of the flames is represented
using a level set. Reprinted from [88].

self. As we will see in the next section, this is a simple consequence of the definition of
level sets. Furthermore, complex topological changes are handled automatically by the
underlying mathematics. These properties are not shared by explicit representations,
such as triangle meshes, which are the most widely used surface representation within
computer graphics today. Finally, the numerical schemes for the dynamics of level sets
are in many ways relatively simple to employ. These unique features are all utilized
by the applications mentioned above. For example, fluid surfaces such as water often
undergo complex topological and geometrical changes as they merge and pinch off in
elaborate ways. These changes are handled automatically by employing level sets as
the underlying surface representation [30] (see figure 2.1). In shape metamorphosis,
topological changes are handled gracefully as well when utilizing level sets (see figure
2.2). When doing geometric modeling with traditional surface representations, such as
triangle meshes, one often ends up with self-intersecting geometry due to the inherent
properties of the common work flows. If the final models are to be used for physically
based simulation or physical prototyping this is undesirable. Level sets can be used in
the modeling process to avoid this issue. Also, various surface editing operators that
are difficult to perform with triangle meshes can be easily utilized with level sets [83].
These surface editing operators can be used to repair digital models scanned from real
world geometry. Using physical models when creating for instance characters is a very
popular technique in many feature film productions, and therefore the ability to repair
the scanned geometry is very useful.

The dynamic nature of the level set rests on a solid and rather advanced mathe-
matical and numerical framework which elegantly generalizes to any dimension. We
are, however, first and foremost concerned with computer graphics and thus mostly
work in three dimensions. Therefore in this and the following chapters we will restrict
ourselves to descriptions in three dimensions and further reduce to one or two dimen-

2.1 Implicit Surfaces 17

Figure 2.2 An example of shape metamorphosis in which a beer mug morphs into a four-
link chain. The level set gracefully handles topological changes during the metamorphosis.
Reprinted from [10].

sions when it serves the exposition. This chapter will focus on describing the basics of
the level set method while the next chapter will look at extensions and improvements
leading up to some of the contributions presented in this dissertation. In the next sec-
tion we will briefly describe the ideas behind implicit surfaces and contrast them to the
explicit surface representation. We will then discuss the theory behind the dynamics
of the level set method and look closer at the equations which govern the movement.
Finally, we describe the numerical schemes which implement the level set theory on a
computer.

2.1 IMPLICIT SURFACES

Implicit surfaces and their properties are generally well understood mathematically,
and they come in many distinct forms within computer graphics, each associated with
its own theory and unique properties. An explicit surface representation explicitly
specifies the points on the surface. Expressed mathematically, an explicit surface rep-
resentation provides a map between a parameter space and the points on the surface.
Within computer graphics, there are several examples of explicit surfaces. They are
typically sampled (i.e. discrete) representations in the sense that they specify a finite
number of points possibly along with information on connectivity and how to interpo-
late the surface between them. Triangle meshes, point-based representations, NURBS,
and subdivision surfaces are all examples of such explicit surface representations.

An implicit surface representation instead specifies a surface as the isocontour of
a scalar function. Mathematically, given a scalar embedding function φ : R3 → R,
an implicit surface is represented as the preimage, φ−1(k), of some scalar k. In other
words, the surface consists of the set of points x in R3 for which φ(x) = k. Usually, and
without loss of generality, we restrict ourselves to look at the zero isocontour where
k = 0. Since a two-dimensional surface is defined by a three-dimensional embedding
function, we say that the implicit surface has co-dimension one.

Spheres and circles are shapes which are easily described implicitly. A circle of
radius r is for example given by the expression φ(x,y) =

√
x2 + y2− r = 0. The left

side of figure 2.3 shows this example, while an explicit representation of the same cir-
cle is given to the right. Note how an implicit surface representation does not directly

18 Chapter 2 Level Set Methods

Figure 2.3 Left: Circle implicitly represented as the zero isocontour of the embedding func-
tion φ(x,y) =

√
x2 + y2− r. The color has been clamped in order to get a noticeable color

gradient near the interface. Right: Circle explicitly represented as (cos(θ),sin(θ)) with
θ ∈ [0;2π).

specify the points on the surface. Instead it allows you to query whether or not a given
point lies on the surface. Up front, this may seem to make implicit representations in-
ferior to explicit ones, and there are some applications within computer graphics where
this is indeed the truth. As we will see in a moment, however, very powerful tools are
readily available when using the implicit representation.

The level set method only deals with closed implicit surfaces. This means that the
surface must partition R3 into clearly defined interior and exterior regions, denoted Ω−

and Ω+, respectively. We will assume for the rest of this dissertation that the implicit
surface is given by the zero isocontour, and that the embedding function maps points in
the interior region to negative values, while points in the exterior region are assigned
positive values. This sign convention can be seen to the left in figure 2.3 where the
blue color is associated with the interior region of negative values while the exterior
region of positive values is shown in white.

At this point, we are able to point out two important advantages of level sets which
follow from the above properties. Firstly, for a given point in space we can determine
whether it is inside or outside the surface simply by evaluating the embedding function
at that point and looking at the sign. For explicit representations, such as meshes, this
kind of query is more complicated [5] and the result is ambiguous if the mesh contains
holes or self-intersections. Secondly, a level set cannot contain self-intersections. This
stems from the simple fact that an implicit surface is represented by a single-valued
embedding function. Thus any point in R3 cannot both have a negative and a positive
sign at the same time. As we will see in chapter 5, this property is very important for
water simulations which require distinctly separable regions of space. Meshes on the
other hand can easily become self-intersecting when deformed over time.

Often we do not represent implicit surfaces analytically, simply because no ana-
lytical expression is available or known for a given surface. Instead the embedding

2.1 Implicit Surfaces 19

Figure 2.4 Left: Circle implicitly represented as the zero isocontour of the embedding func-
tion φ(x,y) =

√
x2 + y2 − r sampled on a dense uniform grid. The rather coarse sampling

serves to illustrate the principle of an Eulerian representation. Right: Circle explicitly repre-
sented by points connected by line segments. Again a rather coarse sampling has been used to
illustrate the principle of a Lagrangian representation.

function is sampled on a grid as shown to the left in figure 2.4. A sampling of an ex-
plicit representation is shown at the right side of the same figure. Sampling an implicit
representation on a fixed grid is referred to as an Eulerian representation because it
captures the interface rather than tracking it. Sampled explicit representations are on
the other hand often referred to as Lagrangian representations. Notice that grid points
in an Eulerian representation remain fixed during deformations. It is the changes to
the scalar values of the sampled embedding function that cause the surface to move.
In a purely Lagrangian representation it is the sample points that move throughout de-
formations. Various kinds of grids have been suggested, and the dense uniform grid of
figure 2.4 is but one of the most common. We will return to this issue in chapter 3.

Placing the implicit surface in an embedding function gives access to a powerful
differential toolbox. In particular the surface normal pointing outwards can be com-
puted directly from φ as the normalized gradient

~N =
∇φ
|∇φ | (2.1)

while the mean curvature in three dimensions is given by1

κ =
1
2

∇ ·~N (2.2)

where ∇ =
(

∂
∂x ,

∂
∂y ,

∂
∂ z

)
is a differential operator. Other quantities such as surface and

volume integrals can be computed in a similar simple manner as explained in the book
by Osher and Fedkiw [98].

1The factor of 1
2 is usually omitted in the literature. Please refer to [84] for a correct derivation.

20 Chapter 2 Level Set Methods

From a theoretical viewpoint, the embedding function is immaterial as long as it is
Lipschitz continuous. Even so, one particular class of functions has proven itself very
useful in computer graphics and level set simulations. The signed distance function as-
signs to each point in R3 the shortest distance to the surface. This distance is multiplied
by−1 for points in the interior region. The expression given previously for the implicit
representation of a circle is in fact a signed distance function. Many operations and
formulas simplify as a result of the properties of the signed distance function. Besides
being able to distinguish if a point is in the interior or exterior region using a single
lookup, we are now also given the shortest distance to the surface. Such information
can be useful when rendering using ray tracing since it enables a technique known as
ray leaping [24]. Also, when simulating for instance rigid bodies or cloth, it simplifies
collision detection and response since any point x in R3 can easily be projected unto
the closest point on the surface xs using the formula xs = x−φ(x)∇φ(x) [13, 39]. Fur-
thermore, the length of the gradient of a signed distance function is identically one, i.e.
|∇φ |= 1, except at corners or on the medial axis2 where the gradient is not defined. As
|∇φ |= 1, the formulas for the surface normal and the mean curvature, simplifies to the
gradient (~N = ∇φ) and the Laplacian (κ = 1

2 ∆φ), respectively. For explicit representa-
tions such as triangle meshes, the computation of differential properties or location of
the closest point on the surface is not as simple [5].

2.2 THE LEVEL SET METHOD IN THEORY

So far we have established how a level set is represented. Specifically, we will repre-
sent a level set implicitly using an embedding scalar function φ which we will require
to be a signed distance function. As mentioned previously, this type of function is Lip-
schitz continuous and smooth except at kinks which makes it well-suited for numerical
simulation. We will now turn our attention to the theory of the level set method [95]
which adds dynamics to implicit surfaces. In the next section we will consider how
the equations presented in the following can be discretized on a computer and briefly
describe the numerical methods developed for solving them.

2.2.1 THE LEVEL SET EQUATIONS

The dynamics of a level set are manifested in a level set equation which is to be solved
in order to make the interface move. Level set equations exist in many different vari-
ations and depending on the problem or application at hand we should pick the best
suited one. We will start by considering the most widely used form within physically
based simulations such as water simulation. In this case the motion of the surface is
given by a time-dependent velocity field ~V (x, t) : R4 → R3 which for each point in
space at a given time assigns a vector describing the velocity of the embedding func-
tion, i.e. the surface. The velocity field is obtained for each time step by solving the
Navier-Stokes equations for fluid flow. Now consider a point x lying on an implicit

2The medial axis is the set of points which are equidistant to several points on the surface, e.g. the
center of a sphere

2.2 The Level Set Method in Theory 21

surface which moves over time. The movement of the point will trace out a path
which is given by the expression x(t) = (x(t),y(t),z(t)). If we couple this expression
with the embedding function, φ , thereby adding dynamics to it, we get the following
time-dependent equation for the surface given by the zero isocontour: φ(x(t), t) = 0.
Differentiating with respect to t and using the chain rule, we obtain the equation

∂φ
∂ t

+
dx
dt
·∇φ = 0 (2.3)

We immediately see that~V can replace dx
dt . Therefore, given a time-dependent velocity

field ~V (x, t), we can solve the equation above to evolve or advect the surface forward
in time. Equation 2.3 is a partial differential equation (PDE) as it involves derivatives
with respect to several variables. Equation 2.3 is also an initial value problem. Starting
from an initial embedding function φ , which captures the interface of interest, the PDE
is solved at each time step in order to evolve the interface.

By using the relationship between the normal and the gradient of the embedding
function from equation 2.1, we can obtain another level set function directly from
equation 2.3. To do this, we split the velocity field ~V into vector components VN~N
and VT~T which are normal and tangential to the interface, respectively. VN and VT are
scalar fields which specify the speed in these two directions. We then get ~V ·∇φ =
(VN~N +VT~T) ·∇φ = VN

|∇φ |2
|∇φ | = VN |∇φ | which changes equation 2.3 into

∂φ
∂ t

+VN |∇φ |= 0 (2.4)

The tangential component disappears and only the normal component of the veloc-
ity is important for the movement of the interface. Having these two equations might
seem redundant, but they allow us to choose the formulation that is most convenient
for a given problem. As mentioned above, when deforming the surface of a water
simulation, equation 2.3 is more convenient, since the motion is described by a veloc-
ity field obtained from solving the Navier-Stokes equations. Equation 2.4 comes in
handy in the context of smoothing a noisy surface, eroding or dilating it, or perform-
ing a shape metamorphosis, since these operations are more easily expressed in terms
of their speed in the normal direction. In general, the speed in the normal direction
is called a speed function and it can depend on anything from spatial and temporal
position to geometrical and differential properties of φ . Smoothing a surface can for
instance be achieved simply by setting the speed function to VN =−κ , where κ is the
mean curvature. We have now looked at two of the most common level set equations
within computer graphics. For a number of other examples, please refer to the book
by Osher and Fedkiw [98].

2.2.2 REINITIALIZING THE SIGNED DISTANCE FUNCTION

When the embedding signed distance function is subjected to movement caused by
any of the above equations it will generally cease to be a signed distance function.
This happens because the isocontours do not all move at the same speed, causing

22 Chapter 2 Level Set Methods

them to bundle together at some points and spread apart at others. Since we want to
keep the nice advantages of using a signed distance function, we reset the embedding
function to a signed distance function after each advection operation. Note that this
operation must avoid moving the location of the interface. There are numerous ways
of doing this, but in the context of the work presented in this dissertation only two are
considered. The first method involves solving the reinitialization equation [101, 118]

∂φ
∂ t

+S(φ)(|∇φ |−1) = 0 (2.5)

where S(φ) is a sign function. A simple example of a sign function is S(φ) = sign(φ)∈
{−1,0,+1} which just takes on the sign of φ , i.e. 1 in Ω+, −1 in Ω−, and 0 on
the interface. Equation 2.5 must be solved to steady state which means that ∂φ

∂ t = 0.
This condition further implies that |∇φ |= 1 which is what signifies a signed distance
function. Notice that equation 2.5 can be viewed as propagating distance information
in the normal direction with speed S(φ).

At the risk of getting ahead of ourselves, we will briefly look at a numerical issue
raised by applying the simple sign function given above. It does not work very well
numerically as it usually does not keep the location of the interface fixed3. Instead we
will use a smeared out version originally proposed in [101]

S(φ) =
φ√

φ 2 + |∇φ |2(∆x)2
(2.6)

where ∆x is the distance between two adjacent sample points in the grid. This smeared
out sign function tends to work well in practice since it significantly reduces the ten-
dency to move the surface.

A second method for constructing a signed distance function can be derived by
considering the Eikonal equation

|∇φ |= 1 (2.7)

This equation is a non-linear PDE and it has no explicit time dependence. Therefore,
rather than being an initial value problem, it is a boundary value problem. In a bound-
ary value problem, we are given the values of the function on the boundary of the
domain and then solve the PDE to find the remaining values. In this case the boundary
is the zero isocontour, and we solve the equation in order to find the signed distance
values away from the surface. Although the Eikonal equation is not time-dependent,
it can be viewed as propagating the boundary (i.e. surface) outwards in the normal di-
rection with the unit speed function. The value obtained at each point is then just the
time of arrival of the boundary, which equals the distance to the surface due to the unit
speed propagation. The next section will describe a couple of fast methods for solving
this equation.

We have now briefly touched upon the theory of the level set method. Many is-
sues have been ignored as we have only focused on the details needed to understand
the work presented in this dissertation. Again, we encourage the interested reader to
consult the book by Osher and Fedkiw [98] for a more thorough overview.

3 The numerical problems stem from the fact that the function is not band-limited and therefore not
possible to represent accurately using any sampling.

2.3 The Level Set Method in Practice 23

2.3 THE LEVEL SET METHOD IN PRACTICE

In this section we turn our attention to how the theory from the previous section can
be discretized and solved on a computer. However, we will first briefly explain why
explicit surface representations are not always well-suited for general surface deforma-
tions based on numerical simulations. While deformations of explicit surfaces occur
all the time in computer graphics, they primarily work well with minor surface defor-
mations such as most character animations. Large deformations on the other hand may
cause the distribution of sample points on the surface to degrade dramatically. If the
distance between them becomes too great, aliasing artifacts occur, and if it becomes
too small, singularities in differential properties may appear. The latter is particularly
disastrous from a numerical simulation viewpoint. Although there are remedies for
this such as remeshing, smoothing and similar “interface surgery”, these operations are
nontrivial and nonphysical, and may therefore affect the simulation in unpredictable
and potentially undesirable ways. Level set methods do not suffer from these numeri-
cal issues since they utilize a grid of fixed sample points. As with many other Eulerian
schemes in numerical simulation, they do however inherently introduce an undesirable
smoothing of the solution known as numerical dissipation or artificial viscosity. We
will touch upon the origin and consequences of this phenomenon at the end of this
chapter.

2.3.1 FINITE DIFFERENCE APPROXIMATIONS OF DERIVATIVES

We will now turn to the discretization of differential operators on a uniform Eulerian
grid. However, before we move on, let us introduce the notation we will use. Assume
that the distance between adjacent points in the grid is given by ∆x, ∆y and ∆z in
each dimension respectively. The time step used in the simulation will be given by
∆t. The notation φ n

i jk, where i, j, k and n are integers, will then be shorthand for
φ(i∆x, j∆y,k∆z,n∆t). The temporal and/or spatial dependence may be omitted for
clarity when not relevant.

A finite difference (FD) [60] is a discrete approximation to a derivative at a given
point x based on a Taylor expansion around that point. For instance, a one-sided for-
ward FD approximation to ∂φ

∂x can be derived from the Taylor series approximation to
the point x+∆x around x : φ(x+∆x,y,z) = φ(x,y,z)+∆x ∂φ

∂x +O(∆x2). By rearranging
the terms and dividing by ∆x we obtain ∂φ

∂x = φ(x+∆x,y,z)−φ(x,y,z)
∆x +O(∆x). Ignoring the

O(∆x) term, whereby we introduce a truncation error, we obtain the one-sided for-
ward FD, φ+

x = φi+1 jk−φi jk
∆x . We say that this approximation is first order accurate since

the order of the truncation error is O(∆x). Generally speaking, an FD approximation
with a truncation error of O(∆xn) is said to be nth order accurate. Similarly, we can
derive first order accurate one-sided backward and second order accurate central ap-
proximations to ∂φ

∂x , obtaining φ−x = φi jk−φi−1 jk
∆x and φ o

x = φi+1 jk−φi−1 jk
2∆x , respectively. The

set of grid points required for the computation of an FD is referred to as the stencil.
The two-dimensional stencil for the FD approximations presented so far can be seen
to the left in figure 2.5.

24 Chapter 2 Level Set Methods

Figure 2.5 Examples of finite difference (FD) stencils. Left: The stencil for a first order one-
sided forward/backward FD or a second order central FD. Right: The stencil for a third order
HJ ENO FD or a fifth order HJ WENO FD.

Differential properties such as the surface normal and curvature can easily be ap-
proximated by similar FDs. The actual choice of approximation depends on the de-
sired accuracy and the properties of the equation we are solving. Spatial and temporal
derivatives are handled differently in practice, and therefore we shall elaborate on them
separately. We will start with the spatial derivatives.

SPATIAL DERIVATIVES

Several higher order schemes for FD approximations have been specifically devel-
oped for level sets. They strive to both represent the surface with higher accuracy
and maintain sharp corners and edges, i.e. regions with discontinuous derivatives. The
Hamilton-Jacobi Essentially Non-Oscillatory (HJ ENO) FD scheme [96] uses Newton
polynomial interpolation [60] to reconstruct φ as a polynomial which is then differenti-
ated to obtain the approximations. HJ ENO favors the smoothest possible polynomial
interpolation of φ since this minimizes overshoots in the interpolating function near
discontinuities in the derivative. This leads to better approximations near corners and
edges, since these overshoots could potentially result in oscillations and numerical er-
rors in the approximation of the derivatives. Third order accurate HJ ENO FD schemes
are common in level set simulations, but they can be constructed for any order of ac-
curacy.

The Hamilton-Jacobi Weighted ENO (HJ WENO) FD scheme [51, 52, 69] takes a
convex combination of the three possible third order accurate HJ ENO approximations
at a given point. These weights can be chosen to obtain fifth order accuracy in smooth
regions. In non-smooth regions they are set digitally (i.e. set to 0 or 1) so that we essen-
tially revert to a HJ ENO, which attempts to avoid interpolating across discontinuities
in the derivative. See the rightmost part of figure 2.5 for the stencil involved.

Both HJ ENO and HJ WENO result in significantly more complicated expressions

2.3 The Level Set Method in Practice 25

and have a higher computational cost than the first order approximations. However,
by using them, the numerical accuracy and visual quality of the level set simulation is
often greatly improved. For further details on both schemes and exact descriptions of
their implementation we refer to [98] as well as the original papers.

TEMPORAL DERIVATIVES

For the level set equations we usually employ a forward Euler time step when first
order temporal accuracy is sufficient. A forward Euler is essentially just a one-sided
forward FD approximation in time: φ n+1−φ n

∆t . If higher temporal accuracy is needed, we
turn to the Total Variation Diminishing Runge-Kutta (TVD RK) [112] schemes, which
help diminish oscillations. As an example, consider the following third order accurate
TVD RK scheme: First the current solution, φ n, is advanced two steps forward in
time using forward Euler to obtain φ n+2. A weighted average is taken to form an
approximation of φ n+ 1

2 :

φ n+ 1
2 =

3
4

φ n +
1
4

φ n+2 (2.8)

Then another forward Euler step is taken to obtain φ n+ 3
2 , followed by a final weighted

average:

φ n+1 =
1
3

φ n +
2
3

φ n+ 3
2 (2.9)

Second or higher order accurate TVD RK schemes proceed in a similar manner. Gen-
erally, attempting to improve the temporal accuracy beyond the third order does not
result in significantly better results since a spatial scheme such as HJ WENO reduces
to third order accuracy in many of the interesting areas of the surface deformation.

2.3.2 NUMERICAL STABILITY

In order to produce useful results, any numerical scheme for solving a PDE must be
convergent. That is, the approximate solution computed by the scheme must converge
to the exact solution as ∆x,∆t → 0. Convergence is in general hard to prove. For-
tunately, the Lax-Richtmyer theorem states that convergence is equivalent to stability
and consistency, and these properties are easier to prove [99]. Stability entails that
the norm of the numerical solution at any point in time must be bounded by the sum
of the norm of the numerical solution at a fixed number of earlier time steps. There-
fore, without the stability requirement, the numerical solution of a given scheme could
potentially blow up and grow uncontrollably. In the level set community, explicit nu-
merical integration schemes are typically used to solve to level set equations. In such
a scheme the approximation to φ n+1, i.e. a grid point at time t + ∆t, depends only on
values at grid points from time t and/or earlier. This class of schemes usually has a
limited stability region, which means that there is a restriction on the size of ∆t given
∆x, if a given method is to remain stable. In the following section, we will state the
required restrictions on the time step, ∆t, for each type of level set equation.

26 Chapter 2 Level Set Methods

2.3.3 SOLVING THE LEVEL SET EQUATIONS NUMERICALLY

We will now focus on the numerical solution schemes for the level set equations stated
in section 2.2. For clarity we will present the schemes in one dimension. The extension
to higher dimensions can be performed in a simple component-wise manner. As we
will see, despite the fact that equations 2.3 and 2.4 are mathematically equivalent,
they require different numerical schemes. This is because equation 2.3 is linear in the
partial derivates, while equation 2.4 is non-linear due to the term |∇φ |.

HYPERBOLIC LEVEL SET EQUATIONS

If the speed function and velocity field do not involve derivatives of the second order
or higher, equations 2.3 and 2.4 are instances of Hamilton-Jacobi equations, a spe-
cial class of hyperbolic PDEs [98]. Their solutions are constant along curves known
as characteristics. The characteristic curves compose the domain of dependence, i.e.
the part of the domain on which the exact solution in a given point depends. This
property suggests a solution method to equation 2.3 known as upwinding. The upwind
direction is the direction opposite to the direction of movement of a point on the sur-
face. Intuitively, it is the direction from which information is flowing or emanating.
Upwinding includes more grid points in the upwind direction than in the downwind
direction when computing FD approximations to the spatial derivatives. For first or-
der FD approximations this corresponds to choosing between one-sided forward or
backward differences.

Assuming that we use a forward Euler time step for the temporal derivative, we can
write up a numerical solution method for equation 2.3 based on the above observations:

φ n+1
i = φ n

i +∆t
(
max(V,0)φ−x +min(V,0)φ+

x
)

(2.10)

Note how the upwind scheme computes the derivative: If V (x) < 0 we use a forward
difference, φ+

x , and if V (x) > 0 we use a backward difference, φ−x . In both cases we
are using upwind approximations of the derivative since we are favoring grid points
from which the information is flowing. The actual computation of the derivative could
be performed using a first order one-sided FD scheme or the higher order HJ ENO or
HJ WENO schemes.

The above method is explicit, and it does indeed have a limited stability region
as mentioned in the previous section. A necessary (but not sufficient) requirement
for numerical stability is the Courant-Friedrichs-Lewy (CFL) condition [98]. For the
above equation, it states that the time step must be restricted to ∆t < ∆x

max{|V |} . In other
words, the interface is restricted to move at most one grid point per time step since
max{|V |}∆t < ∆x.

As previously mentioned, equation 2.4 is nonlinear because of the |∇φ | term. A
widely used numerical scheme for computing this term is Godunov’s scheme:

φ 2
x =

{
max

(
max(φ−x ,0)2,min(φ+

x ,0)2
)

if VN > 0
max

(
min(φ−x ,0)2,max(φ+

x ,0)2
)

if VN < 0
(2.11)

2.3 The Level Set Method in Practice 27

For three dimensions, φ 2
y and φ 2

z are computed analogously and the norm of the

gradient is computed as |∇φ | =
√

φ 2
x +φ 2

y +φ 2
z . Combining this approach with for

instance a forward Euler time step, we obtain a method for solving equation 2.4. The
CFL condition for this equation is more complicated, but it can be conservatively es-
timated by ∆t < ∆x

max{|VN |}d , where d is the dimensionality of the embedding function
[98].

Noticing the similarities between level set equation 2.4 and the reinitialization
equation (2.5), we see that Godunov’s scheme can be readily applied to the reinitializa-
tion equation also. As mentioned, the reinitialization equation must be solved to steady
state. In practice, we typically use a fixed number of iterations rather than checking
for convergence [101]. Keeping in mind that the distance information is propagated in
the normal direction with approximately unit speed, we can choose the number of iter-
ations based on how wide a band of grid points around the zero isocontour we want to
reinitialize. In the next chapter we will look at the narrow band level set method which
only solves the level set equations in a narrow band around the zero isocontour.

For the sake of clarity, we used a first order forward Euler discretization of the
temporal derivative in the above discussions. In practice, it is often necessary to use
higher order methods such as second or third order TVD RK schemes.

PARABOLIC LEVEL SET EQUATIONS

If the speed function or velocity field involves higher order partial derivatives, e.g. the
mean curvature of the surface, the level set equations become parabolic. The parabolic
equations have different mathematical, physical and numerical properties than the hy-
perbolic equations and therefore we must solve them differently. The solution at a
given point in space does not flow along characteristics. Instead information flows into
this point from all other points in space, and physically speaking, information travels
at infinite speeds throughout the domain. This means that a perturbation in any part
of space immediately influences all other points. In other words, the parabolic equa-
tion has an infinite domain of dependence. As an example, consider equation 2.4 with
VN = −bκ , where κ is the mean curvature and b > 0 is a positive scalar. This is a
parabolic equation and for b = 1 it describes a smoothing operation on the surface.
The parabolic equations have a stricter CFL condition which limits the time step to
∆t < ∆x2

2bd , where d is the dimension [98].

The velocity field ~V in equation 2.3 is typically generated through some external
computation, e.g. a water simulation, and therefore it does not depend directly on any
differential properties of the surface itself. Hence, equation 2.3 is usually a hyperbolic
equation, which we have already treated, and we will not consider it further here.

THE EIKONAL EQUATION

A widespread numerical method for solving the Eikonal equation (2.7), which is an
elliptic PDE, is the first or second order accurate Fast Marching Method (FMM) [109,

28 Chapter 2 Level Set Methods

127, 128]. The method is worst-case optimal with time complexity O(N logN), where
N is the number of grid points in the grid. The algorithm starts by tagging the grid
points on the zero isocontour, i.e. points which have at least one neighbor of differing
sign, with a label called Alive. It then tags all points adjacent to the Alive set with a
Close label. As it does so, it computes tentative distance values for these Close points
using only Alive values and inserts the points in a heap sorted by these tentative values
in an ascending order. The rest of the grid points are tagged Far. Now, the following
steps are repeated iteratively until the Close set is empty: The top of the heap, i.e.
the point with the smallest tentative distance, is removed from the heap and changes
tag to Alive. Its final value is set to its current tentative distance, and all 1-neighbors
have their tentative distances updated. Any Far-tagged 1-neighbors are changed to
Close and are inserted into the heap with their respective tentative distances. When the
algorithm terminates all points have been tagged Alive and therefore the distance at all
grid points has been computed.

The central assumption for FMM is that the solution to the Eikonal equation (2.7)
at each point only depends on points closer to the surface following the upwind char-
acteristics. The ordering employed by FMM ensures that only these grid points con-
tribute to the computation of the distance at a given point.

Recently, an alternative method called the Fast Iterative Method (FIM) [49] has
been proposed. While related to FMM, the main idea of FIM is to avoid keeping
track of the exact causal relationships as FMM does, and rather update the grid points
in a looser manner explained below. This means there is no need for the heapsort
of FMM. Instead FIM maintains a list of points which are currently being updated.
This active list iteratively thickens and expands to include all points that could be
affected by current updates. Points are then removed from it when they have converged
with respect to their neighbors’ current values. However, in constrast to FMM, points
are put back into the active list when any upwind neighbor’s value is updated. In
detail, the algorithm proceeds as follows: First, the grid points on the zero isocontour
are identified and their current values are locked as boundary conditions. All other
grid points have their values set to infinity. Then, all 1-neighbors of the boundary
are added to the initial active list L. After this initialization, the following steps are
performed until L is empty: Each point has its value updated by solving the quadratic
equation resulting from a Godunov upwind discretization (see [49] for details). If the
solution has converged, i.e. the new value is sufficiently close to the old one, the point
is removed from L and all non-converged 1-neighbors are added to the list. Note that
newly added points must not be updated until the subsequent iteration.

FIM has a worst-case suboptimal time complexity because points may need to be
added back into the active list if the characteristics change direction relative to the
active list’s propagation direction. In practice, this rarely happens when solving the
Eikonal equation (2.7) with the surface as the boundary condition because the active
list will propagate along the characteristics the majority of the time for most surfaces.

2.3 The Level Set Method in Practice 29

Figure 2.6 Left: Initial C1 triangle with rounded corners propagating inwards with unit normal
speed. Right: Non-differentiable triangle with sharp corners resulting from the propagation.

2.3.4 THE VANISHING VISCOSITY SOLUTION

Although the level set equations presented in the previous section are quite simple,
and the accompanying numerical schemes introduced above are fairly easy to under-
stand and implement, there are a lot of nontrivial issues in the underlying level set
theory. One of the main problems encountered is the fact that, during interface de-
formations the physically reasonable (i.e. non-self-intersecting) solution is not always
differentiable, even if the initial interface is smooth or just differentiable. Consider
for example the left curve of figure 2.6. The distance function is C1, but when it is
propagated as indicated in the figure, the interface will at some point form sharp cor-
ners, where it is not differentiable as shown to the right in the figure. These three
non-differentiable corners will continue to exist until the curve collapses to a single
point. To solve these situations, it must be determined how to define the physically
plausible solution mathematically and how to devise numerical methods that pick this
solution automatically.

The desired solution can be defined by means of a so-called entropy condition. The
solution obtained by adhering to this condition is a weak solution, which means that it
is not necessarily an exact solution to the equation being solved, but rather a solution
to an integral formulation of the equation, that agrees with the classical solution in all
differentiable regions [98]. Since weak solutions are not unique, the entropy condition
is needed to single out a solution. The solution picked is known as the vanishing vis-
cosity solution, and it is obtained by adding a stabilizing, diffusive term −εκ to the
right-hand side of the level set equations, where ε is the artificial viscosity. The in-
spiration comes from hyperbolic conservation laws where the method is used to avoid
discontinuities (shocks) by smoothing the solution. It can be shown that this solu-
tion is identical to the desired weak solution in the limit, as ε → 0. However, adding
the artificial viscosity term explicitly when solving the level set equations numerically
results in excessive smoothing of the solution. In fact, the numerical schemes them-
selves implicitly cause a smoothing effect known as numerical dissipation. Numerical
dissipation can be understood by looking at the discretized schemes from a different
viewpoint. Instead of thinking of them as producing an approximate, truncated so-
lution to the level set equations, we can view them as producing an exact solution
to a slightly different equation [99]. This equation, when derived, actually contains

30 Chapter 2 Level Set Methods

a smoothing term where ∆x acts as artificial viscosity. This explains why numerical
schemes in practice introduce smoothing even though no artificial viscosity is explic-
itly added to the equations. It also tells us that the numerical dissipation tends to zero
as the resolution of the grid is increased and ∆x→ 0.

The numerical methods mentioned earlier have been devised so that they automat-
ically pick out the physically plausible vanishing viscosity solution.

CHAPTER 3

LEVEL SET METHOD EXTENSIONS

We will now briefly touch upon some of the most important improvements that have
been made to the original level set method [95]. Our focus will be on work that is
relevant to computer graphics and the work presented in this dissertation, in particular.
However, before we continue, we will outline the advantages and disadvantages of
the level set method in order to motivate both its use and the extensions presented
in the following. So far no “silver bullet” surface representation has been proposed,
but rather all surface representations have their own unique advantages. Nevertheless,
as explained in the previous chapter, level sets are very powerful and well-suited for
physically based animation. Some of the main advantages of level sets are that they:

• avoid self-intersecting geometry.

• handle arbitrary topological changes.

• avoid aliasing and singularities when undergoing large deformations.

• allow for easy computation of differential properties such as the gradient, surface
normal and curvature to a high order of accuracy.

• trivialize geometric queries such as inside/outside tests and closest point trans-
formations.

• allow for easy computation of Constructive Solid Geometry (CSG) operations
such as union, intersection and difference of solids.

• can be rendered directly using ray tracing.

There are a number of significant disadvantages to the original level set method. While
a number of them have been largely resolved by recent and ongoing work — as we will
see in the following section — we still list them here for completeness:

• The computational requirements scale with the volume of the embedding func-
tion.

31

32 Chapter 3 Level Set Method Extensions

• The storage requirements scale with the volume of the embedding function.

• Even though the first bullet point above has been addressed by restricting the
solution of the level set equations to a narrow band around the surface, accurate
level set methods (e.g. HJ WENO with TVD RK) are still very time-consuming
compared to mesh based deformations. This is due to the fact that the relatively
expensive PDE computations must be performed at each grid point1.

• In order to maintain sharp edges and features, high resolutions combined with
high order accurate FD schemes are usually required. In some situations, this
approach can be replaced or combined with Lagrangian marker particles (see
section 3.4), but generally level sets are computationally intensive and simula-
tions do not typically run at interactive rates except at small resolutions or when
running on the GPU [64].

• Many passes over the surface are performed in order to move the surface and
reinitialize the embedding function. This is a problem when the level set is too
big to fit in main memory since it must be streamed to and from external memory
(e.g. the hard disk) many times in just one time step.

• Since triangle meshes are still the most widely used surface representation, it is
often necessary to convert back and forth between level sets and meshes. Unfor-
tunately, current methods for doing that are not invertible in the mathematical
sense.

• Explicit surface representations such as meshes and subdivision surfaces can be
adaptive along the surface, whereas level sets are still represented uniformly.

• In contrast to explicit surface representations, level sets have no inherent pa-
rameterization. Parameterizations are useful for many applications in computer
graphics, e.g. texturing and other kinds of two-dimensional mappings.

3.1 NARROW BAND LEVEL SET METHODS

In the original level set formulation the computational complexity is O(N3) where N is
the number of grid points in each dimension of the three-dimensional grid. Often one
is only interested in the two-dimensional surface embedded in the grid and therefore
this approach seems highly inefficient. One of the first major improvements was to
exploit the property that only grid points close to the zero isocontour are required to
compute the movement of the surface. Therefore one can confine the computations to
a narrow band around the surface. The idea has been refined by a number of authors
[1, 16, 93, 101, 132]. The method improves the computational complexity to be O(Sδ)
where S is the area of the surface while δ is the width of the narrow band in grid points.
It is important to note that the narrow band should be wide enough to support the

1Not all applications of level sets require higher order accurate FD schemes to give visually pleasing
results, however. Shape morphing is one example which can often be sufficiently simulated using first
order upwind schemes.

3.1 Narrow Band Level Set Methods 33

2β

2γ

2(γ +∆x)

Figure 3.1 Left: Narrow band level set with values outside the narrow band clamped to ±γ .
Middle: Close-up of the concentric tubes which make up the narrow band. The β tube is
shown in blue, the γ tube in orange and the entire narrow band in green. Right: The value
ranges covered by each of the tubes.

stencils of the FD schemes employed for the spatial derivatives at the zero isocontour.
Also, the necessary width depends on the number of grid points the surface can move
during one time step. Recall from the previous chapter, that most explicit methods for
stability reasons are restricted in terms of the time step size they can employ. The CFL
condition implies that the surface can move less than one grid point in each time step.

In the following, we will concentrate on the narrow band method of Peng et al.
[101] along with a more recent extension by Nilsson et al. [93] which improves the
computational efficiency. We will assume that the surface moves at most one grid
point (i.e. at most ∆x) in each time step. The method of Peng et al. represents the
narrow band as three concentric tubes around the zero isocontour. The middle of
figure 3.1 shows the approach. The narrow band is equal to the largest tube of width
γ +∆x and inside it are two narrower tubes called the γ and β tubes, respectively. The
values inside the γ tube are signed distances, while the values outside are clamped to
±γ . This means that the unique properties of the signed distance function pointed out
in the previous chapter are only available inside the narrow band. Outside the narrow
band, only the clamped signed distance is available2. For first order upwind schemes
β = 2∆x and γ = 3∆x whereas for a fifth order HJ WENO scheme β = 3∆x and γ = 6∆x
[101].

In order to obtain a computational complexity linear in the number of grid points
in the narrow band, a few extra data structures are utilized by the narrow band method.
First of all, an array containing the coordinates of the grid points in the narrow band
is used. This enables iteration over the grid points in the narrow band in linear time.
Secondly, a grid of the same dimensions as the simulation grid is maintained. The
values of this grid indicate for each grid point which tubes it lies within, if any.

The actual computations performed by the narrow band level set method are largely
similar to the original method presented in section 2.3.3. In particular, the advection
of the surface by solving the level set equations 2.3 or 2.4 proceeds as normal within
the β tube. For grid points only inside the γ tube (i.e. points x, where β ≤ |φ(x)|< γ),
the solution is modified by a cut-off function to avoid numerical oscillations at the

2Narrow band level sets are however still useful for e.g. ray tracing and collision detection.

34 Chapter 3 Level Set Method Extensions

boundary of the narrow band. Peng et al. [101] suggest the following function c(φ):

c(φ) =

1 if |φ | ≤ β
(|φ |−γ)2(2|φ |+γ−3β)

(γ−β)3 if β < |φ | ≤ γ
0 if |φ |> γ

(3.1)

Note that c(φ) transitions smoothly from one to zero inside the γ −β tube. For grid
points outside the γ tube, the level set equation is not solved.

After advection, the reinitialization equation (2.5) is solved to steady state in the
entire narrow band as described in section 2.3.3. Hence after reinitialization, the γ
tube of the advected surface will be contained within the narrow band. This is due to
the fact that the surface moves at most one grid point during a time step and that the
narrow band was constructed to be exactly one grid point wider than the γ tube.

Next follows a computation which is exclusive to the narrow band method. It
is necessary to rebuild the narrow band and ensure it follows the surface correctly.
In other words, we need to compute the β , γ and γ + ∆x tubes again. The original
proposal by Peng et al. [101] used a simple method with a computational complexity
of O(N3). They argued that the rebuild process is performed only once per time step
whereas advection and reinitialization entail several iterations over the narrow band.
Even so, the O(N3) time complexity can become dominant when the grid is large, and
a method which scales with the number of grid points in the narrow band is preferable.
Nilsson et al. [93] proposed the following method which determines the new narrow
band using a single pass over the old narrow band: For each grid point x in the old
narrow band, if |φ(x)|< γ , x is included in the new narrow band. If x was not included
in the old γ tube, all neighbors of x not already in the new narrow band are added to it.
On the other hand, if |φ(x)| ≥ γ , all neighbors y of x with |φ(y)| < γ are included in
the narrow band.

To round this section off, we note that, while the narrow band methods presented
above address the computational inefficiency of the original level set formulation, they
increase the storage requirements of the original method since extra data structures are
required to keep track of the narrow band. This is an issue for level set simulations that
require high resolution grids to resolve complex deforming surfaces.

3.2 OCTREE BASED LEVEL SET METHODS

Octrees (and Quadtrees in two dimensions) have been applied to level sets [72, 117]
and adaptively sampled distance fields [35] in order to reduce the computational and
storage requirements of the original level set method. These tree data structures allow
for adaptive multi-resolution representations. However, all current tree based level set
methods use a uniform resolution near the surface. This is mainly because it can be
hard to design reliable refinement strategies which guarantee that fine details and fea-
tures are not lost due to undersampling as the surface moves in time. Also, a uniform
refinement near the interface, which only stores the grid points inside the narrow band
in the octree, enables the use of higher order FD schemes like HJ ENO [96] and HJ

3.3 Sparse Non-Tree Based Level Set Methods 35

WENO [51, 52, 69] in space. In contrast, a nonuniform discretization makes it non-
trivial to accurately employ these FD schemes. Tree based methods which solve the
level set equation over the entire embedding domain need to account for grid cells of
varying sizes and are hence not able to use these FD schemes as is [77, 117].

The octree data structure reduces the storage requirements of level sets to O(dS),
where d is the depth of the tree and S is the surface area. However, it also introduces an
O(d) access time to the stored values. Note that it is quite possible that d� logS. The
data structure can be modified to reduce storage requirements to the asymptotically
optimal O(S), and access times to O(logS) [117]. Nonetheless, a logarithmic access
time is still costly in the context of the level set method. Furthermore, modern octree-
traversal and search methods [34] employ bit-arithmetic that cannot readily be used
with these modifications.

Losasso et al. [72] recently proposed a method which addresses some of the perfor-
mance issues associated with octrees. Rather than using a regular octree they propose
the use of a coarse uniform grid in which each grid cell stores its own octree. In this
way they decouple the depth, d, of the octree from the size of the embedding domain,
thereby lowering d.

Combining the narrow band method with a level set representation based on an
octree thus potentially promises an asymptotically optimal method with regards to
storage [117]. However, the underlying pointer structure employed by an octree often
entails random access in memory which is not suited for the memory hierarchies of
modern computers [11]. Also, even if the initial octree is constructed carefully to
support coherent memory access patterns, no method has been published on how to
efficiently ensure cache coherency in the octree storage format as the narrow band is
updated over time due to the evolution of the surface. We will elaborate upon the issue
of cache coherency and memory hierarchies in section 4.1. Finally, since each access
to a value stored in the octree has a time complexity which is linear in the depth d, this
approach is so far generally on par with or outperformed by the next class of methods.

3.3 SPARSE NON-TREE BASED LEVEL SET METHODS

Bridson suggested using a sparse, coarse, uniformly blocked grid with finer uniform
grids nested inside those coarse cells that are close to the surface [11]. In particular, the
entire embedding domain is split into blocks of B3 grid points each, and a coarse grid of
size

(N
B

)3 stores pointers only to those blocks that are intersecting the narrow band. As
the surface moves, blocks are allocated and released. Because of the fixed depth of the
hierarchy, access times are O(1) as for dense grids. The storage complexity is reduced
to O(

(N
B

)3 +S) which allows for higher resolutions as long as the storage requirements

of the coarse grid,
(N

B

)3, are O(S). In that case the storage complexity is O(S) which
is ideal. However, for very high resolutions or for simulations where surfaces with
small areas are spread out in a large embedding domain, the storage requirements may
be dominated by

(N
B

)3. The method restricts computations to a blocked narrow band,
which is a fairly conservative estimate of the narrow band actually needed. This means

36 Chapter 3 Level Set Method Extensions

the method will perform more computations than necessary if the grid points actually
inside the narrow band are not explicitly marked using some extra data structure for
each block. Hence, although this representation provides constant time access to val-
ues, it does not always ensure storage and computational requirements proportional to
the area of the surface.

Nielsen and Museth [90] introduced the Dynamic Tubular Grid (DT-Grid) which
has the advantage that both the computational complexity and storage requirements
scale linearly with the size of the interface (as opposed to the volume of the embedding
function). This data structure is the foundation of the first part of the work presented
in this dissertation. It takes its inspiration from sparse matrix storage schemes, and
exploits the fundamental property of narrow band level set methods that the level set
equation only needs to be solved close to the surface. However, unlike previous narrow
band methods, it does not store any information outside a dynamic, uniformly sampled
narrow band. Note that the DT-Grid stores the values and the topology of the narrow
band separately. The uniformity inside the narrow band makes it possible to readily
employ all FD schemes developed for dense uniform grids. The DT-Grid is defined
recursively by DT-Grids of lower dimensionality. Therefore it easily generalizes to
any number of dimensions. Each level stores the connected components of the corre-
sponding dimension rather than all the grid points. Please see the original paper for
the definition of a connected component and a more thorough explanation [90]. The
DT-Grid can furthermore be extended to accommodate volumetric attributes for fluid
simulations in which case the scaling is proportional to the volume of the fluid. Also,
it is not bound by the boundaries of an underlying grid and is free to dynamically
expand as the level set grows. The data structure is designed for sequential access.
Particularly, the grid points in the narrow band can be accessed in asymptotically con-
stant time, O(1), when using a sequential access pattern. On the other hand, random
access is logarithmic in the number of connected components in each dimension, but
fortunately the DT-Grid comes with a set of iterators designed to provide constant time
access to all the grid points required by a given FD stencil. This means that solution
methods to the level set equations, such as those presented in the previous chapter, can
be applied in linear time. The same goes for solving the reinitialization equation, and
an algorithm for rebuilding the narrow band in linear time is also provided in [90].
However, there is no support for random insertion or deletion of grid points in the
narrow band. On top of the linear algorithms and constant sequential access times,
it appears that the memory layout and footprint of the DT-Grid makes it very cache
coherent.

Concurrently with the development of the DT-Grid, Houston et al. presented the
RLE Sparse Level Set representation in a technical sketch [46]. The idea of using Run-
length encoding (RLE)3 for compressing level sets was first proposed by Bridson [11],
but Houston et al. were the first to design and implement a concrete data structure. It
is more flexible than the DT-Grid because it allows for an arbitrary encoding of the
narrow band, including varying grid cell sizes, and their method is also able to store
open level sets. The drawback is that it requires O(N2 +S) storage in three dimensions.

3RLE is a widely used lossless data compression technique in which sequences (runs) of identical
data values are replaced by a count number and a single value.

3.4 Particle Level Set Methods 37

Also, the sequential access times are not constant per element. This was remedied by
the Hierarchical RLE (H-RLE) grid [47] which retains the flexibility of the original
RLE approach, but has the same asymptotical behavior as the DT-Grid. In practice,
however, it is a little slower, but depending on the application the increased flexibility
might be worth the small extra cost.

In parallel to this dissertation work, Museth has developed an efficient blocked
level set data structure, dubbed DB+Grid. Given the fact that DB+Grid is still propri-
etary technology, our insight into this data structure is limited. However, for the sake
of completeness, we include the following high-level description, and refer the inter-
ested reader to an upcoming publication. DB+Grid is based on a Dynamic Blocked
Grid that exploits the spatial coherency of uniform grids to effectively and separately
encode data values and topology. It shares several characteristics with B+Trees (typi-
cally employed in databases and file systems), which accounts for its name. DB+Grid
allows for cache-coherent and fast data access into sparse three-dimensional grids of
very high resolutions, i.e. exceeding hundreds of thousands of grid points in each spa-
tial direction. Additionally, DB+Grid is very general since it does not impose topology
restrictions on the sparsity of the volumetric data or access patterns when the data are
inserted, retrieved or deleted. This is in contrast to both DT-Grid and H-RLE that as-
sume fixed data topology (narrow band level sets), and require specific access patterns
(sequential) for fast data access. As such, DB+Grid has proven useful for several ap-
plications that call for very large sparse volumes, and it has already featured in several
major films [81, 82, 85].

3.4 PARTICLE LEVEL SET METHODS

A way of achieving a high level of detail on a fairly coarse grid, is the particle level
set method, which combines Lagrangian marker particles with the Eulerian level set
method to obtain the advantages of both approaches [23]. The particles reduce the
numerical dissipation which is inherent in the level set method, especially at coarse
resolutions. They ensure greater accuracy in regions of high curvature, where the van-
ishing viscosity solution of the level set method would incorrectly merge the charac-
teristics. Lagrangian schemes are therefore quite successful in conserving mass, since
they preserve material characteristics for all time, i.e. they are not regularized out of
existence to obtain vanishing viscosity solutions. On the other hand, the Eulerian level
set method ensures that changes in the surface topology are correctly resolved. These
properties have made the particle level set method the widely preferred surface track-
ing method for water simulations within computer graphics. The method is perfectly
suited for situations where the surface is passively advected in an external shock-free
velocity field. However, its use beyond this application area is limited. First of all,
it does not work when shocks4 are present in the velocity field since they will cause
the particles to move inconsistently with the surface and hence ruin the desired weak
solution [23]. For the same reason, the particle level set method is not well-suited to
surface deformations described by motion in the normal direction (equation 2.4). This

4In the vicinity of shocks, characteristics actually do merge.

38 Chapter 3 Level Set Method Extensions

means that the method is impractical for many applications in computer graphics such
as shape metamorphosis and geometric modeling that employ motion in the normal
direction and have shocks in the underlying velocity field where the model has sharp
corners or edges.

The particle level set method increases the memory requirements as up to 64 par-
ticles are placed in each grid cell in a band that is three cells wide on each side of the
surface. For each particle, both position and radius are stored. As the surface area
increases, the memory requirements follow, and even though a quantization of both
position and radius somewhat alleviates the problem, a lot of memory is still needed.
Therefore out-of-core or external memory algorithms5 have been developed [91]. To
sum up, there are currently no attractive alternatives to turning up the resolution when
one wants to obtain a high level of detail for general level set simulations [11], and
for surface deformation in fluid simulations, out-of-core algorithms are necessary to
handle the enormous amount of particles required. Therefore out-of-core algorithms
have become an important part of making level set simulations and fluid simulations
feasible in practice.

3.5 OUT-OF-CORE LEVEL SET METHODS

A common limitation of all the described methods is that they only work in-core, i.e.
they are limited by the available main memory. As a consequence, implicit model res-
olutions allowed by the methods are quite small compared to state-of-the-art explicit
representations, despite the improvements in storage requirements. This in turn means
that the level of detail obtainable by these methods is not nearly as high. Surprisingly,
given these limitations of the described methods, little work seems to have been done to
design external memory algorithms for level set methods and fluid simulations. Only
recently, Nielsen et al. [91] proposed an out-of-core framework for level set and fluid
simulations. The main contributions are prefetching and page-replacement algorithms
designed for stencil based FD level set computations. The framework is generic and
can be combined with several different kinds of underlying level set representations
such as the DT-Grid or H-RLE sparse data structures, which means that it can easily
be integrated with existing software. In particular, it does not require a modification
of the level set algorithms associated with these representations. While the framework
allows for grid resolutions only limited by the available secondary storage, the method
remains I/O bandwidth limited, and the throughput (measured in computed grid points
per second) drops as low as 42% of state of the art peak in-core simulation through-
put, when all components of a DT-Grid must be streamed to and from disk. This is
primarily due to the fact that the level set is streamed several times during a single sim-
ulation time step. Although the throughput is an improvement over general purpose
OS prefetching and page-replacement algorithms, the framework presented in chapter
4 and paper I demonstrates a throughput as high as 92%.

5Out-of-core algorithms are designed to process data that is too large to fit in main memory (in-core)
at once. They need to be carefully designed in order to efficiently fetch and access data stored in slow
bulk memory such as a hard disk.

CHAPTER 4

THE IMPROVED OUT-OF-CORE FRAMEWORK

Chapter 2 introduced the level set method and motivated its use in computer graphics.
In particular, we emphasized the importance of level sets for surface representations
in fluid simulation, shape metamorphosis and geometric modeling. A number of is-
sues with the original formulation, which limit the practical applicability of level sets,
were identified in chapter 3, and we presented several extensions designed to address
them. However, as mentioned at the end of the previous chapter, there are still some
problems left unsolved. Our work presented in this chapter and paper I targets two
of the problems which are mainly related to level sets of high resolution1. First of
all, the typical approach to performing a time step in a level set simulation requires
multiple passes over the surface. Especially solving the reinitialization equation (2.5)
may involve up to 5 – 10 passes over the entire level set. However, simply employing
higher order temporal schemes for propagation such as TVD RK also involve several
passes. This becomes a problem since the level set data must be streamed through
memory several times, which could impact on cache locality. When the level set is too
large to fit in memory, the problem becomes even worse and it is actually one of the
main reasons for the I/O limitation in [91] since the level set is streamed to and from
disk multiple times in a single time step. In contrast, the method proposed in paper
I requires data to be streamed only once per time step. In fact, for simulations with
certain properties, data is only required to be streamed once for a number of subse-
quent time steps, hence reducing I/O bandwidth usage further. We do this by applying
code transformations such as loop skewing and tiling to the level set computations, see
section 4.2. As a result, our new out-of-core algorithms are CPU limited as opposed
to I/O limited and exhibit a sustained, i.e. resolution independent, throughput of 77%
– 92% (depending on the numerical scheme) of the throughput obtainable by internal
memory simulations.

Secondly, we target the fact that high-resolution level sets are computationally
heavy. We do this by enabling individual tiles of the level set to be processed indepen-
dently, hence allowing for multi-threading. Because of the reduction of I/O bandwidth

1In order to provide a coherent reading experience some of the body of paper I will be repeated in this
chapter.

39

40 Chapter 4 The Improved Out-of-Core Framework

usage resulting from our transformed computations, the method is still CPU limited
when run on 8 cores, even though each thread writes to and reads from disk. Of
course, this means that running multiple simulations in parallel on the same disk is
feasible too.

Our improved out-of-core framework is essentially based on a couple of techniques
that are well known in the field of computer science, and in the fields of compiler
algorithms and cache coherency in particular: We mainly rely on code transformation
methods such as loop skewing, tiling, interchange and fusion. As such there is a large
body of related work which is presented in paper I. However, we stress that our work
stands apart from this previous work in several ways. Most importantly, we are the first
to optimize and apply these techniques on out-of-core level set methods. Of course,
the original framework leveraged over fifty years of active research into out-of-core
methods. However, since we have merely built on top of that part of the framework,
we refer the interested reader to the original paper [91] and the recent surveys on out-
of-core methods by Vitter [130] and Toledo [125] for a more detailed overview of that
field and its contributions to numerical linear algebra and simulation.

The rest of this chapter is structured as follows. Section 4.1 briefly introduces the
typical memory hierarchy of a modern computer as well as a couple of models for an-
alyzing algorithm performance that take this hierarchy into account. Next, section 4.2
describes the concept of code transformations which essentially reorganize program
loops in order to ensure a better cache locality. The subsequent section summarizes
the contributions of paper I and the last section discusses and evaluates the results.

4.1 MEMORY HIERARCHIES AND CACHE LOCALITY

Generally speaking, faster memory is more expensive than slower memory. Addition-
ally, larger memory entails a higher latency due to the increased number of transistors.
To provide the best performance at a reasonable cost, memory in modern computers
is organized in a hierarchical fashion, where each level acts as a cache for the next.
The typical components of this hierarchy are registers, L1 through L3 caches, main
memory and disk storage. Figure 4.1 shows a simplified view of this hierarchy along
with some rough numbers illustrating how storage capacity, access speed and price
vary throughout the levels. To access a particular piece of data, the CPU first sends a
request to its nearest memory, usually the caches. If the data is not in any of the caches,
then main memory is queried. If the data is not in main memory, then the request goes
to disk. Once the data is located, it and a number of its nearby data elements are fetched
into cache memory. The reasons for loading these elements into cache are based on
two observations about normal program behavior. First of all, many programs exhibit
spatial locality, which means that memory locations close to a recently accessed lo-
cation are likely to be accessed in the near future. Secondly, many programs carry
temporal locality, where a recently accessed memory location is likely to be accessed
again. Oftentimes, this is seen in numerical simulations where the same data elements
are repeatedly treated for several iterations or time steps. The L1 through L3 caches
store fixed-size blocks of the main memory in cache lines which consist of a number

4.1 Memory Hierarchies and Cache Locality 41

~1 ns

~10 ns

~100 ns

~5 ms

Pr
ice

 p
er

 G
ig

ab
yt

e Storage Capacity

Access Speed

Registers

CPU Caches

Main Memory

Disk Storage

< 1 KB

< 4 MB

< 8 GB

> 1 TB

~$25

~$0.15

Figure 4.1 A simplified view of the typical memory hierarchy of a desktop computer. The
numbers are very rough approximations and are changing rapidly, but they give an idea of the
ratio between the levels.

of words. If a given word is not in cache, an entire cache line is evicted from it and
replaced by the cache line which holds the word. The question of which cache line
to evict is very important, since the time for accessing a level increases for each level,
which means that the speed with which the data can be accessed depends on which
level currently holds it. When the data is found at a certain level, we say that we have
a hit. On the other hand, a miss occurs when the data must be found at a lower level.
The fraction of all memory references that can be satisfied by a given level is called
the hit ratio of that level. Larger caches have better hit ratios but longer latency.

Similar to the relationship between words and cache lines of the main memory,
data elements are transferred from disk to main memory as pages which are read from
disk into the virtual address space of a running process. If a given piece of data is
not found in any of the pages, a page fault is generated and the page is loaded in
from disk. Of course, this often means that another page must be evicted and several
page replacement schemes exist. We use the scheme from [91], which is specialized
for level set computations. Note that the latency for accessing external memory is
four to six orders of magnitude slower than accessing main memory. Also note, that
the amount of data transferred when accessing external memory is many orders of
magnitude larger than when loading a cache line. This means that optimizing for
cache locality between main and external memory is quite different from targeting
CPU caches and main memory. Further information on memory hierarchies can be
found in the excellent book by Tanenbaum [120].

As is evident from the above discussion, the memory access pattern of an algorithm
has a vital influence on its efficiency. Asymptotic analyses in the traditional RAM
model [38] are unable to capture this aspect, and so a number of more involved models
have been proposed. The most influential of these are the I/O model introduced by
Aggarwal and Vitter [2] and the more recent Cache Oblivious model by Frigo et al.
[33]. The I/O model simplifies the memory hierarchy to two levels consisting of the
main memory and one disk. It is parameterized by the number of data elements that fit
into memory, M, and the number of elements in a single disk block, B. It can be used

42 Chapter 4 The Improved Out-of-Core Framework

to explore the fundamental limits in terms of the number of I/O operations required for
various typical computational problems such as sorting. Linearly scanning through N
data elements hence requires Θ(N

B) I/O operations. If B is small, the I/O complexity
will dominate the running time of the algorithm. Sorting N elements has been proven
to have an I/O complexity of Θ(N

B log1+ M
B
(1 + N

B)) [2]. Having these values for a
given architecture one can attempt to design an algorithm which results in the best I/O
complexity. However, that algorithm may not run as efficiently on another system with
other values for M and B. Also, the model completely ignores the other levels of cache
in the memory hierarchy.

The Cache Oblivious approach [33] attempts to overcome this limitation by ab-
stracting away the concrete parameters of a given system configuration. By doing so it
ensures that algorithms which perform well in this model are efficient across different
architectures and on all levels of the memory hierarchy. Specifically, it introduces the
ideal-cache model which is comprised of a two-level memory hierarchy consisting of
an ideal cache of size Z and an arbitrarily large main memory. The model assumes
an optimal replacement strategy of the cache lines2, which have size L. Algorithms
are analyzed in two ways in the model: Their work complexity W (N) is similar to the
traditional RAM running time complexity. In addition, they have a cache complex-
ity Q(N,Z,L) which is a measure of the number of cache misses the algorithm will
experience. A good cache oblivious algorithm attempts to match the work complex-
ity of some RAM model algorithm while minimizing Q. Furthermore, it should be
independent of the cache specific parameters Z and L, hence the term cache oblivi-
ous. As stated, a cache oblivious algorithm will likely work efficiently across different
architectures and on all levels of the memory hierarchy. However, the simplifying
assumptions may hide important properties, and we cannot expect a cache oblivious
algorithm to be as efficient in practice as a cache aware algorithm specifically tailored
for a given architecture.

4.2 CODE TRANSFORMATIONS

The algorithms presented in paper I leverage on established theory from the area of
compiler algorithms. They rely on code transformations for optimizing cache locality,
i.e. minimizing the number of times a given data element is loaded from the lowest
memory level into the highest level of cache. In particular, we employ the mathemat-
ical model of reuse and locality developed by Wolf and Lam [134]. In the class of
code transformations necessary to consider for FD based level set schemes, the ex-
ecution of a particular program statement in an algorithm can be identified uniquely
by a node inside a convex polytope embedded in an iteration space. Considering a
simple for-loop with iteration variable i surrounding a single statement, the iteration
space equals Z and the polytope consists of the nodes in Z delimited by the lower
and upper limits of i. Nesting one for-loop within another adds one to the dimen-
sionality of the iteration space and in general a loop nest of depth n corresponds to

2In practice, such a strategy is not possible without knowing the entire future of a program execution.
However, using the Least Recently Used strategy [120] may give results which are close to optimal
depending on the program.

4.2 Code Transformations 43

1: for t← 0, 2 do
2: for x← 0, 5 do
3: Computation[t, x]
4: end for
5: end for

(a)

1 2 3 4 5

6 7 8

x

t

9 10

(b)

1 2 3 4 5

6 7 8

x

t

9 10

(c)

x

t

1

2

3

4

5

6

7

8

9

10

x

t

1 2

3 4

5 6

7 8

9 10

(d)

1: for t← 0, 2 do
2: for x← t, 5 + t do
3: Computation[t, x− t]
4: end for
5: end for

(e)

1 2 3 4 5

6 7 8

x

t

9 10

(f)

1 2 3 4 5

6 7 8

x

t

9 10

(g)

x

t

1 2

3

4

5

6

7

8

9 10

x

t

1

2 3

4 5

6 7

8 9

10

(h)

Figure 4.2 (a): Pseudo-code for a simple loop nest with iteration variables t and x. (b): A con-
vex polygon covering the computation nodes in the two-dimensional iteration space spanned
by the loops in t and x. (c): The green arrows indicate that a given computation [t,x] depends
on the computations [t−1,x−1], [t−1,x] and [t−1,x+1] which therefore must be performed
first. (d): As indicated we are not able to interchange the loops. Bottom: The loop has been
skewed by the transformation T : [t,x]→ [t,x + t]. Note how the loop interchange in (h) no
longer violates the dependencies.

a convex polytope embedded in Zn. Executing a loop nest thus corresponds to vis-
iting all statements or — equivalently — all nodes in the polytope in lexicographic
order3. A valid code transformation T , e.g. a linear transformation, transforms a poly-
tope without violating data dependencies. That is, if node p in the polytope depends
on data produced at node q, then T (q) < T (p) must hold, where < is the lexico-
graphic ordering. Figure 4.2 shows a simple two-dimensional example with itera-
tion variables t and x. The corresponding polygon in the iteration space is shown in
4.2b. The data dependencies of Computation[1,2] are shown as green arrows in 4.2c.
They indicate that Computation[t,x] reads the values from Computation[t− 1,x− 1],
Computation[t− 1,x] and Computation[t− 1,x + 1]. For the purpose of our example,
suppose we have a cache that can only hold four data elements and that a cache line
consists of one data element. The value from Computation[0,0] referred to by for
instance Computation[1,0] is therefore evicted between references. Unfortunately, a
loop interchange represented by the code transformation T1 : [t,x]→ [x, t] is not possi-
ble as illustrated in 4.2d. The reason is that the data dependencies of Computation[1,x]
are violated as they depend on Computation[0,x + 1] which is performed afterwards.
However, if we apply the transformation T2 : [t,x]→ [t,x+ t] which skews the polygon
as illustrated in 4.2f, we also change the dependencies. In fact, this skewing allows us
to interchange the loops without violating the dependencies of the algorithm as illus-

3Lexicographic order is akin to alphabetical order, but applied to the Cartesian product of ordered
sets. It is defined for two sets as (a,b) < (a′,b′) iff a < a′ or (a = a′ and b < b′), and it generalizes
straightforwardly.

44 Chapter 4 The Improved Out-of-Core Framework

trated in figure 4.2h. Note, that our cache can now hold the values needed at any given
time in order to perform the computations and therefore each data element is only
fetched into the cache once. Thus skewing does not necessarily improve the perfor-
mance of the code by itself but it allows for other code transformations to be performed
subsequently.

Wolf and Lam [134] quantify the reuse of a data element by the number of direc-
tions in the iteration space along which the algorithm references that particular data
element or data elements that are close when stored in memory (i.e. on the same cache
line). A high degree of reuse does not however imply a high degree of cache locality
or high performance. The reason is that if access is not cache coherent (i.e. too many
other data elements are accessed in between), in the worst case a data element may
have to be loaded into the cache each time it is used. In order to ensure locality, we
must divide the iteration space into tiles. This tiling transformation is performed by
dividing the iteration along each direction of the iteration space by splitting the cor-
responding loop into two loops, where the loop that steps over the tiles is called the
controlling loop. As we will see in appendix A of paper I, it is necessary to skew level
set computations in order to make them fit for tiling.

Despite the fact that code transformations have been extensively studied and em-
ployed for optimizing cache locality in compiler algorithms, the work presented in
paper I is to the best of our knowledge the first to apply and study code transforma-
tions in the context of out-of-core level set simulations. Applying code transformations
to out-of-core level set simulations poses unique challenges since the goal here is to
minimize the data traffic, i.e. maximize locality, between disk and main memory, as
opposed to between main memory and the CPU caches. The ratio of disk to main
memory latency is high relative to the ratio of main memory to cache latency. Con-
sequently, a data layout working well in-core may have to be designed differently for
out-of-core use (although it may have the same asymptotical I/O complexity) in order
to efficiently exploit the often large page sizes utilized when transferring data between
disk and main memory.

4.3 CONTRIBUTIONS

The primary design goal of our out-of-core level set framework has been to perform
an entire time step of a level set simulation using only one strictly sequential pass
over the level set data. Recall that one of the main reasons for the I/O bandwidth
limitations of the previous out-of-core framework proposed by Nielsen et al. [91] was
that each time step required up to 10 passes over the data. The out-of-core framework
proposed in paper I has several benefits, both theoretically and practically. Specifically
our framework is optimal with respect to streaming to and from disk in both the I/O
model [2] and the Cache Oblivious model [33], as only sequential stencil access is
required. Since the DT-Grid is utilized as the underlying data structure, our framework
inherits its properties such as memory efficiency, low L1 and L2 cache miss ratios,
constant time access to grid points in an FD stencil, generalization to any number of
dimensions as well as the benefit of a dynamically expanding and contracting grid not

4.4 Further Discussion and Evaluation 45

confined to a predefined computational domain. Similar to the out-of-core framework
proposed by Nielsen et al. [91] the resolution of the computational grids utilized in our
method is only limited by the amount of secondary storage, e.g. disk space, available.

Note that while the description of the framework in paper I exclusively focuses on
narrow band solutions of interface propagations represented as high-resolution level
sets, the methods presented generalize to arbitrary, sequential stencil computations on
full grids as well. Specifically, it should be noted that the presented framework can
be used for fluid simulations, although only in a somewhat limited way as will be
explained in section 3.1.5 of the paper.

To summarize, the work presented in paper I claims the following contributions:

• A combination of code transformations and storage mapping schemes with the
DT-Grid [90] and the prefetching and page-replacement schemes for out-of-core
computation proposed in [91]. This allows data to be streamed to and from
memory only once during each iteration of the out-of-core level set computation,
where each iteration comprises a propagation/advection, a reinitialization and a
narrow band rebuild step. For some types of simulations, the transformations of
N subsequent iterations can be concatenated, hence requiring data to be streamed
to and from memory only once for each group of N iterations.

• A tiled version of the Fast Iterative Method [49] which enables a fast, out-of-
core solution of the Eikonal equation (2.7) for narrow band level sets.

• Code transformations, based on skewing and tiling, of FD based numerical level
set schemes, including Forward Euler, TVD RK, HJ ENO and HJ WENO. We
prove that, both with respect to the spatial and temporal dimensions, the trans-
formations maximize the locality of references in the mathematical model of
reuse and locality proposed by Wolf and Lam [134]. Our framework is optimal
with respect to streaming to and from disk in both the I/O model [2] and the
Cache Oblivious model [33] as only sequential stencil access is required.

• In-core storage mapping schemes for intermediate values associated with the
skewing transformations that reduce the memory requirements during computa-
tion. Specifically, the storage complexity is linear in the number of intermediate
values.

• An out-of-core storage mapping scheme associated with the tiling transforma-
tions that partitions the narrow band into individual grid blocks and additional
boundary grids. This facilitates computation on each tile independently and
hence in parallel. The storage complexity remains O(N) when combined with
the DT-Grid, where N is the number of grid points in the narrow band.

Read paper I at this
point.

4.4 FURTHER DISCUSSION AND EVALUATION

We will end the chapter with a brief discussion of issues which were not mentioned in
paper I.

46 Chapter 4 The Improved Out-of-Core Framework

High-resolution level sets will for some applications, such as the Enright test of
paper I, result in a small grid cell size, ∆x. This is problematic due to the CFL condition
which dictates that the level set surface cannot move more than ∆x during one time
step: Even though we parallelize the computations to reduce the running time, it takes
a lot of iterations to advance the solution to a given time t due to the small time steps,
∆t. Therefore it does not seem viable to increase the resolution beyond a certain point
for some applications when using explicit numerical time integration. Instead, one
could devise implicit integration schemes that are not limited to small time steps in
order to remain stable.

Recently, solid-state disks have been emerging as a viable storage solution for
consumer-level desktop and laptop computers. In terms of size, access speed and pric-
ing it is placed in the memory hierarchy between main memory and regular magnetic
disk storage. However, it is still quite expensive compared to magnetic disks and the
largest sizes available are still orders of magnitude less. The advance of solid-state
disks does not diminish the need to develop out-of-core algorithms since the latency
is still some orders of magnitude slower than main memory (typically a couple of mi-
croseconds compared to less than a hundred nanoseconds), and since the ongoing trend
within computing is to treat larger and larger data sets. Unfortunately, we have not had
the opportunity to experiment and compare our new framework with the framework of
Nielsen et al. [91] in the context of solid-state disks.

CHAPTER 5

FLUID SIMULATION FOR COMPUTER GRAPHICS

Fluids constitute some of the most impressive and fascinating natural phenomena in
the world. We have always been attracted to and stood in awe of the mighty turmoil
of frothing rivers and waterfalls as well as the treacherous open sea. The wild and
complex beauty of these marvels makes understanding them and reproducing them a
seemingly daunting task, and throughout time many efforts have been put into doing
so. At the other end of the spectrum we find the more subtle appeal of a few drops
of dew running down a leaf. Being able to reproduce these effects computationally
puts focus on another set of requirements such as correctly handling the surface ten-
sion which shapes the drops. Another phenomenon which we commonly do not even
regard as a fluid is the air we breathe. In fact, air is at the heart of just as many im-
pressive wonders as water. From large scale phenomena such as clouds or the gasses
of volcanic eruptions to the intricate swirling patterns of smoke and fire from a match
or a candle, air is the medium for many interesting effects. Being able to do simu-
lations of fluid phenomena such as water and smoke has applications in a variety of
fields ranging from engineering disciplines such as CFD where accuracy is paramount
to visual effects in films and computer games, where a visually pleasing appearance
is sufficient. Many of the methods used in computer graphics have been adapted from
CFD and since they are computationally intensive, some simplifying assumptions have
been made to make them more feasible for animation.

Before we move on to describing how we typically simulate fluids in computer
graphics and visual effects, we will briefly discuss a number of reasons why it is often
necessary to utilize simulations rather than traditional geometric modeling or practical
effects when wanting to recreate these phenomena. One of the primary reasons for
not modeling smoke or water by hand is that they are both very complex phenomena
with many intricate details. Figure 5.1 illustrates the enormous richness in both motion
and appearance which would require an infeasible amount of time to shape manually.
Indeed, if it were possible to easily sculpt and model water by hand, artists would
likely do just that. Of course, in computer games and interactive applications, we
need to simulate — rather than model — since the user changes the behavior of the
fluid by interacting with it. Owing to the scope and often destructive nature of the

47

48 Chapter 5 Fluid Simulation for Computer Graphics

Figure 5.1 Real smoke and water phenomena are very complex. Left: A volcanic eruption
sends steam and various other particles into the air in a highly turbulent manner. Right: Mul-
tiple crashing waves result in foam, mist and spray.

desired effects, it is prohibitively expensive to perform them as practical effects at full
scale. Unfortunately, it is also not possible to use miniatures convincingly since real
fluid phenomena have scale. Figure 5.2 shows that while some properties such as the
overall speed of the fluid can be somewhat overcome by shooting at higher camera
speeds to slow the movement down, other properties, such as surface tension, affect
e.g. the size of droplets which results in a fake look. Using a less viscous fluid such as
kerosene or methanol instead of water is typically not an option due to the fire hazard.
Finally, real fluid effects are actually really hard to dress and control [105], and — in
contrast to simulations — the director only has one chance to shoot and is unable to
move the camera around afterwards to obtain the best view.

On the other hand, simulations are not easy to utilize and understand either, and
there really is no “silver bullet” method which works great for every fluid effect and
every camera shot. Controlling fluid simulations done via physically based simulation
techniques is for example hard. Essentially, one is only able to specify the initial con-
ditions and then hope for a satisfying outcome of the often time-consuming simulation.
However, the director will often express that he wants the water or smoke to exhibit a
certain anthropomorphic characteristic such as being menacing or friendly, serene or
agitated. Furthermore, a stylized look and behavior might be desired, and it is often
not clear how these requirements translate to the physical parameters of the simulation.
To make matters more complicated, sometimes a completely non-physical behavior is
required such as the river of horses in “Lord of the Rings: Fellowship of the Ring”
or the tar monster from “Scooby Doo 2: Monsters Unleashed”. Another example is
when a believable physical look is desired, but the exact and correct physical behavior
does not behave as wanted. Chapter 1 provided two examples of this situation from
“Ratatouille” and “The Day After Tomorrow”. Hence, it is not enough to be able to
produce a realistic fluid behavior — it must also be directable. We will return to this
discussion in chapter 7.

This chapter focuses on describing the basics of fluid simulations for computer
graphics while the next chapter describes various extensions and improvements. The

5.1 The Equations for Fluid Flow 49

Figure 5.2 Real fluid phenomena have scale which makes it hard to use miniatures convinc-
ingly. Left: A miniature dam is destroyed in “Earthquake” (1974). c©Universal Pictures.
Notice how unwanted droplets form due to surface tension. Right: A miniature open sea in
“The Poseidon Adventure”. c©20th Century Fox. Both images reprinted from [105].

next section will introduce the theory and present the equations which describe the
motion of fluids, and in section 5.2 we explain a numerical scheme which solves the
equations on a computer. Section 5.3 explains how to use this numerical scheme for
simulating fluid phenomena such as smoke and water in practice. Finally, the last sec-
tion will briefly present an alternative model and method for doing fluid simulations.

5.1 THE EQUATIONS FOR FLUID FLOW

CFD is a vast field of research and covering it in its entirety does not make sense in
the context of this dissertation. Instead, we will focus on what is typically needed to
produce convincing fluid behavior for visual consumption. As stated previously, visual
appearance is most important, and simplifying as much as possible is always allowed
(and encouraged). In some instances, one can get away with a very rough approxima-
tion based on height fields, such as shallow water simulations which completely ignore
vertically varying velocities within the liquid [12]. However, the dynamics of most
fluid flow of interest in computer graphics are governed by the (in)famous incom-
pressible Navier-Stokes equations, which are a set of PDEs that must hold throughout
a three dimensional fluid velocity field ~U

∂~U
∂ t

+(~U ·∇)~U =− 1
ρ

∇p+ν∇
2~U +~F (5.1)

∇ ·~U = 0

Here ρ is the density of the fluid, p is pressure, i.e. the force per unit area that the
fluid exerts on anything, ν∇2~U is the shear stress or internal friction term under the
assumption that the fluid is incompressible and Newtonian1. ν is the kinematic viscos-
ity which defines how viscous the fluid is, i.e. how much it resists deforming while it
flows. Finally, ~F is body forces per unit volume, including gravity, buoyancy and other

1 Note that the ∇2 operator is the Laplacian which is sometimes denoted by ∆ or ∇ ·∇.

50 Chapter 5 Fluid Simulation for Computer Graphics

forces. Note, that equation 5.1 is actually three equations — one for each component
of the velocity field — combined into a single vector equation. Before looking closer
at the individual terms of these equations, we will justify their use and simplify them
a little.

The primary simplifications typically applied in computer graphics are assuming
that the fluid is incompressible and inviscid. The first assumption has already been
applied in the above equations. It is a reasonable assumption given that fluid simula-
tions are typically used for flows with velocities well below the speed of sound which
means that the effects of compressibility are negligible. One exception is explosions
which are typically handled through ad hoc solutions since modeling a compressible
fluid numerically is prohibitively expensive due to strict time step restrictions. The sec-
ond assumption is also valid when simulating water or smoke as the viscosity of these
phenomena is very low under the physical circumstances typically relevant for films
or games. In fact, even if viscosity is not explicitly modeled, the numerical methods
employed to solve the equations introduce artificial viscosity as explained in section
2.3.4. The equations used to describe the motion of the fluid are simplified due to these
assumptions, and if it is further assumed that the fluid has a constant density ρ = 1, the
fluid can be fully described by a velocity field ~U and a pressure field p. The equations
are now called the inviscid Euler equations

∂~U
∂ t

+(~U ·∇)~U =−∇p+~F (5.2)

∇ ·~U = 0 (5.3)

5.1.1 DERIVATION OF THE INVISCID EULER EQUATIONS

The inviscid Euler equations can be derived from conservation of mass and momentum
[12]. Equation 5.3 thus arises from conservation of mass. Consider the mass M of a
fluid with density ρ = 1 inside an arbitrary, fixed volume Ω. Since mass cannot be
created or destroyed inside the volume, the rate of change of mass is given by the total
mass flow out of the volume

∂M
∂ t

=−
∫∫

∂Ω

~U ·~N

where ~U is the velocity of the fluid as usual and ~N is the outward pointing normal of
the boundary ∂Ω. Applying Gauss’ theorem (also known as the divergence theorem),
we change the above equation to a volume integral

∂M
∂ t

=−
∫∫∫

Ω

∇ ·~U (5.4)

Because the volume of an incompressible fluid must be constant and we have assumed
that ρ = 1, the mass of Ω must also remain unchanged

∂M
∂ t

= 0

5.1 The Equations for Fluid Flow 51

Since this must be true for any volume Ω, the integrand of equation 5.4 must itself be
zero, and we end up with the incompressibility condition of equation 5.3. A velocity
field which satisfies this equation is called divergence-free.

Equation 5.2 similarly arises from conservation of momentum, and it is in fact
Newton’s second law, ~F = m~a, in disguise, i.e. it relates how the fluid accelerates due
to the forces acting on it. To see how it appears, let us look at the fluid as a collection
of particles. Each particle represents a small piece of fluid with an associated mass
m, volume V and velocity ~U . In order to integrate the particles forward in time, we
need to find the forces acting on each particle and then use Newton’s second law to
accelerate them. There are (at least) two forces in play for an inviscid fluid. The first
is pressure p, where the intuition is that higher-pressure regions push on regions of
lower pressure. Thus, we only see an effect when there is a pressure difference. Since
pressure is a contact force, it only acts on the boundary of the volume of our particle.
The second force is due to gravity ~G and it acts throughout the volume. Hence, the net
force ~Fnet is given by

~Fnet =−
∫∫

∂Ω

p~N +
∫∫∫

Ω

ρ~G

Once again, we can apply Gauss’ theorem to convert the surface integral to a volume
integral, and we obtain

~Fnet =
∫∫∫

Ω

−∇p+ρ~G (5.5)

Recall that we have assumed ρ = 1, and we can now recognize the integrand of equa-
tion 5.5 as the right-hand side of equation 5.2. They are the forces per volume which
act on the fluid. Note, that while we have only considered gravity as an external body
force, there can be several other external forces such as artificial buoyancy and vortic-
ity confinement (see chapter 6) in practice.

As we will see in the next section, we are going to solve the inviscid Euler equa-
tions using an Eulerian approach (recall chapter 2), so we need to couple the accel-
eration of the Lagrangian particles to the Eulerian viewpoint. Essentially, we want
to answer the question of how the velocity ~U is changing at a fixed point in space as
the particles are carried around. The key to connecting these two viewpoints is the
material derivative, i.e. the derivative taken along a path moving with velocity ~U . It is
written as D

Dt , and the acceleration is given by D~U
Dt . For a generic quantity q the material

derivative is defined as

Dq
Dt
≡ ∂q

∂ t
+~U ·∇q

The first term, ∂q
∂ t , is just the rate of change of q at that fixed point in space — an

Eulerian measurement. The second term, ~U ·∇q, expresses how much of that change
is due to changes in the fluid flowing past, e.g. the temperature changing because cold
air is being replaced by hot air, and not because the temperature of any particle is
changing. Dq

Dt = 0 is called an advection equation, since it states that the quantity q is
just moving around but not changing in the Lagrangian viewpoint. We have seen this
equation before in chapter 2, where it described the dynamics of a level set. Taking the

52 Chapter 5 Fluid Simulation for Computer Graphics

material derivative of ~U , we see that we obtain the left-hand side of equation 5.2. For
a more rigorous derivation of equations 5.2 and 5.3 which handles fluids with varying
density, please refer to the book by Bridson [12].

5.1.2 PRESSURE

When simulating incompressible fluids, we need to make sure that the fluid velocity
stays divergence-free. This is where the pressure, p, comes into play. Intuitively,
pressure is whatever it takes to keep the fluid at a constant volume, i.e. make the fluid
velocity field, ~U , divergence-free. We can derive an equation which defines what p
needs to be, by taking the divergence of both sides of the momentum equation (5.2)

∇ · ∂
~U

∂ t
+∇ · ((~U ·∇)~U) =−∇ ·∇p+∇ ·~F

Changing the order of differentiation in the first term yields ∂
∂ t ∇ · ~U which is zero

because of the incompressibility condition (5.3). If we rearrange the remaining terms,
we get the following equation for pressure which is known as a Poisson equation

∇ ·∇p = ∇ · (−(~U ·∇)~U +~F) (5.6)

5.1.3 BOUNDARY CONDITIONS

So far we have only looked at the interior of the fluid we are simulating and ignored the
boundaries. We will now briefly describe two boundary conditions: solid boundaries
and free surfaces2. For solid boundaries, the boundary conditions must ensure that
fluid does not flow into or out of the solid. Thus the normal component of the fluid
velocity has to be zero, i.e. ~U ·~N = 0, where ~N is the outward pointing normal of the
solid boundary. If the solid boundary is moving, the normal component of the fluid
velocity should match the normal component of the solid’s velocity to ensure that the
normal component of the relative velocity is zero

~U ·~N = ~Usolid ·~N

This is a called a free-slip condition since the fluid is allowed to slip freely past the
solid boundary, and it is the correct, physical solution for incompressible, inviscid
fluids. For viscous fluids, one can use a no-slip condition, which states that ~U = ~Usolid .
These types of boundary conditions, where we set the values of the solution explicitly,
are called Dirichlet boundary conditions. The pressure at solid boundaries should
enforce the solid wall boundary conditions also (in addition to making ~U divergence-
free). Since we subtract the gradient of pressure from the velocity field, we need to
make sure that the normal derivative of p is zero: ∂ p

∂~N
= 0. This is known as a Neumann

boundary condition.

The free surface represents the other type of boundary we are interested in. It is
essentially where we stop modeling the fluid. For a typical water simulation, it is the

2Other important boundaries include the boundary between two different fluids in a two-phase flow
simulation, and we refer the interested reader to papers such as that by Hong and Kim [45].

5.2 Solving the Inviscid Euler Equations Numerically 53

part of the water surface that is not in contact with a solid boundary3. We model the
outside as a region with constant pressure. We can set the pressure to any arbitrary
constant, since only the derivatives of p matter. Thus at a free surface, we have the
boundary condition p = 0, and we do not modify the velocity in any way. For smoke
simulations, the free surface is at the boundary of the simulation domain. Past the
boundaries the fluid continues on, but we are not tracking it. We should allow fluid
to enter and exit freely so a free surface boundary condition with p = 0 seems natural
even though there is no visible surface.

5.2 SOLVING THE INVISCID EULER EQUATIONS NUMERI-
CALLY

Looking at the derivation of the inviscid Euler equations (5.2 and 5.3), it may seem
most natural to solve them by applying a Lagrangian particle system, and indeed this
has been done in several schemes, including Smoothed Particle Hydrodynamics (SPH)
[19, 80]. However, we will approach the solution using an Eulerian representation
similar to the one we know from level sets since it allows us to reuse numerical ap-
proximations to derivatives such as FDs [60] (section 2.3.1 gives an introduction). For
clarity, we will restrict our discussion to two dimensions. Rather than trying to solve
the complicated equations at once, we apply a numerical method called operator split-
ting, which separates the equations into their component parts and solves each of them
separately in turn. This method was originally introduced to computer graphics by
Stam [114]. It was presented along with unconditionally stable methods for solving
the resulting simpler equations, hence it is called the Stable Fluids method. The equa-
tions account for advection, body forces and incompressibility, respectively, and they
are as follows:

∂~U
∂ t

=−(~U ·∇)~U (advection) (5.7)

∂~U
∂ t

= ~F (body forces) (5.8)

∂~U
∂ t

=−∇p

such that ∇ ·~U = 0 (pressure projection / incompressibility) (5.9)

As mentioned, we solve these equations sequentially using the solution of the previous
equation as input to the next. It should be noted that advection should always be
performed in a divergence-free velocity field and hence equation 5.7 should always
be solved immediately after equation 5.9. More precisely, given numerical schemes
advect and project for solving equations 5.7 and 5.9 separately, the stable fluids
method integrates as follows for each time step to obtain ~Un+1 from ~Un:

1. ~̂U = advect(~Un,∆t)

3There actually is another fluid on the other side of the water surface, namely the air, but often we do
not bother simulating both fluids.

54 Chapter 5 Fluid Simulation for Computer Graphics

Figure 5.3 Left: A regular grid in two dimensions. The velocities are co-located with the
pressure. This type of grid is in many respects simpler to work with. Right: A MAC grid
in two dimensions. The velocities are split up into their components, which are moved to the
faces of the grid cells in a staggered arrangement. This improves second order central FD
approximations as explained in the text.

2. ~̃U = ~̂U +∆t~F

3. ~Un+1 = project(~̃U,∆t)

Note that equation 5.8 is simply solved using a forward Euler time step. Before we
move on to describing the numerical schemes for solving advection (5.7) and pressure
projection (5.9), we will briefly look at how we discretize the fluid velocities, ~U =
(u,v,w), and pressure, p.

5.2.1 SPATIAL DISCRETIZATION

The left part of figure 5.3 shows the two-dimensional grid, which we are familiar with
from chapter 2. Velocity and pressure samples are co-located in the center of grid cells.
We will reuse the notation from chapter 2 as well and for instance denote the pressure
at (i∆x, j∆y) as pi j. Note that we will assume that the grid is uniformly sampled in
all directions, i.e. ∆x = ∆y. We would like to use an unbiased, second order accurate,
central FD when for instance discretizing ∇p in equation 5.9

po
x =

pi+1 j− pi−1 j

2∆x
(5.10)

However, this formula has a major problem since it ignores the pressure pi j at the point
where the derivative is taken. Therefore the approximation could evaluate to zero even
though pi j is radically different from pi−1 j and pi+1 j. Technically, formula 5.10 has
a non-trivial null-space, which means that the set of functions for which the formula
evaluates to zero contains more than the constant functions it should be restricted to.
When approximating ∇ · ~̃U , i.e. the divergence of the fluid velocity field after solving
for advection and body forces, we also want to be able to use an unbiased second
order accurate FD. However, using the above formula, a highly diverging field, such
as ~Ui j = ((−1)i,(−1) j), would result in zero divergence.

5.2 Solving the Inviscid Euler Equations Numerically 55

To remedy these problems, Harlow and Welch introduced the Marker-and-Cell
(MAC) method in the early days of CFD [41]. They proposed a staggered MAC grid
where the fluid velocity components are sampled on cell faces rather than centers. This
grid was later introduced to computer graphics by Foster and Metaxas [31]. The right
part of figure 5.3 illustrates the staggered grid in two dimensions. Since the velocity
components are sampled on cell faces, we refer to them using half indices, such as
ui+ 1

2 j for the horizontal velocity sampled on the face between cells (i, j) and (i+1, j).
We can now naturally estimate the derivative of e.g. ui j using a central FD without

skipping any values: uo
x =

u
i+ 1

2 j
−u

i− 1
2 j

∆x . The MAC grid is thus constructed to work well
with the pressure projection operation which solves for incompressibility. However,
the downside of this staggered arrangement is that we are no longer able to look up a
full velocity vector at any point without performing some kind of interpolation, which
makes for instance advection more cumbersome.

The MAC grid generalizes to three dimensions in a straightforward manner.

5.2.2 SEMI-LAGRANGIAN ADVECTION

We will now look at how the advect scheme solves the advection equation (5.7). In-
tuition suggests using a simple forward Euler time integration coupled with central FD
approximations of the spatial derivatives. Thus, we will for example get the following
equation for the u component of the fluid velocity at (i, j) in two dimensions

un+1
i j −un

i j

∆t
=−un

i j

un
i+ 1

2 j
−un

i− 1
2 j

∆x
− vn

i j

un
i j+ 1

2
−un

i j− 1
2

∆y

Rearranging gives us a formula for un+1
i j . Unfortunately, it turns out that forward Euler

coupled with this central FD scheme is unconditionally unstable, i.e. no matter how
small ∆t is chosen, the numerical solution will always eventually blow up. Rather than
try to repair the problem by applying an upwind scheme or a more sophisticated FD,
we will instead apply an unconditionally stable method known as semi-Lagrangian
advection. Recall that solving the advection equation in a Lagrangian frame is trivial
since it is solved simply by moving the particles through the velocity field. Thus, to
answer the Eulerian question of getting the new value of some quantity q at some fixed
point x in space, we just need to find the particle that ends up at x and look up its value
of q. This is the central idea behind semi-Lagrangian advection. Specifically, to find
the value of qn+1

x we trace an imaginary particle from x backwards in time through
the velocity field and end up at xs. We then copy the value of q found at that point:
qn+1

x = qn
xs

. The tracing itself can be done using a forward Euler integration or a higher
order Runge-Kutta method [60]. Typically, the imaginary particle ends up somewhere
between the values of the grid. Therefore, we need to interpolate the result from nearby
values using e.g. bilinear interpolation (trilinear interpolation in three dimensions). In
the next chapter we will look at ways of improving the numerical accuracy of this basic
scheme.

Since the semi-Lagrangian scheme is unconditionally stable4, there is no strict

4We only ever obtain new values through a convex combination of the old values, hence the new

56 Chapter 5 Fluid Simulation for Computer Graphics

limit on the time step size ∆t. However, visual artifacts can occur if ∆t is too large,
and it is generally a good idea to break the tracing of trajectories up into smaller sub-
steps ∆t ′ such that each substep only traces roughly one grid cell, i.e. ∆t ′ < ∆x

|u| in one
dimension.

5.2.3 ENSURING INCOMPRESSIBILITY

We finish our tour through the Stable Fluids solver by looking at the project scheme
for solving the pressure projection (5.9). We start by using a forward Euler time inte-
gration to obtain an equation for the new velocity field ~Un+1

~Un+1 = ~̃U−∆t∇p (5.11)

where ~̃U is the diverging, intermediate velocity field resulting from the two first steps
of the Stable Fluids solver. We need to determine the pressure p such that the in-
compressibility condition is satisfied as well as the solid and free surface boundary
conditions. The Poisson equation (5.6) gives us exactly this. We restate it here in a
slightly different form, which is the one we will solve

∆t∇ ·∇p = ∇ · ~̃U (5.12)

Equation 5.11 is called the pressure update, and we will start by discretizing it using a
central FD approximation of the gradient of p

un+1
i+ 1

2 j
= ũi+ 1

2 j−∆t
pi+1 j− pi j

∆x

vn+1
i j+ 1

2
= ṽi j+ 1

2
−∆t

pi j+1− pi j

∆y

Similarly, we discretize the divergence of ~̃U on the right-hand side of equation 5.12

(∇ · ~̃U)i j ≈
ũi+ 1

2 j− ũi− 1
2 j

∆x
+

ṽi j+ 1
2
− ṽi j− 1

2

∆y
(5.13)

The pressure update is applied on the faces of the grid cells while the divergence is
the right-hand side of an equation for pressure which is defined at grid cell centers.
Everything lines up nicely, and now we can really appreciate the properties of the
staggered MAC grid. Finally, we discretize the left-hand side of equation 5.12

∆t∇ ·∇p = ∆t
(

∂ 2 p
∂x2 +

∂ 2 p
∂y2

)
≈ ∆t

(
pi+1 j−2pi j + pi−1 j

∆x2 +
pi j+1−2pi j + pi j−1

∆y2

)
=− ∆t

∆x2 (4pi j− pi+1 j− pi−1 j− pi j+1− pi j−1) (5.14)

where we have used a second order accurate central FD for the second order partial
derivatives. We can now combine expressions 5.13 and 5.14 to form a numerical ap-
proximation to equation 5.12. We end up with a system of linear equations Ap = b

values are bounded by the old ones.

5.3 Simulating Smoke and Water 57

To appear in the SIGGRAPH conference proceedings

Figure 6: Two stills from the rotor animation. A box is rotating inside the smoke cloud causing it to disperse. Notice how the smoke is sucked
in vertically towards the box as it is pushed outwards horizontally. The simulation time for a 120x60x120 grid was roughly 60 seconds/frame.

Figure 3: Rising smoke. Notice how the vorticies are preserved in
the smoke. The simulation time for a 100x100x40 grid was roughly
30 seconds/frame.

Figure 4: Low albedo smoke passing through several objects. Each
object interacts with the smoke and causes local turbulence and vor-
ticity. The simulation time for a 160x80x80 grid was roughly 75
seconds/frame.

Figure 5: Rising smoke swirling around a sphere. Notice how the
smoke correctly moves around the sphere. The simulation time for
a 90x135x90 grid was roughly 75 seconds/frame.

Figure 7: Six frames rendered using our interactive hardware ren-
derer of the smoke. The simulation time for a 40x40x40 grid was
roughly 1 second/frame.

5

Figure 3: Our New Method (140x110x90 grid cells).

spheres allows for an enhanced reconstruction capability of the liq-
uid surface.

The marker particles and the implicit function are separately in-
tegrated forward in time using a forward Euler time integration
scheme. The implicit function is integrated forward using equa-
tion 1, while the particles are passively advected with the flow us-
ing dxp dt up, where up is the fluid velocity interpolated to the
particle position xp.

The main role of the particles is to de-
tect when the implicit surface has suffered inaccuracies due to the
coarseness of the computational grid in regions with sharp features.
Particles that are on the wrong side of the interface by more than
their radius, as determined by a locally interpolated value of at
the particle position xp, are considered to have escaped their side
of the interface. This indicates errors in the implicit surface rep-
resentation. In smooth, well resolved regions of the interface, our
dynamic implicit surface is highly accurate and particles do not drift
a non-trivial distance across the interface.

We associate a spherical implicit func-
tion , designated p, with each particle p whose size is determined
by the particle radius, i.e.

 p x sp rp x xp (3)

Any difference in from p indicates errors in the implicit function
representation of the surface. That is, the implicit version of the
surface and the particle version of the surface disagree.

We use escaped positive particles to rebuild
the 0 region and escaped negative particles to rebuild the 0
region as defined by the implicit function. The reconstruction of the
implicit surface occurs locally within the cell that each escaped par-
ticle currently occupies. Using equation 3, the p values of escaped
particles are calculated for the eight grid points on the boundary of
the cell containing the particle. This value is compared to the cur-
rent value of for each grid point and we take the smaller value
(in magnitude) which is the value closest to the 0 isocontour
defining the surface. We do this for all escaped positive and escaped

Figure 4: Foster and Fedkiw 2001 (140x110x90 grid cells).

negative particles. The result is an improved representation of the
surface of the liquid.

We apply the error correction method discussed above after any
computational step in which has been modified in some way.
This occurs when is integrated forward in time and when the
implicit function is smoothed to obtain a visually pleasing surface.
We smooth the implicit surface with an equation of the form

 S 0 ! 1 (4)

where is a fictitious time and S is a smoothed signed distance
function given by

S

 2 "x 2
(5)

More details on this are given in [Foster and Fedkiw 2001].

In complex flows, a liquid interface can be stretched and torn in a
dynamic fashion. The use of only an initial seeding of particles will
not capture these effects well, as regions will form that lack a suffi-
cient number of particles to adequately perform the error correction
step. Periodically, e.g. every 20 frames, we randomly reseed par-
ticles about the “thickened” interface to avoid this dilemma. This
is done by randomly placing particles near the interface, and then
using geometric information contained within the implicit function
(e.g. the direction of the shortest possible path to the surface is

given by N ! !) to move the particles to their respective
domains, 0 or 0. The goal of this reseeding step is to pre-
serve the initial particle resolution of the interface, e.g. 64 particles
per cell. Thus, if a given cell has too few or too many particles,
some can be added or deleted respectively.

If we felt that preserving the volume of the fluid was absolutely nec-
essary in order to obtain visually pleasing fluid behavior, we would
have chosen to use a volume of fluid (VOF) [Hirt and Nichols 1981]
representation of the fluid. Although VOF methods explicitly con-
serve volume, they produce visually disturbing artifacts allowing
thin liquid sheets to artificially break up and form “blobbies” and

Figure 5.4 Simulated fluid phenomena. Left: A column of smoke flows around a solid sphere
boundary. Reprinted from [26]. Right: A solid sphere boundary is dropped into the water
causing a splash. Reprinted from [30].

where p are the pressure unknowns, A is the coefficient matrix with the coefficients
from expression 5.14, and b is the divergence in each fluid cell given by expression
5.13. Once the system of equations has been set up5, it is traditionally solved with a
numerical scheme known as the Preconditioned Conjugate Gradient (PCG) method
along with an Incomplete Cholesky Preconditioner [60]. Further details on imple-
menting a fluid solver, including the PCG method and correct handling of boundary
conditions in the pressure projection, can be found in the book by Bridson [12].

5.3 SIMULATING SMOKE AND WATER

In the previous sections, we explained all the steps needed to integrate the motion of a
fluid through time. There are only a few extra steps required to simulate phenomena
such as smoke or water [26, 31, 32], and we will briefly explain these in turn. Figure
5.4 illustrates some of the results achievable using these methods.

For smoke, one popular option is to represent the densities of soot particles s as
a scalar field where the values are stored at cell centers. Other quantities, such as
temperature T , can be represented in the same way. These quantities are then advected
around with the fluid

∂q
∂ t

+(~U ·∇)q = 0 (5.15)

in a separate step using semi-Lagrangian advection just as for the fluid velocity com-
ponents themselves. New smoke can be added and temperature changes performed in
a separate step similar to how equation 5.8 is solved. Finally, the density of the smoke
and the temperature changes can be used to create an effect similar to buoyancy by
influencing the fluid velocity field through an acceleration

~B = (αs−β (T −Tambient))~G

5For numerical reasons, the Poisson equation is negated to make the involved system positive definite.

58 Chapter 5 Fluid Simulation for Computer Graphics

where α and β are non-negative control coefficients, and Tambient is the ambient tem-
perature.

For water, we need to track the water surface. As mentioned in previous chapters,
this is often done using the level set method where the level set surface is advected
using the fluid velocities. The level set on the other hand defines the free surface
which is used when setting up boundary conditions in the fluid simulator. It should
be noted that the water velocities must be extrapolated into the air in a band as thick
as the narrow band containing the level set in order to ensure correct advection of the
surface. One method for doing this involves solving ∂q

∂ t = −∇φ ·∇q to steady state
outside the fluid. Since this dissertation primarily focuses on smoke animations, we
will leave the discussion of water simulations at that.

5.4 AN ALTERNATIVE METHOD

There are a number of other methods for doing fluid simulations which are not based on
solving the Navier-Stokes equations using an approach similar to the one described in
the previous sections. One of the most interesting for computer graphics is the Lattice-
Boltzmann method (LBM) [15], which follows the approach of cellular automata to
model complex systems using a set of simple, local rules for each cell. It computes the
macroscopic quantities of the fluid such as velocity and pressure by simulating the mi-
croscopic particles. Recently, this method has garnered a lot of interest in the computer
graphics community due to its local, parallel nature [121, 122, 124]. All computations
are the same for each grid cell and they only depend on the neighboring cells, which
makes the method perfect for a parallel architecture such as modern graphics cards.
However, the basic method is limited by strict time step restrictions in order to ensure
stability and it also has fairly high memory requirements.

CHAPTER 6

FLUID SIMULATION EXTENSIONS

In this chapter, we will present a number of important improvements that have been
proposed for the original Stable Fluids method of Stam [114]. While the Stable Fluids
method has a lot of advantageous properties including being unconditionally stable
(i.e. no matter how large a time step one utilizes, the solution does not grow exponen-
tially) and fairly simple to implement, it suffers from one major disadvantage. It is only
first order accurate in space and time, and the amount of numerical dissipation is very
high, which unfortunately results in a dampening and smoothing of high-frequency
detail and therefore in a less visually interesting flow. Another disadvantage is that
solid boundaries are sampled on the same grid as the other quantities of the Stable Flu-
ids method. However, the boundaries may in fact be curved and not lined up with the
grid, and this can cause some noticeable visual artifacts near them. The improvements
presented in the following sections attempt to remedy these issues.

6.1 VORTICITY CONFINEMENT AND VORTEX PARTICLES

Vortices create many of the interesting swirling, turbulent motions in for instance
smoke. Unfortunately, they tend to dissipate quickly during numerical simulation due
to numerical dissipation and the operator splitting method. We would like to detect
these naturally occurring vortices and somehow enhance them to make the result more
visually interesting. The curl operator measures how much a velocity field is rotating
around any point. It is defined as ∇× ~U , which is just the cross product of the differ-
ential operator ∇ = (∂

∂x ,
∂
∂y ,

∂
∂ z) and ~U . In three dimensions it results in a vector, the

length of which measures how fast the velocity is rotating, while the direction gives
us the axis of rotation. In fact, curl is twice the local angular velocity and we define
vorticity ~ω to be the curl

~ω =
(

∂w
∂y
− ∂v

∂ z
,
∂u
∂ z
− ∂w

∂x
,
∂v
∂x
− ∂u

∂y

)

59

60 Chapter 6 Fluid Simulation Extensions

Steinhoff and Underhill [116] proposed a technique for preserving vorticity called vor-
ticity confinement. The method introduces an extra term to the momentum equation
(5.2) which attempts to preserve vorticity. The central idea, which was later introduced
to computer graphics by Fedkiw et al. [26], is to identify vortices as peaks in the vor-
ticity field and then add a body force to boost the rotational motion around each vortex.
The normalized gradient ~N of |~ω| will give us unit vectors pointing towards the peaks
of vorticity, i.e. the centers of rotation of the vortices

~N =
∇|~ω|
|∇|~ω||

With ~N pointing towards the center of rotation, and ~ω pointing along the axis of ro-
tation, we can obtain a force, ~Fcon f , which enhances the rotation by taking the cross
product of these two vector fields

~Fcon f = ε∆x(~N×~ω)

where ∆x is introduced to ensure that the force diminishes as ∆x→ 0, and ε is a param-
eter that controls the magnitude of the vorticity confinement force. Ideally, ε should
be somehow connected to the amount of vorticity dissipation. However, to the best
of our knowledge, no one has proposed such a coupling, and choosing a suitable ε
can be hard. For instance, choosing ε too high may result in unnaturally looking mo-
tion, where the vorticity completely overtakes the flow resulting in a random turbulent
chaos which makes the smoke look “alive”. It is also unfortunate that ε is the same
everywhere in the simulation domain.

Selle et al. [108] improve upon these problems by introducing the vortex particle
method. The idea is to add Lagrangian particles carrying dynamic vorticity, i.e. each
particle has an associated vector ~ω . This vorticity is then transferred from the particles
back to the Eulerian velocity field using Gaussian kernels. This ensures that vorticity
confinement is only applied locally. The correct motion of the particles can be derived
by applying the curl operator to both sides of the momentum equation (5.2) to put it
into vorticity form [12]. This results in two terms: vorticity advection and vorticity
stretching. The vorticity advection is handled simply by advecting the particles them-
selves using a higher order Runge-Kutta scheme [60]. The vorticity is stretched by
solving the equation ∂~ω

∂ t = (~ω ·∇)~U using a simple forward Euler integration and FDs.
This method allows highly turbulent flows without degenerating to turbulent chaos,
and it is well-suited for creating the rolling smoke that is characteristic of many explo-
sions. However, adding particles remain an ad hoc undertaking in terms of how many
particles should be used and when to add them.

6.2 REDUCING NUMERICAL DISSIPATION OF ADVECTION

Several methods which can help reduce the numerical dissipation of the semi-Lagran-
gian approach have been proposed. One such method originates from the field of level
sets, but is general enough to be used in the context of semi-Lagrangian advection of
fluid velocities also. It is called a Back and Forth Error Compensation and Correction

6.2 Reducing Numerical Dissipation of Advection 61

(BFECC) method, and it was proposed by Dupont and Liu [21]. Let L∆x denote a
numerical operator which solves the advection equation (5.7) forward in time one time
step. Similarly, let L −1

∆x denote a numerical operator which solves the advection equa-
tion backwards in time. The BFECC method then proceeds as follows for integrating
a quantity q forwards one time step:

1. Solve forward in time: q̃n+1 = L∆x(qn).

2. Solve backward in time: qn
1 = L −1

∆x (q̃n+1).

3. Let qn
2 = qn + 1

2(qn−qn
1).

4. Solve forward in time: qn+1 = L∆x(qn
2).

In our case, L∆x is semi-Lagrangian advection and q is the fluid velocity components.
For level sets, L∆x could be a third order TVD RK [112] coupled with HJ WENO [69],
while q would be the signed distance function, φ . The numerical error is assumed to
be roughly the same for both numerical operators, and hence we can estimate the error
by e = 1

2(qn−qn
1). We then add e to qn in order to remove the principal components of

the error from qn+1. This can result in an improvement of the order of the numerical
method both temporally and spatially [21].

If the advected velocity field has details varying at the size of grid cells, ∆x, or
smaller, resampling will destroy them or cause them to alias as lower-frequency arti-
facts. In fact, the Nyquist sampling limit dictates that the maximum spatial frequency
that can be reliably advected has period 4∆x, which is even worse. Lagrangian par-
ticles, on the other hand, do not lose information as no resampling is performed. As
mentioned in the previous chapter, this has lead to methods based entirely on particles
such as SPH [19, 80]. However, Eulerian grids are more efficient and accurate when
enforcing incompressibility, and thus hybrid particle methods which seek to utilize the
best properties of both approaches have emerged. The Particle-in-Cell (PIC) method
by Harlow and Welch [41] replaces the semi-Lagrangian step with actual particle ad-
vection, while integrating all other terms on the grid. In particular, the advection step
first transfers the quantity to be advected, e.g. the fluid velocity components, onto a
number of particles for each grid cell using interpolation. It then advects the particles
using a higher order Runge-Kutta method. Finally, it transfers the quantity back to the
grid from the particles using a weighted average. Unfortunately, the method suffers
from excessive numerical dissipation because quantities are averaged from particles to
the grid, and then these smoothed quantities are interpolated back to the particles in
the next step, thus compounding the smoothing.

The fluid implicit particle (FLIP) method introduced to incompressible flow by
Zhu and Bridson [136] removes the numerical dissipation of basic PIC using a sim-
ple variation on the sceme: Rather than interpolating a quantity back to the particles,
the change in the quantity (resulting from body forces and pressure projection com-
puted on the grid) is interpolated and added to the particle value rather than replacing
it. Therefore, smoothing is not accumulated and FLIP is virtually free of numerical
dissipation. The method can introduce some noise, however, and therefore it can be
a good idea to blend it with a regular PIC update. Both PIC and FLIP are first order

62 Chapter 6 Fluid Simulation Extensions

accurate. This appears to be adequate for advecting e.g. velocities, smoke densities,
and temperatures.

Finally, we note that the numerical dissipation of the semi-Lagrangian approach
due to interpolation can be decreased by using the monotonic cubic interpolation
scheme of Fedkiw et al. [26]. However, care must be taken to ensure that interpo-
lated values are bounded by the values of the involved grid points. Otherwise, the
semi-Lagrangian method loses the property of being unconditionally stable.

6.3 MORE ACCURATE BOUNDARIES

The traditional Stable Fluids approach simply labels grid cells as either being solid,
fluid or air in preparation of the boundary conditions for advection and pressure pro-
jection. Thereby it reduces the geometry of solid boundaries to voxelized, sampled
representations. For an inclined or curved solid boundary this can lead to stair step ar-
tifacts where the liquid rests on the boundary at regular intervals rather than smoothly
flowing down it. One interesting alternative is to replace the MAC grid with an unstruc-
tured tetrahedral mesh [28]. This allows for a perfect alignment of solid boundaries
with the simulation grid. However, it also comes with the overhead of constructing
and simulating on an unstructured mesh which is more complicated than working with
a fixed Eulerian grid.

Another solution can be found in the finite volume method. The method discretizes
the integral form of the incompressibility condition

∫∫
∂C

~U ·~N = 0, where C is a control
volume. In the interior of the fluid, each grid cell is simply used as C, and the boundary
integral is approximated by summing the area of each cell face (∆x2) multiplied with
the velocity component stored at the face center. Near solid boundaries, we instead
use just the fluid part of the grid cell as the control volume. This means that the area
of some faces will be reduced to the fraction of the face which lies within the fluid.
Ultimately, we end up with a system of linear equations for pressure, which is similar
to the usual system, and can be solved with the same numerical methods. The only
difference is that pressure values immediately within solid boundaries are a part of the
system now in order to allow for a more accurate solution. Since this method uses
pressures inside solids, it can not handle solids which are thinner than one grid cell.
In these cases, it may be preferable to fall back to the usual voxelized treatment of
solids. Guendelman et al. [40] demonstrate how to do this and we refer to their paper
for further details.

Recently, Batty et al. [6] introduced an approach based on calculus of variations
which uses fluid volume fractions in the discretization. The pressure projection op-
eration is formulated as a constrained minimization problem, and they show that the
discretization of this formulation leads to boundary conditions which are free of the
previously mentioned stair step artifacts. We will look closer at variational calculus in
the next chapter. For more information, we refer to the original paper and the book by
Bridson [12].

CHAPTER 7

CONTROLLING FLUID SIMULATIONS

Chapter 5 presented the Stable Fluids method [114] for simulating fluids in computer
graphics. It furthermore motivated the need for actually simulating these phenomena
rather than modeling them by hand or using practical effects. While the methods pre-
sented in chapter 6 improved several of the numerical issues of the original method,
we have so far ignored the important problem of controlling the final visual appearance
and behavior of a fluid simulation. The work presented in this chapter and papers II
and III targets this problem of making fluid simulations more easily controllable and
directable1. As discussed in the beginning of chapter 5, one of the central problems in
producing controllable and directable behavior using a fluid simulator lies in the fact
that we are solving a so-called initial value problem: We specify the initial conditions
and wait for the outcome of the computationally expensive simulation. Unfortunately,
the desired behavior and appearance can be hard to express in these initial conditions.
Furthermore, the non-linear, unstable nature of the inviscid Euler equations means that
tweaking the parameters using a previous result as a frame of reference often results
in a completely different, unexpected behavior. This means that a lengthy trial and
error process is often involved in art-directing a certain fluid simulation in visual ef-
fects. Since fluid simulations are computationally expensive, artists often employ the
workflow illustrated to the left in figure 7.1, which we will call the regular design
cycle. They simulate on a coarse, low-resolution grid in order to obtain a reasonable
turnaround time when refining their parameters. Once they have a satisfactory result,
they increase the resolution of the simulation to add more detail. Unfortunately, this
often completely changes the overall behavior and visual impression of the animation,
which may cause the composition to fail from the director’s viewpoint [36]. This prop-
erty is especially evident when the initial grid resolution is very low and the solution
has far from converged primarily due to the numerical viscosity of the discretization
(and, again, the non-linearity of the inviscid Euler equations).

Our proposed fluid control framework is currently targeted at smoke simulations
and assumes that the regular design cycle illustrated in figure 7.1 is possible and fea-

1Some of the text from the papers will be restated in this chapter in order to keep the reading experi-
ence coherent.

63

64 Chapter 7 Controlling Fluid Simulations

Coarse
Simulation

Satisfactory?

Refine
Parameters

No

Fine Simulation

Yes

Satisfactory?

Regular Design Cycle Coarse Simulation

Fine Simulation Guided Fine Simulation

Coarse Simulation
Cycle

Guided Fine
Simulation

Guided Design Cycle

No

Yes

Satisfactory?

Yes
Post-processing

No

Post-processing

Refine

Figure 7.1 Left: A regular design cycle for art-directing a fluid simulation in visual effects.
The fine simulation unfortunately looks and behaves completely differently from the coarse
simulation. Right: The guided design cycle made possible by our fluid control framework. The
guided fine simulation maintains the bulk flow of the coarse simulation while allowing higher-
frequency detail to develop. The fine simulation results could be fed into a post-processing
scheme to further enhance the level of detail.

sible for the given simulation problem. In particular, we assume that it is possible
to obtain the desired bulk motion in the coarse simulation. If so, we can apply the
guided design cycle illustrated to the right in figure 7.1. Once the coarse simulation
cycle has provided a satisfying flow, the guided high-resolution simulation is run us-
ing our method, which results in an overall motion and behavior similar to the coarse
simulation, but with added high-frequency details. This allows for a workflow where
the artist can concentrate on experimenting with the parameters in the high-resolution
simulation without worrying about changing the approved bulk motion from the low-
resolution starting point. The method modifies the usual pressure projection step of
a Stable Fluids solver, but is able to reuse all other steps, making it well-suited for
integration into an existing fluid simulation pipeline. We rely on calculus of variations
[63] for making a coupling between the velocity field of a low-resolution simulation
and the low frequencies of the velocity field of a high-resolution simulation. Specifi-
cally, we derive our mathematical model from a variational formulation of the pressure
projection, i.e. the pressure projection phrased as a constrained minimization problem.
We use lowpass filters to ensure that only the low frequencies are being guided, while
the higher frequencies are free to develop the desired details. Our model includes
guiding weights that allow us to specify the guiding strength for each point in the sim-
ulation domain. We employ a customized multigrid method [14] for efficiently solving
the resulting system of linear equations. In total, our method requires less than roughly
twice the computation time of a regular simulation of the same resolution.

The remaining sections of this chapter are organized as follows. Section 7.1 high-
lights a number of other methodologies for providing control over fluid simulations
and adding high-frequency detail. It should be stressed that these alternatives are not

7.1 Control Methodologies 65

precluded by our work, and they can in most cases be combined with our method in
order to produce high-quality simulations quickly. Next, section 7.2 briefly introduces
calculus of variations and demonstrates how it can be used to derive the Poisson equa-
tion from a constrained minimization problem. We then summarize the contributions
of papers II and III in the following section. Section 7.4 provides a few extra im-
plementation details, particularly regarding the multigrid solver. They are part of our
planned journal paper on fluid control. Finally, the last section discusses the results
obtained.

7.1 CONTROL METHODOLOGIES

Given the importance of fluid simulations in computer graphics and visual effects in
particular, a lot of work has been and is still being put into providing various “knobs”
and “handles” for controlling the outcome. These approaches vary in their specific
goals and some are specialized for providing a certain effect while others are more
generally applicable. Most of the interesting and relevant methods in the context of
our control framework have been covered to some extent in paper II, and we will focus
here on how they complement our method.

Divergence control is an example of a simple, but effective control mechanism. It
was used by Feldman et al. [27] as a method well-suited for creating explosion-like
motions for fire and smoke simulations. The idea is to modify the right-hand side of
the incompressibility condition (5.3) by adding a term, d, which dictates the fractional
volume change for each point in the fluid, thus essentially forcing the fluid to diverge
when and where we desire it. Setting d to some positive (constant or time-dependent)
value inside smoke sources can create more interesting, billowing motions. Similarly,
setting d to a negative value somewhere can cause smoke to be sucked towards that
area. The modification of the incompressibility condition results in a slight change in
the final linear system of our method, but it should be trivial to implement.

Enright et al. [24] suggest providing control for water simulations through manip-
ulations of the velocity extrapolation across the free surface. The idea is to simply
perform a convex combination of the extrapolated velocities with a number of proce-
durally or artistically generated velocity fields in order to affect the advection of the
free surface represented by a particle level set. They suggest using a wind field in or-
der to make the water look more rough and windblown, or employing the zero velocity
field to make the water settle quicker.

Treuille et al. [126] propose a scheme for controlling smoke simulations through
keyframes specified by the user. It is an optimization problem in that they formulate
an objective function which corresponds to how well a simulation matches the spec-
ified keyframes. Then they solve for the forces which minimize that function using
a gradient descent based optimizer resulting in the smoke assuming the key-framed
poses. Later, McNamara et al. [75] improved the speed of this approach by employing
the adjoint method for computing derivatives used in the optimization process. Since
the adjoint method requires computation of adjoint derivatives for each step of the
simulation, we would need to compute adjoint derivatives for our modified pressure

66 Chapter 7 Controlling Fluid Simulations

projection step in order to combine our method with theirs in high resolution. The
adjoint state of pressure projection involves solving the transpose linear system. The
paper of McNamara et al. exploits that the original pressure projection results in a sym-
metric system, and hence the adjoint state is computed in the same way as the original
state. However, our method results in an asymmetric system, which means that we
would have to solve a different system when computing the adjoint. Alternatively, one
could apply the adjoint method exclusively to obtain the low-resolution prototype and
then use our method for the final high-resolution result.

A class of control methods more suited for immediate combination with our method
is the force based control schemes. An example is the work of Fattal and Lischinski
[25], which adds a force term to the momentum equation (5.2) designed for driving
the smoke towards a given target shape. Additionally, a smoke gathering term is added
to the usual equation for smoke density advection (5.15) in order to combat numerical
diffusion and allow sharp features in the target shape. Both terms are explicitly defined
by the current state of the simulation, and therefore there is no need to perform an op-
timization to find them. The drawback is that there is no way to directly control how
well a target shape is approximated at a given time. Furthermore, the driving force
and gathering term must be used carefully in order to preserve a natural looking, rich
fluid motion. All the force based control methods are easily combined with our control
framework since we only modify the pressure projection step. However, note that in
many cases the forces must be added before advecting the velocity field as their effect
is not guaranteed to survive the pressure projection step.

Recently, and simultaneously with the development of our control framework, pro-
cedural methods for synthesizing the high-frequency detail as a post-processing step
have emerged. They are typically given a simulation result of fairly low resolution
as input and add the higher frequencies procedurally rather than through simulation,
thus avoiding the costly running times and memory requirements of a full simulation
at high resolution. One example is the wavelet turbulence method of Kim et al. [58],
which uses the wavelet decomposition of a low-resolution simulation to locate missing
high-frequency components. These components are then synthesized and added back
in a time-coherent manner. One important disadvantage is that this and similar meth-
ods can cause otherwise stable, laminar flows to break up into turbulence. The chapter
will end with a more thorough comparison of our method to the approach based on
wavelet turbulence. As indicated by the semi-transparent post-processing box of fig-
ure 7.1, the output of our method could be used as input to a post-processing scheme
for adding even more detail.

For a discussion of other related control methods, please refer to papers II and III.

7.2 CALCULUS OF VARIATIONS

Extremum problems are ubiquitous within a lot of scientific fields, such as mechan-
ics, physics, mathematics, and computer graphics and vision. They involve finding
the largest or smallest possible value of a quantity, and they are applicable to a wide
range of problems, such as finding the highest peak of a mountain or the shortest path

7.2 Calculus of Variations 67

between two points. The calculus of variations can be used to solve problems of this
kind. Mathematically speaking, the calculus of variations was developed for solving
the problem of minimizing a definite integral. However, we will introduce the intu-
ition behind it looking at the minimization of a function. Say we have the height of a
mountain range represented by the continuous and differentiable function f (x,y). At
the bottom of a valley all points of an infinitesimal neighborhood must have the same
height, i.e. at a (local or global) extremum, the rate of change of f must be zero in
every possible direction. This is not quite enough to classify extrema in general as it
could be a saddle point rather than an extremum. We say that f has a stationary value
at points where the rate of change is zero. Conveniently, many problems of motion
within mechanics require only the stationary value of a certain integral. This includes
the variational formulation of pressure projection within fluid mechanics.

In order to mathematically define our exploration of the infinitesimal neighbor-
hood, we introduce the concept of a variation. A variation means an infinitesimal, vir-
tual displacement. Think of it as a kind mathematical experiment, where we explore
what happens with a function when we change the position slightly in an arbitrary way.
We write these infinitesimal, virtual changes of our position as δx1,δx2, . . . ,δxn for a
function of n variables. The resulting change of the function is called the variation of
the function. The first variation of the function f (x1,x2, . . . ,xn) is given by

δ f =
∂ f
∂x1

δx1 +
∂ f
∂x2

δx2 + · · ·+ ∂ f
∂xn

δxn

If f is to have a stationary value, the first variation must vanish. Since the displace-
ments δxi are arbitrary, it follows that f has a stationary value if and only if

∂ f
∂xi

= 0, (i = 0, . . . ,n) (7.1)

Say we wish to minimize a function subject to some auxiliary constraint g(x1, . . . ,
xn) = 0. This implies that our variables can no longer be varied freely, since they
are not completely independent. Therefore, having the first variation vanish does not
imply equation 7.1, and we no longer have a free variation problem. However, it turns
out that by introducing an undetermined factor λ , the problem can be turned back into
a free variation problem. Rather than setting the first variation of f equal to zero, we
instead look at the first variation of the function f̄ = f + λg, and treat it as a free
variation problem. This method is called the method of Lagrange multipliers and it
generalizes to an arbitrary number of constraints.

Let’s look at how these ideas generalize to finding stationary values for definite
integrals. In one dimension, we are given a functional F(y,y′,x) of three variables. We
are further given the definite integral I =

∫ b
a F(y,y′,x)dx along with boundary condi-

tions f (a) = α and f (b) = β . The problem is then to find the function y = f (x) which
minimizes I or at least gives it a stationary value. It may appear that this problem is
radically different from what we have just considered. Instead of minimizing a func-
tion, we are now minimizing a definite integral, and our unknown is now a function,
y = f (x), rather than a set of variables, x1, . . . ,xn. However, it turns out that by re-
placing the definite integral with a finite sum and using difference coefficients for the

68 Chapter 7 Controlling Fluid Simulations

derivate, we can turn the problem back into a problem of minimizing a function of a set
of variables. As we carry this approach to the limit, i.e. let the discretization interval,
∆x, tend to zero, we end up with the so-called Euler-Lagrange differential equation

∂F
∂y
− d

dx
∂F
∂y′

= 0

which is a necessary and sufficient condition of a stationary value for the definite in-
tegral, I, i.e. the solution of the equation is a function y which results in I being sta-
tionary. The differential equation generalizes to functions of several variables in a
straightforward manner.

The above exposition is very condensed, and the interested reader can find further
information in the book by Lanczos [63]. We will now briefly demonstrate how calcu-
lus of variations can be used in the context of fluid mechanics. Recall that the Poisson
equation

∇ ·∇p = ∇ · ~̃U (7.2)

is used to enforce the incompressibility condition of the inviscid Euler equations. It
can be derived from the minimization of the difference between two velocity fields
~U and ~̃U subject to the constraint that ~U be divergence-free (see [29, pp. 202-204]).
Mathematically formulated, one minimizes

R =
1
2

∫∫∫
Ω

[
~U(r)− ~̃U(r)

]2
(7.3)

subject to the constraint
∇ ·~U(r) = 0 (7.4)

where r is the position vector, Ω is the domain, and we have assumed that the fluid den-
sity is constant. Employing the method of Lagrange multipliers, the constrained min-
imization problem (equations 7.3 and 7.4) can be transformed into the unconstrained
problem

R̄ =
1
2

∫∫∫
Ω

[
~U(r)− ~̃U(r)

]2
−
∫∫∫

Ω

λ (r)∇ ·~U(r)

where λ (r) are the scalar-valued Lagrange multipliers. Taking the first variation, δ R̄,
and solving for a stationary point, one obtains the Poisson equation (7.2) and the fa-
miliar velocity field correction formula ~U(r) = ~̃U(r)−∇λ (r) subject to the boundary
conditions λ = 0 on parts of the boundary where outflow is allowed (i.e. free sur-
faces where boundary conditions for ~U are not prescribed) and ∇λ = 0 on parts of the
boundary where values for ~U are prescribed (i.e. solid boundary conditions). Note that
this allows for a one-way coupling from moving solid boundaries to the fluid, and that
the pressure, p, is in fact the Lagrange multipliers, λ .

7.3 CONTRIBUTIONS

As mentioned in the beginning of the chapter, the primary goal of our fluid control
framework is to facilitate a workflow, wherein the artist can reliably use coarse, pro-
totype simulations for parameter tuning. The bulk motion of the prototype should be

7.3 Contributions 69

retained as well as possible when increasing the resolution of the simulation to pro-
duce a final, more detailed result. Our framework only modifies the usual pressure
projection step of a Stable Fluids solver, and is able to reuse all other steps, making it
well-suited for integration into an existing fluid simulation pipeline. In particular, the
framework does not disrupt the remaining workflow of hardware, software and artists.

To summarize, the work presented in paper II makes the following contributions:

• A mathematical model for guiding a high-resolution velocity field with a low-
resolution velocity field based on calculus of variations. We also provide the
resulting set of linear equations.

• A practical implementation of our guiding framework, including methods for
lowpass filter estimation and handling of boundaries. In particular, to handle
boundaries, we adopt the penalization method [4] and provide an implicit dis-
cretization to ensure numerical stability.

• A custom multi-threaded multigrid implementation based on a fast and compact
dynamic matrix storage format. Our multigrid solver maintains a staggered grid
on each level which improves the convergence ratio by a factor of two. As
a result, a guided simulation requires less than twice the simulation time of a
regular simulation of the same resolution.

• Early investigations of the parameters of our framework, such as the strength of
the guiding weights and the size of the lowpass filters.

Paper III improves upon the previous paper and contributes the following:

• A novel mathematical model that leads to more efficient space- and time-de-
pendent guiding of smoke animations. The efficiency is derived from an equa-
tion system, where the matrix does not have to be recomputed when the guid-
ing weights change over time. Furthermore, the computation times and storage
requirements are reduced compared to the previous paper when using space-
dependent guiding weights.

• Exploration of time-dependent guiding for artistic effects and for increasing the
amount of high frequency features in the high-resolution guided flows. We pro-
pose guiding weights based on the smoke densities and well as guiding weights
based on error estimates. Additionally, we explore using artistically animated
guiding weights.

The unfinished journal paper will provide more detailed descriptions of all steps
necessary to make the control framework feasible in practice. Furthermore, we will
present more thorough comparisons of our work to procedural methods for adding
high-frequency details such as the wavelet turbulence method [58]. We will also fur-
ther explore the artistic effects and visual improvements achievable with various, time-
dependent guiding weights. Finally, we will continue investigating the visual signifi-
cance of our framework parameters such as the lowpass filter size.

Read papers II and III
at this point.

70 Chapter 7 Controlling Fluid Simulations

7.4 FURTHER DETAILS ON CUSTOMIZED MULTIGRID SOL-
VER

Recall that the multigrid method [14] solves a linear system A~X = ~B on progressively
coarser grids. It transfers solutions from coarser to finer grids and residuals from finer
to coarser grids by means of interpolation and restriction operators, respectively. On
each grid, or level, h, of the multigrid solve, a matrix operator, Ah, is constructed and
a relaxation method is employed for a small number of iterations. The strength of the
multigrid method comes from the fact that the low frequencies of the solution con-
verge much faster on coarser than finer grids. Therefore it makes sense to transfer the
residual of an intermediate fine solution ~V to a coarser grid once the high-frequency
components of the error have been eliminated. Relaxing on he coarser grid will elim-
inate the lower frequencies of the residual, which we can then use to correct ~V . This
idea is formalized in the numerical scheme called a V-Cycle which is heavily utilized
by the multigrid method. A V-Cycle on level h is thus comprised of the following
recursive pseudocode, where R2h

h and Ih
2h are restriction and interpolation operators,

respectively:

VCycleh(~V h,~Bh) :

1. Relax a number of times on Ah~Xh = ~Bh with the given initial guess ~V h.

2. If h is the coarsest grid, go to step 4.
Otherwise, set

~B2h← R2h
h (~Bh−Ah~V h),

~V 2h←~0,
~V 2h← VCycle2h(~V 2h,~B2h).

3. Correct ~V h←~V h + Ih
2h

~V 2h.

4. Relax a number of times on Ah~Xh = ~Bh using the corrected ~V h as initial guess.

For our linear system — shown in figure 3 of paper II — we found that extending
the solver with restriction and interpolation operators that operate on cell faces as well
as cell centers (in order to maintain a staggered grid on each level of the multigrid
solve) improved the ratio of errors in each iteration roughly by a factor of two and
required only a few multigrid cycles to converge. However, to do this properly, new
interpolation and restriction operators are required. We first describe how to construct
these operators, and then we describe how to couple them to our linear system.

7.4.1 INTERPOLATION AND RESTRICTION OPERATORS

As explained above, better multigrid convergence can be obtained if the staggered grid
arrangement is maintained at all levels, ∆x = h,2h,4h, . . ., of the multigrid solve. This
requires specialized interpolation and restriction operators. We have designed new op-
erators from the variational property that the interpolation and restriction operators are

7.4 Further Details on Customized Multigrid Solver 71

(Iλ)(i, j) =
1

16

1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

 ,(Rλ)(i, j) =
1

64

1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

 (Ix)
(i, j) =

1
8

1 2 1
3 6 3
3 6 3
1 2 1

 ,(Rx)(i, j) =
1

32

1 2 1
3 6 3
3 6 3
1 2 1

Figure 7.2 Top left: A coarse 3× 3 grid superposed on top of a finer 6× 6 grid. The cell-
centered grid points in the coarse grid are shown with large circles and the cell-centered grid
points in the finer grid are shown with small circles. The single bold grid point in the coarse
grid contributes to all bold grid points in the finer grid when interpolating from the coarse
to the fine grid. Bottom left: Shows the corresponding interpolation- and restriction-weights
corresponding to the nonzero entries in the (i, j)’th column of Iλ and the (i, j)’th row of Rλ .
Top right: A coarse 2× 3 grid superposed on top of a finer 4× 6 grid. The single bold grid
point in the coarse grid contributes to all bold grid points in the finer grid when interpolating
from the coarse to the fine grid. Bottom right: Shows the corresponding interpolation- and
restriction-weights.

transposes of each other, meaning that Ih
2h = c(R2h

h)T [14], where Ih
2h is the interpola-

tion operator that transfers a function on level 2h to level h and R2h
h is the restriction

operator that transfers a function from level h to level 2h. Essentially this property
implies that if a grid point at level h affects a grid point at level 2h through the re-
striction operator, then the grid point at level 2h will also affect the grid point at level h
through the interpolation operator. When interpolation and restriction operators satisfy
this variational property they are optimal with respect to a two-grid correction process
in the sense that the error at the fine grid after correction is minimal among operators
of the given order [14].

Next we will show how the filters are derived in two dimensions. During a multi-
grid solve for a two-dimensional simulation, three grids are active: The grid of x-
velocities, Gx, living on faces with normals in the x-direction, the grid of y-velocities,
Gy, living on faces with normals in the y-direction and the grid of cell-centered La-
grange multipliers Gλ . For each of these grids we define a unique interpolation and
restriction operator. The operators are defined with subscripts matching those of the
grids, such that e.g. Rλ and Iλ are the restriction and interpolation operators of Gλ ,
respectively. To define a pair of interpolation and restriction operators, we start by
defining the interpolation operator and then use the aforementioned variational prop-
erty to determine the restriction operator. The interpolation operator is simply defined
by a bilinear interpolation between a coarse and a fine grid as shown in figure 7.2,
where a coarse grid is superposed on top of a twice as fine grid. In particular the in-
terpolation operator, Iλ , must interpolate cell-centered entities (left part of figure 7.2)
from cell centers in the coarse grid to cell centers in the fine grid, and Ix must interpo-

72 Chapter 7 Controlling Fluid Simulations

late face-centered entities (right part of figure 7.2) from face centers in the coarse grid
to face centers in the fine grid. Iy is derived similarly, and the corresponding restriction
operators are defined from the variational property described above with a scale, c,
ensuring that the weights sum to one. Finally, to extend to three dimensions, a trilinear
interpolation is simply used instead of a bilinear interpolation.

7.4.2 COUPLING THE OPERATORS TO THE LINEAR SYSTEM

Given the matrix operator, Ah, at level ∆x = h of the multigrid solve, we need to com-
pute the matrix operator, A2h, at the next coarser level ∆x = 2h. This is described
in detail for constant interpolation and restriction operators in [14], and in partic-
ular A2h = R2h

h AhIh
2h, where R is the restriction operator and I is the interpolation

operator. However, in our case, the restriction and interpolation filters vary for the
face-centered and cell-centered grids. Next, we explain how A2h is computed in our
case. For this purpose it is convenient to first rewrite the matrix in figure 3 of paper
II in a blocked matrix format2. Let a = v(r)+ (1−α)

α
∫

Ω
F (q− r) [F ∗v] (q)dq, b =

(1−α)
α

∫
Ω

F (q− r) [F ∗v] (q)dq, c = ṽ + (1−α)
α

∫
Ω

F (q− r)vlow(q)dq, d = 1
α ∇λ (r)

and e = 1
α ∆λ (r). Next, let vn denote the nth component of vector v. Then the ma-

trix can be represented in the following blocked matrix format for a two-dimensional
simulation (the situation is similar for three dimensions): a1 0 d1

0 a2 d2

∇ ·b1 ∇ ·b2 e

 v1

v2

λ

=

 c1

c2

∇ · c

Each block-operator in this matrix operates on values in one grid, A, e.g. a cell-
centered grid, and transfers them to values in another grid, B, e.g. a face-centered
grid, which we illustrate by A→ B. The specific relationships are illustrated in the
following blocked marix: Gx→Gx Gy→Gx Gλ →Gx

Gx→Gy Gy→Gy Gλ →Gy

Gx→Gλ Gy→Gλ Gλ →Gλ

For the blocks that transform between different grids, different types of interpolation
and restriction operators must be used. In particular the grid on the left side of the
arrow denotes which interpolation operator to choose, and the grid on the right side of
the arrow denotes which restriction operator to choose. Hence the operator matrix A2h

is defined as follows: Rxa1Ix 0 Rxd1Iλ
0 Rya2Iy Ryd2Iλ

Rλ ∇ ·b1Ix Rλ ∇ ·b2Iy Rλ eIλ

where the restriction and interpolation operators are as defined in the previous section.
The coupling to the linear system of paper III is performed in a similar manner.

2Note that we in the following will use a notation consistent with paper II and hence deviate a little
from the normal notation of this part of the dissertation.

7.5 Discussion and Evaluation 73

Figure 7.3 Using our guiding method, stable laminar flow is preserved and instabilities arise
near boundaries at high resolution whilst maintaining correspondence to the low resolution
simulation. Images from left to right: Low resolution, our method guiding with eroded densi-
ties, our method guiding with eroded densities combined with the error estimate, the wavelet
turbulence method with strengths 0.2 and 0.5, and finally the high resolution simulation.

7.5 DISCUSSION AND EVALUATION

We end the chapter with a discussion of some issues that were not fully covered in
papers II and III. Parts of these considerations will be included in our journal paper on
fluid control, which is in preparation.

While our framework generally ensures correspondence between the velocity fields
of the low-resolution prototype simulation and the high-resolution final simulation, it
can still be hard to create and model the solution that we want as the low-resolution,
input simulation (assuming that it is even possible to achieve the desired motion in
low-resolution). For instance, it took a lot of effort to model the problems in figure 7
of paper II to get a satisfactory result. Setting up fluid simulations requires experience
and talent, and it would be a thrilling prospect to evaluate our method with professional
artists.

In some situations, using the error estimate or the eroded densities as guiding
weights can ruin the correspondence between the velocity fields. Generally, our method
does not guarantee correspondence of smoke densities. This can be an issue since nu-
merical diffusion of the smoke densities is very high at low resolutions, meaning that
the resemblance between the guiding and the guided simulation can become lost. It
would be interesting to add a term to the minimization problem for handling this, sim-
ilar to the smoke gathering term of Fattal and Lischinski [25]. Alternatively, we could
combine our method with their approach using an upsampled, filtered version of the
low-resolution smoke density field as the target shape for each iteration.

In our upcoming journal paper, we have performed more thorough comparisons of
our method to simpler and faster alternatives such as the wavelet turbulence method
of Kim et al. [58], and the method of explicitly blending guiding velocities into the
current velocity field before presure projection3. Figure 7.3 compares our method
to the wavelet turbulence method. It illustrates an important difference between our
method and many procedurally generated flows: Our method preserves the stable,
laminar flow to the left and immediate right of the solid boundary, while the wavelet
turbulence method forces it to become turbulent. Figure 7.4 shows the visual difference

3Thürey et al. [123] suggested a similar approach for SPH and LBM where Lagrangian particles were
used to define the guiding velocities.

74 Chapter 7 Controlling Fluid Simulations

Figure 7.4 Images from left to right: Our method guiding with eroded desities and the error
estimate, the wavelet turbulence method with strengths 0.2, 0.5 and 1.0, respectively.

between our method and wavelet turbulence. The post-processing nature of the wavelet
turbulence method makes it incapable of producing larger-scale features not present in
the low-resolution input, such as the turbulent vortices on the left and right sides of the
smoke column in the leftmost image.

In paper II we compared our approach to the faster and simpler method of explicitly
blending the low frequencies of the high-resolution velocity field with the guiding
velocity field. Figure 7.5 shows a further exploration of this alternative approach. In
this more elaborate comparison we see that the visual artifacts, originally identified in
our paper, seem to persist even as the blend factor is increased to diminish the influence
of the guiding velocity field. However, at blend factor 0.85, the artifacts do not show
up until quite late in the simulation, which makes this approach very attractive for
simulations that are not too long. The same is true for blend factor 0.90. Blend factor
0.95 does not seem to result in artifacts at all, but here the guided high-resolution
simulation begins to lose resemblance to the guiding low-resolution simulation.

Figure 7.6 explores the effect of changing the lowpass guiding filter. We see that
more turbulence develops as the size of the filter is increased. Visually, the simulations
with larger filters also begin to lose correspondence to the original, low-resolution
simulation due to the high amount of turbulence. The timing seems to remain intact
though.

Figure 7.5 Top: Frame 399 from the following simulations: Our guiding method with eroded
densities combined with the error estimate. The next four simulations are performed by ex-
plicitly blending the velocity field with the guiding velocity field before pressure projection
with blend factors 0.25, 0.65, 0.75 and 0.85, respectively. Bottom: Images from left to right:
Frame 1599 from explicitly blending the velocity field with the guiding velocity field using
blend factor 0.85. At frame 399 no artifacts had appeared (rightmost image in top row), but at
frame 1599 the artifacts start to appear again. The next image shows a close-up of frame 4999
with blend factor 0.90. The intensity has been increased to more clearly highlight the artifacts
appearing with this blend factor. The following image shows frame 399 using blend factor
0.95. In this case no artifacts have appeared, but as shown in the next image (frame 220, blend
factor 0.95), the column also starts to rise faster than the low resolution simulation shown in
the last image. A blend factor of 0.95 does not seem to generate artifacts, at least for the first
5000 iterations that we ran the simulation.

Figure 7.6 Images from left to right: Our method guiding with eroded densities and the error
estimate with lowpass guiding filters of dimensions 53, 73, 93 and 113, respectively.

CHAPTER 8

CONCLUSION

This chapter concludes the overview part of this dissertation. We have explored two
distinct approaches to improving the management of high-resolution simulations within
scientific computing and computer graphics. In particular, we have proposed an out-
of-core framework for efficient streaming of level set computations. Our contributions
included the development of code transformations that better utilize the memory hier-
archy in order to sustain performance when using external memory. Furthermore, we
have proposed a guiding framework for controlling fluid simulations. We derived new
mathematical models for coupling simulations of differing resolution in order to allow
for a more efficient workflow. With it, the visual artist can design the desired flow at
low resolution and then reliably achieve the same overall flow at high resolution with
added high-frequency detail.

The next section covers ideas for future work, while section 8.2 rounds off by re-
visiting the research objectives stated in chapter 1 and summarizing our contributions.

8.1 FUTURE WORK

While the work presented in this dissertation has demonstrated efficient level set com-
putations at very high resolution, the demand for higher resolution simulations at lower
simulation times is ubiquitous. Similarly, our fluid control framework and other con-
trol paradigms have only scratched the surface with regard to what can be done to im-
prove the workflow surrounding fluid simulations for visual effects. Further research
should be conducted to reduce the causes of frustration for artists as well as the ex-
penses in terms of time and money for film productions. Below we outline directions
for future research which we believe are likely to contribute to the areas of level sets
and control of fluid simulations in the future.

77

78 Chapter 8 Conclusion

ON THE OUT-OF-CORE FRAMEWORK

Automatic, Dynamic Tiling and Concatenation of Computations: Determining
and adjusting the tile sizes and tiling directions automatically depending on the avail-
able amount of main memory would be highly useful. It would ensure that the entire
memory is utilized at all times, but more importantly, it could be used to ensure load
balancing of the CPUs when simulating several tiles in parallel. As it is now, we as-
sume that it is possible to provide an initial configuration that remains valid throughout
the simulation. In a similar vein, an automatic determination of the number of com-
putations that can be concatenated within memory, would ensure that no excess disk
bandwidth is used. It would possibly require an initial pass through data combined
with a statistical model of the upcoming memory requirements in order to perform
these dynamic adjustments.

Further Reduction of Computation Time: Our framework remains CPU limited
even for very high resolutions, and thus performs nearly as well as an in-core simula-
tion. However, the sheer number of grid points computed on means that computation
times themselves are now the limiting factor. We believe that the small overhead in-
troduced by our framework can be reduced further through careful engineering of the
iteration stencils. Additionally, we wish to reduce computation time by further investi-
gating parallelization over multiple CPU cores. This could be combined with implicit
methods for solving the PDEs in order to allow for larger time step sizes, hence reduc-
ing the number of computations required to integrate the solution to a certain point in
time.

Combination With Fluid Simulation: It would be interesting to explore strategies
similar to the skewing and tiling transformations employed by our out-of-core frame-
work in the context of fluid simulations. We propose to combine the simple, local steps
of the LBM [15] with the DT-Grid as the underlying structure for the grid. Since the
LBM does not depend on global information, it should be possible to stream a fluid
simulation step. Also, because no global information is needed to compute the ve-
locity field for the next level set advection step, we should be able to perform several
combined fluid and level set simulation steps during one pass (if we are able to con-
servatively estimate the maximum velocity or use an unconditionally stable advection
scheme). Of course, this combination of fluid and level set simulation only applies
if we want to use a level set as the surface representation. The LBM can easily be
extended to handle a free surface by introducing a layer of special interface cells, and
since the framework allows for high resolutions, we can get a finely resolved surface
this way instead. The streaming approach of our method would thus still be applica-
ble.

ON FLUID CONTROL

Free Surface Fluid Control: Our fluid control framework exclusively deals with
smoke animations, i.e. fluid simulations where there is no dynamically evolving free

8.1 Future Work 79

surface which changes the simulation domain. Of course, it would be interesting to
extend the framework to work with free surface fluids. The major challenge lies in the
fact that the free surface of the low-resolution simulation will differ from the free sur-
face of the high-resolution simulation due to numerical dissipation. We propose to han-
dle this discrepancy by simply disabling guiding of the high-resolution velocity field
outside the regions corresponding to the low-resolution liquid. Alternatively, we could
extrapolate the velocities of the low-resolution simulation across the low-resolution
free surface and then smoothly diminish guiding outside the regions corresponding to
low-resolution liquid.

Density Matching: Our fluid control framework only ensures correspondence be-
tween the velocity fields of two simulations at different resolution. Hence, our method
does not guarantee correspondence of the smoke densities. Due to the high numerical
diffusion of smoke densities at low resolutions, the resemblance between the guiding
and the guided simulation can be lost. In the future, we would like to add a term to the
minimization problem for handling this, similar to the smoke gathering term of Fattal
and Lischinski [25]. Alternatively, we could experiment with combining our method
with their approach using an upsampled, filtered version of the low-resolution smoke
density field as the target shape for each iteration of the high-resolution simulation.

Parameters and Exploration: Since one of the problems artists face when work-
ing with fluid simulations is the non-intuitive meaning of the parameters, it seems that
providing more intuitive parameters would yield better control for the artists. One
example of such an intuitive parameter could be a measure of how turbulent the flow
should be. The parameter could be controlled by a simple slider which in turn controls
how to interpolate pre-recorded data perhaps based on a frequency analysis or dimen-
sionality reduction. Also, an ability to adjust parameters on the fly in the middle of a
simulation seems like a natural way to expose control. This could be coupled with the
ability to explore different possible futures of the simulation given small variations in
the parameters akin to the many-worlds browsing approach of Twigg and James [129].

Painting the Control: Another way to let the artists control the course or modify the
result of a simulation would be to allow them to “paint” various properties onto the liq-
uid surfaces. This would in turn require a framework for propagating the “paint” (e.g.
a function) defined on the surface as the surface itself propagates. The approach could
be combined with the idea of controlling the fluid surface movement through modifi-
cation of the velocity extrapolation proposed by Enright et al. [24]. If the approach
was generalized to enable drawing everywhere in the embedding domain, it could be
used to draw paths for control particles similar to the ones used by Thürey et al. [123].
Similarly, it could be used to generate guiding velocity fields for our proposed fluid
control framework. An artist could modify an existing simulation by painting curves
in order to enhance or reduce a certain motion.

80 Chapter 8 Conclusion

Practical Evaluations: We believe that a lot of insight could be gained by perform-
ing practical evaluations of our fluid control framework using artists from the visual
effects industry. Within computer graphics in academia there is no strong tradition
for doing this, and we foresee the need for multidisciplinary research collaborations in
order to do this properly.

The above list of directions for future work is in no way exhaustive. It does how-
ever present a number of outstanding issues that lie in direct continuation of our work
up to now. In several of the examples, we have already begun preliminary investiga-
tions.

8.2 FINAL THOUGHTS

Because of their many advantages, including the capacity to handle arbitrary topo-
logical changes, level sets have become prevalent within computer graphics, scientific
computing and visual effects production. Therefore, existing level set schemes are
continually being challenged and pushed to the limits as the demand for higher res-
olutions and more details becomes universal. Within fluid simulation for computer
graphics, the request for visually rich and complex effects has led to frustrating and
expensive workflows. This is primarily due to these simulations being computationally
intensive and notoriously hard to control. These facts prompted us to pursue the two
research objectives stated in the introduction. We will revisit them here and evaluate
our success in achieving them. The objectives are as follows:

• To improve the feasibility of using level sets at high resolutions in computer
graphics and scientific computing applications.

• To improve artistic control and efficiency in the typical workflow surrounding
fluid simulations in visual effects.

In paper I we propose an efficient out-of-core framework for level set simulations. By
code transforming the algorithms using skewing and tiling we reduce the number of
passes over the data during computations. Thus we only need one pass over the data
for each level set computation, which comprises a deformation step, a reinitialization
step and a rebuild of the narrow band. This results in a significant improvement of
the previous framework [91], on which we have based our work. The new frame-
work is CPU limited and runs at speeds of up to 92% of an in-core simulation. It
is independent of disk latency and can handle resolutions as high as allowed by the
available disk space. Furthermore, it facilitates parallel computation on the individual
tiles. The objective of improving the feasibility of using level sets at high resolutions
in computer graphics and scientific computing applications has, however, not been met
entirely as these high resolutions often require too much computation time to be useful
for computer graphics and visual effects. However, we have demonstrated that high-
resolution simulations can be run even on very limited hardware, thus reducing the
cost of performing large computations, which is another aspect of making it feasible in
practice. While we have focused exclusively on level set computations, our developed
techniques are relevant for general out-of-core stencil based computations.

8.2 Final Thoughts 81

In papers II and III we present a fluid control framework that couples fluid simu-
lations at different resolutions. This allows artists to efficiently prototype simulations
at low resolution and then — ideally — only run the costly high-resolution simulation
once in order to get the final result. However, it also allows an artist to concentrate on
exploring the simulation parameters in high resolution without worrying about chang-
ing the approved bulk motion from the low-resolution starting point. Our mathemati-
cal model minimizes the difference between the low frequencies of the high-resolution
velocity field and the guiding low-resolution velocity field, thus ensuring correspon-
dence in most cases. We propose several methods for determining the guiding weights,
which dictate the strength of the coupling, and we demonstrate several artistic effects
accomplished using the framework. Still, the achievement of the second objective is
hard to evaluate without performing practical evaluations of our framework.

We hope that the research proposed in this dissertation will find usage both within
the research community around level sets and fluid simulations, and also in the visual
effects industry. The fluid control framework in particular, was developed with a major
effects company and will hopefully see practical usage there in the future. The algo-
rithms and mathematical models presented are likely to form an integral part of much
of our future research, and we foresee many exciting extensions and improvements in
the near future.

PART II

PAPERS

83

PAPER I

OUT-OF-CORE COMPUTATIONS OF

HIGH-RESOLUTION LEVEL SETS BY MEANS OF

CODE TRANSFORMATION

Brian Bunch Christensen Michael Bang Nielsen Ken Museth

Abstract

We propose a storage efficient, fast and parallelizable out-of-core framework
for streaming computations of high resolution level sets. The fundamental tech-
niques are skewing and tiling transformations of streamed level set computations
which allow for the combination of interface propagation, re-normalization and
narrow-band rebuild into a single pass over the data stored on disk. This im-
proves the overall performance when compared to previous streaming level set
frameworks that require multiple passes over the data for each temporal itera-
tion step. As a result, streaming level set computations are now CPU bound and
consequently the overall performance is unaffected by disk latency and band-
width limitations. We demonstrate this with several benchmark tests that show
sustained out-of-core throughputs close to that of in-core level set simulations.

1 INTRODUCTION

While the idea of using implicit functions for interface capturing can be dated back
as far as [17, 18], the level set method and the underlying numerical schemes were
first proposed in [95]. Since then, it has been applied to a wide range of interface
capturing problems in scientific computing and related fields. Examples hereof include
the simulation of multi-phase flows [118] such as bubbles and drops, solidification

Submitted to: Journal of Scientific Computing

85

86 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

[37], Willmore flow [20], partial differential equations and variational problems on
manifolds [8], geometric optics [97] as well as fluid animation [30] and geometric
modeling in computer graphics [83].

The propagation of a time-dependent level set interface is given by partial dif-
ferential equations e.g. of Hamilton-Jacobi type. In most cases the scalar function is
sampled on a regular Eulerian grid, although recent work has also employed fully La-
grangian representations [43]. In order to adequately capture interface details and ob-
tain sufficient numerical accuracy, a combination of high order discretization schemes
and/or high resolution Eulerian grids is often required.

In cases where only a single level set is of interest (e.g. the zero-crossing of the
interface) computations can be restricted to a narrow band of grid points surrounding
the interface [1, 16, 101, 132]. More recent work combines the idea of restricting the
computations to a narrow band with sparse data structures in order to reduce storage
requirements and enable interfaces to be sampled on much higher resolution grids.
These narrow-band data structures include blocked grids [11, 65, 81, 82], dynamic
tubular grids (DT-Grid) [87, 90] and hierarchically run-length encoded grids [47]. A
few authors have developed adaptive methods that do not restrict computations to a
narrow band but instead refine the computational grid, typically closer to the interface
[73, 76, 77, 117, 119].

Although these level set data structures enable computations on high resolution
grids, they are all limited by the available main memory. Despite the fact that modern
64-bit operating systems allow for a virtual address space of 16 exabytes, RAM mod-
ules remain a relatively expensive commodity. In comparison, disk storage is two to
three orders of magnitude cheaper per byte, consumes about two orders of magnitude
less power per byte and offers a capacity that is typically several orders of magni-
tude larger [66]. Hence algorithms capable of utilizing disk space, often referred to as
out-of-core or external memory algorithms, have the potential of higher resolution sim-
ulations at lower costs. However, disk storage has much higher latency (referencing a
single data item is four to five orders of magnitude slower than main memory access),
and the development and study of efficient external memory algorithms has emerged
into a field of its own [125, 130]. Note that the ongoing development of solid state
drive technology offers promising speed improvements for random access to external
memory in the future.

Recently Nielsen et al. [91] proposed an out-of-core framework for narrow band
level set simulations based on the DT-Grid data structure, and this paper significantly
improves on that work. The main contributions of the out-of-core framework pre-
sented in [91] are prefetching and page-replacement algorithms designed for stencil
based level set computations. Whilst allowing for grid resolutions only limited by the
available disk storage, that method remains IO limited, and the throughput (measured
in computed grid points per second) drops to 42% of in-core simulation throughput
for some numerical schemes. One of the main reasons for the IO limitation in [91] is
the fact that each step in the level set simulation requires the data to be streamed to
and from disk multiple times. A typical time-step actually requires between 5 to 10
passes over the data. In contrast, the method proposed in this paper requires data to
be streamed only once per time-step. In fact, for simulations with certain properties,

1 Introduction 87

data is only required to be streamed once for a number of subsequent timesteps, hence
reducing bandwidth usage further. As a result, our new out-of-core algorithms are
CPU limited as opposed to IO limited and exhibit a sustained, i.e. resolution indepen-
dent, throughput of 77−92% (depending on the numerical scheme) of the throughput
obtainable by internal memory simulations1.

Our general approach is to leverage on established theory from the area of com-
piler algorithms which performs code transformations that optimize cache locality,
i.e. minimize the number of times a given data element is loaded into the cache from
main memory. In particular, we employ the mathematical model of reuse and locality
developed by Wolf and Lam [134]. Applying code transformations to out-of-core as
opposed to in-core level set simulations poses unique challenges since our goal is to
minimize the number of times a given data element is transferred from disk to main
memory. The ratio of disk to main memory latency is much higher than the corre-
sponding ratio of main memory to cache latency. Consequently a data layout that
works well in-core may need to be redesigned for out-of-core application, although
they may have the same asymptotical IO complexity.

Our contributions can be summarized as follows. In this paper we prove and
demonstrate by implementation that the finite difference (FD) schemes used for level
set simulations, HJ ENO [42], HJ WENO [50, 52, 70], BFECC [21] and TVD RK
[112], have data reuse both temporally and spatially. However, locality is not directly
implied. To improve locality we derive code transformations based on skewing (i.e.
shearing the iteration space by a linear transform) and tiling (i.e. partitioning) and
prove that these transformations maximize locality both spatially and temporally in
the model of Wolf and Lam [134]. In particular, tiling alone is not sufficient to opti-
mize locality for the FD stencil based level set simulations. Code transformations are
applied to all steps in the narrow band level set computation, including propagation/ad-
vection, re-distancing and narrow band rebuild. In this way only a single pass over the
data is required for each time-step or sequence of time-steps. Additionally we propose
a tiled version of the Fast Iterative Method [49] which enables fast out-of-core solution
of the Eikonal re-distancing equation |∇φ | = 1 for narrow band level sets. To reduce
memory requirements during simulation, we propose an in-core storage mapping for
the intermediate values associated with the skewing transformation that is linear in
the number of intermediate values. Furthermore, we also propose a linear out-of-core
storage mapping associated with the tiling transformations that partitions the narrow
band into tiles and boundary grids and facilitates computation on each tile indepen-
dently and in parallel. Our framework is optimal with respect to streaming to and from
disk in both the IO model [2] and the Cache Oblivious model [33], as only sequential
stencil access is required. The sequential access enables utilization of the cache co-
herent DT-Grid in combination with the page-replacement and prefecthing algorithms
from [91]. Finally, the resolution of the computational grids utilized in our method is
limited only by the amount of disk space available.

To illustrate the feasibility of our new out-of-core framework we document its

1Our out-of-core technique introduces a minor computational overhead compared to regular in-core
simulations, which explains why the efficiency is still below 100% even though the method is not IO
limited.

88 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

performance with benchmarks of several different types of level set simulations and
numerical schemes. Additionally, we have used our framework for several applications
of the level set method on high resolution computational grids. This includes advection
in a divergence free velocity field and surface smoothing by mean-curvature flow of
a model with an effective grid resolution of 17149×9987×5734. In order to further
improve simulation times, we also demonstrate a multi-core implementation of our
out-of-core framework.

The remainder of this article is organized as follows: Section 2 first summarizes
related work. In section 3 we provide an overview of our out-of-core framework and
its individual components, and introduce the terminology. Next we describe our pro-
posed skewing and tiling transformations and the associated storage mapping schemes.
Detailed descriptions of the transformations along with proofs of their locality proper-
ties are provided in appendix A. Section 4 then proceeds to present benchmark results.
Finally, section 5 demonstrates some applications of our framework and section 6 con-
cludes and outlines directions for future work.

2 RELATED WORK

In this section we review related work in the areas of out-of-core algorithms, simu-
lation and loop transformation theory and algorithms. Out-of-core, or streaming, al-
gorithms are applicable in all areas of computational science and scientific computing
that involve massive data sets not feasible for storage in main memory due to hardware
and cost limitations. These application domains include image repositories, digital li-
braries, relational and spatial databases, computational geometry, simulation, linear
algebra and computer graphics. For a general survey of external memory algorithms
see [130], and for a specific survey in the area of linear algebra and simulation we refer
to [125].

Despite its potential for large scale simulation, we are only aware of a surprisingly
small body of previous work directly related to out-of-core simulations. Pioneering
work was done by Salmon and Warren [106] for N-body simulation in astrophysics.
Their work was based on tree data structures and applied reordered traversals and a
Least-Recently-Used page-replacement policy for efficiency. Bibireata et al. [9] use
loop fusion and tiling (see below) to perform out-of-core tensor contractions for sim-
ulations of electron structures. Trac and Pen [48] proposed an out-of-core algorithm
for Eulerian grid based cosmological simulation. In their method, global information
is computed on a low resolution grid that fits entirely in memory, whereas local infor-
mation is computed on an out-of-core high resolution grid tiled into individual blocks
that fit into memory. The individual blocks are loaded and simulated in parallel for
a number of time steps and then written back to disk. More recently Nielsen et al.
[91] proposed a combined framework for compression and out-of-core simulation of
Eulerian grid based level sets and fluids based on the DT-Grid data structure [90]. A
fundamental property of their work is that existing level set and fluid simulation code
does not have to be re-written, and hence focus is on developing prediction schemes
for statistically based compression as well as prefetching and replacement strategies

2 Related Work 89

for stencil based access. However, a consequence of this property is that the method
remains IO limited, as the Eulerian grids need to be streamed through memory several
times for each step of the simulation.

In the field of compiler algorithms and cache coherency a lot of attention has been
devoted to the so-called “loop transformation theory” - see [62] for a comprehensive
overview. In particular Wolf and Lam [134] propose a theory of reuse and locality as
well as an automatic algorithm for improving the data locality of loop nests by apply-
ing a sequence of loop transformations. The loop nest is analyzed for reuse and the
resulting loop transformation is found as the maximum of an objective function mea-
suring data locality of equivalence classes of localized iteration spaces. This theory
formed the basis for the optimized loop transformations suggested by [74].

Wonnacott, [135], introduced a particular type of transformation denoted time
skewing and an associated storage scheme that takes advantage of the available cache
memory. The transformation results in locality both in the spatial and temporal dimen-
sions of the iteration space and is proposed for in-core time step stencil computations.
Computations are active only on a wavefront of grid points – the wavefront of execu-
tion – that can be fitted into the cache via the proposed storage scheme. Since this
wavefront is skewed with respect to time in all spatial dimensions it is not well suited
for implementation on a sparse narrow band data structure such as the DT-Grid. This
is due to the fact that the skewed wavefront iteration order does not correspond to
sequential access into the underlying data structure. In contrast the loop transforma-
tions we propose in this article can be implemented as sequential access which is faster
than random access for this type of data structure. Time skewing along with various
other optimization approaches for stencil computations, both cache aware and cache
oblivious, were also studied by Kamil et al. [53].

Kandemir et al. [54] present a unified optimization framework that targets perfectly
nested loops of computations running out-of-core and in parallel. In particular their
framework is intended for integration in a compiler and it optimizes for locality of data
references, array file layout, parallelism and reduction of communication overhead
simultaneously. Their method considers only tiling for improving data locality and
constructing file-layouts, which is too restrictive in order to obtain temporal locality
for stencil-based level set computations. More recently, Kandemir et al. proposed an
I/O-Conscious Tiling Strategy for Disk-Resident Data Sets [55]. Their method focuses
on adapting traditional tiling algorithms for scientitic computation loop nests to out-of-
core computations in order to obtain higher IO performance. In particular, they show
that both loop and data transformations are often required to achieve this goal. Again
only tiling transformations are considered, and the class of algorithms investigated
does not include stencil-based computations.

Song and Li [113] present a scheme which optimizes cache locality for a certain
class of nontrivial imperfectly-nested loops. They propose a number of loop transfor-
mations to enable tiling. Specifically, they provide a compiler algorithm for optimizing
skewing of the spatial dimensions subject to dependencies, automatically selecting the
optimal tile size, and deducing an efficient storage scheme through array duplication.
Their method is, however, limited to computations which only depend on references
to values from the same or the previous iteration of the time step loop. When using

90 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

higher order temporal schemes such as TVD RK, our computations do not adhere to
this limitation.

3 SKEWING AND TILING LEVEL SET COMPUTATIONS AND

DATA STRUCTURES

Figure 1 provides an overview of our out-of-core level set framework, where the com-
ponents corresponding to our contributions are highlighted in blue. Central to this
framework is a tiled DT-Grid data structure shown in the middle of figure 1 and in
figure 2. This data structure partitions a narrow band level set into a number of axis
aligned tiles, storing only grid points that are part of the narrow band inside each tile
(shown in yellow). Boundary grids (shown in red) are extracted from the narrow band
on the boundary of each tile and used by the skewed level set computations on adjacent
tiles. This effectively reduces bandwidth requirements since level set computations on
a single tile only access the tile itself plus a number of small boundary grids, as op-
posed to streaming all the adjacent tiles. The size of the boundary grids is a function
of the size of the stencil used in the FD computations as well as the number of level
set steps performed on each tile. Generally the width of a boundary grid is small com-
pared to the size of a tile. Hence, the overhead associated with the boundary grids is
a small fraction of the total storage requirements and computation time. As we show
in appendix A, given an N-dimensional grid, it is only necessary to tile in N− 1 di-
rections in order to maximize locality in both the temporal and spatial dimensions.
Hence we always leave the x-direction untiled as shown in figure 2. Generally we tile
in as few spatial dimensions as possible and at most N−1 dimensions as noted above.
For example, if the required (N− 1)-dimensional slices of the N-dimensional grid fit
in memory, we do not tile the grid. The level set surfaces in each tile and boundary
are stored separately as narrow bands in DT-Grid data structures using the out-of-core
framework introduced by Nielsen et al. [91]. This is illustrated by the separated tile
and boundaries beneath the rightmost arrows in the center of figure 1. The topology
and values of each DT-Grid are stored independently as indicated by the layered boxes
in the rightmost part of figure 1. Storing a particular component (values or topology)
is managed by a Storage Handler which streams data either to memory or disk. In the
case of streaming to disk, pre-fetching and page-replacement algorithms designed for
stencil-based access are implemented by a Storage Cache [91]. Note that the level sets
stored in tiles and boundaries may not represent closed surfaces. As long as the level
set surface is intersected by convex tiles (e.g. axis aligned boxes), the DT-Grid data
structure supports this [89].

Skewed level set computations can be performed on each tile independently and
hence multiple computational threads can process separate tiles in parallel as indicated
by the layered boxes in the leftmost part of figure 1. All computations take place on
a single and partially in-core DT-Grid data structure storing only the active (N− 1)-
dimensional slices. This ensures that the in-core level set computations are cache
efficient [89]. The in-core DT-Grid data structure is generated on the fly by merging
the grid points from the tile and the boundary grids generated from adjacent tiles. This
is facilitated by the lexicographic storage order of the grid points. The merging process

3 Skewing and Tiling Level Set Computations and Data Structures 91

Memory Storage Cache

Or Disk

Storage
Handler

Topology

Values

Y

Z

Tiled DT- GridSkewed Level Set Algorithms

Merged Tile

CPUs Grid Components

Figure 1 This figure gives an overview of our out-of-core level set framework that applies
skewing and tiling transformations. Rightmost: Shows the components handling streaming
to and from memory and/or disk, including prefetching and page-replacement [91]. Middle:
Illustrates the central data structure, the Tiled DT-Grid, that implements our tiled storage map-
ping. The level set inside each tile (yellow) and the level sets at each tile boundary (red) are
stored separately as narrow bands in DT-Grid data structures (middle-right) and continuously
merged into a single narrow band during simulation (middle-left). Leftmost: The skewed level
set algorithms process one slice of a tiled narrow band at a time.

Y

Z X

Y

Z

Figure 2 This figure illustrates how a level set surface of the Stanford Bunny is divided into
axis aligned tiles. To maximize locality it is only necessary to tile along the y- and z-axes. The
boundary grids of each tile are illustrated in red in the rightmost image.

is illustrated by the concatenated tile and boundary grids beneath the leftmost arrows in
the center of figure 1. The level set computations are skewed in the spatial dimensions
with respect to both the level of computation i.e. propagation, re-distancing and narrow
band rebuild, as well as with respect to time. Hence all levels of computation, possibly
at several time steps, are performed simultaneously on a tile, but in such a way that data
is streamed from disk exactly once, and such that data dependencies are not violated.
As indicated in the leftmost part of figure 1, computations are performed on (N−1)-
dimensional slices of a N-dimensional tile.

The major benefit of this out-of-core approach is that, although being IO intensive,
the level set algorithms become CPU bounded and hence the overall performance is
unaffected by disk latency and bandwidth limitations. This means that computations

92 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

can be performed on level sets that are the size of available disks, but with a throughput
close to that of in-core simulations. The reason for a small CPU overhead of our out-
of-core simulations is that additional sofware layers are required to stream data to and
from disk.

3.1 SKEWING

A time step of the overall level set iteration – a level set step – typically consists of
an advection or propagation, a re-initialization and a narrow-band rebuild step, as pre-
viously mentioned. Each of these steps consists of one or several sub-steps, which
each require one pass over the data if skewing is not applied. For example, advection
with third order TVD Runge-Kutta time-integration consists of five sub-steps. In the
context of code transformation theory, this situation corresponds to an imperfect loop
nest since there are several loops (one for each sub-step) at the innermost nesting depth
inside an outer time loop. We can convert this to a perfect loop nest by introducing a
fictitious time variable and use it to distinguish which sub-step to perform in the loop
body. Thus, one sub-step counts as one fictitious time step. In the leftmost side of fig-
ure 3 the front of active computations, or wavefront of execution, progressing through
a level set step is illustrated by the orange row. The front is moving upwards, and the
blue arrow indicates the progress of computations or iterations inside the front itself.
To determine where the intermediate results of this execution must be stored, one em-
ploys a storage mapping which maps each computation on the wavefront to the address
where it should store the value it produces [135]. This mapping results in a wavefront
of temporaries which determines how much memory is required. Recall, the goal is to
reduce the number of passes over the level set data (thereby minimizing data traffic)
to one for a sequence of N steps. The target of this optimization lies between main
memory and disk rather than the more usual CPU cache and main memory target. The
motivation is that we want to eliminate the IO limitation of the previous out-of-core
framework [91]. Hence, we want to perform as many steps using in-core temporaries
as made possible by the amount of main memory. Therefore we need transformations
of the code to make the wavefront of execution independent of the grid dimensions,
such that the wavefront of temporaries fits in memory.

We perform the following analyses and transformations on full grids in one dimen-
sion for simplicity, and then generalize to N-dimensional grids in the end. In appendix
A, we provide proofs of the validity of these transformations. In practice, the algo-
rithms are implemented on sparse DT-Grids which provide constant time sequential
access to neighboring grid points within a stencil.

3.1.1 TRANSFORMING THE ITERATION SPACE

Typically a level set step iterates a stencil over the spatial domain of the level set while
performing the relevant computations, e.g. solving the hyperbolic levet set equation
∂φ
∂ t −~V ·∇φ = 0, where φ is the level set function and ~V is a velocity field. Figure
3 shows the pseudocode of a number of sub-steps on a one-dimensional level set us-
ing simple first order upwinding in space and first order Forward Euler integration in

3 Skewing and Tiling Level Set Computations and Data Structures 93

Advect

Reinit 1

Reinit 2

Reinit 3

t=0

t=T

x

t
Original Euler w/ upwind

x=0 x=X

1: for t← 0, T do
2: for x← 0, X do
3: A[t +1,x]← step(A[t,x],A[t,x−1],A[t,x+1])
4: end for
5: end for

Figure 3 A number of steps on a 1D level set using the traversal outlined in the pseudocode.
The orange row indicates the wavefront of execution travelling parallel to the t-axis. The black
arrows indicate the dependencies of one computation.

Advect

Reinit 1

Reinit 2

Reinit 3

t=0

t=T

x

t
Skewed Euler w/ upwind

x=0 x=X

1: for x← 0, X +T do
2: for t← 0, T do
3: if max(t,x) < min(X + t,x+1) then
4: w← x− t
5: A[t +1,w]← step(A[t,w],A[t,w−1],A[t,w+1])
6: end if
7: end for
8: end for

Figure 4 A number of steps on a 1D level set using the transformed traversal outlined in the
pseudocode. Note, that the skewed traversal order is depicted in the orginal iteration space.

time. The yellow box illustrates the iteration space of the nested loop. To simplify the
following explanation, we assume that we have expanded the one-dimensional array
which represents φ with a dimension containing the time axis, thus obtaining an array
A of size (T + 1)×X , where T is the number of fictional time steps and X is the size
of the spatial domain. The traversal order of the iteration space is indicated by the
coloring of the individual iterations, starting from white over red to black. In figure 3,
the entire spatial domain is traversed in each time step before moving on to the next.
Not all traversals of the iteration space are valid, since a given computation [t,x] has
dependencies which limits the traversal possibilities. In this example, we employ a
computational stencil with a width of three grid points, needed to implement the first
order upwind scheme for advection and reinitialisation. As illustrated by the black
arrows in figure 3 this means for example, that the result at iteration [2,3] cannot be
computed before the results for iterations [1,2], [1,3] and [1,4] are known. See ap-
pendix A for a rigorous definition and analysis of dependencies. One consequence of
the dependencies is that we cannot immediately interchange the t and x loops in the
shown algorithm.

As mentioned, the goal is to reduce the number of passes over the level set data
to one for a sequence of N steps. Therefore the algorithm cannot just iterate over the
entire spatial domain for each fictional time step since the references to A in previous
steps will be evicted from memory before they can be reused due to the large number
of intermediate computations. We transform the code to improve this by skewing
the spatial dimension of the iteration space just enough to be able to interchange the
loops. Specifically, we transform the loop bounds using the transformation T1 : [t,x]→
[t,x + t] and then apply T−1

1 to the array references. As explained in appendix A, this
skewing allows us to interchange the loops without violating the dependencies of the

94 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

Advect

Reinit 1

Reinit 2

Reinit 3

t=0

t=T

x

Skewed Euler w/ WENO

x=0 x=X

t
1: for x← 0, X +3T do
2: for t← 0, T do
3: if max(t,x) < min(X +3t,x+1) then
4: w← x−3t
5: A[t + 1,w] ← step(A[t,w],A[t,w − 3],A[t,w − 2],A[t,w −

1],A[t,w+1],A[t,w+2],A[t,w+3])
6: end if
7: end for
8: end for

Figure 5 A number of steps on a 1D level set using the transformed traversal outlined in the
pseudocode.

algorithm. Figure 4 shows the resulting traversal of the iteration space along with the
transformed pseudocode. Iterations with references to the same entries of A are much
closer together using this traversal, thus increasing the locality. If T is of the same
magnitude as X , we have of course not achieved locality, and in general, loop skewing,
loop interchange, etc. must be combined with tiling transformations as explained in
section 3.2 [134, 135]. Briefly described, we separate the temporal dimension into
tiles which are as large as allowed by main memory. These tiles are then executed in
order.

For computations with higher order spatial schemes such as the variable third to
fifth order accurate HJ WENO scheme, we can perform similar transformations to im-
prove locality. The HJ WENO scheme employs a stencil of seven grid points, and thus
each iteration depends on as many as seven previous results. However, this merely
means that we have to skew the spatial dimension even more. In particular, the trans-
formation T2 : [t,x]→ [t,x + 3t] ensures that the loops can be interchanged. The re-
sulting traversal order is shown in figure 5. Note how the “slope” of the skewed loops
has changed to reflect the wider area of dependence of the stencil. Also note that the
transformation used in this example would be perfectly “legal” in the previous exam-
ple. The key observation is, that we seek the “legal” transformation that optimizes the
slope, i.e. minimizes the skew factor of each loop as this provably minimizes memory
reference costs [68]. In other words, we want to minimize the width of the wavefront
of execution projected onto the x-axis.

The third order accurate TVD Runge-Kutta scheme for temporal discretization
consists of five sub-steps in order to advance the solution one step forward in time
[112]. More specifically it consists of two convex combinations of three Forward Euler
time steps, and takes the following form for the general Hamilton-Jacobi equation
∂φ
∂ t +H[φ] = 0 :

φ̃ n+1 = Euler[φ n]≡ φ n−∆t Hn[φ n]
φ̃ n+2 = Euler[φ̃ n+1]≡ φ n+1−∆t Hn+1[φ n+1]≈ φ n+1−∆t Hn[φ n+1]

φ̃ n+ 1
2 =

1
4
(
3φ n + φ̃ n+2)

φ̃ n+ 3
2 = Euler[φ̃ n+ 1

2]≡ φ n+ 1
2 −∆t Hn+ 1

2 [φ n+ 1
2]≈ φ n+ 1

2 −∆t Hn[φ n+ 1
2]

φ n+1 =
1
3

(
φ n +2φ̃ n+ 3

2

)

3 Skewing and Tiling Level Set Computations and Data Structures 95

Advect 1

Advect 2

Average

Advect 3

t=0

t=5T

x

t
Skewed TVD Runge-Kutta w/ upwind

x=0 x=X

Average

1: for x← 0, X +3
⌊

5T−1
5

⌋
+2 do

2: for t← 0, 5T do
3: xstart ← 3

⌊
t
5

⌋
+min(t mod 5,1)+

⌊
t mod 5

3

⌋
4: if max(x,xstart) < min(x+1,X + xstart) then

5: w←max(x,xstart)− xstart
6: if t mod 5 = 0 then
7: A[t +1,w]← step(A[t,w−1],A[t,w],A[t,w+1])

8: else if t mod 5 = 1 then
9: A[t +1,w]← step(A[t,w−1],A[t,w],A[t,w+1])

10: else if t mod 5 = 2 then
11: A[t +1,w]← average(A[t,w],A[t−2,w])

12: else if t mod 5 = 3 then
13: A[t +1,w]← step(A[t,w−1],A[t,w],A[t,w+1])

14: else
15: A[t +1,w]← average(A[t,w],A[t−4,w])

16: end if
17: end if
18: end for
19: end for

Figure 6 An advection step on a 1D level set using the transformed traversal outlined in the
pseudocode. Dependencies are shown for all the sub-steps of the advection step.

The separate sub-steps in the described method have different dependencies, e.g.
the Euler steps have dependencies corresponding to the stencil used in the first exam-
ple, while the convex combination steps only depend on earlier results on the same
spatial position. These differences could be ignored, and we could apply a legal skew-
ing transformation like T1, but that would result in a suboptimal slope and width of the
wavefront of execution, since the averaging steps do not require skewing in x. An op-
timal transformation must take this into account, and for a first order upwind scheme,
we propose T3 : [t,x]→ [t,x+3

⌊ t
5

⌋
+min(t mod 5,1)+

⌊ t mod 5
3

⌋
)], where b c denotes

the floor function. Figure 6 shows the resulting traversal of the iteration space, when
the skewing has been combined with a loop interchange. Note that t is now used as
a fictitious time variable such that

⌊ t
5

⌋
denotes the time step and t mod 5 uniquely

identifies one of the five assignment statements or sub-steps in the loop body. The
described transformation goes beyond the framework of Wolf and Lam [134], and a
careful analysis of the validity of the proposed transformation is provided in appendix
A2. Transformations and code for TVD Runge-Kutta and BFECC combined with HJ
WENO as well as generalizations to more spatial dimensions are also presented in
appendix A.

3.1.2 STORAGE MAPPING

Using the above transformations (combined with tiling) we have now achieved a wave-
front of execution which permits locality. However, if each iteration writes to a sep-
arate entry in the expanded array A, the memory usage scales with the size of the
level set grid. Therefore, we do not in practice store the entire temporal and spatial
dimensions of A. Instead, each level set step streams an out-of-core grid as input and
another as output while everything in between is stored in-core using a suitable stor-
age mapping which maps each iteration to the address where it should store the value
it produces [135]. The goal is to minimize memory usage, and at the very least en-
sure that it does not scale with the size of the level set grid. The storage mapping

2The analysis is performed on the algorithmically similar BFECC scheme, and the validity of the
transformation for the TVD Runge-Kutta scheme is derived from that.

96 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

Advect

Reinit 1

Reinit 2

Reinit 3

t=0

t=dt1

x

t
Euler w/ upwind

OOC Grid slices

Buffer slices

0 1 2 3 4 5 6 71

3

4

Advect to dt1

Advect to 2*dt1

Compute to 0.5*dt1

Advect to 1.5*dt1

t=0
x

t

Compute to dt1

TVD RK w/ upwind

Reinit 1 to dt1

...

1

2

3

4

5

6
Grid slices

Buffer slices

0 1 2 3 4 5

Advect

Reinit 1

Reinit 2

Reinit 3

t=0

t=dt1

x

t Concatenated Euler w/ upwind

Grid slices

Buffer slices

0 1 2 3 4 5 6 7

2

1

3

4

Advect

Reinit 1

Reinit 2

Reinit 3

5

6

7

8

t=dt2

Reinit 4

5

2 A

 B

Figure 7 The storage requirements of a full level set step with advection and re-initialization
steps using the Forward Euler scheme and upwinding. Yellow areas with dotted outlines in-
dicate that a computation result replaces an entry in the buffer of temporaries corresponding
to the same spatial position. The entry being replaced, which is not needed anymore by the
computations on the wavefront of execution, is marked by a red letter.

applied in the first Euler example above (figure 4) is the trivial {[t,x]→ A[t +1,x− t]},
which is not independent of the size of the level set grid. On the other hand, we can-
not just remove the temporal dimension of A and use the simple storage mapping of
{[t,x]→ A[x− t]}, since e.g. storing the result from iteration [0,1] in A[1] overwrites
a value on the wavefront of temporaries which is needed in later iterations such as
[0,2]. Observing that the computations only depend on the results of the previous step,
one improvement would be to only store the latest two rows of A and use the map-
ping {[t,x]→ A[(t + 1) mod 2,x− t]}. This storage mapping still writes to a number
of memory locations which scales with X , and thus the required memory does not
fit in-core even though the wavefront of temporaries does. To improve this, we pro-
pose a storage mapping which is skewed in the same manner as the iteration space has
been skewed. This idea leads to a small buffer of temporaries which only holds the
wavefront of temporaries [135].

While the storage mappings of the previous paragraph lend themselves to be de-
scribed by a simple formula, the skewed storage mappings which we propose are not
as easily expressed in this formalism. Therefore we shall use diagrams to illustrate the
storage mappings. This also provides the necessary intuition for code implementation.

In the following we present the mappings for some of the most popular level set
discretization schemes. Figure 7 shows a “snapshot” of the execution of the Forward
Euler scheme with upwinding, and in particular all the computations on the wavefront
of execution. Orange areas indicate results which are read in from and written to out-
of-core grids, while the yellow areas represent results stored in the in-core buffer of
temporaries. The greyed out area indicates results from iterations that are not needed
anymore, i.e. that are no longer part of the wavefront and buffer of temporaries. Finally,
the yellow areas with dotted outlines indicate that the result stored there can replace
one of the other entries in the buffer of temporaries corresponding to the same spatial
position. These replaceable entries are marked by red letters. The green circles each

3 Skewing and Tiling Level Set Computations and Data Structures 97

Advect 1

Advect 2

Average 1

Advect 3

t=0
x

t

Average 2

TVD RK w/ upwind

Reinit 1.1

1

2

3

4

5

6

OOC Grid slices

Buffer slices

0 1 2 3 4 5

Reinit 1.2

Average 1

Average 2

Reinit 1.3

6

7

8

9

10

 A

 B

 C

 D

 E

Figure 8 The storage requirements of an advection and a re-initialization step with the TVD
RK scheme and upwinding. Note that the storage requirements are greater for subsequent steps
than for the first step due to the averaging computations.

correspond to a computation and the black arrows indicate the dependencies. Two
buffer entries above each other are needed to effectively propagate the wavefront of
computations through the iteration space. Suppose the first computation (i.e. the circle
with the number one) is about to advect entry 7 in the input out-of-core grid. It needs
to store the result in the buffer of temporaries and because it cannot overwrite entries
needed by the second through fifth computations, it stores the result as indicated. The
second computation can similarly not overwrite needed values and therefore its result
is stored as indicated. It should be noted that in one dimension it is possible that the
second computation could use the entry in the buffer of temporaries directly to the left
of it to store its result. However, it is important to stress that this does not generalize
to N-dimensional level sets on DT-Grids. When we perform this generalization, the
entries in the buffer of temporaries are in fact (N− 1)-dimensional slices of varying
sizes, so the result from the second computation would not necessarily fit.

Returning to Figure 7, we note that the third computation can write its result to the
entry in the buffer of temporaries marked by the letter A, thus overwriting the entry
which the second computation on the wavefront does not need anymore. Since this
result is of the same size as the one overwritten, this does not pose a problem in N
dimensions. Similarly, the fourth computation can write its result in the buffer entry
marked B. This behavior generalizes to n advection/propagation and re-initialization
steps, and the storage scheme works for computations of any stencil width w. The
required size of the buffer of temporaries is given by 2r(n−1)+ 2, where r =

(⌊w
2

⌋)
is the effective radius of the stencil.

Figure 8 shows a similar “snapshot” of the TVD Runge-Kutta scheme, again with
first order upwinding. As can be seen from the grey and yellow areas with dotted

98 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

Temporal scheme Buffer size

Forward Euler 2r(n−1)+2
TVD Runge-Kutta (7r +1)(n−1)+4r +2

BFECC (6r +1)(n−1)+4r +2

Table 1 The proposed memory requirements. r is the radius (or half the width rounded down)
of the computational stencil employed, while n is the total number of steps in the level set step.
Each entry in the buffer of temporaries is an (N−1)-dimensional slice.

outlines, we can immediately overwrite the result of the second computation (stored
in the entry marked A) with the result of the first averaging computation (computation
number 3), thus saving memory. Also, the fourth computation is able to write its result
in the buffer entry marked B. Note that the storage pattern is slightly different for the
second step, because the values written by the fifth computation cannot be overwritten
as they are needed by the final averaging computation. The generalized formula for
the size of the buffer of temporaries is given in table 1 along with the one for BFECC,
which can be derived in a similar way. The proposed mappings result in memory
requirements which scale with the size of the wavefront of execution rather than the
size of the grid.

As mentioned, each entry in the out-of-core grids and the buffer of temporaries is
actually an entire (N−1)-dimensional slice of the narrow band. In the one-dimensional
examples above, the values are therefore just scalars, which the computations can op-
erate on directly. In higher dimensions, we perform computations using sequential
access on entire slices at a time. Furthermore, when dealing with more spatial dimen-
sions, we tile the space and utilize the boundary grids mentioned in the overview. The
specific storage mappings proposed for doing this will be explained in section 3.2.

3.1.3 THE FAST ITERATIVE METHOD

In section 3.1 we described how to solve the (pseudo time-dependent) re-initialization
equation ∂φ/∂ t + S(φ0)(|∇φ | − 1) = 0 to steady state in our out-of-core framework.
In this section we describe how to apply a tiling scheme to the recently proposed Fast
Iterative Method (FIM) [49] for solving the eikonal equation |∇φ | = 1. This enables
an out-of-core implementation that requires data to be streamed to and from memory
only once. Furthermore, it can be combined with the skewing framework in section
3.1, hence requiring streaming to and from memory only once for all steps making up
a level set iteration. The FIM has a number of properties which makes it well-suited
for an out-of-core parallel implementation. First of all, it does not require a separate,
heterogeneous data structure such as the heap required by the Fast Marching Method
(FMM) [109, 127, 128]. Secondly, it can simultaneously update multiple grid points.

The FIM manages a list of active grid points which are iteratively updated until
convergence. This active list is updated by adding and removing grid points based on
a convergence measure. The main difference from the FMM is that grid points are
updated independently and that the active list can move over grid points previously

3 Skewing and Tiling Level Set Computations and Data Structures 99

aaaaa
Narrow band width

aaaaa
Narrow band width

Width of slice group
aaaaaaaaaaaaaaaaaaaaaa

Inactive slices

Active slices

Boundary slice

Figure 9 Our modified FIM processes the slices one group at a time. The active list can only
propagate distance information within the orange slices. A band of slices from the previous
group remain active to ensure correct backward propagation of information.

removed from the list and reactivate them as new information is propagated across the
narrow band. This is in contrast to the FMM which maintains a heap of grid points
sorted after their current distance to the zero-crossing and only removes them once they
have the correct value. The consequence of the FIM’s approach is that the grid points
do not need to be updated in a strict order based on their distance to the zero-crossing
as they can be reactivated.

To enable a streaming implementation, we modify the original algorithm by parti-
tioning the level set slices into groups which are treated separately. In order to allow
the correct propagation of distance information between the groups, a band of slices is
shared between neighboring groups. The width of this band must be at least the same
as the width of the narrow band. The motivation behind this is that, in the continuous
case, the distance value at a certain point originates from points no further than ’dis-
tance’ away from it. In our case the maximum distance computed equals the width
of the narrow band. However, due to the seven-point star-stencils used for numeri-
cal computations, distance can, in the discretized case, travel infinitely on a sub-scale.
This means that the distance value at a certain grid point may rely on the distance
first being computed correctly at grid points further away than the width of the narrow
band. However, as is evident from our numerical experiments in figure 2, the error
introduced by limiting the width of the shared band of slices appears to be below the
truncation error. Figure 9 shows three slice groups where the raised, middle group is
currently being processed by our algorithm. The orange slices indicate the region in
which the active list can compute and propagate distance information. We will call
these the active slices. Notice that the last few slices of the previous group remain ac-
tive such that new information can correctly propagate back to them. The yellow slice
of the next slice group acts as a boundary slice and stores grid points which should
have been included in the current active list. They are then used as the initial active list
when treating the next group of slices. It should be evident from this description that
the slice groups must be at least as wide as the narrow band.

We have experimented with two implementations of the active list. The main dif-
ference lies in the access pattern of the grid points in the list. The first implementation
simply stores the points in a list and when processing them, it uses random access
which is logarithmic in the number of connected components of the DT-Grid [90].
The second implementation utilizes a bit mask to determine which grid points are in
the list. It then sequentially scans through all grid points in the current group and up-

100 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

Model
Reinitialization equation FIM Sliced FIM 1 Sliced FIM 2
| · |∞ | · |2 | · |∞ | · |2 | · |∞ | · |2 | · |∞ | · |2

0.00452 0.000148 0.00697 0.000200 0.00697 0.000196 0.00697 0.000197

0.0164 0.00251 0.0186 0.00203 0.0186 0.00200 0.0186 0.00200

Table 2 Error norms of the various FIM implementations on two different surfaces. Our sliced
FIM implementations are as exact as the original algorithm. The slice group width is set to
2× the narrow band width. For the algorithm from section 3.1, the initial φ is reset to ±γ
away from the zero-crossing and the algorithm is run for 40 iterations using Forward Euler and
Upwind differencing for the derivatives.

Algorithm
233×

167×
108

985×
546×

657

Reinit. eq. 5.9 61.8
Sliced FIM 1 4.4 49.4
Sliced FIM 2 6.8 108.6

Table 3 CPU times in seconds of the various FIM implementations. The examples were run
with the same settings as in table 2.

dates the ones which are in the mask. This is done iteratively until convergence. We
refer to these implementations as Sliced FIM 1 and Sliced FIM 2, respectively.

Table 2 shows that the accuracy of Sliced FIM 1 and 2 is as good as for regular
FIM. For both these examples, we used a slice group width of 2× the narrow band
width. For the algorithm from section 3.1, the initial φ was reset to ±γ away from the
zero-crossing and the algorithm was run for 40 iterations using Forward Euler and first
order upwind differencing for the temporal and spatial derivatives, respectively. Table
3 shows the running times for a few bigger examples. It is evident that the Sliced FIM
1 algorithm outperforms Sliced FIM 2 despite the slower access method.

3.1.4 REBUILD

To enable one or several complete level set steps to be implemented out-of-core in a
single streaming pass, we must also consider how to adapt the narrow band rebuild
algorithm of the DT-Grid. Similar to the substeps of computation in the TVD RK
algorithm in figure 6, the substeps of the rebuild algorithm can be skewed to maximize
locality. We refer to the original DT-Grid paper for full details on the rebuild algorithm
[90], and present here only a simplified version. In particular the rebuild algorithm
consists of the following steps, where we assume φ to be a signed distance function,
γ to be the Euclidean width of the narrow band, N to be the dimension, and H to be
the width of the dilation measured in grid cells (the rebuild process is illustrated in the
rightmost part of figure 10 with N = 1 and H = 1):

1. Copy grid points with |φ |< γ to an intermediate grid.

3 Skewing and Tiling Level Set Computations and Data Structures 101

t=0
x

t
Rebuild

x=0 x=X

1: Copy < γ

2: Dilate Topology

3: Copy & Initialize

1: Copy < γ

2: Dilate Topology

3: Copy & Initialize

α β χ δ> γ > γ

α β χ δ

α β χ δ

γ γγ

Original Grid:

Copied Grid:

Dilated Topology:

Rebuilt Grid:

Figure 10 Leftmost: Illustrates the skewed iteration space of the rebuild process with the
wavefront of execution outlined in orange. The black arrows indicate the dependencies. Right-
most:Illustrates the steps involved in the rebuild process of a 1D DT-Grid. To emphasize the
relationship with the skewed iteration space (left), the figure should be read from the bottom
and up. In this example the original grid consists of two separate connected components. Grid
points with numerical value less than γ are shown in green. Values larger than γ are shown in
orange and new grid points are shown in yellow.

2. Dilate the topology of the intermediate grid with a stencil shaped as a hypercube
of dimensions (2H + 1)N . This may change the topology of the grid. Then
allocate uninitialized storage for the values of the grid.

3. Copy values of grid points that exist in the intermediate grid to the final grid,
and initialize new grid points to a numerical value of γ .

In the original paper each of these steps are completed before the next commences.
However, as illustrated in the leftmost part of figure 10 the wavefront of execution can
be made independent of the grid dimensions. In particular steps 1 and 3 require no
skewing since a computation at these substeps depends only on the computation im-
mediately below in the original iteration space. Since step 2, the dilation step, utilizes
a hypercube-shaped stencil for dilation, a minimal skewing of H grid points is required
in each spatial dimension at this level of computation. When including a rebuild step
on the wavefront of execution, where both the prior and the subsequent steps operate in
the buffer of temporaries as opposed to out-of-core, the number of entries in the buffer
of temporaries is increased by (2H +1)+(2bw

2 c+1) for a simulation employing for-
ward Euler. In particular step 1 requires 2H +1 additional entries corresponding to the
width of the dilation stencil, and steps 2 and 3 require 2bw

2 c+1 additional entries corre-
sponding the width of the propagation stencil. Similar arguments hold for a simulation
employing TVD RK or BFECC time stepping thereby obtaining (2H +1)+(3bw

2 c+1)
additional entries. If the result of the rebuild step is placed out-of-core, the number of
entries is only increased by (2H +1), independent of the time stepping approach, since
there is no propagation stencil.

3.1.5 CONCATENATING MULTIPLE LEVEL SET STEPS

In the the previous sections, we have only dealt with performing one level set step
during a single pass over the level set. If the amount of main memory allows it, several
level set steps can be concatenated into one pass. Figure 11 shows a concatenation of
two level set steps with advection and re-initialization steps (for simplicity the rebuild

102 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

Advect

Reinit 1

Reinit 2

Reinit 3

t=0

t=dt1

x

t
Euler w/ upwind

Grid slices

Buffer slices

0 1 2 3 4 5 6 7

2

1

3

4

Advect to dt1

Advect to 2*dt1

Compute to 0.5*dt1

Advect to 1.5*dt1

t=0
x

t

Compute to dt1

TVD RK w/ upwind

Reinit 1 to dt1

...

1

2

3

4

5

6
Grid slices

Buffer slices

0 1 2 3 4 5

Advect

Reinit 1

Reinit 2

Reinit 3

t=0

t=dt1

x

t
Concatenated Euler w/ upwind

OOC Grid slices

Buffer slices

0 1 2 3 4 5 6 7

2

1

3

4

Advect

Reinit 1

Reinit 2

Reinit 3

5

6

7

8

t=dt2

Reinit 4

5

 A

 B

 C

 D

 E

Figure 11 Two concatenated Euler level set steps. Notice how all intermediate values are
stored in-core while out-of-core grids are used only as input and for the final output. Also note
that we have abstracted away the sub-steps of the rebuild step for simplicity.

steps have been omitted). Note how the intermediate results of the first level set step
are kept in memory as opposed to in figure 7. This lowers the disk traffic and lessens
the load on the bandwidth to the disk, which facilitates using slower disks and/or faster
processors with no performance penalty as well as running several simulations or com-
puting on several tiles at the same time.

This approach requires that a time step size is chosen for some level set steps in
the simulation before the previous steps have been completed, which is not always
possible. In most cases, however, one can perform conservative estimates of or exactly
determine the allowed time step size. This is the case for e.g. mean curvature flows
where the latter is possible and for analytical flows where only the former is an option.
One notable exception is fluid simulation flows where a guaranteed stable estimate can
not be made.

Even when performing only a single level set step per pass, one does not want
to perform a separate pass over the data to determine the time step size for the next
step. If the velocity field for the next step is available, one can combine the rebuild
algorithm with an evaluation of the field for all grid points in the new narrow band and
thus determine the allowed time step size.

3.2 TILING

In this section we first describe the tiling of the skewed iteration space and next explain
the storage mapping that tiles the actual data layout.

3.2.1 TILING THE ITERATION SPACE

Whereas skewing of the iteration space is required to facilitate permutation of the
iteration directions, tiling is in general required to ensure locality of references to data.

3 Skewing and Tiling Level Set Computations and Data Structures 103

Computation 1

Computation 2

Computation 3

Computation 4

t=0

t=T

x

t
Skewed Euler w/ upwind

x=0 x=X

1: for t2 ← 0, T , BT do

2: for x2 ← 0, X +T , BX do

3: for t← t2, min
(
T, t2 +BT

)
do

4: for x←max
(
t,x2

)
, min

(
X + t,x2 +BX

)
do

5: A[t +1,x− t]← step(A[t,x− t],A[t,x−1− t],A[t,x+1− t])

6: end for
7: end for
8: end for
9: end for

Figure 12 Leftmost: Shows the geometric outline (thick black lines) of the skewed tiles re-
sulting from tiling the iteration space. In this case a tiling of BT = 2 was used in the temporal
dimension and a tiling of BX = 3 was used in the spatial dimension. The wavefront of exe-
cution which is independent of the grid dimensions is shown in orange in the lower left tile.
Rightmost: Shows the code corresponding to the iteration space traversal on the left.

This is caused by the fact that along a direction in the iteration space we may reference
more data than can fit into memory. Hence, even though later computations reuse data
items, omitting skewing will in the worst case have to load them into memory every
time they are referenced. Tiling, or blocking, is conceptually simple and illustrated
in 1D for a first order spatial method combined with Forward Euler in figure 12. The
iteration along each direction of the iteration space is simply divided into tiles of equal
size by splitting the corresponding loop into two loops, where the loop that steps over
the tiles is called the controlling loop. As shown in the rightmost part of figure 12 tiling
is combined with loop interchange to place the controlling loops as the outermost loops
in order to ensure locality. More concretely, if a given level set simulation takes T
substeps then without skewing and tiling, data has to be streamed to and from memory
T times. By introducing skewing and a tile size of BT in the temporal direction, the
number of times data has to be streamed is reduced to T/BT . In order for this to work,
the size of the wavefront of temporaries described in section 3.1 must fit into memory.
This poses restrictions on how large BT can be and additionally a tiling in the spatial
dimensions may be required as well. In fact, for a simulation on a N-dimensional grid,
tiling is required in at most N− 1 spatial dimensions in order to make the wavefront
of execution independent of the grid dimensions. Consider the 1D example in figure
12. In this case it is not necessary to tile in the x-direction to ensure locality because
the dimensions of the wavefront of execution is independent of the spatial direction
in which it travels (in this case the x-direction). For the 3D simulations considered in
this article, we at most tile in the y- and z-directions and always leave the x-direction
untiled. Note that the choice of untiled direction is arbitrary.

3.2.2 TILED STORAGE MAPPING

Skewing and tiling the iteration space optimizes locality for level set computations.
However, these transformations are not sufficient to yield a fast practical implementa-
tion. Recall that in order to obtain computational and storage efficiency we implement
our proposed framework on the DT-Grid data structure. Accessing data in tiles on a
DT-Grid will result in a large number of non-sequential access operations that have
logarithmic time complexities. In an out-of-core implementation the non-sequential
access operation furthermore results in a logarithmic IO complexity as well as disk
search operations which are expensive operations relative to sequential disk access.

104 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

t

Computation 1

Computation 2

x

I
1 2

4

3

6

9
Computation 3

(a)

(c)

(b)

5 7

8 11

10

12 15 18

14

13

17

21

16

20

19

Figure 13 (a) Untiled 1D grid consisting of three connected components. (b) The grid in (a)
tiled using a fixed tile size. Note that due to the connected components the part of the narrow
band inside each tile may vary in size. (c) The enlargement of a single tile, shown in green.
The boundary data from neighboring tiles required for three complete computations on the tile
is shown in orange. The values allocated as temporaries are shown in blue and yellow. Note
that only the wavefront of temporaries are stored in-core at any time during the simulation.
The output from three complete computations on the tile is shown in green at the top. The
wavefronts are indicated by the skewed lines, and the exact order of computations is indicated
by the numbering.

This suggests that in order to obtain feasible run times a transformation of the layout
of data on secondary storage is required in addition to iteration space tiling. In partic-
ular, a tiling of the narrow band is required. Figure 13.a shows a 1D un-tiled grid, and
figure 13.b shows a tiled version of the same grid, where each tile is stored as a separate
grid. The tile boundaries of the grid correspond to the tile boundaries of the iteration
space. Inside each tile, computations are skewed with respect to time and temporary
storage allocated as described in section 3.1 and illustrated in figure 13.c. In order
to complete several iterations inside each tile, boundary data from neighboring tiles
is required which is also illustrated in figure 13.c. A straightforward way to do this
would be to also stream parts of neighboring tiles through memory when performing
computations on a specific tile. However, this is infeasible due to the aforementioned
penalties of random access, and further impeded by the fact that large page sizes are
used when transferring data from disk to memory. Thus we may in the worst case end
up streaming all of the neighboring tiles through memory when in fact only a rela-
tively thin band of boundary data is needed. The situation becomes more intractable
for higher dimensional grids, e.g. in 3D we may end up streaming the grid to and from
memory nine times if tiling in two spatial dimensions. The solution to this is to store
separate boundary grids that contain only the boundary data needed to complete the
computations inside each tile. Note that the width of the boundary grids is equal to the
width of the wavefront of execution. In particular, a wavefront including N Forward
Euler fictitious time steps has a width of (N− 1)bw

2 c, whereas a wavefront including

3 Skewing and Tiling Level Set Computations and Data Structures 105

M TVD RK or BFECC fictitious time steps has a width of (M− 1)(w− 1), where w
is the width of the stencil. Each rebuild step included in the wavefront adds one to its
width. Note that the width of the boundary grids is proportional to the number of ficti-
tious time steps. In all of our simulations the boundary grids are very small compared
to the size of the tiles, as BX is orders of magnitude larger than BT , where BX and BT

are the tile sizes in space and time respectively. The reason for this is that BT in most
cases only includes a single level set step. If several level set steps are concatenated as
discussed in section 3.1.5, there is a tradeoff between lowering the requirements on IO
bandwidth and the increased overhead arising from boundary grids. We call the result-
ing data structure the Tiled DT-Grid and an example in 3D was depicted in figure 1.
The tiled DT-Grid consists of three components: A coarse grid, several tile grids and
several boundary grids. Each cell in the coarse grid corresponds to a tile in the spatial
dimensions. Since we always leave the x-direction untiled, the spatial extent of such a
cell will be infinite in at least one direction. A cell in the coarse grid essentially holds
pointers to a single tile grid and to a boundary grid for each boundary element (in 3D
either an edge or a face) along which two cells are adjacent. Hence for a 3D grid the
number of boundary grids for each cell will vary between zero and eight; zero if no
tiling is applied and eight if tiling in the y- and z-directions since there will be eight
neighboring grids; one along each of the four faces and one along each of the four
edges of the tile (see figure 2). Both the coarse grid, the tile grids and the boundary
grids can be stored separately as out-of-core DT-Grids. Since the intersection of the
narrow band with the boundaries of a tile may result in a level set that is not closed,
special algorithmic care has to be taken for a DT-Grid implementation, and how to
handle iteration with a stencil and narrow band rebuild is described in [89].

Concurrent with computations on a specific tile, the grid points of the tile grid
itself as well as the grid points of adjacent boundary grids from neighboring tiles are
merged into a single DT-Grid when streamed into memory. This is facilitated by the
lexicographic storage order of the underlying DT-Grid storage used for both tile and
boundary grids. Hence the grid points are sorted with respect to the lexicographic
order, and the merging can be implemented using a heap which contains at most as
many elements as there are boundary grids plus one. The heap adds an overhead
compared to streaming alone, however optimizations are possible in our case. Firstly,
the number of entries in the heap is limited by the number of boundary grids plus one
(at most 5 in our case). Secondly, merging only needs to be invoked (and hence the
heap activated) at the boundaries between the tiles and the boundary grids, where the
origin (tile or boundary grid) of grid points changes.

Notice from figure 13.c that computations on grid points that fall inside a boundary
grid will be performed twice on each tile if processed independently. The computa-
tional overhead will be proportional to the narrow band volume inside the boundary
grids. Generally this will be small compared to the narrow band volume inside the
tile grids, and this strategy also has the advantage that each tile can be processed in
parallel. If duplication of computations on boundary grids is not desirable, the tiles
can be processed sequentially and computations performed on a boundary grid can be
stored to disk temporarily and used for initialization in adjacent tiles.

106 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

4 RESULTS AND DISCUSSION

4.1 SINGLE THREADED PERFORMANCE

In this section we present benchmark evaluations of our out-of-core level set frame-
work and compare its throughput to the throughput of the out-of-core framework by
Nielsen et al. [91] as well as to the throughput obtainable for in-core simulations on
the original DT-Grid data structure [90].

For the benchmark tests we have employed the following methodology. We con-
sider three different level set flows: (1) Constant normal propagation (exemplified by
an erosion), φt−|∇φ |= 0. (2) Advection in a velocity field where the maximal veloc-
ity is known prior to each level set step (exemplified by a translation), φt +~V ·∇φ = 0.
(3) Mean curvature flow, φt − κ|∇φ | = 0. Each of these flows are simulated using
two different numerical schemes: (1) A forward Euler temporal discretization com-
bined with a spatial discretization of first order one-sided differences for the hyperbolic
terms and second order central differences for the parabolic terms. (2) A third order
TVD RK discretization in time combined with a spatial discretization of HJ WENO
for the hyperbolic terms and second order central differences for the parabolic terms.
We evaluate each combination of flow and numerical scheme on a narrow band DT-
Grid based level set representation of the Stanford Bunny (see figure 1) in increasing
resolution. For the high order numerical scheme (2), the maximal thickness of the
narrow band corresponds to 7 grid cells, and for the low order numerical scheme (1) a
thickness of 4 grid cells is used. For numerical scheme 1, we have run the simulations
on narrow band grids ranging over effective resolutions roughly 10003 (0.085GB) to
140003 (17GB). For numerical scheme 2, the effective resolution of the narrow band
grids range from 10003 (0.13GB) to 100003 (14 GB). In each case the highest reso-
lution corresponds roughly to the narrow band that allows for the maximal number of
degrees of freedom representable in 32 bit. Since the narrow band is thicker for nu-
merical method 2, the largest model employed here is smaller in terms of resolution.
During simulation roughly twice the storage is required, since an input and an output
out-of-core grid must be represented simultaneously. The simulations were run on a
computer with 32Bit Windows XP Pro, a single-core 2.41GHz AMD CPU, 1 GB of
memory and a 10000 RPM Western Digital Raptor disk. The benchmark programs
were implemented in C++ and compiled using Visual Studio 2005 with maximal op-
timization enabled. In our implementations of the framework proposed in this paper
and the framework in [91], only the code for the level set algorithms differed. The un-
derlying DT-Grid as well as the prefetching and page-replacement schemes all utilized
the exact same code. For the single threaded benchmarks we utilized only a single tile
and hence no boundary grids.

4.1.1 PERFORMANCE OF SKEWED SIMULATIONS

As illustrated in figure 14, the performance of the DT-Grid drops notably as the main
memory limit is reached. The out-of-core framework in [91] improves the perfor-
mance, but remains IO limited as shown in figure 15 left. In contrast the framework

4 Results and Discussion 107

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
el

at
iv

e
Th

ro
ug

hp
ut

Resolution

DT-Grid

Figure 14 The performance of the in-core DT-Grid drops when the main memory limit is
exceeded.

 0

 20

 40

 60

 80

 100

C
P

U
 U

til
iz

at
io

n

Time

CPU utilization of framework of Nielsen et al.

Nielsen et al.

 0

 20

 40

 60

 80

 100

C
P

U
 U

til
iz

at
io

n

Time

CPU utilization of framework of Christensen et al.

Christensen et al.

Figure 15 This figure shows the CPU utilization over the course of a single time-step of an
out-of-core simulation on the Stanford Bunny at resolution ≈ 80003. Left: The framework in
[91] is IO limited for both low and high order methods. Right: Our framework utilizes the
CPU 100% and is thus CPU limited although the data is streamed to and from memory.

proposed in this paper is CPU limited as depicted in figure 15 right.

Results from the benchmarks are shown in figure 16. For numerical scheme 1 there
seems to be the following tendency: For our proposed framework, the ratio of through-
puts (number of processed grid points per second) is roughly constant and appears to
rise slightly for the propagation and advection tests. In all cases, our new framework
outperforms that in [91]. In particular the performance of the framework in [91] drops
as the resolution is increased, a consequence of an increasing IO bottleneck. We ex-
pect the performance to converge asymptotically to some fixed ratio of throughputs
not reached within the resolutions spanned by our tests.

For numerical method 2, performance is roughly constant for both frameworks, but
our framework outperforms that in [91]. The reason for this is that the framework in
[91] is IO limited. Contrary to the case of numerical method 1, the ratio of throughputs
has in this case converged for the framework in [91] . Performance is higher in the
case of numerical method 2 than numerical method 1. This is due to the fact that
numerical method 2 is of higher order, and the CPU overhead associated with our

108 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000

R
el

at
iv

e
Th

ro
ug

hp
ut

Resolution

Erosion Test, Forward Euler (temporal) + First Order (spatial)

OOC DTGrid, OO
OOC DTGrid Skewed, OO

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
el

at
iv

e
Th

ro
ug

hp
ut

Resolution

Erosion Test, TVD (temporal) + WENO (spatial)

OOC DTGrid, OO
OOC DTGrid Skewed, OO

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000

R
el

at
iv

e
Th

ro
ug

hp
ut

Resolution

Translation Test, Forward Euler (temporal) + First Order (spatial)

OOC DTGrid, OO
OOC DTGrid Skewed, OO

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
el

at
iv

e
Th

ro
ug

hp
ut

Resolution

Translation Test, TVD (temporal) + WENO (spatial)

OOC DTGrid, OO
OOC DTGrid Skewed, OO

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000

R
el

at
iv

e
Th

ro
ug

hp
ut

Resolution

Mean Curvature Flow Test, Forward Euler (temporal) + First Order (spatial)

OOC DTGrid, OO
OOC DTGrid Skewed, OO

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
el

at
iv

e
Th

ro
ug

hp
ut

Resolution

Mean Curvature Flow Test, TVD (temporal) + WENO (spatial)

OOC DTGrid, OO
OOC DTGrid Skewed, OO

Figure 16 Benchmark results from a normal propagation test (top), advection test (middle)
and mean curvature flow (bottom). Results are reported as the ratio of throughputs (number of
processed grid points per second) obtained by our framework (OCC DTGrid Skewed, OO) and
the framework in [91] (OOC DTGrid, OO) to the throughput obtained by an in-core DT-Grid
simulation at 10003. The left column shows results from numerical scheme 1 and the right
column shows results from numerical scheme 2, as explained in section 4.1.

proposed framework is constant per byte streamed to and from disk. Since the higher
order schemes require more CPU time, the relative overhead of our framework is lower
for a higher order than a lower order method.

We conclude that for both numerical methods, the throughput of our framework
appears to be sustained, independently of resolution and numerical method.

As we have argued above, the current framework is CPU bound with an overhead
between 8−23% compared to the DT-Grid in-core narrow band level set method. The
question is if this overhead can be reduced further. From analyzing the framework,
it appears that about two thirds of the introduced overhead arises from checks in the

4 Results and Discussion 109

code that ensure that iterators are updated correctly whenever they move to data in a
new disk page. Because these checks have to be done for each access into the topology
and value data, they comprise a substantial part of the overhead compared to a fully in-
core method which does not have to perform these checks. We believe that most of the
overhead associated with these checks can be eliminated on a 64 bit operating system,
if the narrow band level set is not larger than the virtual address space. The strategy is
to essentially memory map the file into the virtual address space, but in such a way that
only active pages are actually allocated and that pre-fetching and page-replacement is
done using the methods in [91]. We are currently investigating this.

4.2 MULTI THREADED PERFORMANCE

Parallellization techniques are required in order to run simulations within feasible time
constraints. In this section we evaluate the performance of our framework in a multi-
threaded environment. In particular we evaluate its performance when running several
out-of-core simulations on the same disk and compare performance to the out-of-core
framework by Nielsen et al. [91]. Furthermore we evaluate the parallelization over-
head introduced by combining skewing and tiling transformations and benchmark the
parallel performance of our framework. For single threaded applications we have not
found it necessary to tile the grid in practice. The reason is that the computation-
time becomes infeasible before the memory limit is exceeded by the number of slices
required in-core by the computation. For this reason we only apply tiling for multi-
threaded applications.

The multi-threaded experiments were run on a computer with 64Bit Windows Vista
Business, two Intel Xeon 2.8GHz quadcore processors (8 cores in total) and three 7200
RPM disks. All experiments utilized less than 2GB of memory. Our framework was
parallelized using Intel Thread Building Blocks [104], and boundary grids were kept
in-core for these tests.

4.2.1 PERFORMANCE OF MULTIPLE SIMULATIONS ON THE SAME DISK

In this experiment we compare the performance of the framework in [91] to our frame-
work in the situation where several concurrently running simulations utilize the same
disk. As test case we consider mean curvature flow on the Stanford Bunny at reso-
lution ≈ 80003 combined with numerical method 1 described in section 4.1. In our
framework we concatenated two level set steps as described in section 3.1.5 to obtain
better IO-efficiency. Figure 17 shows the result of the experiment. The framework
of Nielsen et al. is IO-limited for a single simulation, and the throughput drops sig-
nificantly as the number of simulations utilizing the same disk is increased. On the
contrary, the throughput of our framework by and large stays constant, except for a
slight drop (≈ 1%) in the beginning.

110 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

R
el

at
iv

e
pe

rfo
rm

an
ce

Number of simultaneous simulations

Relative performance with multiple simultaneous simulations

Christensen et al.
Nielsen et al.

Figure 17 This figure shows the relative throughput (defined as actual throughput divided by
throughput when only a single simulation is utilizing the disk) as a function of the number of
simultaneous simulations on the disk.

 0

 10

 20

 30

 40

 50

 2 3 4 5 6 7 8

Ti
lin

g/
pa

ra
lli

za
tio

n
O

ve
rh

ea
d

(%
)

Number of tiles along each tiling direction

Tiling/parallelization Overhead

TileZ
TileZY

Figure 18 This figure shows the tiling/parallelization overhead of our framework as a function
of the number of tiles along each tiling-direction. TileZ tiles only in the Z-direction whereas
TileZY tiles in both the Y− and Z-directions. The tiling/parallelization overhead is defined as
percentage increase in execution time resulting from a single-threaded run of our framework
using both tiling and skewing versus a single-threaded run of our framework using only skew-
ing transformations. As test case we consider advection of the Stanford Bunny at resolution
≈ 80003 combined with numerical method 1 described in section 4.1.

4.2.2 PARALLELIZATION OVERHEAD

The best serial algorithm is seldom the best parallel algorithm [104], and a paralleliza-
tion overhead is introduced by the tiling transformation which in turn is required in
order to facilitate multi-threading. For a given dataset, the overhead grows as the num-
ber of tiles grows, as this will cause an increase in the number of boundary grids and
hence redundant computations. Additionally, the overhead depends on the size of the
boundary grids which depends on the number of concatenated level set steps as well as
the size of the numerical stencils. Finally the cost of merging grid points from bound-
ary grids and tiles will increase since the heap used to sort these will contain more
elements. Figure 18 shows the tiling/parallelization overhead for two different block-
ing schemes. The overhead in this case lies between 23% and 30% when comparing

4 Results and Discussion 111

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

P
ar

al
le

l p
er

fo
rm

an
ce

 s
ca

lin
g

Number of cores

Parallel Performance Scaling

Christensen et al.

Figure 19 This figure shows the parallel performance scaling as a function of the number of
cores. To emphasize the scaling trend, the parallel performance scaling is computed as the
execution time divided by the execution time of the parallel version of our framework (using
both skewing and tiling) running on a single core. As test case we consider advection of the
Stanford Bunny at resolution≈ 80003 combined with numerical method 1 described in section
4.1.

single-threaded performance. A conclusion to be drawn from figure 18 is that tiling in
only one direction is preferable over tiling in two directions, if memory requirements
permit it.

4.2.3 PERFORMANCE OF SKEWED AND TILED SIMULATIONS

Once the simulation is set up, there are virtually no serial sections in our framework
implementation, except for the code that logs performance and saves level set data to
disk. Hence according to Amdahl’s law, our framework should have good theoretical
parallel performance scaling properties. As can be seen from figure 19, the paral-
lel performance of our current framework implementation scales sub-optimally as the
number of cores are increased, obtaining a parallel speedup of 6.75 using 8 cores and
using roughly 104 seconds per level set time step. The reason for not obtaining 8X-
performance is not due to IO limitations, since our framework remains CPU limited. In
fact we observed similar scaling properties when keeping all components (values and
topology) in-core on smaller data sets. For the tests in this section we also attempted to
diminish load-imbalancing by applying a simple non-uniform tiling strategy in which
the number of tiles equals the number of cores used for the computations. Each core is
then assigned to a specific tile, and the tiles are constructed in such a way that the num-
ber of grid points in each tile is roughly constant. Furthermore the data was distributed
evenly on the computer’s three disks. We leave an investigation of using more cores,
a different architecture as well as improvements of the parallel performance scaling of
our framework for future work.

112 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

5 APPLICATIONS

5.1 THE DIVERGENCE-FREE ADVECTION TEST

In this section we demonstrate an extreme level set deformation by advecting 8 spheres
through the incompressible, periodic velocity field originally proposed in [67, 23]:

u(x,y,z) = 2sin2(πx)sin(2πy)sin(2πz)cos
(tπ

T

)
v(x,y,z) =−sin(2πx)sin2(πy)sin(2πz)cos

(tπ
T

)
w(x,y,z) =−sin(2πx)sin(2πy)sin2(πz)cos

(tπ
T

)
where T = 3 is the period of t. The velocity field is reversed at t = 1.5, and the advected
level set should return to its original shape at time t = 3. The spheres have radius
0.125 and are placed in a unit computational domain at positions (0.15,0.15,0.85),
(0.15,0.85,0.15), (0.35,0.35,0.35), (0.35,0.65,0.65), (0.65,0.35,0.65), (0.65,0.65,
0.35), (0.85,0.15,0.15) and (0.85,0.85,0.85). The advection equation ∂φ/∂ t + ∇φ ·
(u,v,w) = 0 where φ is the level set function and t is time was solved using a third
order accurate TVD RK discretization in time and a three – fifth order accurate HJ
WENO discretization in space. Figure 20 shows the surfaces at various times during
the deformation. The unit computational domain is sampled at resolution 20483, and
the DT-Grid narrow band contains approximately 85.7 million voxels at the beginning.
It takes up 0.37GB of storage and roughly twice as much is needed during simulation.
At t = 1.5 the storage requirements peak at 1.4GB and approximately 343 million
voxels are contained in the narrow band. The simulation was run on a Mac Pro work
station with two Intel Xeon quad core 2.80GHz CPUs, 4GB of memory and 4 7200
rpm hard drives, which were all utilized. Tiling was performed in the Z-direction with
a CPU assigned to each tile, and each iteration took from 103 seconds in the beginning
and end (t = 0 and t = 3) to 390 seconds around the peak (t = 1.5). The rendering was
performed by in-core ray tracing on a different machine.

5.2 MEAN CURVATURE FLOW OF SURFACES

The applications of curvature-based surface flows are vast. In this section we illustrate
the use of mean curvature motion for surface smoothing expressed by the simple level
set equation ∂φ/∂ t = κ|∇φ |, where κ is the mean curvature of the surface, φ is the
level set function and t is time. We discretized the equation using first order accurate
Forward Euler in time and second order accurate central differences in space. Figure
21 shows the Lucy statuette from the Stanford Scanning Repository [115] scan con-
verted into a DT-grid narrow band level set in resolution 17149× 9987× 5734 using
the method for manifold meshes proposed in [47]. Each instance of the DT-Grid is
11.5GB, and during simulation roughly twice the storage is required. The simulation
was run on a Dell Inspiron 8600 Laptop with 1GB of memory and a 7200 rpm hard
drive. Even on this hardware configuration, our out-of-core framework remains CPU
limited, one iteration taking approximately 108 minutes. While not necessarily feasi-
ble for simulations requiring many iterations, due to time constraints, this illustrates

5 Applications 113

that our framework is applicable even on architectures with limited resources. Notice
that in the initial surface on the left, the triangulation of the original Lucy polygonal
model, from which the level set was scan converted, is visible. However, since the
model is super-sampled using the level set, and hence has a larger number of degrees
of freedom, the mean curvature motion effectively results in a smooth interpolation of
this model to higher resolution. The rendering was done by Gouraud shading of trian-
gles, streamed to the graphics card and extracted from the level set using the marching
cubes algorithm [71]. Since the marching cubes algorithm will produce many more
triangles for this 11.5GB level set than can be stored on the graphics card, a draw com-
mand is repeatedly issued whenever a fixed number of triangles have been streamed to
the graphics card.

114 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

Figure 20 Results of the divergence-free advection test on 8 spheres in resolution 20483 re-
quiring up to 1.4GB of storage. At the peak (t = 1.5), the narrow band contains approximately
343 million voxels. From top left to bottom right the images are from t = 0, 0.3, 0.8, 1.5, 2.7,
3.

5 Applications 115

Figure 21 Results of the mean curvature motion on the lucy statue scan converted into a DT-
grid in resolution 17149×9987×5734 taking up 11.5GB of storage. Initial surface to the left
and after 200 iterations to the right. The first row shows the whole statue, the second a zoom
in on the head region and the third depicts an even closer zoom to the eye.

116 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

6 CONCLUSION AND FUTURE WORK

We have presented a fast, storage efficient and parallelizable out-of-core framework
for performing computations on level sets at resolutions only limited by the size of
secondary disk space. The framework utilizes code transformations to allow the com-
bination of multiple passes over the data into a single pass. As a result, the level set
algorithms become CPU limited and maintain a throughput of up to 92% of in-core
performance, independently of the level set resolution.

The framework still incurs an overhead compared to a strictly in-core level set
method. As mentioned in section 4.1.1, we believe that a careful engineering effort
can reduce this overhead. In the future, we wish to further investigate and improve the
performance of our out-of-core framework for parallelization and multi-threading. In
particular, given the high resolutions enabled by our framework, computation times are
now the main bottleneck in achieving results at a desired resolution within a desired
time frame. Investigating our framework in the context of parallelization over more
cores and CPUs as well as in combination with implicit methods for solving PDEs,
which would allow for larger time-steps, are promising directions for future work.
Additionally, an automatic determination of the number of computations that can be
concatenated in order to fully utilize internal memory, would ensure that no excess
disk bandwidth is used. It would probably require an initial pass through the data
coupled with a statistical model of the upcoming memory requirements resulting from
the computation. Similarly, determining and adjusting tiling-directions as well as tile
sizes automatically depending on the amount of memory available, would be useful.
Currently, we assume it is possible to set up a configuration at the beginning that will
remain valid throughout the lifespan of the simulation. This has been the case for
all the simulations presented in this paper, however the ability to adjust the tile sizes
dynamically could prove useful for load balancing the CPUs.

While we have focused entirely on level set computations, our techniques are also
relevant for general out-of-core stencil based computations, and it would be interesting
to investigate similar strategies for e.g. fluid simulation.

Acknowledgements. The authors wish to thank Ola Nilsson for help with figure
1. This work was partially funded by the Danish Agency for Science, Technology and
Innovation.

A DATA LOCALITY ANALYSIS

In the following appendices we perform data locality analysis of level set FD schemes
using the model of Wolf and Lam [134]. For the sake of completeness, we briefly
introduce the model and explain how to use it for analysis.

Considering a perfectly nested loop of depth n, we look at the iteration space which
corresponds to a convex polyhedron in Zn bounded by the loop bounds. We can iden-
tify each iteration by a node inside this polyhedron using a vector ~p = (p1, p2, · · · , pn),
where pi is the loop index of the i’th loop in the nest. An execution of the loop-nest

A Data Locality Analysis 117

corresponds to visiting all nodes in the polyhedron in lexicographic order. We have
reuse of a data item if it is accessed in several iterations of the loop. Thus, reuse is
inherent in a computation and does not depend on the execution order of the loops in
the nest. However, reuse does not guarantee temporal or spatial memory locality since
accesses to a particular data item might be separated by many accesses to other data.
This means that in the worst case the data item will have to be loaded each time it is
used. The space spanned by the iteration space directions in which reuse is found is
called the reuse vector space. We can transform our iteration space which corresponds
to performing loop transformations such as skewing. These transformations change
the way the iteration space is traversed and thus the way we exploit reuse. We must
however be sure that the data dependencies of the algorithm are not violated. The
dependence vectors, which define dependencies between two nodes ~p1 and ~p2 in the
iteration space, must be transformed as well. A dependence vector points from ~p1
to ~p2 if the execution of the statement at ~p2 depends on the result from ~p1. Hence a
valid code transformation T must satisfy T (~p1) < T (~p2), where < is the lexicographic
ordering.

While transformations might improve our utilization of reuse, they cannot alone
exploit reuse in multiple dimensions. Therefore we also need to perform tiling. We
can tile loops i through j (for i < j) if they are fully permutable, i.e. can be interchanged
freely: A property satisfied if the dependence vectors are non-negative and have either
lexicographically positive components d1 through di−1, or components di through d j

which are non-negative. Thus we can also use transformations to enable tiling since
the dependence vectors change.

The result of applying the transformations is a vector space spanned by the iteration
directions in which reuse can be exploited. This vector space is called the localized
vector space. The goal of our data locality analysis thus is: Given an iteration space
and corresponding data dependence vectors, we want to apply skewing and tiling trans-
formations in order to obtain a localized vector space which completely contains the
reuse vector space. By ensuring this, data reuse will result in data locality allowing
data to be accessed multiple times whilst in memory, thus avoiding data to be loaded
from disk multiple times.

A.1 FORWARD EULER

Algorithm 1 Euler with first order upwind (original)

1: for t← 0, T do
2: for x← 0, X do
3: A[t +1,x]← step(A[t,x],A[t,x−1],A[t,x+1])
4: end for
5: end for

In this appendix we analyze the forward Euler algorithm in the model of Wolf
and Lam [134]. In particular we derive the reuse vector space, propose specific loop
transformations and then show that these transformations result in a localized vector
space that includes the reuse vector space, hence exploiting maximal reuse. For the

118 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

sake of simplicity, we carry out the analysis in one spatial dimension and explain how
this analysis generalizes to higher spatial dimensions.

Consider the pseudo-code for forward Euler in algorithm 1. To facilitate the analy-
sis, we assume the existence of an array A that includes both the spatial and temporal
dimensions. Furthermore we assume that the initial data is present in A[0,x] for all
x in the spatial dimension, and that the upper loop bounds are not included in the
iteration space (i.e. zero-based indexing). Note that in the actual implementation, our
algorithms retain the iteration order illustrated in algorithm 1, but only a thin narrow
band is traversed, and iterators into the DT-Grid data structure are used to abstract
away the details of topology encoding and streaming to and from disk. Furthermore
we use the storage allocation scheme described in section 3.1.

As explained in the previous appendix, we need to adhere to the dependencies
of the algorithm when we transform the iteration space, i.e. we must ensure that an
iteration does not execute before an iteration which it depends on. The dependence
vectors are {(1,0),(1,−1),(1,1)}. To find the reuse vector space, we classify the
memory references in terms of how they reuse memory. To facilitate this, we put
two references A[f (~i)] and A[g(~i)] in the same equivalence class, called a uniformly
generated set, if it for some linear transformation H and constant vectors ~c f and ~cg

holds that f (~i) = H~i+ ~c f and g(~i) = H~i+~cg.

All references in algorithm 1 are uniformly generated with H = Id and constant
vectors

c1 = (1,0)T ,c2 = (0,0)T ,c3 = (0,−1)T ,c4 = (0,1)T ,

respectively. We wish to compute the reuse vector space containing all the directions of
reuse, and therefore we look at group-spatial reuse (i.e. reuse as a result of references
that are close in either time or space), as the associated reuse space RGS contains all
the other types of reuse. RGS is defined as span{r2, . . . ,r4}+kerHS, where HS denotes
H with the last row replaced by the zero-vector, and r j for j = 2, . . . ,4 is a particular
solution of the linear equation H~r j = ~cS,1− ~cS, j where ~cS,i is~ci with the last component
set to 0. Since kerHS = span{(0,1)}, and the particular solutions all lie in span{(1,0)},
we get that RGS = span{(1,0),(0,1)}. We can thus see that there is reuse in the entire
iteration space. The localized vector space for the original loops is however only
L = span{(0,1)}. Hence RGS is not fully contained in L, and in particular we only
exploit reuse in the innermost loop. To improve this, we want to tile our loop nest in
all necessary directions. However, it is not possible to do tiling in both loops as they
are not fully permutable. Therefore, we have to skew our loops using the following
transformation T : [t,x]→ [t,x + t]. The result is shown in algorithm 2. This also
transforms our dependence vectors: {(1,1),(1,0),(1,2)}, and we can now clearly see,
that our loops are fully permutable. Tiling the t and x loops with tile sizes BT and
BX respectively, reveals the pseudocode in algorithm 3 for which the localized vector
space completely coincides with RGS thus demonstrating that our skewing and tiling
scheme exploits all reuses.

To minimize the IO latency and bandwidth of our computations in practice, we do
not tile in the x-direction, independent of the number of spatial dimensions involved
in the computations. Note that by not tiling in the x-direction we do not alter the

A Data Locality Analysis 119

Algorithm 2 Euler with first order upwind (skewed)

1: for t← 0, T do
2: for x← t, X + t do
3: A[t +1,x− t]← step(A[t,x− t],A[t,x−1− t],A[t,x+1− t])
4: end for
5: end for

Algorithm 3 Euler with first order upwind (skewed and tiled)

1: for t2← 0, T , BT do
2: for x2← 0, X +T , BX do
3: for t← t2, min(T, t2 +BT) do
4: for x←max(t,x2), min(X + t,x2 +BX) do
5: A[t +1,x− t]← step(A[t,x− t],A[t,x−1− t],A[t,x+1− t])
6: end for
7: end for
8: end for
9: end for

localized vector space. This is due to the fact that the loop within the tile in the x-
direction can become the outermost loop - among those loops that iterate within a tile -
by simple loop-interchange. Furthermore, the innermost controlling loop can trivially
be coalesced with the loop over its individual tiles since all loops are fully permutable.
Algorithm 4 shows our final algorithm for forward Euler.

Generalization to higher order spatial schemes and higher spatial dimensions is
straightforward. To use the Hamilton-Jacobi Weighted ENO (HJ WENO) [51, 52, 69]
scheme, the transformation would skew by three instead of one, and thus becomes
T : [t,x]→ [t,x+3t]. In higher spatial dimensions, we skew identically and tile in each
additional spatial dimension.

Algorithm 4 Euler with first order upwind (final)

1: for t2← 0, T , BT do
2: for x← 0, X +T do
3: for t← t2, min(T, t2 +BT) do
4: if max(t,x) < min(X + t,x+1) then
5: A[t +1,x− t]← step(A[t,x− t],A[t,x−1− t],A[t,x+1− t])
6: end if
7: end for
8: end for
9: end for

A.2 BFECC AND TVD RK

We now proceed to analyze the Back and Forth Error Compensation and Correction
(BFECC) [21] and Total Variation Diminishing Runge Kutta (TVD RK) [112] algo-

120 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

T

X
3

0

1

2

3
T

X
3

0

1

2

3

Figure 22 Dependence vectors for the BFECC algorithm with first order spatial derivatives.
The numering on the T axis is tmod4. Left: Before skewing transformation. Right: After
skewing transformation.

Algorithm 5 BFECC with first order upwind (original)

1: for t← 0, 4T do
2: for x← 0, X do
3: if tmod4 = 0 then
4: A[t +1,x]← step(A[t,x−1],A[t,x],A[t,x+1])
5: else if tmod4 = 1 then
6: A[t +1,x]← backstep(A[t,x−1],A[t,x],A[t,x+1])
7: else if tmod4 = 2 then
8: A[t +1,x]← average(A[t,x],A[t−2,x])
9: else

10: A[t +1,x]← step(A[t,x−1],A[t,x],A[t,x+1])
11: end if
12: end for
13: end for

rithms. The procedure of the analysis is similar for the two algorithms as they both
consist of a number of propagation and weighted averaging steps. Due to the relative
simplicity of the BFECC algorithm we will focus on this algorithm and only provide
an outline of the TVD RK analysis along with the proposed transformations. Again,
we carry out the analysis in one spatial dimension and then generalize it to higher
spatial dimensions.

Consider the pseudo-code for the BFECC algorithm shown in algorithm 5. To
facilitate the analysis we have formulated the BFECC algorithm as a perfect loop nest
by introducing the fictitious time variable t such that

⌊ t
4

⌋
denotes the time-step and

t mod 4 uniquely identifies one of the four assignment statements in the loop body.
Furthermore, we have again assumed the existence of an array A that includes both
the spatial and temporal dimension, and holds the initial data in A[0,x] for all x in the
spatial dimension. The storage mapping scheme can be found in section 3.1.

Assuming the j’th array reference is expressed as H [t,x]T +~c j, only a single uni-
formly generated set of references is present as represented by the identity matrix
H = Id. Since ker HS = span{(0,1)}, and span{~r j} = span{(1,0)}, we conclude that
RGS = span{(1,0),(0,1)}, hence the BFECC algorithm has reuse in both the temporal

A Data Locality Analysis 121

Algorithm 6 BFECC with first order upwind (skewed)

1: for t← 0, 4T do
2: xstart← 3b t

4c+min(tmod4,1)+ b tmod4
3 c

3: for x← xstart, X + xstart do
4: w← x− xstart
5: if tmod4 = 0 then
6: A[t +1,w]← step(A[t,w−1],A[t,w],A[t,w+1])
7: else if tmod4 = 1 then
8: A[t +1,w]← backstep(A[t,w−1],A[t,w],A[t,w+1])
9: else if tmod4 = 2 then

10: A[t +1,w]← average(A[t,w],A[t−2,w])
11: else
12: A[t +1,w]← step(A[t,w−1],A[t,w],A[t,w+1])
13: end if
14: end for
15: end for

and spatial dimensions.

To fully exploit reuse, we must find loop transformations that result in a localized
vector space L, such that RGS ⊂ L without violating the dependencies of the BFECC
algorithm. Note that since the loop body has four separate cases, tmod4 = {0,1,2,3},
we must consider the dependence vectors of each of these cases locally. For cases 0
and 2 they are {(1,−1),(1,0),(1,1)}, for case 1 the dependence vector is {(1,0)} and
for case 3 the dependence vectors are {(1,−1),(1,0),(1,1),(3,0)} as depicted to the
left in figure 22. Recall that the loops are fully permutable, and hence tilable, if all
entries in the transformed dependence vectors are non-negative. Thus we see from the
dependence vectors that by skewing by one in the x-direction from one case to the next,
except from case 1 to case 2, we obtain a fully permutable loop nest. Specifically, we
propose the skewing transformation T : [t,x]→ [t,x+3b t

4c+min(tmod4,1)+b tmod4
3 c]

which results in dependence vectors, (t,x), equal to {(1,0),(1,1),(1,2),(3,2)} for
case 3, {(1,0),(1,1),(1,2)} for cases 0 and 2, and {(1,0)} for case 1 as depicted to
the right in figure 22. Note that the proposed transformation is not constant throughout
the iteration space. However the proposed transformation is invariant in the x-direction
for each case, since T ((t1,x1))−T ((t2,x2)) = T ((t1,x1 + d))−T ((t2,x2 + d)), so we
can transform the end-points of the dependence vectors independent of their absolute
position in the x-direction.

Algorithm 6 shows the code resulting from skewing the iteration space. In partic-
ular the loop bounds are transformed using T and the array indices are transformed
using T−1. To obtain an optimal localized vector space, tiling and loop interchange is
performed in algorithm 7. To do the actual loop interchange in algorithm 7 between
the controlling loop in the x-direction and the loop within the tile for the temporal di-
mension we do the following: The bounds of the controlling loop in the x-direction are
made independent of t by exchanging the minimum value for t in the lower bound and
the maximum value for t in the upper bound. When doing this it is important to change
the lower bound of the loop within the tile in the x-direction to max(x2,xstart), since

122 Paper I Out-Of-Core Computations of High-Resolution Level Sets . . .

Algorithm 7 BFECC with first order upwind (skewed and tiled)

1: for t2← 0, 4T , Bt do
2: for x2← 0, X +3b4T−1

4 c+2, Bx do
3: for t← t2, min(4T, t2 +Bt) do
4: xstart← 3b t

4c+min(tmod4,1)+ b tmod4
3 c

5: for x←max(x2,xstart), min(x2 +Bx,X + xstart) do
6: w← x− xstart
7: if tmod4 = 0 then
8: A[t +1,w]← step(A[t,w−1],A[t,w],A[t,w+1])
9: else if tmod4 = 1 then

10: A[t +1,w]← backstep(A[t,w−1],A[t,w],A[t,w+1])
11: else if tmod4 = 2 then
12: A[t +1,w]← average(A[t,w],A[t−2,w])
13: else
14: A[t +1,w]← step(A[t,w−1],A[t,w],A[t,w+1])
15: end if
16: end for
17: end for
18: end for
19: end for

this ensures that the loop within the tile starts at either the lower bound of the iteration
space or at the lower bound of a tile within the iteration space. As in the case of the
forward Euler algorithm, we do not tile in the x-direction, and the localized iteration
space remains unchanged. In algorithm 8 we show the BFECC algorithm that results
from only tiling in the temporal dimension.

Generalization to higher order spatial schemes and higher spatial dimensions is
again straightforward. To use the HJ WENO scheme, the transformation would skew
by three instead of one in each case (except case 3 in which there is still no skewing),
and thus becomes T : [t,x]→ [t,x + 9b t

4c+ 3min(tmod4,1) + 3b tmod4
3 c]. In higher

spatial dimensions, we skew identically and tile in each additional spatial dimension,
in two dimensions for example we obtain T : [t,x,y]→ [t,x+3b t

4c+min(tmod4,1)+
b tmod4

3 c,y+3b t
4c+min(tmod4,1)+ b tmod4

3 c].
For a TVD RK method the analysis proceeds analogously. Take for example the

third order accurate TVD RK scheme which consists of three advection steps and two
averaging steps, as opposed to three advection steps and one averaging step in the case
of the BFECC scheme. In particular the fictitious time includes a multiplicative factor
of 5 (instead of 4 for BFECC), and the transformation for 1D TVD RK combined
with a first order upwind scheme in the spatial dimension becomes T : [t,x]→ [t,x +
3b t

5c+ min(tmod5,1) + b tmod5
3 c]. This can readily be seen from a diagram similar

to the one shown in figure 22. The generalization to higher spatial dimensions and
higher order spatial schemes is identical to that of the BFECC scheme. In particular
skewing is applied in each spatial dimension and the magnitude of skewing increases
respectively.

Algorithm 8 BFECC with first order upwind (final)

1: for t2← 0, 4T , Bt do
2: for x← 0, X +3b4T−1

4 c+2 do
3: for t← t2, min(4T, t2 +Bt) do
4: xstart← 3b t

4c+min(tmod4,1)+ b tmod4
3 c

5: if max(x,xstart) < min(x+1,X + xstart) then
6: w←max(x,xstart)− xstart
7: if tmod4 = 0 then
8: A[t +1,w]← step(A[t,w−1],A[t,w],A[t,w+1])
9: else if tmod4 = 1 then

10: A[t +1,w]← backstep(A[t,w−1],A[t,w],A[t,w+1])
11: else if tmod4 = 2 then
12: A[t +1,w]← average(A[t,w],A[t−2,w])
13: else
14: A[t +1,w]← step(A[t,w−1],A[t,w],A[t,w+1])
15: end if
16: end if
17: end for
18: end for
19: end for

PAPER II

GUIDING OF SMOKE ANIMATIONS THROUGH

VARIATIONAL COUPLING OF SIMULATIONS AT

DIFFERENT RESOLUTIONS

Michael Bang Nielsen Brian Bunch Christensen Nafees Bin Zafar
Doug Roble Ken Museth

Abstract

We propose a novel approach to guiding of Eulerian-based smoke anima-
tions through coupling of simulations at different grid resolutions. Specifically
we present a variational formulation that allows smoke animations to adopt the
low-frequency features from a lower resolution simulation (or non-physical syn-
thesis), while simultaneously developing higher frequencies. The overall motiva-
tion for this work is to address the fact that art-direction of smoke animations is
notoriously tedious. Particularly a change in grid resolution can result in dramatic
changes in the behavior of smoke animations, and existing methods for guiding
either significantly lack high frequency detail or may result in undesired features
developing over time. Provided that the bulk movement can be represented sat-
isfactorily at low resolution, our technique effectively allows artists to prototype
simulations at low resolution (where computations are fast) and subsequently add
extra details without altering the overall “look and feel”. Our implementation is
based on a customized multi-grid solver with memory-efficient data structures.

Published as: Michael B. Nielsen, Brian B. Christensen, Nafees Bin Zafar, Doug Roble and Ken Museth.
Guiding of Smoke Animations Through Variational Coupling of Simulations at Different Resolutions.
In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, (New
Orleans, LA, USA, August 1–2, 2009). Symposium on Computer Animation 2009. ACM, New York,
NY, USA, 217–226.

125

126 Paper II Guiding of Smoke Animations Through Variational Couplin . . .

Figure 1 A velocity, density, and temperature source injects hot high-velocity smoke subject
to a buoyancy force. Left: Unguided simulation (2563). Middle: Unguided simulation (643).
Right: 2563 simulation guided by the 643 simulation. There is poor resemblance between the
unguided simulations. The guided simulation follows the general flow of the low resolution
simulation, and adds dynamic high frequency detail.

1 INTRODUCTION

Grid-based Navier-Stokes solvers, like [26, 114], are commonly used for smoke effects
in movie production, but they require significant CPU and memory resources. This
is especially problematic in the context of visual effects since photorealistic smoke
typically call for simulations on high-resolution grids. Simulation effects often require
many iterations to create the desired look. In order to have quick turn-around times,
artists often perform their art-direction iterations at a low resolution to determine the
most effective simulation setup, and then run the simulations at final high resolutions.
However, the change of resolution often completely changes the overall “look” of the
animation, which may cause the composition to fail from the director’s viewpoint [36].
This property is especially evident when the initial grid resolution is very low and the
solution has far from converged. It is primarily caused by the numerical viscosity of
the discretization and is in turn further enhanced by the inherent non-linearity of the
Navier-Stokes equations.

There is no set methodology for scaling simulation settings such that the high
resolution simulation matches the look. Instead the artist has to intuit the alterations
from experience and engage in an iterative process in high resolution as well.

The goal of this paper is to propose a technique for Eulerian grid-based smoke
simulations [26, 114] that allows animators to use low-resolution input simulations to
guide higher-resolution ones in such a way that details are added, but the overall (i.e.
low frequency) flow is preserved as well as possible. Therein lies the assumption that
the desired overall bulk movement is representable by the low resolution simulation
, and our approach presupposes that this is the case. Our method is comprised of a
physically based fluid simulation combined with a novel pressure projection step that
minimizes the deviation of the velocity field’s low frequencies from the low-resolution
guiding flow, whilst constraining the velocity field to be divergence free.

The feasibility of guiding, or tracking, based on low resolution input simulations
has previously been demonstrated by Bergou et al. [7] for thin shells and by Thürey et
al. [123] for Lattice Boltzmann (LBM) and Smoothed Particle Hydrodynamics (SPH)
simulations of liquids. Like Bergou et al. we analyze the problem in a mathematical
framework and formulate guiding as a set of constrained equations. The motivation

2 Related Work 127

that led us to take this approach was that simpler strategies, considered to some extent
by previous work, did not suffice. In particular upsampling a low-resolution velocity
field followed by pressure projection (see Figure 4.c) or blending the velocity field
with a guiding velocity field (see discussion in [123]) is incapable of producing higher
frequencies and causes significant smoothing of high frequency detail, respectively.
Another relatively simple strategy is to blend the low frequencies of the velocity field
with a low-resolution guiding simulation before pressure projection. This is essentially
the idea presented by Thürey et al. except that they consider guiding particles. How-
ever this approach may, in our experience (see section 8), introduce undesired features
over time when applied to an Eulerian-based smoke simulation. We hypothesize that
this is due in part to the loss of explicit control over the low frequencies during the
standard pressure projection step.

Our proposed workflow consists of first applying existing fluid control methodolo-
gies to create a low resolution simulation. Next step is to invoke our framework with
the low resolution simulation as input, possibly iteratively to control several frequency
bands separately. Additional sub-grid motion details can then be generated using one
of the recently developed turbulence synthesis methods [58, 86, 107].

Provided that an appropriate low-resolution simulation can be found, our frame-
work allows the look development of the bulk movement to take place in low reso-
lution. Thereby it offers a starting point in high resolution for control that pertains
directly to high frequency features. In particular this paper claims the following novel
contributions over previous work:

• A variational formulation of a guiding velocity field and a resulting set of linear
equations.

• A practical implementation of our guiding framework, including methods for
lowpass filter estimation and handling of boundaries.

• A custom multi-threaded multigrid implementation based on a fast and compact
dynamic matrix storage format.

2 RELATED WORK

The concept of high level animation control of full Navier-Stokes based simulations
was first advocated by Foster and Metaxas[32]. Later Treuille et al. [126] proposed a
gradient descent based optimization framework for keyframe control of smoke simula-
tions. Specifically the framework optimizes for forces that result in the fluid assuming
keyframed poses. McNamara et al. [75] improved the speed of this framework by sev-
eral orders of magnitude by adopting the adjoint method. While powerful and generic,
simulation time seems to limit the resolutions feasible with this approach, as an entire
fluid simulation has to be run for each step in the optimization.

Thürey et al. [123] successfully demonstrated guiding simulations for SPH and
LBM. In particular, they propose a fast technique for controlling low frequencies of

128 Paper II Guiding of Smoke Animations Through Variational Couplin . . .

liquid animations by applying a combination of feedback and attraction forces. Con-
trary to our work, [123] is force-based, which (as noted in their paper) makes it difficult
to enforce constraints on the velocity field during pressure projection. Thürey et al. do
not directly address this problem, but refer to the work of Shi et al. [110] for a possible
solution. Shi et al. consider the problem of making liquid simulations follow rapidly
changing target animations. They propose a force-based solution that is comprised of a
velocity- and shape-feedback force as well as a potential function. The shape-feedback
force of Shi et al. is designed to be divergence free, and is therefore unaffected by the
pressure projection step. However, the shape-feedback force is specifically designed
for target shapes and is not well suited for smoke simulations with no specific target
shapes.

Recent work has also successfully focused on improving run times and memory
usage of full Navier-Stokes simulations by developing procedural methods that synthe-
size the high frequency detail, given a low resolution simulation as input [58, 86, 107].
Although the goal of our work bears similarities with these synthesis methods we em-
phasize that it is fundamentally different in that we partly simulate the high frequency
detail. Our method also allows for non-physically based inputs which enhances the
ability of animators to art-direct fluid animations. We stress that our work in no way
precludes the procedural synthesis methods, but is meant to work with such techniques
to produce high resolution simulations quickly.

Concurrently with our work, Mullen et al. [79] developed energy preserving in-
tegrators for simplicial grids. These integrators can also be applied to obtain higher
resemblance between low and high resolution simulations.

3 ALGORITHM OVERVIEW

The flow of an inviscid, incompressible fluid is described by the inviscid Euler equa-
tions ∂v

∂ t +(v ·∇)v =−∇p+ f and ∇ ·v = 0, where v denotes the velocity of the fluid,
p denotes pressure, f is an external force, and the fluid density is assumed to be 1
for simplicity. In computer graphics, this set of equations is often solved using the
operator splitting approximation described in [114]. The central idea is to decouple
self-advection, addition of external forces and enforcement of incompressibility by se-
quentially solving for each of these terms. As illustrated in Figure 2, our method only
requires modification of the pressure projection step that solves for the latter term.
Specifically, our method proceeds as following for each iteration of the guided, high-
resolution simulation:

1. Obtain the low-resolution, guiding velocity field vlow through simulation or art
direction.

2. Upsample vlow to high resolution.

3. Advect and add forces using traditional methods to obtain the intermediate ve-
locity field ṽ in high resolution.

4. Obtain the guiding weights α through art direction or an automated process.

4 Variational Model of Guiding 129

Standard
solver

Art
direction

Upsample

Guide /
Project

α
Add forceAdvect

Art
direction

or
automatic

High-resolution
 guided simulation

High-resolution
 unguided simulation

Low-resolution
 guiding input

Guiding
weights

Figure 2 Our method consists of two components (in green) which are easily integrated in
a traditional fluid simulation pipeline (in red). The low-resolution input velocity field is up-
sampled for the guided projection step, which ensures a similar bulk movement of the high-
resolution simulation but with added detail. An unguided simulation of high resolution is
provided for reference.

5. Solve a modified projection step using the upsampled vlow, the guiding weights
α and ṽ to obtain the new high-resolution, guided velocity field v.

The guiding weights α will be explained in the following section.

4 VARIATIONAL MODEL OF GUIDING

In this section we analyze guiding velocity fields for fluid animation in a mathematical
framework. As discussed in the introduction, existing simpler methods do in our ex-
perience not suffice. Motivated by this, we consider guiding of fluids as a constrained
variational problem. Furthermore we derive the resulting linear equations that solve for
the stationary point of this variational problem. We first derive the variational problem
continuously but could equally well have derived the linear equations directly from a
specific discretization. As a prelude we briefly summarize how the pressure projection
step can be regarded as a variational problem.

4.1 PRELIMINARIES

The Poisson equation
∇ · ṽ = ∆p (II.1)

combined with v = ṽ−∇p enforces the continuity condition of the inviscid Euler
equations, where v and ṽ are velocity fields, v is divergence free and p is pressure.
It can be derived from the minimization of the difference between two velocity fields
v and ṽ subject to the continuity constraint that v be divergence free (see [29] pp.

130 Paper II Guiding of Smoke Animations Through Variational Couplin . . .

202-204). Mathematically this amounts to minimizing

1
2

∫
Ω

|v(r)− ṽ(r)|2 dr (II.2)

subject to the constraint
∇ ·v(r) = 0 (II.3)

where r is the position vector and Ω is the fluid domain. Eq. (II.2) and Eq. (II.3) can
be combined into the saddle point problem∫

Ω

{
1
2
|v(r)− ṽ(r)|2−λ (r)∇ ·v(r)

}
dr (II.4)

where λ (r) are scalar-valued Lagrange multipliers. Taking the first variation and solv-
ing for a stationary point, one obtains Eq. (II.1) and Eq. (II.3) with λ replacing p
(hence ”‘pressure”’ is, in fact, a Lagrange multiplier).

4.2 GUIDING EQUATIONS

To let a given low-resolution velocity field, vlow, guide a high-resolution velocity field,
v, we add an additional term to Eq. (II.2) and Eq. (II.3). The new term prescribes that
a smoothed version of the high-resolution velocity field should be as close as possible
to the low-resolution input velocity field upsampled to high resolution. Enforcing that
the convolution of the high-resolution velocity field should be identical (by imposing
a constraint) to the low-resolution input velocity field upsampled to high resolution
leads to ill-posed problems for most lowpass filters (i.e. a (unique) solution does not
exist). Mathematically, our term is formulated as

R =
1
2

∫
Ω

|[F ∗v] (r)−vlow(r)|2 dr (II.5)

where F is a, possibly spatially varying, lowpass filter, ∗ denotes a convolution and
vlow is the low-resolution input velocity field upsampled to high resolution. Next we
combine Eq. (II.4) and Eq. (II.5) into the saddle point problem∫

Ω

{
α(r)

2
|v(r)− ṽ(r)|2−λ (r)∇ ·v(r)

+
(1−α(r))

2
|[F ∗v] (r)−vlow(r)|2

}
dr (II.6)

where α ∈ (0;1] is a scaling parameter that determines the relative weight of each of
the terms. In section 8 we will show how α can be used to introduce artistic control.
For now we make the following observations; 1) α can vary both spatially and tempo-
rally, 2) for α = 1 we obtain a normal unguided fluid simulation and 3) the solution
to the saddle point problem, v, is divergence free due to the constraint enforced by the
Lagrange multipliers. To solve this saddle point problem for v we employ the calculus
of variations. This amounts to deriving the stationary points of Eq. (II.6) that have
zero first variation. Here we focus on the first variation, δR, of our term R given by

4 Variational Model of Guiding 131

Eq. (II.5), and next combine with the first variation of Eq. (II.4) considered in [29].
Assume in the following that the velocity field v gives rise to the desired stationary
point, Rstationary. That is, Rstationary = R(v). Next we consider δv to be the variation of
v, and ignore second order terms (i.e. terms of the kind δv2) that do not contribute to
the first variation. The first variation, δR, then reads as

δR = R−Rstationary = R(v+δv)−R(v)

=
∫

Ω

[F ∗δv] (r) · [[F ∗v] (r)−vlow(r)]dr

=
∫

Ω

δv(r) ·
∫

Ω

F (q− r) [[F ∗v] (q)−vlow(q)]dqdr

which holds from the definition of convolution, the linearity of the integral, and the
definition and distributivity of the dot product. The integration variable q arises from
the expansion of F ∗δv into its integral definition. Since δv(r) is arbitrary in all points
of the domain, and δR = 0 for a stationary point, we obtain the following necessary
and sufficient condition for a stationary point of Eq. (II.5):∫

Ω

F (q− r) [[F ∗v] (q)−vlow(q)]dq = 0

Combining this integral with the integral obtained for the first variation of Eq. (II.4),
derived in [29], and including the scaling parameter α > 0, a necessary and sufficient
condition for a stationary point of Eq. (II.6) is:

v(r)+ 1
α(r)∇λ (r)+ 1

α(r)
∫

Ω
(1−α(q))F (q− r) [F ∗v] (q)dq

= ṽ(r)+ 1
α(r)

∫
Ω
(1−α(q))F (q− r)vlow(q)dq (II.7)

where the right hand side is known (the reason for dividing by α is that the imple-
mentation of Eq. (II.8) simplifies). The linear system obtained by discretizing and
combining Eq. (II.7) with the constraints in Eq. (II.3) is however not well suited for
relaxation methods such as Gauss Seidel which forms part of a multigrid implementa-
tion. This is due to the fact that Gauss Seidel employs a division by the diagonal entry,
which is zero in the lower part of the matrix corresponding to Eq. (II.3) since no terms
including λ are present. In order to obtain a linear system with non-zero diagonal en-
tries in all rows, we apply the constraint Eq. (II.3) to Eq. (II.7) instead of discretizing
Eq. (II.3) explicitly:

∇ ·
(

1
α(r)∇λ (r)+ 1

α(r)
∫

Ω
(1−α(q))F (q− r) [F ∗v] (q)dq

)
= ∇ ·

(
ṽ(r)+ 1

α(r)
∫

Ω
(1−α(q))F (q− r)vlow(q)dq

)
(II.8)

where we have used that ∇ ·v(r) = 0. If α is not spatially varying, Eq. (II.7) becomes

v(r)+ 1
α ∇λ (r)+ (1−α)

α
∫

Ω
F (q− r) [F ∗v] (q)dq

= ṽ(r)+ (1−α)
α

∫
Ω

F (q− r)vlow(q)dq (II.9)

and Eq. (II.8) simplifies to

1
α ∆λ (r)+ (1−α)

α ∇ · ∫
Ω

F (q− r) [F ∗v] (q)dq

= ∇ · ṽ(r)+ (1−α)
α ∇ · ∫

Ω
F (q− r)vlow(q)dq (II.10)

132 Paper II Guiding of Smoke Animations Through Variational Couplin . . .

.

.

.
.
.
.

v(r)+ (1−α)
α

∫
Ω F (q− r) [F ∗v] (q)dq 1

α ∇λ (r)
.
.
.

.

.

.

.

.

.
.
.
.

(1−α)
α ∇ · ∫Ω F (q− r) [F ∗v] (q)dq 1

α ∆λ (r)
.
.
.

.

.

.

.

.

.
v(r)

.

.

.

.

.

.
λ (r)

.

.

.

=

.

.

.
ṽ(r)+ (1−α)

α
∫

Ω F (q− r)vlow(q)dq
.
.
.

.

.

.
∇ · ṽ(r)+ (1−α)

α ∇ · ∫Ω F (q− r)vlow(q)dq
.
.
.

Figure 3 Shows the linear system Ax = b of (D + 1)N equations in (D + 1)N unknowns that
results from combining Eq. (II.9) and Eq. (II.10) where D is the number of dimensions and N is
the number of grid cells. Note that the matrix A acts as an operator on x. However to emphasize
the relationship with Eq. (II.9) and Eq. (II.10) we have included the complete expressions in
the matrix (this is why e.g. v(r) appears both as an unknown and in the matrix).

By combining and discretizing Eq. (II.7) and Eq. (II.8) (or Eq. (II.9) and Eq. (II.10) if
α is not spatially varying), we get a linear system of (D+1)N equations in (D+1)N
unknowns (v and λ), where D is the dimension and N is the number of grid points.

A few important properties of the derived equations are:

• The guiding velocity field, vlow, does not have to be divergence free.

• The derived guiding equations are self-consistent in the sense that if a fluid ve-
locity field, v, is used to guide itself, meaning that if vlow = F ∗v, then the result
will be v itself. We have verified this experimentally.

• A solution to Eq. (II.7) and Eq. (II.8) exists simply because a divergence free
velocity field exists. We leave a rigorous proof of the conditions required for
uniqueness of the solution as future work. In practice it is our experience that the
solution to the linear system converges to the desired precision in few multigrid
cycles unless α � 1.

• By construction of the variational problem, the low frequencies of the solution
to the linear system will be a blend of the low frequencies in ṽ and vlow, and the
contribution from each of these in the final velocity field can be controlled using
α .

4.3 THE DISCRETIZATION OF THE GUIDING EQUATIONS

We discretize the system of equations, Eq. (II.7-II.8) or Eq. (II.9-II.10), on a stag-
gered MAC grid using finite difference approximations. That is, velocities are stored
on cell faces, and the pressure/Lagrange multipliers are stored in cell centers. The
operator matrix for the linear system, Eq. (II.9) combined with Eq. (II.10), is depicted
in Figure 3. Note that we solve for all unknowns simultaneously. The gradient,∇λ ,
divergence, ∇ · ṽ, and Laplacian, ∆λ , are discretized using the usual second order ap-
proximations [26]. The term (1−α)

α
∫

Ω
F (q− r) [F ∗v] (q)dq is discretized by a sum

of point-wise multiplications at cell faces ranging over the support of the lowpass fil-
ter. Let F be the discretized version of the lowpass filter, F , then the discretization is

5 Boundaries 133

(1−α)
α ∑q∈suppF F(q− r) [F ∗v] (q). Likewise the convolution and the right-hand-side

correlation are implemented as a sum. The guiding terms involving the divergence are
discretized by the usual second order approximation to the divergence. The upper part
of the matrix, the first DN equations, are discretized on staggered cell faces, whereas
the last N equations are discretized in cell centers. The resulting equation system is
linear and sparse. However, the system of equations is asymmetric (see Figure 3) and
due to the support of the lowpass filters, the matrix requires an impractical amount of
memory when stored uncompressed. However, by employing the multigrid method
[14], the system can be solved to sufficient precision in few multigrid cycles, and the
matrix stored in a compact format.

5 BOUNDARIES

A common complication in fluid simulations is boundary conditions. The situation
is further complicated when dealing with simulations at multiple resolutions, since
sampling issues might cause a voxelization of the boundary to differ between the sim-
ulations. We represent boundaries as the zero level set of a signed distance function
sampled at the same resolutions as the simulations. This means that boundaries are
limited to having features representable within the frequency space of the simulation
resolutions to avoid sampling artifacts. Particularly, boundary features that are too thin
to be represented properly in the low-resolution simulation might appear in the high-
resolution simulation and potentially result in visual artifacts. We have left this issue
as a direction for future work.

If the lowpass filter, F , overlaps the boundaries, one might worry that visual arti-
facts could occur. We have explored relaxing the guiding weights near boundaries (in
order to make the guiding more loose or disable it entirely). We have, however, not
found this necessary, as we did not observe a qualitative improvement of the result.
In fact, we observed that turning guiding off inside narrow pipes of fluid, caused the
high-resolution fluid to move much faster than the guiding input due to less numerical
dissipation, which is not desirable. We have also seen no major impact on conver-
gence of the multigrid solver. However, if a large fraction of the domain is part of the
boundary, disabling guiding in these parts of the domain speeds up the multigrid solver
considerably.

5.1 THE PENALIZATION METHOD

Internal boundaries are traditionally hard to address in the multigrid paradigm. This
is primarily due to the fact that the domain embedded by the internal boundaries is
excluded by the multigrid solve, which in turn complicates the otherwise simple rect-
angular fluid domain. However, it is possible to treat internal boundaries implicitly,
and basically solve for pressure and velocity everywhere in the computational domain,
i.e. the multigrid solver itself is not explicitly aware of boundaries. One method that
does exactly this is the penalization method of Angot et al. [4, 61]. This method
also has the advantage of being non-iterative, which makes it a good candidate for

134 Paper II Guiding of Smoke Animations Through Variational Couplin . . .

our application. An alternative iterative method for handling boundaries in multigrid
context was recently proposed in [78]. The penalization method solves for pressure
and velocity everywhere. However, inside boundaries, the velocity, v, is penalized
towards the prescribed velocity of the boundary, v̄, and at the surface of the bound-
ary, the velocity satisfies the no-slip condition (the Euler equations, being inviscid, are
subject to free-slip, so we rely here on numerical viscosity to make the problem well-
posed). Mathematically the penalization is achieved by adding a penalization term,
1
η χboundary(v− v̄), to the left-hand side of the momentum equation, where χboundary is
the characteristic function of the boundary, and η � 1:

∂v
∂ t

+(v ·∇)v+∇p+
1
η

χboundary(v− v̄) = f (II.11)

In practice we use η = 10−20, consult [4] for a study of the effect of η . As discretiza-
tion is not addressed in the original references [4, 61], we derive here how to discretize
the penalization term to allow for arbitrarily large time steps. In particular an implicit
discretization is required, as an explicit discretization restricts the time step to be in the
order of ∆t ≤ 2η , which is highly unpractical. This can be seen by performing a Von
Neumann analysis of the simplified equation ∂v

∂ t + 1
η v = 0. We describe first how to

discretize the penalized momentum equation and how it affects the Poisson equation.
Finally we consider how to discretize the penalized guiding equations.

Outside boundaries the discretization is equal to the non-penalized discretization
since the characteristic function χboundary = 0. Inside the boundary we discretize the
velocity v of the penalization term at time n + 1, thus obtaining the discretization of
the penalized momentum equation Eq. (II.11):

vn+1−vn

∆t
− fn = −(vn ·∇)vn−∇pn− 1

η
(vn+1− v̄n+1)

⇓

vn+1 =
(

ṽn +∆t
(
−∇pn +

1
η

v̄n+1
))

1
1+ ∆t

η

(II.12)

where ṽn = vn +(fn− (vn ·∇)vn)∆t. The usual Poisson equation arises by taking the
divergence of the momentum equation subject to the constraint ∇ ·vn+1 = 0. However,
taking the divergence of Eq. (II.12), subject to the same constraint, leads to a slightly
different system of equations. Combining with the normal Poisson equation outside
boundaries we obtain the following system of equations that should be used whenever
boundaries are present:

∇ · v̂n = ∇ ·
(
χboundaryψ∇p+(1−χboundary)∇p

)
(II.13)

and the velocity update

vn+1 = v̂n−χboundaryψ∇p− (1−χboundary)∇p (II.14)

respectively, where ψ = 1
1+ ∆t

η
and v̂n = (1− χboundary)ṽn + χboundary

(
ṽn + ∆t

η v̄n+1
)

ψ .

Note that we have left out the factor of ∆t in front of p in both equations. This is
possible since ∆t is a constant and we are only interested in p up to a scale.

6 Filter Estimation, Upsampling and Downsampling 135

With these derivations in mind it is easy to devise a penalization strategy for the
guiding equations. By setting F ≡ 0 when its center point, r, is inside a boundary, it
is straightforward to verify that the following equations are equivalent to the guiding
equations Eq. (II.7) and Eq. (II.8) outside the boundary, and equal to Eq. (II.13) and
Eq. (II.14) inside the boundary. Due to the latter equality, the velocity is driven towards
the actual boundary velocity inside the boundary. Consider G1 to be the discretization
of G1 and G2 to be the discretization of G2, where G1 = 1

α(r)
∫

Ω
(1− α(q))F (q−

r) [F ∗v] (q)dq and G2 = 1
α(r)

∫
Ω
(1−α(q))F (q−r)vlow(q) are the guiding terms on

the left- and right-hand side of Eq. (II.7). The penalized guiding equations become:

∇ · v̂n = ∇ ·
(

χboundaryψ∇p+(1−χboundary)
1

α(r)
∇p+G1−G2

)
and

vn+1 = v̂n−χboundaryψ∇p− (1−χboundary)
1

α(r)
∇p−G1 +G2

These equations replace Eq. (II.7) and Eq. (II.8) whenever boundaries are present.

6 FILTER ESTIMATION, UPSAMPLING AND DOWNSAMPLING

For some types of simulations we vary the filter, F , throughout the domain to achieve
a certain artistic goal (see section 8). For physically based guiding velocity fields, it is
in our experience very hard to apply a common lowpass filter, such as a Gaussian, by
heuristically determining a suitable standard deviation. In particular it often results in
guided simulations that are too smooth. Instead we construct the lowpass filter based
on the following intuition: To use a high resolution velocity field as input to our guid-
ing algorithm, the velocity field would have to be smoothed and downsampled. The
guiding algorithm would then subsequently reconstruct the velocity field in high reso-
lution and use this as vlow in the minimization. Assuming that the combination of these
operations can be expressed as a convolution, the estimation of the lowpass filter, F ,
encompasses the effects of smoothing (with a Gaussian kernel), G, downsampling, D ,
and upsampling, U . Essentially the desired filter is just U ◦D ◦G. However simply
constructing the discrete filter in this way is very sensitive to how G is centered rela-
tive to D . Another issue is what exactly the standard deviation of G should be set to.
For this reason we estimate an approximation to U ◦D ◦G offline via an optimization
process. The estimated lowpass filter is not simulation dependent but depends only
on the upsampling factor, the width, w, of the filter as well as the downsampling and
upsampling methods.

The input to the filter estimation consists of a filter width, w, a 2D image, A, of
N uniformly distributed random numbers (to avoid bias), and an upsampling factor.
An optimization is then performed to find the standard deviation, σ , of G and the
lowpass filter, F̂ , that minimizes the difference between U (D(G(σ) ∗A)) and F̂ ∗A,
where ∗ denotes a convolution. In each iteration of the optimization, we construct a
N× (w2) system of linear equations, Mx = b, that is solved in a least squares sense.
The vector, x, represents the filter, F̂ , we are estimating, while the right-hand side, b,
contains U (D(G(σ) ∗A)). The matrix, M, contains a row for each grid point in A,

136 Paper II Guiding of Smoke Animations Through Variational Couplin . . .

and each row contains the values of A that fall in the w×w support of the filter we are
estimating. To facilitate speedups during the multigrid solve of the guiding equations,
we make the final guiding filter, F , separable. We have observed that F̂ is usually very
close to separable, so we construct the w diagonal values of F by setting them equal
to the diagonal values of F̂ . The diagonal values completely define a separable F , as
the values of F are given by a tensor product of the square root of the diagonal values
with themselves. This tensor product definition directly extends to three dimensions,
and we construct our filters for 3D guided simulations by a triple tensor product.

We both up- and down-sample by means of a cubic convolution [56]. Practical
experience has shown that using linear interpolation is not sufficient. Boundaries are
handled by explicitly setting the velocity of the low resolution boundaries in the low
resolution velocity field before upsampling. In this way the upsampling process itself
is unaware of boundaries.

7 MULTIGRID SOLVER

We adopt the multigrid method (see [14] for an introduction) to solve the linear system
in Figure 3. Some of the advantages of the multigrid method are that for a grid with N
grid points, it requires linear O(N) storage, handles both symmetric and asymmetric
linear systems and the low frequencies of the solution itself act as a preconditioner.
Briefly explained, the multigrid method solves a linear system Ax = b on progressively
coarser grids. It transfers solutions from coarser to finer grids and residuals from
finer to coarser grids by means of interpolation and restriction operators, respectively.
On each grid, or level, of the multigrid solve, a matrix operator is constructed and a
relaxation method is employed for a small number of iterations. The strength of the
multigrid method comes from the fact that the low frequencies of the solution converge
much faster on coarser than finer grids.

For our linear system we found that extending the solver with restriction and inter-
polation operators that operate on cell faces as well as cell centers (in order to maintain
a staggered grid on each level of the multigrid solve) improved the ratio of errors in
each iteration roughly by a factor of two and required only a few multigrid cycles to
converge.

The matrix operators on each multigrid level are stored in a compact storage for-
mat motivated by the fact that the stencils of the discretized equations (see Figure 3)
are identical in many grid points. For example, in the case where F and α do not vary
spatially, all grid points, that contain fluid and for which the support of the stencil is
completely inside the spatial domain, will have identical stencils at the top multigrid
level. By means of interpolation and restriction operators this property transfers to
lower levels as well. Our matrix storage format is comprised of an indexed represen-
tation in which each grid point stores an index into an array of unique stencils, such
that no duplicate stencils are stored. When the indexed representation is constructed,
a stencil in a given grid point is only computed whenever it is detected that the stencil
in the current grid point may not be identical to any of the stencils previously com-
puted, thus speeding up the computation. Whenever F and α do not vary spatially it

8 Results and Discussion 137

is possible to further reduce storage requirements, because F is separable, meaning
that

∫
Ω

F (q− r) [F ∗v] (q)dq is also separable. Hence, only a 1D representation of
the stencil needs to be stored. Currently we only exploit this on the top level. We
do not even store the matrix operator at the topmost multigrid level when separability
can be exploited because we found that both matrix multiply and relaxation can be
computed efficiently, in parallel, on the fly. For the 2563 guided smoke spray example
(see section 8 and Figure 1) using a lowpass filter of width 9, the combined effect of
our indexed representation and separability reduced total storage requirements of the
matrix operators to 208MB from the 4.04TB required if storing all non-zero entries.
In the case of moving boundaries, the stencils at the grid points that change status
from boundary to fluid or vice versa are modified by the penalization method. Al-
though in the worst case the entire matrix has to be re-computed when this happens,
in practice only a few grid points, compared to the total number of grid points in the
domain, change status. Hence the matrix can be re-computed locally by only updating
the stencil values that are actually affected by the change. The locality of the change is
maintained throughout lower multigrid levels, hence facilitating a fast update to matrix
operators at all levels.

We have taken the approach of parallelizing the individual components of our
multigrid solver such as the relaxation and matrix-vector multiplication using Intel
Thread Building Blocks [104]. This gives a speedup of between four and five on an
eight-core machine. Whenever possible, the relaxation and matrix-vector multiplica-
tion operate in parallel using separable filters only. We use Successive Over-Relaxation
(SOR) with an over-relaxation parameter of 1.35 (found experimentally). Direct paral-
lelization of SOR cannot guarantee a data flow consistent with a serial SOR algorithm,
and hence the convergence analysis of the serial algorithm does not apply. However,
we found that parallelizing SOR gives convergence rates equivalent to those obtained
in serial. Particularly these convergence rates are significantly better than those ob-
tained using weighted Jacobi relaxation.

8 RESULTS AND DISCUSSION

We illustrate our variational guiding approach with the following examples. All sim-
ulations were run on a MAC Pro with 4GB of memory and two Intel Xeon quad-core
2.80GHz processors. We employ BFECC [57] and monotonic cubic interpolation [26]
for advection. Identical time steps were used in low and high resolution.

Rising Smoke Column

A spherical density- and hot temperature-source is placed at the bottom of an elon-
gated domain in which the smoke velocities are subjected to buoyancy. Both the
density and temperature fields are advected in the flow. The low-resolution domain
is 16× 64× 16, and the high-resolution domain is upsampled by a factor of four to
64×256×64. Figure 4 illustrates that the low-resolution simulation rises slower and
with less turbulence than the high-resolution simulation. Due to diffusion of densities
the smoke column in low resolution appears to be thicker than in high resolution. The
rightmost image shows that just using the simple approach of upsampling the low-

138 Paper II Guiding of Smoke Animations Through Variational Couplin . . .

Figure 4 Left: High resolution simulation. Middle: Low resolution simulation. Right: Low
resolution velocity field upsampled to high resolution followed by pressure projection and
density advection (note that this is not a guided simulation). High frequencies cannot develop
during the standard pressure projection [12].

Figure 5 This figure illustrates a smooth interpolation from a strictly guided to an
unguided simulation by means of varying the α parameter. Left to right: α =
0.15,0.45,0.65,0.85,0.97,1.0. We use α = 0.65 for guided simulations.

resolution velocity field does not result in high frequency details. Guided simulations
with varying α are shown in Figure 5 and enable a smooth interpolation between a
strictly guided and an unguided simulation. In practice we run guided simulations
with α = 0.65 which appears to obtain a plausible mix of high frequency detail and
guided low frequency flow. Increasing the width of the guiding filter allows for higher
frequency detail to develop and we use a 93 filter stencil. The guiding matrix operators
required 72MB and took 119 seconds to compute. 4 multigrid cycles were required to
converge to a divergence of roughly 10−5 for the guided (31 seconds per frame) and
unguided (16 seconds per frame) simulations at resolution 64× 256× 64. Figure 6
illustrates that for Eulerian smoke simulations, undesirable features may develop over
time when explicitly blending the low frequencies of the current velocity field with
the upsampled guiding velocity field as proposed in [123]. Granted, their method is
based on guiding particles whereas we set the low frequencies everywhere in the do-
main. Additionally, the choice of blend-factor used in [123] may, in our experience,
give plausible results for one simulation, but undesired features for another. This im-
plies that manual experimentation in high resolution may be required. However, if a
successful blend-factor can be found, this simple method provides a faster alternative
to our method.

8 Results and Discussion 139

Figure 6 Frame 399 from the smoke column simulation. Left: Explicitly blending with a low
frequency guiding velocity field before pressure projection may result in undesirable features
developing over time. Right: Guided simulation with identical blending parameter, α , for
comparison.

Figure 7 Left: A low-resolution, non-physically based circular velocity field is used to evolve
a smoke torus. Both F and α vary spatially to facilitate the desired motion while preserving
the shape of the torus. Right: A similar setup with a trefoil knot.

Rising Smoke Column with Moving Boundary

This setup is similar to the Rising Smoke Column simulation except that a moving
boundary is timed to touch the top of the smoke column in low resolution as shown in
Figure 8. In high resolution the boundary passes through the faster moving smoke. The
guided high-resolution simulation retains the qualitative features of the low-resolution
simulation and adds higher frequency detail. The initial guiding matrix operators re-
quired 280MB and took 254 seconds to compute. The guided and unguided high
resolution simulations took respectively 84 and 45 seconds per frame.

Smoke Spray

A velocity-, density- and temperature-source injects hot high-velocity smoke sub-
ject to a buoyancy force as shown in Figure 1. Again, the guided simulation retains the
low frequency qualitative features of its guiding simulation. The total storage required
for the matrix operators of the guided simulation is 208MB and the computation took
696 seconds. The guided simulation took 580 seconds per frame and the unguided
simulation 315 seconds at resolution 2563.

140 Paper II Guiding of Smoke Animations Through Variational Couplin . . .

Figure 8 Upper triple: High resolution unguided, low resolution unguided and high resolu-
tion guided simulations at frame 210 of a smoke column interacting with a moving boundary.
In low resolution and guided high resolution the boundary touches the top of the smoke col-
umn whereas in high resolution the boundary passes through the smoke. Due to diffusion the
column appears thicker in low resolution. Lower triple: Frame 256 from same simulation.

Guiding Curves

A low-resolution, non-physically based velocity field in the shape of a torus is
used to guide a smoke torus (see Figure 7). Both the lowpass filter F and the guiding
parameter α vary spatially; the identity filter is used in a narrow band inside the initial
smoke band to prevent drift of the low-frequency velocities, and guiding is gradually

9 Conclusion 141

diminished outside the initial smoke band by increasing α . Vorticity confinement[26]
is used to induce high-frequency instabilities. The rightmost images of Figure 7 show
the same setup with a trefoil knot curve. For both simulations it was necessary to
uniformly quantize the values of α to limit the number of unique stencils in the matrix
operators and thereby the storage requirements. We have verified experimentally that
the quantization did not cause visual artifacts. For the torus simulation, the matrix
operators required 1496 MB and took 1061 seconds to compute. The simulation ran
for 150 seconds per frame at resolution 1283. The trefoil knot simulation needed 2064
MB, and the computation of the matrix operators took 2549 seconds. The simulation
took 155 seconds per frame at resolution 1283.

The framework proposed in this paper has several limitations:

• It is an assumption of our method that an artist can obtain a satisfactory bulk
movement in low resolution. If this is not the case, our method does not apply.

• Provided that an appropriate low-resolution simulation can be found, our frame-
work allows animators to prototype in low resolution and then add details with
a guided high-resolution simulation. However, for the examples presented in
this paper we found the guided simulations to incur an overhead of 84− 94%
compared to the high-resolution unguided simulation. For this reason we wish
to pursue further strategies for optimization in the future.

• The amount of density-diffusion and -dissipation is significantly higher in low
resolution. For this reason, features in the high-resolution guided simulation
may deviate in intensity from the low-resolution simulation. Specifically, this
is the case when sheets of diffused densities develop and when thin structures
dissipate away in low resolution.

• Our approach fails if boundaries have very thin or fine features that cannot be
represented simultaneously on the high- and low-resolution grids. At least this
will be the case close to the boundary where boundary conditions must be ful-
filled. We plan to address this in future work, possibly by adapting the methods
for handling thin shells by Guendelman et al. [40] and the accurate, variational
boundary coupling of Batty et al. [6].

9 CONCLUSION

Smoke simulations are notoriously hard to art-direct due in part to numerical viscosity
and the non-linearity of the governing equations. In this paper we proposed a self-
consistent variational method for guiding a high resolution Eulerian smoke simulation
by a lower resolution flow. The low frequencies of the guided simulation agree as much
as possible with the low resolution flow, and higher frequencies can develop. It is a
fundamental assumption of our method that a satisfactory low-resolution simulation
exists, otherwise our method does not apply. The low-resolution flow can originate
from a physically based simulation, be purely art directed or arise from a combination
of the two. Our method allows for a smooth interpolation between a strictly guided

142 Paper II Guiding of Smoke Animations Through Variational Couplin . . .

and an unguided physical simulation, and appears to be free of the visual artifacts that
may result from using previous methods. An interesting alternative to the multigrid
approach taken in this paper might be the multilevel bases described by Oswald [100].
Finally, we believe that the variational approach taken in this paper is applicable to a
wide range of fluid control paradigms in computer graphics.

ACKNOWLEDGEMENTS

This work was partially funded by the Danish Agency for Science, Technology and
Innovation. We thank Ole Østerby for advice on numerics, Michael Clive and Ryo
Sakaguchi for helping define the problem, our colleagues at Digital Domain for their
support, and the reviewers, committee and program chairs for constructive feedback.

PAPER III

IMPROVED VARIATIONAL GUIDING OF SMOKE

ANIMATIONS

Michael Bang Nielsen Brian Bunch Christensen

Abstract

Smoke animations are hard to art-direct because simple changes in param-
eters such as simulation resolution often lead to unpredictable changes in the
final result. Previous work has addressed this problem with a guiding approach
which couples low-resolution simulations – that exhibit the desired flow and be-
haviour – to the final, high-resolution simulation. This is done in such a way
that the desired low frequency features are to some extent preserved in the high-
resolution simulation. However, the steady (i.e. constant) guiding used often
leads to a lack of sufficiently high detail, and employing time-dependent guid-
ing is expensive because the matrix of the resulting set of equations needs to be
recomputed at every iteration. We propose an improved mathematical model for
Eulerian-based simulations which is better suited for dynamic, time-dependent
guiding of smoke animations through a novel variational coupling of the low-
and high-resolution simulations. Our model results in a matrix that does not
require re-computation when the guiding changes over time, and hence we can
employ time-dependent guiding more efficiently both in terms of storage and
computational requirements. We demonstrate that time-dependent guiding al-
lows for more high frequency detail to develop without losing correspondence to
the low resolution simulation. Furthermore, we explore various artistic effects
made possible by time-dependent guiding.

Published as: Michael B. Nielsen and Brian B. Christensen. Improved Variational Guiding of Smoke
Animations. In Computer Graphics Forum, Volume 29, Number 2, 2010 / Proceedings of the Eurograph-
ics Conference 2010, (Norrköping, Sweden, May 3–7, 2010). Eurographics 2010. Eurographics, Goslar,
Germany. To appear.

143

144 Paper III Improved Variational Guiding of Smoke Animations

1 INTRODUCTION

Creating believable fluid effects for computer graphics typically requires the use of
advanced and time-consuming computational techniques. For many years the explo-
ration and development of such techniques have been the subject of the computational
fluid dynamics (CFD) community. However, whereas numerical and physical accuracy
are paramount in CFD, visual plausibility [26], low simulation cost [114] and artistic
control [32] are important for computer graphics.

Today, high-resolution fluid simulations that contain sufficient detail for visual ef-
fects have turnaround times of several hours or even days. Such simulation times are
infeasible for effects-artists during the design stage where near-interactive feedback
times are required. For this reason artists typically prototype simulations at low res-
olution. Once a certain design has been settled for, they increase the resolution to
obtain the level of detail required for the shot. However, this approach is not always
successful as a change in resolution may not only incur an addition of high frequency
features but may completely change the low frequency properties of the flow that the
artist settled for in low resolution. Numerical viscosity originating from the discretiza-
tion is one of the primary reasons for this. This has led several authors to propose
algorithms for obtaining better correspondence between low- and high-resolution sim-
ulations. This has been done by allowing low-resolution simulations to guide higher
resolution simulations [7, 92, 123] and by ensuring that properties such as kinetic en-
ergy are preserved in the discretization [79].

In this paper we explore time-dependent – as opposed to steady – guiding of smoke
animations. Specifically we show that time-dependent guiding can be used for cre-
ating dynamic artistic effects and allows for more high frequency detail to develop
in high resolution compared to previous work [92]. We take an approach similar to
that of Nielsen et al. [92], where guiding is formulated as a constrained minimiza-
tion problem. However, Nielsen et al. studied only steady guiding effects and it turns
out that their mathematical formulation requires the matrix resulting from their Euler-
Lagrange equations to be re-computed, whenever the guiding strength varies in time.
In particular, the spatially varying scalar field used to control the guiding strength is by
construction included in their matrix. Since this scalar field may change in large frac-
tions of the domain in the case of time-dependent guiding, their matrix re-computation
becomes costly when combined with the large stencils required by guiding. Typically
their matrix computation time in the presence of spatially varying guiding weights is
about an order of magnitude longer than the simulation time per frame. In addition
their matrix storage requirements depend on the variation in the scalar field of guiding
weights.

We propose a new mathematical model for guiding smoke animations at high res-
olution by means of animations at lower resolution. Our mathematical model sepa-
rates low frequencies from high frequencies in the flow which leads to a set of Euler-
Lagrange equations in which the resulting matrix is independent of the scalar field
used to control the guiding strength. This means that a costly matrix re-computation
does not have to be performed whenever the guiding changes in time. In addition our
matrix often takes about an order of magnitude less time to compute and requires an

1 Introduction 145

Self-
advection

Body
Forcesection

Art
DirectionError

Density
...

tn tn+1

Standard
Solver

Art
Direction

Guiding

Up-
sampling

φ

Guiding
Simulation

Guided
Simulation

Time

vg

v
ṽ

+

Figure 1 One simulation iteration using our method. A traditional fluid simulation pipeline (in
purple) is equipped with a modified pressure projection step . Components which constitute
our contributions are highlighted in green.

order of magnitude less storage than [92].

Our framework is based on the inviscid Euler equations ∂v
∂ t +(v ·∇)v = −∇p + f

and ∇ ·v = 0, where v is the velocity of the fluid, p denotes pressure, and f represents
external forces. We solve these equations using the operator splitting approximation
first introduced to computer graphics by Stam [114]. This method solves for self-
advection, body forces, and incompressibility separately. Our model only involves a
replacement of the usual Poisson equation and velocity update in the pressure projec-
tion step which solves for incompressibility. This is illustrated in figure 1 which shows
one iteration of our guiding framework: The low-resolution guiding velocity field vg
is obtained using a traditional simulation pipeline (in purple) or through art direction.
The guiding weights φ are then computed as explained in section 5. Subsequently, the
guided high-resolution velocity field is advected and body forces are added to obtain
an intermediate velocity field ṽ. Finally, our modified pressure projection step uses ṽ,
φ , and an upsampled version of vg to obtain the new high-resolution guided velocity
field v. To sum up, the contributions of this paper are:

• A novel mathematical model that leads to more efficient time-dependent guiding
of smoke animations.

• Exploration of time-dependent guiding for artistic effects and for increasing the
amount of high frequency features in the high-resolution guided flows.

An inherent assumption in our work is that the bulk movement of the flow can be
satisfactorily represented at low resolution. Furthermore, our method cannot be used
to specifically design the high frequency features, but on the other hand provides a
starting point for iterating on higher frequency features.

146 Paper III Improved Variational Guiding of Smoke Animations

2 RELATED WORK

Controlling Navier-Stokes based simulations at a higher level than parameter tweaking
is an idea that was first introduced by Foster and Metaxas [32]. More recently Treuille
et al. [126] proposed a key-frame control framework for smoke simulations which uses
a gradient descent based optimizer. In particular they optimize for forces which make
the smoke assume key-framed poses. Later McNamara et al. [75] made this approach
faster by employing the adjoint method.

Shi et al. [110] also consider key-frame control but focus on liquid simulations.
They suggest a force-based solution which allows the liquid to follow rapidly changing
target shapes. Other approaches similar to Shi et al. have considered the problem of
making smoke follow target shapes [25, 44]. Finally, Kim et al. [59] propose a method
for constructing path-guided smoke trails.

Guiding of liquid simulations based on the Lattice Boltzmann Method and Smoothed
Particle Hydrodynamics has been demonstrated by Thürey et al. [123]. Their method
is based on controlling the low frequencies of simulations through forces which are
applied near Lagrangian control particles. Nielsen et al. [92] show that applying the
idea of blending low frequency components of a simulation with a guiding velocity
field before the pressure projection step may lead to noise developing over time for
Eulerian smoke simulations. To avoid such artifacts they take the approach of for-
mulating guiding as a constrained minimization problem. Concurrently, Mullen et al.
[79] developed energy preserving integrators, which can also be employed to achieve
higher correspondence between simulations at low and high resolution.

Contrary to the above guiding approaches where the high frequency detail arises
from a physically based simulation, a lot of work has recently focused on proce-
dural methods that add high frequency detail to a low-resolution input simulation
[58, 86, 102, 107]. Common to these methods is that they improve both the run times
and storage requirements over a full fluid simulation. The goal of Narain et al. [86] and
Pfaff et al. [102] is essentially different from ours in that the synthesized flow should
resemble the high-resolution flow, as opposed to the low-resolution flow, as well as
possible. Narain et al. do note that the coupling from high frequencies to low frequen-
cies can be disabled in order to retain the frequencies of the low resolution flow, but do
not focus on this scenario. On the other hand, Schechter and Bridson [107] and Kim
et al. [58] retain the low frequency flow and procedurally add high frequency detail as
a post-process. As noted by [107] stable, laminar structures can be forced turbulent, a
property shared by [58], whereas Narain et al. appear to have solved this problem. Of
the above methods, only Pfaff et al. consider turbulent structures emanating from inter-
action with boundaries at high resolution. However, their method does not guarantee
correspondence between the low- and high-resolution flows. Our proposed guiding
method inherits the ability from the underlying physical simulation to automatically
develop instabilities, including those arising in the vicinity of boundaries.

3 Guiding 147

3 GUIDING

In this paper we define guiding as follows: An input velocity field, vg, is used to
enforce a correspondence between the low frequencies of a higher-resolution, simu-
lated velocity field, v, and vg itself. The input velocity field, vg, can originate from a
physically based simulation or be constructed by an artist by any other means such as
illustrated in figure 5. The goal of this section is to formulate guiding as a constrained
minimization problem. The minimization will enforce the guiding, whereas the con-
straint will enforce that the resulting velocity field is divergence free. By employing
calculus of variations and the method of Lagrange multipliers, the minimization prob-
lem is transformed into a set of partial differential equations, the Euler-Lagrange equa-
tions, that solve for the corresponding stationary point. In this paper we will denote
this set of partial differential equations the guiding equations. Note that the Poisson
equation solving for incompressibility in a standard fluid solver can in fact also be
derived from a constrained minimization problem [29, pp. 202-204].

Ideally, the guiding should only affect the low frequencies of v. Therefore we
separate the low and high frequencies in our mathematical model. In addition, this
separation leads to guiding equations where the left-hand-side, i.e. the matrix, is inde-
pendent of the spatially and temporally varying guiding weights which we denote φ .
φ(x, t)∈ [0;1] is a time-dependent scalar field that enforces the strength of the guiding.
If φ = 1 in a given point, guiding is enforced with maximal strength (see second image
from the left in figure 3). If on the other hand φ = 0, the guiding equations essentially
reduce to the normal Poisson equation and velocity update, hence no guiding is en-
forced. The scalar field φ is computed as described in section 5 prior to solving the
guiding equations for pressure and velocity.

We first state our mathematical model and then elaborate on an intuitive interpre-
tation below. In particular we wish to minimize

∫
Ω

(1−φ(x)) |[F ∗v] (x)− [F ∗ ṽ] (x)|2 dx + (III.1)∫
Ω

φ(x) |[F ∗v] (x)−vg(x)|2 dx + (III.2)∫
Ω
|[v− [F ∗v]] (x)− [ṽ− [F ∗ ṽ]] (x)|2 dx (III.3)

subject to the constraint
∇ ·v(x) = 0 (III.4)

where Ω is the fluid simulation domain, ṽ is the current high resolution velocity field in
the operator splitting sequence (i.e. the velocity field from the previous frame updated
by self-advection and forces), F is a lowpass filter, and ∗ is the convolution operator.
Contrary to the approach taken in [92], we separate the low and high frequencies in
the minimization problem. Specifically, expressions (III.1) and (III.2) of the minimiza-
tion problem involve the low frequencies of v, expressed as the convolution [F ∗v],
whereas (III.3) involves the remaining high frequencies, v− [F ∗v], of v. Expression
(III.1) (expression (III.2)) contains the low frequencies of the difference between the
current high resolution velocity field (the guiding velocity field) and the velocity field
we are solving for. Expression (III.3) on the other hand contains the high frequencies

148 Paper III Improved Variational Guiding of Smoke Animations

of the difference between the current high resolution velocity field and the velocity
field we are solving for. By keeping (III.3) independent of the guiding weights it turns
out that the resulting matrix also becomes independent of the guiding weights. Finally,
Eq. (III.4) is the constraint that forces the resulting velocity field to be divergence free.

If φ = 0, (III.2) vanishes, and the minimization problem reduces to a minimization
of the difference between v and ṽ. Furthermore, if φ = 0 and F is a perfect low-
pass filter, (III.1) and (III.3) can be combined into

∫
Ω
|v(x)− ṽ(x)|2 dx which can be

seen by transforming to Fourier space and applying Parseval’s theorem. Minimizing∫
Ω
|v(x)− ṽ(x)|2 dx subject to the constraint Eq. (III.4) is in fact equivalent to solving

the usual Poisson equation and subsequent velocity update [29]. Hence, the guiding
equations will essentially result in an unguided simulation for φ = 0.

If φ = 1, the low frequencies of the resulting velocity field v will minimize the
difference to vg alone and hence only the guiding will be in effect, see (III.2). On the
other hand φ ∈ (0;1) will minimize the difference to both vg and the low frequencies of
ṽ, and thus v will be a blend of the two low-frequency components. It is an important
point of this paper that relaxing the strength of the guiding by lowering φ whenever
possible is key to allowing more turbulence to develop naturally in guided simulations.

To turn our proposed minimization problem into the corresponding Euler-Lagrange
equations (the guiding equations) we employ calculus of variations. The full deriva-
tion is included in appendix A. Here we merely present the result and explain its con-
sequences. Specifically, the constrained minimization problem (III.1) – (III.4) leads to
the following equations:

v(x)+2
∫

Ω
F (y−x) [[F ∗v] (y)−v(y)]dy+∇p(x) =

ṽ+
∫

Ω
F (y−x) [(2−φ) [F ∗ ṽ] (y)−2ṽ(y)+φvg(y)]dy (III.5)

∇ ·v(x) = 0 (III.6)

where p is the pressure of the fluid. There is one equation for each point x in the
fluid simulation domain. All equations are solved simultaneously for both the guided
velocity field, v, as well as the pressure, p. On a staggered grid, Eq. (III.5) leads to
one equation for each face, and Eq. (III.6) leads to one equation for each cell center.
This amounts to (D + 1)N equations in (D + 1)N unknowns, where N is the number
of grid points. Note that a standard fluid solver also has to solve for (D + 1)N un-
knowns, velocity and pressure. However, in this case there is only a one-way coupling
between the unknown pressure and velocity and hence the Poisson equation involves
only the pressure, N equations in N unknowns. The derived equations are amenable
to solution in the form stated above. However, for solution using relaxation methods
such as Jacobi or Gauss-Seidel (including the multigrid method which utilizes these
relaxation methods) it is convenient to replace Eq. (III.6) by Eq. (III.5) with the di-
vergence operator applied to both sides of the equation. By exploiting the constraint,
Eq. (III.6), ∇ · v(x) vanishes from the resulting equation and hence the constraint re-
mains enforced. Furthermore, this will ensure non-zero diagonal entries as required
by the relaxation methods. Eq. (III.5) and Eq. (III.6) share the properties of the model
of [92] that if vg = F ∗ v and v is divergence free, the resulting velocity field will be

4 Implementation 149

Figure 2 Close-ups of the smoke column simulation comparing from left to right the guiding
method of Nielsen et al. [92], our method guiding with eroded densities and finally our method
guiding with eroded densities combined with the error estimate.

v itself. Also, vg does not have to be divergence free. In addition, our new model has
the following properties not shared by [92]:

• The guiding weights, φ , appear only on the right-hand-side of the equations.
This means that whenever φ depends on time, the matrix operators do not have
to be re-computed.

• Spatially varying φ will not increase the storage requirements of the matrix oper-
ators since φ appears only on the right-hand-side, hereby also facilitating faster
computation of the matrix operators.

4 IMPLEMENTATION

The guiding equations are discretized on a staggered grid with velocities sampled on
cell faces and pressure sampled in cell centers [26]. We use BFECC [22] and mono-
tonic, cubic interpolation [26] for advection. To solve the equations we employ a paral-
lel multigrid implementation [14] combined with a simple compression scheme of the
matrix operators similar to the one described in [92], except that we use a relaxation
parameter of 0.9 in our SOR implementation. Boundaries are handled by applying the
penalization method of Angot et al. [4, 61]. Finally, upsampling and lowpass filter
estimation is handled as in [92].

5 TIME-DEPENDENT GUIDING EFFECTS AND RESULTS

Guiding is applied to enforce correspondence between the low- and high-resolution
velocity fields. However, although our guiding model is separating the low and high
frequencies, it is evident in practice that imposing too much guiding will constrain the
high frequencies as well. On the other hand, relaxing the guiding weights uniformly

150 Paper III Improved Variational Guiding of Smoke Animations

Figure 3 Identical frames from several simulations of a smoke column at resolution 64×
256×64 rising due to a buoyant force. The leftmost image depicts a low resolution simulation
and the rightmost image depicts a high resolution simulation. The remaining images from left
to right: (1) Our method with a uniform weight of φ = 1. (2) Our method with a uniform
weight of φ = 0.02. The amount of turbulence along the column is similar to the non-uniform
guiding in the image to the right. However, using uniform weights, the column rises faster than
the low-resolution simulation. (3) Our method with eroded densities combined with the error
estimate. φlow = 0 and φhigh = 0.35. (4) Same approach with φlow = 0 and φhigh = 0.55. (5)
Same approach with φlow = 0.15 and φhigh = 0.35. Notice that the relatively high φlow results
in a lack of high frequency detail.

will cause the guided simulation to behave increasingly as an unguided simulation,
thereby developing more turbulent structures. However, this may come at the cost of
losing correspondence to the low-resolution velocity field, see figure 3.

In the following we explore a number of different approaches to guiding the high-
resolution simulation with both spatially and temporally dependent guiding weights,
φ(x, t), e.g. to allow more turbulent structures to emerge. The guiding weights are
represented as a time-dependent scalar field fed into the linear equation solver in each
iteration. It is important to note that the high frequency features that develop in the
guided simulations are instabilities arising in the underlying high-resolution, physi-
cally based simulation. Vorticity confinement or procedural turbulence can of course
be added on top of the guided simulations to synthesize an even more turbulent be-
haviour.

5.1 TIME-DEPENDENT GUIDING WITH SMOKE DENSITY

Using the smoke density as a guiding weight is based on the observation that in many
cases we want thick volumes of smoke to adhere to the bulk motion prescribed by the
low-resolution guiding velocity field. On the other hand we also want turbulence to
develop in areas where the smoke is wispy. Let the smoke density be denoted by d(x, t)
and assume that d(x, t) ∈ [0;1]. We construct the guiding weights as φ(x, t + ∆t) =
φhighd(x, t)+φlow(1−d(x, t)), where φlow and φhigh are lower and upper bounds on the
guiding weights, respectively. Unless stated otherwise we use φlow = 0 and φhigh = 0.35
as found by experimentation, see figure 3. In our experience, guiding with density
yields better results when combined with the extensions described below.

5.1.1 COMBINING WITH EROSION OF DENSITIES

We have explored performing an erosion of the smoke density used to construct the
guiding weights. The idea behind this is that the guiding will be relaxed in a wider band

5 Time-Dependent Guiding Effects and Results 151

Figure 4 Left: A rising smoke column interacting with a translating Stanford bunny at reso-
lution 128×256×64. Upper row: Early frame. From left to right: The low resolution guiding
simulation, the guiding approach of [92], our guiding with eroded densities, our guiding with
eroded densities combined with the error estimate and finally the high resolution simulation.
Lower row: Later frame. Right: Two guided simulations of a Stanford bunny rotating close
to a smoke jet subject to a buoyant force at resolution 1283. Top: The guiding method of [92].
Bottom: Our method guiding with eroded densities. The addition of turbulent features is more
subtle and less noticeable in this case, but is visible for example in the upper left corner.

in regions between smoke and clear air, thereby allowing more turbulent structures to
emanate in these areas. Erosion is characterized by a single parameter which is the
width of a stencil centered at each grid point. The result of the erosion operation at a
given grid point is the minimum density value found under the support of the stencil
when centered at that particular grid point. We have found by experimentation that
using a stencil width of three generates the best results. Using wider stencils tends to
make the simulations behave more like unguided simulations, e.g. making smoke rise
faster. Figure 2 shows an example of a simulation using the eroded density as guiding
weight and compares it to uniform guiding weights throughout the domain using the
model of Nielsen et al. [92]. In all comparisons to [92], we set their scaling parameter
to α = 0.65 as suggested in their paper. As is evident from the figure, more turbulence
appears when the guiding weights are relaxed using our method. Additional examples
are shown in figure 4.

Time-dependent guiding using [92] in the example of the rising smoke column in
figure 2 requires roughly 1600 seconds per frame to compute the matrix which takes
up roughly 1.6GB of storage. Using our guiding model the matrix computation takes
roughly 120 seconds, requires 74MB, and only has to be performed once for an entire
simulation. The guided smoke column simulation in figure 2 runs for 36 – 37 seconds
per frame using our method, depending on which approach is utilized to compute
the guiding weights. In contrast an unguided simulation at the same resolution takes
roughly 17 seconds per frame. A similar result was reported in [92]. However, we
emphasize that their results were obtained using steady guiding in which the guiding
weights do not vary in time. If in fact the guiding weights vary in time, their method
requires 1600 seconds per frame for the matrix computation plus the simulation time.
In our fluid solver implementation we employ the relatively expensive combination of
BFECC and cubic interpolation for high quality advection of both velocities, densities

152 Paper III Improved Variational Guiding of Smoke Animations

and temperature. For the unguided simulation in figure 3, these advection steps take
up 46% of the total time per frame, whereas the multigrid solver uses only 22% of the
time per frame. The time required to solve the guiding equations in the same example
is about 5.2× the time required to solve the Poisson equation and perform the velocity
update in a standard fluid solver at the same resolution. However, since the multigrid
solver only takes up 22% of the total time per frame for an unguided simulation, this
explains why the total time per frame is not more than doubled, despite the fact that
more unknowns are involved in our linear system of equations.

5.1.2 COMBINING WITH AN ERROR ESTIMATE

It seems natural to consider relaxing the guiding whenever the error between the guid-
ing velocity field and the low frequencies of the guided velocity field is low. We
have explored this idea as follows: Let e(x, t) = |[F ∗v] (x, t)−vg(x, t)|2 be the er-
ror between the guiding velocity field and the low frequencies of the guided veloc-
ity field. Furthermore we denote by ē(x, t) the error estimate normalized to a max-
imal value of one and construct the guiding weights as the function φ(x, t + ∆t) =
φhighē(x, t)d(x, t) + φlow(1− ē(x, t)d(x, t)). Incorporating the error estimate into the
guiding weight works well for some types of simulations and typically generates more
turbulent structures than guiding with smoke density alone (see figure 2). However, for
other types of simulations, incorporating the error estimate causes the guiding to lose
some correspondence to the low-resolution simulation as shown to the left in figure 4.

5.2 TIME-DEPENDENT GUIDING WITH CURVES

The previous examples have looked at guiding with a velocity field obtained from a
low-resolution simulation. However, artistic effects can be achieved by constructing
velocity fields through non-physically based methods such as modeling or painting.
These can then be used as is or combined with an existing low-resolution simulation.
They are applied using time-dependent guiding weights to enable artists to enhance,
decrease or create new low frequency motion in an intuitive manner. We have exam-
ined this idea through the following approach: Let vcurve(x, t) be an artist-specified
guiding velocity field and let φcurve(x, t) be similarly specified guiding weights. Es-
sentially these fields could describe any motion the artist desires, and in particular
they do not have to ensure a divergence free guiding velocity field. We will specify
φ such that guiding is only applied in a narrow tube around various curves C1, . . . ,Cn.
These same curves are used to create velocity fields vcurve1 , . . . ,vcurven which flow
along them. φ is animated over time by gently increasing and decreasing local guiding
weights φcurve1 , . . . ,φcurven in order to gradually enable and disable the flows induced
by the corresponding curves. These local guiding weights form tubes in which veloc-
ities along the curves are induced and they are illustrated in red in the leftmost pair of
images of figure 5. In the animation we consider, the two guiding curves are enabled
one after the other. As stated, these guiding effects can also be combined with error
estimates and smoke densities to produce more high frequency detail. An example of
this, where these additional effects are combined with the φcurvei , can be seen to the

6 Conclusion 153

right in figure 5. The matrix was computed in 181 seconds and required 82MB of
storage at simulation resolution 1283. Each frame required 65 seconds to simulate.
Employing the guiding model of Nielsen et al. in this example required roughly 1800
seconds per frame to compute the matrix, and roughly 3GB to store it. Note again, that
the matrix computation is only required once per simulation in our framework.

5.3 DISCUSSION AND LIMITATIONS

The computation time required for a guided high-resolution simulation is roughly dou-
bled when compared to an unguided simulation at the same resolution. Procedural
methods are faster and require less storage than a standard fluid solver. However, as
opposed to our guiding approach, procedural methods that ensure a correspondence
between low and high resolution can force otherwise stable laminar flow to become
turbulent and do not capture the instabilities naturally occurring near boundaries. In
the accompanying video we compare our guiding method to the wavelet turbulence
method [58] to demonstrate these differences.

Guiding with the error estimate does not always result in significantly higher detail,
and for some simulations the similarity between low and high resolution can become
too weak. Another potential problem is that all grid points in the domain are coupled
by the error estimate. This may be improved by using absolute errors combined with
clamping and/or nonlinear interpolation. Furthermore, incorporation of the density
field and error into the guiding weights does not currently ensure density matching
between the low- and high-resolution simulations. In the future we wish to explore
density matching which may be used to ensure similarity for guiding with the error
estimate and ensure that no drift occurs over time. Note that [92] also does not prevent
drift of densities, since their variational model considers only velocities. Additionally,
exploring other guiding weights e.g. based on the gradient of density as opposed to
density alone is an interesting direction for future work.

Finally, for some simulations a simpler method such as blending the low frequen-
cies of the high resolution velocity field with the guiding velocity field might suffice
[123], provided that artifacts do not appear within the time-frame required by the sim-
ulation.

6 CONCLUSION

Smoke animations are hard to art-direct because of numerical viscosity and the non-
linear nature of the governing inviscid Euler equations. In this paper we propose an
improved variational method for guiding high-resolution smoke simulations using low-
resolution velocity fields. The method is faster and requires less storage for time-
dependent guiding than previous methods. We have demonstrated that time-dependent
guiding can be used to achieve more high frequency detail and achieve artistic effects.
In conclusion, we are convinced that the variational approach adopted in our method
can be applied to a large number of fluid control paradigms. We also believe that
further exploration into determining the guiding weights φ can yield new ways of

154 Paper III Improved Variational Guiding of Smoke Animations

Figure 5 Simulations guided with a user-created flow induced in a narrow tube along the
curves shown in red. The guiding weights are animated in order to first enable the leftmost
curve-flow and then later the rightmost. Left pair: The narrow tubes. Right pair: Our method
guiding with the animated guiding weights combined with the eroded densities and the error
estimate.

creating artistic effects.

ACKNOWLEDGEMENTS

This work was partially funded by the Danish Agency for Science, Technology and
Innovation. We wish to thank Peter Trier for acting as a consultant on rendering is-
sues (see http://cg.alexandra.dk/), and Jesper Mosegaard, Thomas Sangild, Clemens
Nylandsted Klokmose, Ole Østerby and the anonymous reviewers for their comments.
We are grateful to Ken Museth, Doug Roble, Nafees Bin Zafar, Michael Clive and Ryo
Sakaguchi for inspiring discussions.

A FULL DERIVATION OF THE GUIDING EQUATIONS

We show here how to derive the guiding equations Eq. (III.5)-Eq. (III.6) from the
constrained minimization problem (III.1) – (III.4). We focus on obtaining Eq. (III.5)
from (III.1) – (III.4). Note that Eq. (III.4) will also contribute to Eq. (III.5) by means
of Lagrange multipliers. The minimization terms (III.1) – (III.3) are very similar, and
we concentrate on the most complicated term (III.3) first. Since ṽ is known, we can
rewrite (III.3) as

Q(u(x)) =
∫

Ω

|[u(x)− [F ∗u]] (x)+C(x)|2 dx (III.7)

where C(x) = − [ṽ− [F ∗ ṽ]] (x) is known and independent of the velocity field v we
are solving for. Assume that v is a minimizer of the functional Q(u(x)) in Eq. (III.7).
We then have Qmin = Q(v(x)). We now employ calculus of variations by considering
the first variation of Q: δQ = Q(v(x)+δv(x))−Qmin and wish to find the stationary

A Full Derivation of the Guiding Equations 155

point corresponding to δQ = 0. Expanding Q(v(x)+δv(x)) gives

Q(v+δv) (III.8)

=
∫

Ω

{(v+δv) · (v+δv)+ [F ∗ [v+δv]] · [F ∗ [v+δv]]+

C ·C−2(v+δv) · [F ∗ [v+δv]]−
2[F ∗ [v+δv]] ·C+2(v+δv) ·C}dx

Expanding Qmin gives

Qmin =
∫

Ω

{v ·v+[F ∗v] · [F ∗v]+C ·C−2[F ∗v] ·v−

2[F ∗v] ·C+2v ·C}dx

Expanding Q(v+δv) further and omitting higher order terms in δv such as 2δv · [F ∗
δv], δv · δv and [F ∗ δv] · [F ∗ δv], for δQ = Q(v + δv)−Qmin we obtain (to first
order in δv)

δQ = 2
∫

Ω

{δv · (v+C− [F ∗v])}+ (III.9)

{[F ∗δv] ([F ∗v]−v−C)}dx (III.10)

To obtain a sufficient condition for a stationary point it is convenient to rewrite δQ in
the form δQ =

∫
Ω

δv(x) ·D(x)dx, where D is some vector expression. As can be seen,
(III.9) is already in this form, and we now focus on rewriting (III.10) in this form as
well. By utilizing the definition of the convolution operator, exchanging integration
orders and introducing the integration variable y which ranges over all positions in the
domain, we obtain from (III.9) and (III.10)

δQ = 2
∫

Ω

δv·
{

v(x)+C(x)− [F ∗v](x)+∫
Ω

F (y−x)([F ∗v](y)−v(y)−C(y))dy
}

dx

Since δv is arbitrary, a sufficient condition for δQ = 0 is that the expression within
the curly braces is identically zero. This completes the derivation of the contribution
to the Euler-Lagrange equations from (III.3). The contributions from (III.1) and (III.2)
are derived similarly. Furthermore, the derivation of the contribution, ∇p(x), from
Eq. (III.4) by the method of Lagrange multipliers is similar to the derivation in [29,
p.203]. The contributions from (III.1) – (III.4) are finally added together and set equal
to zero ∫

Ω

[1−φ(y)]F (y−x)([F ∗v](y)− [F ∗ ṽ](y))dy (III.11)

+
∫

Ω

φ(y)F (y−x)([F ∗v](y)−vg(y))dy (III.12)

+v(x)+C(x)− [F ∗v](x) (III.13)

+
∫

Ω

F (y−x)([F ∗v](y)−v(y)−C(y))dy (III.14)

+∇p(x) (III.15)

= 0

156 Paper III Improved Variational Guiding of Smoke Animations

Expression (III.11) is the contribution from (III.1), (III.12) is the contribution from
(III.2), (III.13) – (III.14) are the contributions from (III.3) and finally (III.15) is the
contribution from Eq. (III.4). Note that p is the pressure of the fluid. By re-arranging
these equations and moving the known quantities to the right-hand-side we obtain
Eq. (III.5). This completes the derivation.

BIBLIOGRAPHY

[1] D. Adalsteinsson and J. A. Sethian. A fast level set method for propagating
interfaces. J. Comput. Phys., 118(2):269–277, 1995. ISSN 0021-9991. doi:
http://dx.doi.org/10.1006/jcph.1995.1098. 32, 86

[2] A. Aggarwal and S. V. Jeffrey. The input/output complexity of sorting and
related problems. Commun. ACM, 31(9):1116–1127, 1988. ISSN 0001-0782.
doi: http://doi.acm.org/10.1145/48529.48535. 41, 42, 44, 45, 87

[3] C. Allen, J. M. Cohen, D. Bloom, D. P. Ferreira, S. Hasegawa, and C. McMa-
hon. Levelsets in production: Spider-man 3. In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 sketches, page 29, New York, NY, USA, 2007. ACM. doi:
http://doi.acm.org/10.1145/1278780.1278815. 2, 15

[4] P. Angot, C.-H. Bruneau, and P. Fabrie. A penalization method to take into
account obstacles in incompressible viscous flows. Numerische Mathematik,
81(4):497–520, February 1999. doi: http://dx.doi.org/10.1007/s002110050401.
69, 133, 134, 149

[5] J. A. Baerentzen and H. Aanaes. Signed distance computation using the angle
weighted pseudonormal. IEEE Transactions on Visualization and Computer
Graphics, 11(3):243–253, 2005. ISSN 1077-2626. doi: http://dx.doi.org/10.
1109/TVCG.2005.49. 18, 20

[6] C. Batty, F. Bertails, and R. Bridson. A fast variational framework for accurate
solid-fluid coupling. ACM Trans. Graph., 26(3):100, 2007. ISSN 0730-0301.
doi: http://doi.acm.org/10.1145/1276377.1276502. 62, 141

[7] M. Bergou, S. Mathur, M. Wardetzky, and E. Grinspun. Tracks: toward di-
rectable thin shells. ACM Trans. Graph., 26(3):50, 2007. ISSN 0730-0301. doi:
http://doi.acm.org/10.1145/1276377.1276439. 126, 144

[8] M. Bertalmı́o, L.-T. Cheng, S. Osher, and G. Sapiro. Variational problems and
partial differential equations on implicit surfaces. J. Comput. Phys., 174(2):
759–780, 2001. ISSN 0021-9991. doi: http://dx.doi.org/10.1006/jcph.2001.
6937. 86

[9] A. Bibireata, S. Krishnan, G. Baumgartner, D. Cociorva, C. Lam, P. Sadayap-
pan, J. Ramanujam, D. Bernholdt, and V. Choppella. Memory-constrained data

157

158 Bibliography

locality optimization for tensor contractions. In L. Rauchwerger, editor, Pro-
ceedings of the 16th International Workshop on Languages and Compilers for
Parallel Computing (LCPC ’03), volume 2958 of Lecture Notes in Computer
Science, pages 93–108. Springer-Verlag, 2004. 88

[10] D. E. Breen and R. T. Whitaker. A level-set approach for the metamorphosis of
solid models. IEEE Trans. Vis. Comput. Graph., 7(2):173–192, 2001. 15, 17

[11] R. Bridson. Computational aspects of dynamic surfaces. PhD thesis, Stanford
University, 2003. 3, 35, 36, 38, 86

[12] R. Bridson. Fluid Simulation for Computer Graphics. AK Peters, 2008. 6, 49,
50, 52, 57, 60, 62, 138

[13] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing with folds and
wrinkles. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on
Computer Animation. ACM, The Eurographics Association, 2003. 20

[14] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition,
2000. ISBN 0-89871-462-1. 64, 70, 71, 72, 133, 136, 149

[15] S. Chen, G. D. Doolen, and K. G. Eggert. Lattice-boltzmann fluid dynamics.
Los Alamos Science, (22):98–111, 1994. 58, 78

[16] D. L. Chopp. Computing minimal surfaces via level set curvature flow. Journal
of Computational Physics, 106:77–91, 1993. 32, 86

[17] A. Dervieux and F. Thomasset. A finite element method for the simulation of
raleigh-taylor instability. Springer Lect. Notes in Math., 771:145–158, 1979. 85

[18] A. Dervieux and F. Thomasset. Multifluid incompressible flows by a finite el-
ement method. In W. Reynolds and R. MacCormack, editors, Seventh Inter-
national Conference on Numerical Methods in Fluid Dynamics, volume 141 of
Lecture Notes in Physics, pages 158–163, 1980. 85

[19] M. Desbrun and M.-P. Gascuel. Smoothed particles: a new paradigm for ani-
mating highly deformable bodies. In Proceedings of the Eurographics workshop
on Computer animation and simulation ’96, pages 61–76, New York, NY, USA,
1996. Springer-Verlag New York, Inc. ISBN 3-211-82885-0. 53, 61

[20] M. Droske and M. Rumpf. A level set formulation for willmore flow. Interfaces
and Free Boundaries, 6(3):361–378, 2004. 86

[21] T. F. Dupont and Y. Liu. Back and forth error compensation and correc-
tion methods for removing errors induced by uneven gradients of the level set
function. J. Comput. Phys., 190(1):311–324, 2003. ISSN 0021-9991. doi:
http://dx.doi.org/10.1016/S0021-9991(03)00276-6. 61, 87, 119

[22] T. F. Dupont and Y. Liu. Back and forth error compensation and correction
methods for semi-lagrangian schemes with application to level set interface
computations. Mathematics of Computation, 76:647–668, 2007. 149

Bibliography 159

[23] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set
method for improved interface capturing. J. Comput. Phys., 183(1):83–116,
2002. 37, 112

[24] D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex
water surfaces. In Proceedings of SIGGRAPH 2002, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 736–744. ACM, ACM Press / ACM
SIGGRAPH, 2002. 15, 16, 20, 65, 79

[25] R. Fattal and D. Lischinski. Target-driven smoke animation. In SIGGRAPH
’04: ACM SIGGRAPH 2004 Papers, pages 441–448, New York, NY, USA,
2004. ACM. doi: http://doi.acm.org/10.1145/1186562.1015743. 66, 73, 79,
146

[26] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In Pro-
ceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual
Conference Series, pages 15–22, Aug. 2001. 57, 60, 62, 126, 132, 137, 141,
144, 149

[27] B. Feldman, J. O’Brien, and O. Arikan. Animating suspended particle explo-
sions, 2003. ISSN 0730-0301. 65

[28] B. E. Feldman, J. F. O’Brien, B. M. Klingner, and T. G. Goktekin. Fluids in
deforming meshes. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eu-
rographics symposium on Computer animation, pages 255–259, New York, NY,
USA, 2005. ACM. ISBN 1-7695-2270-X. doi: http://doi.acm.org/10.1145/
1073368.1073405. 62

[29] J. H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics.
Springer, Berlin, 2002. ISBN 3-540-42074-6. 68, 129, 131, 147, 148, 155

[30] N. Foster and R. Fedkiw. Practical animation of liquids. In Proceedings of ACM
SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series,
pages 23–30. ACM SIGGRAPH, ACM Press / ACM SIGGRAPH, Aug. 2001.
2, 15, 16, 57, 86

[31] N. Foster and D. Metaxas. Realistic animation of liquids. In Graphics Interface
’96, pages 204–212, May 1996. 55, 57

[32] N. Foster and D. Metaxas. Controlling fluid animation. In CGI ’97: Proceedings
of the 1997 Conference on Computer Graphics International, pages 178–188,
Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-7825-9.
57, 127, 144, 146

[33] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In 40th Annual Symposium on Foundations of Computer Science,
pages 285–297, New York, New York, Oct. 17–19 1999. 41, 42, 44, 45, 87

[34] S. F. Frisken and R. Perry. Simple and efficient traversal methods for quadtrees
and octrees. journal of graphics, gpu, and game tools, 7(3):1–11, 2002. 35

160 Bibliography

[35] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones. Adaptively sam-
pled distance fields: A general representation of shape for computer graphics.
In Proceedings of SIGGRAPH 2000, Computer Graphics Proceedings, Annual
Conference Series, pages 249–254. ACM, ACM Press / ACM SIGGRAPH /
Addison Wesley Longman, 2000. 34

[36] E. Froemling, T. Goktekin, and D. Peachey. Simulating whitewater rapids in
ratatouille. In SIGGRAPH ’07: ACM SIGGRAPH 2007 sketches, page 68,
New York, NY, USA, 2007. ACM. doi: http://doi.acm.org/10.1145/1278780.
1278862. 3, 63, 126

[37] F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher. A level set approach for the
numerical simulation of dendritic growth. J. Sci. Comput., 19(1-3):183–199,
2003. ISSN 0885-7474. 86

[38] M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analysis,
and Internet Examples. Wiley, September 2001. ISBN 0471383651. 41

[39] E. Guendelman, R. Bridson, and R. Fedkiw. Nonconvex rigid bodies with
stacking. ACM Trans. Graph., 22(3):871–878, 2003. ISSN 0730-0301. doi:
http://doi.acm.org/10.1145/882262.882358. 20

[40] E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw. Coupling water and smoke
to thin deformable and rigid shells. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Papers, pages 973–981, New York, NY, USA, 2005. ACM. doi: http://doi.acm.
org/10.1145/1186822.1073299. 62, 141

[41] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. Physics of Fluids, 8(12):2182–
2189, 1965. doi: 10.1063/1.1761178. 55, 61

[42] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high order
accurate essentially non-oscillatory schemes, iii. J. Comput. Phys., 131(1):3–
47, 1997. ISSN 0021-9991. doi: http://dx.doi.org/10.1006/jcph.1996.5632. 87

[43] S. E. Hieber and P. Koumoutsakos. A lagrangian particle level set method. J.
Comput. Phys., 210(1):342–367, 2005. ISSN 0021-9991. doi: http://dx.doi.org/
10.1016/j.jcp.2005.04.013. 86

[44] J.-M. Hong and C.-H. Kim. Controlling fluid animation with geometric po-
tential: Research articles. Comput. Animat. Virtual Worlds, 15(3-4):147–157,
2004. ISSN 1546-4261. doi: http://dx.doi.org/10.1002/cav.v15:3/4. 146

[45] J.-M. Hong and C.-H. Kim. Discontinuous fluids. ACM Trans. Graph., 24(3):
915–920, 2005. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/1073204.
1073283. 52

[46] B. Houston, M. Wiebe, and C. Batty. RLE sparse level sets. In Proceedings
of the SIGGRAPH 2004 Conference on Sketches & Applications. ACM, ACM
Press, 2004. 36

Bibliography 161

[47] B. Houston, M. Nielsen, C. Batty, O. Nilsson, and K. Museth. Hierarchical RLE
Level Set: A Compact and Versatile Deformable Surface Representation. ACM
Transactions on Graphics, 25(1):1–24, 2006. 37, 86, 112

[48] U.-L. P. Hy Trac. Out-of-core hydrodynamic simulations for cosmological ap-
plications. New Astronomy, 2006. 88

[49] W.-K. Jeong and R. T. Whitaker. A fast iterative method for eikonal equations.
SIAM J. Sci. Comput., 30(5):2512–2534, 2008. ISSN 1064-8275. doi: http:
//dx.doi.org/10.1137/060670298. 28, 45, 87, 98

[50] G.-S. Jiang and D. Peng. Weighted eno schemes for hamilton–jacobi equations.
SIAM J. Sci. Comput., 21(6):2126–2143, 1999. ISSN 1064-8275. doi: http:
//dx.doi.org/10.1137/S106482759732455X. 87

[51] G.-S. Jiang and D. Peng. Weighted ENO schemes for Hamilton-Jacobi equa-
tions. SIAM J. Sci. Comput., 21(6):2126–2143, 1999. ISSN 1064-8275. 24, 35,
119

[52] G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted eno schemes.
J. Comput. Phys., 126(1):202–228, 1996. ISSN 0021-9991. doi: http://dx.doi.
org/10.1006/jcph.1996.0130. 24, 35, 87, 119

[53] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Implicit
and explicit optimizations for stencil computations. In MSPC ’06: Proceedings
of the 2006 workshop on Memory system performance and correctness, pages
51–60, New York, NY, USA, 2006. ACM. ISBN 1-59593-578-9. doi: http:
//doi.acm.org/10.1145/1178597.1178605. 89

[54] M. Kandemir, A. Choudhary, J. Ramanujam, and M. A. Kandaswamy. A unified
framework for optimizing locality, parallelism, and communication in out-of-
core computations. IEEE Trans. Parallel Distrib. Syst., 11(7):648–668, 2000.
ISSN 1045-9219. doi: http://dx.doi.org/10.1109/71.877759. 89

[55] M. Kandemir, A. Choudhary, and J. Ramanujam. An i/o-conscious tiling strat-
egy for disk-resident data sets. J. Supercomput., 21(3):257–284, 2002. ISSN
0920-8542. doi: http://dx.doi.org/10.1023/A:1014156327748. 89

[56] R. Keys. Cubic convolution interpolation for digital image processing. Acous-
tics, Speech, and Signal Processing [see also IEEE Transactions on Signal Pro-
cessing], IEEE Transactions on, 29(6):1153–1160, 1981. 136

[57] B. Kim, Y. Liu, I. Llamas, and J. Rossignac. Advections with significantly
reduced dissipation and diffusion. IEEE Transactions on Visualization and
Computer Graphics, 13(1):135–144, 2007. ISSN 1077-2626. doi: http:
//dx.doi.org/10.1109/TVCG.2007.3. 137

[58] T. Kim, N. Thürey, D. James, and M. Gross. Wavelet turbulence for fluid
simulation. ACM Trans. Graph., 27(3):1–6, 2008. ISSN 0730-0301. doi:
http://doi.acm.org/10.1145/1360612.1360649. 66, 69, 73, 127, 128, 146, 153

162 Bibliography

[59] Y. Kim, R. Machiraju, and D. Thompson. Path-based control of smoke simu-
lations. In SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 33–42, Aire-la-Ville, Switzerland,
Switzerland, 2006. Eurographics Association. ISBN 3-905673-34-7. 146

[60] D. Kincaid and W. Cheney. Numerical Analysis: Mathematics of Scientific
Computing. Brooks/Cole, Pacific Grove, CA, USA, third edition, 2002. ISBN
0-534-38905-8. 23, 24, 53, 55, 57, 60

[61] P. Koumoutsakos, G.-H. Cottet, and D. Rossinelli. Flow simulations using par-
ticles: bridging computer graphics and cfd. In SIGGRAPH ’08: ACM SIG-
GRAPH 2008 classes, pages 1–73, New York, NY, USA, 2008. ACM. doi:
http://doi.acm.org/10.1145/1401132.1401166. 133, 134, 149

[62] M. Kowarschik. An overview of cache optimization techniques and cache-aware
numerical algorithms. In In Algorithms for Memory Hierarchies, volume 2625
of LNCS, pages 213–232. Springer, 2003. 89

[63] C. Lanczos. The Variational Principles of Mechanics. Dover Publications,
fourth edition, 1986. 8, 64, 68

[64] A. E. Lefohn, J. E. Cates, and R. T. Whitaker. Interactive, gpu-based level
sets for 3d segmentation. In Medical Image Computing and Computer-Assisted
Intervention - MICCAI 2003, pages 564–572, 2003. ISBN 978-3-540-20462-6.
15, 32

[65] A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker. Interactive de-
formation and visualization of level set surfaces using graphics hardware. In
VIS ’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), page 11,
Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-2030-8.
doi: http://dx.doi.org/10.1109/VISUAL.2003.1250357. 86

[66] A. Leventhal. Flash storage memory. Commun. ACM, 51(7):47–51, 2008. ISSN
0001-0782. doi: http://doi.acm.org/10.1145/1364782.1364796. 86

[67] R. LeVeque. High-resolution conservative algorithms for advection in incom-
pressible flow. SIAM J. Numer. Anal., 33:627–665, 1996. 112

[68] Z. Li and Y. Song. Automatic tiling of iterative stencil loops. ACM Trans.
Program. Lang. Syst., 26(6):975–1028, 2004. ISSN 0164-0925. doi: http://doi.
acm.org/10.1145/1034774.1034777. 94

[69] X. Liu, S. Osher, and T. Chan. Weighted essentially nonoscillatory schemes. J.
Comput. Phys., 115:200–212, 1994. 24, 35, 61, 119

[70] X.-D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes.
J. Comput. Phys., 115(1):200–212, 1994. ISSN 0021-9991. doi: http://dx.doi.
org/10.1006/jcph.1994.1187. 87

[71] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. In SIGGRAPH ’87: Proceedings of the 14th annual

Bibliography 163

conference on Computer graphics and interactive techniques, pages 163–169,
New York, NY, USA, 1987. ACM Press. ISBN 0-89791-227-6. doi: http:
//doi.acm.org/10.1145/37401.37422. 5, 113

[72] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an
octree data structure. ACM Transactions on Graphics, 23(3), Aug. 2004. 3, 34,
35

[73] F. Losasso, R. Fedkiw, and S. Osher. Spatially adaptive techniques for level set
methods and incompressible flow. Computers and Fluids (in review), 2005. 86

[74] K. S. Mckinley and S. Carr. Improving data locality with loop transforma-
tions. ACM Transactions on Programming Languages and Systems, 18:424–
453, 1996. 89

[75] A. McNamara, A. Treuille, Z. Popović, and J. Stam. Fluid control using the
adjoint method. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages
449–456, New York, NY, USA, 2004. ACM. doi: http://doi.acm.org/10.1145/
1186562.1015744. 65, 127, 146

[76] R. B. Milne. An Adaptive Level-Set Method. PhD thesis, University of Califor-
nia, Berkeley, 1995. 86

[77] C. Min. Local level set method in high dimension and codimension. Journal of
Computational Physics, 200:368–382, 2004. 35, 86

[78] J. Molemaker, J. M. Cohen, S. Patel, and J. Noh. Low viscosity flow simulations
for animation. In ACM SIGGRAPH Symposium on Computer Animation, 2008.
134

[79] P. Mullen, K. Crane, D. Pavlov, Y. Tong, and M. Desbrun. Energy-preserving
integrators for fluid animation. In SIGGRAPH ’09: ACM SIGGRAPH 2009
papers, pages 1–8, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-726-
4. doi: http://doi.acm.org/10.1145/1576246.1531344. 128, 144, 146

[80] M. Müller, D. Charypar, and M. Gross. Particle-based fluid simulation for inter-
active applications. In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eu-
rographics Symposium on Computer animation, pages 154–159. Eurographics
Association, 2003. ISBN 1-58113-659-5. 53, 61

[81] K. Museth. An efficient level set toolkit for visual effects. In SIGGRAPH ’09:
SIGGRAPH 2009: Talks, pages 1–1, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-834-6. doi: http://doi.acm.org/10.1145/1597990.1597995. 37, 86

[82] K. Museth and M. Clive. Cracktastic: fast 3d fragmentation in ”the mummy:
Tomb of the dragon emperor”. In SIGGRAPH ’08: ACM SIGGRAPH 2008
talks, pages 1–1, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-343-3.
doi: http://doi.acm.org/10.1145/1401032.1401110. 37, 86

[83] K. Museth, D. Breen, R. Whitaker, and A. Barr. Level set surface editing oper-
ators. ACM Trans. on Graphics (Proc. SIGGRAPH), 21(3):330–338, July 2002.
15, 16, 86

164 Bibliography

[84] K. Museth, D. Breen, R. Whitaker, S. Mauch, and D. Johnson. Algorithms
for interactive editing of level set models. Computer Graphics Forum, 24(4):
821–841, 2005. 19

[85] K. Museth, M. Clive, and N. B. Zafar. Blobtacular: surfacing particle system
in ”pirates of the caribbean 3”. In SIGGRAPH ’07: ACM SIGGRAPH 2007
sketches, page 20, New York, NY, USA, 2007. ACM. doi: http://doi.acm.org/
10.1145/1278780.1278804. 37

[86] R. Narain, J. Sewall, M. Carlson, and M. C. Lin. Fast animation of turbulence
using energy transport and procedural synthesis. In SIGGRAPH Asia ’08: ACM
SIGGRAPH Asia 2008 papers, pages 1–8, New York, NY, USA, 2008. ACM.
doi: http://doi.acm.org/10.1145/1457515.1409119. 127, 128, 146

[87] O. Nemitz, M. B. Nielsen, M. Rumpf, and R. Whitaker. Finite element methods
on very large, dynamic tubular grid encoded implicit surfaces. SIAM Journal
on Scientific Computing, 31(3):2258–2281, 2009. doi: 10.1137/080718334. 86

[88] D. Q. Nguyen, R. Fedkiw, and H. W. Jensen. Physically based modeling and an-
imation of fire. In SIGGRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, pages 721–728, New York,
NY, USA, 2002. ACM. ISBN 1-58113-521-1. doi: http://doi.acm.org/10.1145/
566570.566643. 2, 15, 16

[89] M. B. Nielsen. Efficient and High Resolution Level Set Simulations. PhD thesis,
Aarhus University, 2006. 90, 105

[90] M. B. Nielsen and K. Museth. Dynamic tubular grid: An efficient data structure
and algorithms for high resolution level sets. J. Sci. Comput., 26(3):261–299,
2006. ISSN 0885-7474. doi: http://dx.doi.org/10.1007/s10915-005-9062-8. 3,
5, 36, 45, 86, 88, 99, 100, 106

[91] M. B. Nielsen, O. Nilsson, A. Söderström, and K. Museth. Out-of-core and
compressed level set methods. ACM Trans. Graph., 26(4):26, 2007. ISSN
0730-0301. doi: http://doi.acm.org/10.1145/1289603.1289607. 7, 38, 39, 40,
41, 44, 45, 46, 80, 86, 87, 88, 90, 91, 92, 106, 107, 108, 109

[92] M. B. Nielsen, B. B. Christensen, N. B. Zafar, D. Roble, and K. Museth. Guid-
ing of smoke animations through variational coupling of simulations at differ-
ent resolution. In ACM SIGGRAPH Symposium on Computer Animation, pages
206–215, Aug. 2009. 144, 145, 146, 147, 148, 149, 151, 153

[93] O. Nilsson, D. Breen, and K. Museth. Surface reconstruction via contour meta-
morphosis: an eulerian approach with lagrangian particle tracking. In Visual-
ization, 2005. VIS 05. IEEE, pages 407–414, Oct. 2005. doi: 10.1109/VISUAL.
2005.1532823. 32, 33, 34

[94] S. Osher and N. Paragios. Geometric Level Set Methods in Imaging, Vision, and
Graphics. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003. ISBN
0387954880. 15

Bibliography 165

[95] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations. Journal of Computational
Physics, 79:12–49, 1988. 2, 3, 15, 20, 31, 85

[96] S. Osher and C. Shu. High-order essentially nonoscillatory schemes for
Hamilton-Jacobi equations. SIAM J. Num. Anal., 28:907–922, 1991. 24, 34

[97] S. Osher, L.-T. Cheng, M. Kang, H. Shim, and Y.-H. Tsai. Geometric optics in
a phase-space-based level set and eulerian framework. J. Comput. Phys., 179
(2):622–648, 2002. ISSN 0021-9991. doi: http://dx.doi.org/10.1006/jcph.2002.
7080. 86

[98] S. J. Osher and R. P. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer, October 2002. ISBN 0387954821. 19, 21, 22, 25, 26, 27, 29

[99] O. Østerby. Numerical Solution of Parabolic Equations. DAIMI FN. Second
edition, January 2008. 25, 29

[100] P. Oswald. Remarks on multilevel bases for divergence-free finite elements.
Numerical Algorithms, 2001. 142

[101] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang. A PDE-based fast local
level set method. J. Comput. Phys., 155(2):410–438, 1999. ISSN 0021-9991.
doi: http://dx.doi.org/10.1006/jcph.1999.6345. 3, 22, 27, 32, 33, 34, 86

[102] T. Pfaff, N. Thuerey, A. Selle, and M. Gross. Synthetic turbulence using arti-
ficial boundary layers. In SIGGRAPH Asia ’09: ACM SIGGRAPH Asia 2009
papers, New York, NY, USA, 2009. ACM. 146

[103] J. Pilgrim and T. Tornberg. How to build a sixty foot man of moving sand.
In SIGGRAPH ’07: ACM SIGGRAPH 2007 sketches, page 28, New York, NY,
USA, 2007. ACM. doi: http://doi.acm.org/10.1145/1278780.1278814. 2, 15

[104] J. Reinders. Intel Threading Building Blocks. O’Reilly, first edition, 2007. 109,
110, 137

[105] R. Rickitt. Special Effects: The History and Technique. Aurum Press Ltd,
London, UK, 2006. ISBN 1845131304. 48, 49

[106] J. K. Salmon and M. S. Warren. Parallel, out-of-core methods for n-body sim-
ulation. In PPSC, 1997. 88

[107] H. Schechter and R. Bridson. Evolving sub-grid turbulence for smoke anima-
tion. In Proceedings of the 2008 ACM/Eurographics Symposium on Computer
Animation, 2008. 127, 128, 146

[108] A. Selle, N. Rasmussen, and R. Fedkiw. A vortex particle method for smoke,
water and explosions. ACM Trans. Graph., 24(3):910–914, 2005. ISSN 0730-
0301. doi: http://doi.acm.org/10.1145/1073204.1073282. 60

[109] J. A. Sethian. A fast marching level set method for monotonically advancing
fronts. Proc. of the National Academy of Sciences of the USA, 93(4):1591–1595,
February 1996. 27, 98

166 Bibliography

[110] L. Shi and Y. Yu. Taming liquids for rapidly changing targets. In SCA ’05:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, pages 229–236, New York, NY, USA, 2005. ACM. ISBN
1-7695-2270-X. doi: http://doi.acm.org/10.1145/1073368.1073401. 128, 146

[111] P. Shirley and R. K. Morley. Realistic Ray Tracing. A. K. Peters, Ltd., Natick,
MA, USA, 2003. ISBN 1568811985. 5

[112] C. Shu and S. Osher. Efficient implementation of essentially non-oscillatory
shock capturing schemes. J. Comput. Phys., 77:439–471, 1988. 25, 61, 87, 94,
119

[113] Y. Song and Z. Li. New tiling techniques to improve cache temporal locality. In
SIGPLAN Conference on Programming Language Design and Implementation,
pages 215–228, 1999. 89

[114] J. Stam. Stable fluids. In Proceedings of SIGGRAPH 99, Computer Graphics
Proceedings, Annual Conference Series, pages 121–128, Aug. 1999. 5, 53, 59,
63, 126, 128, 144, 145

[115] Stanford Scanning Repository. Stanford scanning repository.
http://graphics.stanford.edu/data/3Dscanrep/. 112

[116] J. Steinhoff and D. Underhill. Modification of the euler equations for “vortic-
ity confinement”: Application to the computation of interacting vortex rings.
Physics of Fluids, 6(8):2738–2744, 1994. doi: 10.1063/1.868164. 60

[117] J. Strain. Tree methods for moving interfaces. J. Comput. Phys., 151(2):616–
648, 1999. ISSN 0021-9991. doi: http://dx.doi.org/10.1006/jcph.1999.6205.
34, 35, 86

[118] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing
solutions to incompressible two-phase flow. J. Comput. Phys., 114(1):146–159,
1994. ISSN 0021-9991. doi: http://dx.doi.org/10.1006/jcph.1994.1155. 22, 85

[119] M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L.
Welcome. An adaptive level set approach for incompressible two-phase flows.
J. Comput. Phys., 148(1):81–124, 1999. ISSN 0021-9991. 86

[120] A. S. Tanenbaum and J. R. Goodman. Structured Computer Organization. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 1998. ISBN 0130959901. 41, 42

[121] N. Thürey and U. Rüde. Free Surface Lattice-Boltzmann fluid simulations with
and without level sets. Proc. of Vision, Modelling, and Visualization VMV, pages
199–207, 2004. 58

[122] N. Thürey, K. Iglberger, and U. Rüde. Free Surface Flows with Moving and De-
forming Objects for LBM. Proceedings of Vision, Modeling and Visualization
2006, pages 193–200, Nov 2006. 58

Bibliography 167

[123] N. Thürey, R. Keiser, M. Pauly, and U. Rüde. Detail-preserving fluid control. In
SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pages 7–12, Aire-la-Ville, Switzerland, Switzerland,
2006. Eurographics Association. ISBN 3-905673-34-7. 73, 79, 126, 127, 128,
138, 144, 146, 153

[124] N. Thürey, T. Pohl, and U. Rüde. Hybrid Parallelization Techniques for Lattice
Boltzmann Free Surface Flows. Proceedings of Parallel CFD 2007, pages 1–8,
2007. 58

[125] S. Toledo. A survey of out-of-core algorithms in numerical linear algebra. pages
161–179, 1999. 40, 86, 88

[126] A. Treuille, A. McNamara, Z. Popović, and J. Stam. Keyframe control of smoke
simulations. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages 716–
723, New York, NY, USA, 2003. ACM. ISBN 1-58113-709-5. doi: http://doi.
acm.org/10.1145/1201775.882337. 65, 127, 146

[127] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. Proceed-
ings of the 33rd Conference on Decision and Control, Lake Buena Vista, LF,
pages 1368–1373, December 1994. 28, 98

[128] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE
Trans. Automat. Contr., 40:1528–1538, September 1995. 28, 98

[129] C. D. Twigg and D. L. James. Many-worlds browsing for control of multibody
dynamics. ACM Transactions on Graphics (SIGGRAPH 2007), 26(3), Aug.
2007. 79

[130] J. S. Vitter. External memory algorithms and data structures: dealing with mas-
sive data. ACM Comput. Surv., 33(2):209–271, 2001. ISSN 0360-0300. doi:
http://doi.acm.org/10.1145/384192.384193. 40, 86, 88

[131] R. Whitaker, D. Breen, K. Museth, and N. Soni. A framework for level set
segmentation of volume datasets. In Proceedings of International Workshop on
Volume Graphics, pages 159–168, 2001. 15

[132] R. T. Whitaker. A level-set approach to 3d reconstruction from range data. Int.
J. Comput. Vision, 29(3):203–231, 1998. ISSN 0920-5691. doi: http://dx.doi.
org/10.1023/A:1008036829907. 32, 86

[133] M. Wiebe and B. Houston. The Tar Monster: Creating a character with fluid
simulation. In Proceedings of the SIGGRAPH 2004 Conference on Sketches &
Applications. ACM, ACM Press, 2004. 4

[134] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In PLDI ’91:
Proceedings of the ACM SIGPLAN 1991 conference on Programming language
design and implementation, pages 30–44, New York, NY, USA, 1991. ACM
Press. ISBN 0-89791-428-7. doi: http://doi.acm.org/10.1145/113445.113449.
42, 44, 45, 87, 89, 94, 95, 116, 117

168 Bibliography

[135] D. Wonnacott. Achieving scalable locality with time skewing. Int. J. Parallel
Program., 30(3):181–221, 2002. ISSN 0885-7458. doi: http://dx.doi.org/10.
1023/A:1015460304860. 89, 92, 94, 95, 96

[136] Y. Zhu and R. Bridson. Animating sand as a fluid. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Papers, pages 965–972, New York, NY, USA, 2005. ACM.
doi: http://doi.acm.org/10.1145/1186822.1073298. 61

	Abstract
	Acknowledgements
	Preface
	Included Papers
	1 Introduction
	1.1 Level Set Pipeline
	1.2 Fluid Simulation Pipeline
	1.3 Contributions
	1.4 Outline

	I Overview
	2 Level Set Methods
	2.1 Implicit Surfaces
	2.2 The Level Set Method in Theory
	2.2.1 The Level Set Equations
	2.2.2 Reinitializing the Signed Distance Function

	2.3 The Level Set Method in Practice
	2.3.1 Finite Difference Approximations of Derivatives
	2.3.2 Numerical Stability
	2.3.3 Solving the Level Set Equations Numerically
	2.3.4 The Vanishing Viscosity Solution

	3 Level Set Method Extensions
	3.1 Narrow Band Level Set Methods
	3.2 Octree Based Level Set Methods
	3.3 Sparse Non-Tree Based Level Set Methods
	3.4 Particle Level Set Methods
	3.5 Out-of-Core Level Set Methods

	4 The Improved Out-of-Core Framework
	4.1 Memory Hierarchies and Cache Locality
	4.2 Code Transformations
	4.3 Contributions
	4.4 Further Discussion and Evaluation

	5 Fluid Simulation for Computer Graphics
	5.1 The Equations for Fluid Flow
	5.1.1 Derivation of the Inviscid Euler Equations
	5.1.2 Pressure
	5.1.3 Boundary Conditions

	5.2 Solving the Inviscid Euler Equations Numerically
	5.2.1 Spatial Discretization
	5.2.2 Semi-Lagrangian Advection
	5.2.3 Ensuring Incompressibility

	5.3 Simulating Smoke and Water
	5.4 An Alternative Method

	6 Fluid Simulation Extensions
	6.1 Vorticity Confinement and Vortex Particles
	6.2 Reducing Numerical Dissipation of Advection
	6.3 More Accurate Boundaries

	7 Controlling Fluid Simulations
	7.1 Control Methodologies
	7.2 Calculus of Variations
	7.3 Contributions
	7.4 Further Details on Customized Multigrid Solver
	7.4.1 Interpolation and Restriction Operators
	7.4.2 Coupling the Operators to the Linear System

	7.5 Discussion and Evaluation

	8 Conclusion
	8.1 Future Work
	8.2 Final Thoughts

	II Papers
	I Out-Of-Core Computations of High-Resolution Level Sets by Means of Code Transformation
	1 Introduction
	2 Related Work
	3 Skewing and Tiling Level Set Computations and Data Structures
	3.1 Skewing
	3.1.1 Transforming the Iteration Space
	3.1.2 Storage Mapping
	3.1.3 The Fast Iterative Method
	3.1.4 Rebuild
	3.1.5 Concatenating Multiple Level Set Steps

	3.2 Tiling
	3.2.1 Tiling the Iteration Space
	3.2.2 Tiled Storage Mapping

	4 Results and Discussion
	4.1 Single Threaded Performance
	4.1.1 Performance of Skewed Simulations

	4.2 Multi Threaded Performance
	4.2.1 Performance of Multiple Simulations on the Same Disk
	4.2.2 Parallelization Overhead
	4.2.3 Performance of Skewed and Tiled Simulations

	5 Applications
	5.1 The Divergence-Free Advection Test
	5.2 Mean Curvature Flow of Surfaces

	6 Conclusion and Future Work
	A Data Locality Analysis
	A.1 Forward Euler
	A.2 BFECC and TVD RK

	II Guiding of Smoke Animations Through Variational Coupling of Simulations at Different Resolutions
	1 Introduction
	2 Related Work
	3 Algorithm Overview
	4 Variational Model of Guiding
	4.1 Preliminaries
	4.2 Guiding Equations
	4.3 The Discretization of the Guiding Equations

	5 Boundaries
	5.1 The Penalization Method

	6 Filter Estimation, Upsampling and Downsampling
	7 Multigrid Solver
	8 Results and Discussion
	9 Conclusion

	III Improved Variational Guiding of Smoke Animations
	1 Introduction
	2 Related Work
	3 Guiding
	4 Implementation
	5 Time-Dependent Guiding Effects and Results
	5.1 Time-Dependent Guiding with Smoke Density
	5.1.1 Combining with Erosion of Densities
	5.1.2 Combining with an Error Estimate

	5.2 Time-Dependent Guiding with Curves
	5.3 Discussion and Limitations

	6 Conclusion
	A Full Derivation of the Guiding Equations

	Bibliography

