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Abstract

Texture mapping is a classical technique that is commonly used in computer
graphics applications as a quick and intuitive way of adding details to a geo-
metrical object. Several different techniques have been developed based on the
initial texture mapping concept, ranging from the simple regular image texture
mapping over bump mapping and parallax mapping to regular displacement
mapping. Common to these methods is that they aim to add geometrical de-
tails to the object, either by adding visual cues (e.g. changing the base color
and/or the shading) to simulate greater details, or by actually changing the
overall shape of the surface. Either way, the goal is to add these effects without
burdening the artist and/or the display system. In this thesis, we present a fur-
ther development of the texture mapping paradigm, allowing the user to employ
unconstrained geometry as a geometric texture and merge it onto the surface
of another object while deforming it to fit the shape of the target surface.

The inspiration for this came from a somewhat unexpected source: my pre-
vious work on terrain rendering. Here, the focus was on creating a flexible and
efficient terrain rendering algorithm with support for real-time editing of the
terrain. During the work on creating terrain editing options, it became clear
that there were many interesting challenges related to this. At the same time,
it became apparent that with the rather restricted underlying terrain represen-
tation we would not be able to obtain the results we were aiming for. So, rather
than restricting our further work to this limiting height map representation of
the surface, we changed focus and based the remaining work on a significantly
more flexible implicit representation of the surface, e.g. a level set. Thus, the
contributions of this thesis spans two topics, real-time terrain visualization and
geometric texture mapping, of which the geometrical texture mapping topic is
by far the major one.

Flexible real time terrain visualization: we present a flexible frame-
work for real-time rendering of large textured terrains. The strength of the pre-
sented algorithm lies in its flexibility. While it may not be as fast as the current
state-of-the-art algorithms, it is significantly more flexible than those systems.
In addition to the obvious capability of rendering terrains at interactive frame
rates, our system handles arbitrarily large textures, on-the-fly altering of the
terrain and even partial specification of the terrain with on-the-fly updating of
the terrain if additional data should become available. The system is memory
efficient without compromising the quality of the terrain: by employing a care-
fully designed data layout less than 2.5 bytes is stored in memory per vertex.
Finally, the presented system is simple and easy to implement.
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Geometrical texture mapping: we present robust and flexible tech-
niques for warping and blending (or subtracting) geometric details, in the form
of a geometric texture, onto level set surfaces. The presented methods are based
on the use of implicit geometry. This makes it easy to merge the base and tex-
ture geometry into a single topologically connected object as well as smoothing
the intersection between the base and texture geometry thereby guaranteeing
a smooth surface with smooth normals. Furthermore, our mapping employs a
flexible particle based parameterization, characterized by the concrete distribu-
tion of the particles. This allows us to change the parameterization by changing
the way the particles are distributed. To demonstrate this flexibility, we present
three different methods for distributing the particles. Finally, we demonstrate
how the presented geometrical texture mapping techniques can be applied in
an animation context as well.
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Nielsen, Ola Nilsson and Andreas Söderström. Michael has helped me in so
many ways, in particular for commenting on this thesis, and for letting me use
the software he has written, including his implementation of the DT-Grid data
structure, his level set framework, and his scan conversion utility. As Michael,
Ola also allowed me to use some of the software he has written, in particular
his implementation of the fast sweeping reinitialization algorithm. In addition
to this, I have had plenty of help and fruitful discussions with him regarding
visualization of my results. The images in figure figure 8.13 are rendered by
him. Finally, Andreas supplied the dataset used for the water animation in
figure 10.1. In the last phase of my studies, I had the opportunity to work with
Serban Porumbescu and Brian Budge. I would like to thank them both for all
the hard work they put into the project and for letting me in on the secrets
and limitations of their competing project, Shell Maps.

I would also like to thank Peter Ørbæk for his technical aid and discussions
related to the terrain visualization algorithm, as well as the rest of the people
at 43D, for their collaboration and support on this project. I would like to
thank Ole Østerby for always being willing to answer my questions on numerical
analysis and math in general. Niels Olof Bouvin for being the LATEX guru ready
to help whenever necessary. Louis Feng for generating the illustrations in figures
8.1, 8.2 and 8.3. Preben Mogensen and the rest of the Palcom group at the
University of Aarhus, for giving me the opportunity to take some time off from
the project so that I could finish my work on this thesis. And, the authors of
the papers [40,53,56] for allowing me to reprint figures from their work.

Finally, I would like to thank my family for being very understanding and
supportive even in the rough periods of my studies. In particular, I would like
to thank my dear wife for being incredibly patient with me, for taking on an
extra load at home to allow me to focus on my thesis, and for taking the time
to read through my thesis and provide me with valuable comments.

Anders Brodersen,
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Chapter 1

Introduction

The trade-off between efficiency and flexibility is a classical problem in computer
science. This is a well known schism between making a tool that does one
thing to perfection or one that does several things well enough but typically
with some trade-offs. A good example of this is the PC versus game consoles:
The PC supports a wide application area, including gaming, whereas a game
console is obviously tailored for gaming and can utilize all its resources to this
one end which makes it superior to the PC for this one purpose. The same
trade-off exists in the field of computer graphics, between developing highly
efficient single-purpose algorithms and their flexible counterparts that address
several complex problems. In this thesis, the focus is primarily on creating
flexible algorithms, both with respect to terrain rendering and geometric texture
mapping. In the following, I will motivate and discuss the trade-offs relating to
both topics.

Terrain Rendering

Developing a terrain rendering engine requires one to make a number of design
choices to either develop a highly optimized engine useful for a limited set of
applications or a more flexible engine that works on a wider range of applica-
tions without necessarily excelling in any area. For instance, one has to choose
between small or large terrains. Building a terrain engine meant for rendering
of large or even massive terrains requires careful design of the data structures
and algorithms. Furthermore, a level of detail technique has to be applied to
avoid overloading the graphics hardware with too many triangles. This usually
has a noticeable impact on the performance of the system. On the other hand,
when designing an engine geared towards displaying smaller terrains, memory
is less of an issue. This allows for a more hardware friendly memory layout
resulting in a higher performance of the system. Furthermore, when focusing
on maximizing the performance of a terrain engine, other aspects are often
left behind. A good example of this is the geometry clipmap approach [49],
which is currently one of the best terrain rendering algorithms in terms of per-
formance and memory requirements. This system easily manages to represent
and display a terrain spanning the entire USA at a 30m grid sampling. The
limitations of this approach are, that in practice the textures applied to this
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4 Chapter 1. Introduction

terrain are either procedurally generated on the fly or limited to a 1 dimensional
texture (e.g. a contour map). Furthermore, to facilitate the representation of
the massive terrains, all terrain data are compressed in a pre-process (The USA
dataset is compressed from 40GB to 355 MB, with an rms error of 1.8m). This,
however, rules out performing any kind of run time alterations of the terrain.
While systems such as the BDAM [14] exhibit similar performance as the geom-
etry clipmap approach without sacrificing the ability to display high resolution
textures, they still require the terrain data to go through a long pre-processing
step. Thus, to the best of our knowledge, no system exists which is capable of
displaying large scale terrains with high resolution textures and still allow the
terrain to alter it’s shape at runtime. While most terrain rendering applica-
tions have little use for the ability to edit the terrain at runtime, it is critical
to a few important applications. Consider for example the work of a landscape
architect [11]. When designing a park, it is for example desirable to change the
flow of a small stream through the park, or to level out a part of the terrain.
In this case, it is essential for the architect to have access to visualization tools
that facilitates interactive editing of the terrain. This is the inspiration for one
of the challenges this thesis is addressing, namely developing a system that is
capable of displaying large terrains with high resolution textures at interactive
frame rates - without sacrificing the ability to interact with and change the
shape of the terrain.

Geometric Texture Mapping using Level Sets

During my initial work on terrain visualization, or more specifically editing
of terrains, I quickly discovered a major limitations of the underlying terrain
representation. Using a height map representation of the terrain severely limits
the kind of terrain that can be represented, and consequently also the capability
of a terrain editing tool. Using this representation, all editing operators are
limited to applying a vertical offset to the affected parts of the terrain. Similarly,
due to the limitations of the height map representation, caves, bridges etc.
cannot be represented. This limitation inspired me to look for an alternative
approach to editing or adding of details to terrains. After carefully analyzing
the problem at hand, I realized, in conjunction with my supervisor, that we
were in fact seeking the solution to a problem that had applications reaching
far beyond just editing of terrains. In fact, we realized that we were looking
for a more generic geometric manipulation tool that would allow one to easily
add (or remove) any desired kind of details to any given base surface. In the
search for a generic solution, texture mapping was a good source of inspiration;
in its simplest form, texture mapping is conceptually very close to what we
were looking for: a quick and intuitive way of adding details to a surface. In
our context, the limitation of regular image texture mapping is that details are
added to the surface simply by modifying the color of the surface rather than
modifying the actual geometry. Amongst the more advanced texture mapping
techniques, displacement mapping [75] is more in the line of what we were
looking for. By encoding a height field into a texture, this method applies
an offset to the vertices of a given base surface. Still, the deformation of the
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surface enabled by these techniques are limited to simple normal offsets of the
surface, which is not much different from the type of deformations that could be
performed on a terrain. Our idea was to develop a more general technique that
would allow us to easily apply any kind of surface deformation. Or, to use a
graphics terminology, to employ unconstrained geometry as a geometric texture
and merge it onto the surface of another object while deforming it to fit the
shape of the target surface. Rather than restricting this to the limited height
map representation of the surface, we change focus and base the remaining
work on a significantly more flexible implicit representation of the surface, e.g.
a level set. Based on the level set representation of surfaces, we present a novel
framework for surface editing using arbitrary geometrical objects as textures
that can be either added onto or subtracted from the base surface. In both
cases, the texture geometry is warped to follow the local shape of the base
surface.

We are not the first to pursue this idea. Previous work in this area include
the Geometric Texture Synthesis by Example approach by Bhat et al. [7], which,
similar to our system, is based on an implicit representation of the geometry,
and the more recent Shell Map method of Porumbescu et al. [67], which was
developed in parallel with our work. The keywords that makes our system
stand out are flexibility, quality, and control. In particular, the fact that the
method of Bhat et al. is based on texture synthesis reduces the flexibility of
the system. Basically, the user supplies 3 surfaces and the system attempts to
do to surface A, what was done to surface B in order to obtain surface C. In
contrast, using our method, the user has full control over where a geometric
texture is applied, how many instances are applied as well as their size and
orientation. These properties are shared by the Shell Map method, which due
to the explicit representation of the base and texture geometry, is relatively
fast. Our approach on the other hand can handle more complex topologies,
produces connected surfaces, is significantly more flexible and generally leads
to better results with less distortion.

To summarize, this thesis spans two topics, terrain visualization and geo-
metric texture mapping. Although both topics are important to my PhD work,
geometric texture mapping is by far the one that I have spent most of my time
studying. Consequently, geometric texture mapping is to be considered the
primary topic of this thesis, whereas the terrain visualization topic is should
considered the secondary topic.

Contributions of the Thesis

The main contributions related to the terrain rendering are:
Optimized Geometrical MipMapping We present a number of opti-

mizations to the geometrical mipmapping terrain renderer [18] that allows us
to significantly reduce the amount of memory used to represent the terrain.

Support for high resolution textures through texture tiling Care-
ful organization of the terrain data allows us to efficiently texture the terrain
using very high resolution textures tiled into smaller sub-textures displayable
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by current graphics hardware.
Support for on-the-fly alteration of the terrain By taking advantage

of our memory layout, we can allow the terrain to be modified at run time with-
out imposing any significant impact on the overall performance of the system.

The main contributions related to geometric texturing are:
Flexible volumetric parameterization. We compute a low distortion

volumetric parameterization with a minimum of user-interaction. Our param-
eterization does not depend on prior surface texture coordinates. Instead, it is
based on a local parameterization generated on the fly, using a simple and easy
to use point and click interface. Furthermore, our parameterization is charac-
terized by the distribution of a set of particles, but is independent of how this
distribution of the particles is obtained. This means that the particles can be
distributed in a number of different ways, allowing for a vast number of unique
mapping effects.

Implicit geometry mapping with smooth blending. We complement
existing explicit geometry mapping techniques by using an implicit approach
which smoothly blends mapped geometry to create closed surfaces suitable for
rendering or for further manipulation or simulation. We do this using com-
pact level set representations of the base and texture surfaces. Our mapping is
based on a radial basis function interpolation of discretely sampled texture co-
ordinates, giving us a smooth (differentiable) mapping. This is the first general
texture space to shell space mapping technique utilizing implicits that we are
aware of.

Fast semi-implicit geometry mapping. We also introduce a near real-
time semi-implicit mapping approach that combines an implicit level set rep-
resentation of the base surface with an explicit polygonal representation of the
mapped textures. This technique is useful as a preview tool (prior to implicit
mapping) and as a stand alone method for mapping explicit geometry.

Shell Map hybrid mapping. To overcome some of the performance issues
with the implicit mapping, we further introduce a hybrid mapping combining
our parameterization with the interpolation scheme used for the Shell Map ap-
proach [67]. The resulting mapping handles both explicit and implicit textures,
and it is significantly faster than the radial basis function interpolating method.
The price we pay for this is a mapping based on barycentric interpolation, and
it is thus only C0.

Texture based animations. We present different animation techniques
based on our geometric texture mapping techniques. These techniques provides
support for animating geometry textures, geometric texturing on animated base
geometry, animations of the size and position of the mapped texture geometry
on the base surface as well as a combination of these three techniques.

This thesis summarize my work carried out as a Ph.D. student at the Univer-
sity of Aarhus, Denmark from September 2003 to March 2007. So far, the work
described in this thesis has resulted in two publications. The first one is a confer-
ence paper, on which I was the sole author, presented at the 3rd international
conference on computer graphics and interactive techniques in Australia and
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Southeast Asia (GRAPHITE 2005) entitled Real-Time Visualization of Large
Textured Terrains. The second paper is a journal paper entitled Geometric Tex-
turing Using Level Sets. This paper, which is conditionally accepted by IEEE
Transaction on Visualization and Computer Graphics, is co-authored with my
supervisor Ken Museth as well as Serban Porumbescu and Brian Budge, both
from the University of California, Davis. These two papers are included for ref-
erence as appendices of this thesis. All the material described in those papers
is however also described in this thesis.

Although the work presented in this thesis is indeed my own, several peo-
ple have been to involved at different stages. Consequently I shall use ”we”
throughout the remainder of this thesis to acknowledge these collaborations.

The structure of the thesis is as follows. First, Part II presents our approach
to visualization of large textured terrains. The main focus in this part of the
thesis is the further development of the geometrical mipmap terrain rendering
engine to facilitate visualization of large scale terrains without sacrificing the
flexibility of the original algorithm.

Following this, Part III expands on the surface editing paradigm briefly in-
troduced in Part II in the context of terrain rendering, and presents our resulting
framework for a more generic geometric texture mapping technique. Following
a brief introduction to the topic in Chapter 5, Chapter 6 introduces some of the
required background theory on level sets and implicit surfaces, and Chapter 7
reviews some of the previous research related to our work. Chapter 8 presents
the core of our proposed geometric texture mapping framework: This includes
a flexible particle based local parameterization, two mapping methods used for
mapping explicitly respectively implicitly defined geometric textures onto the
base surface and finally, the tools needed to create a single topologically con-
nected surface with a smooth intersection between the two (or more) previously
separate surfaces. Chapter 9 presents a hybrid approach to solving the same
problem, combining our particle based parameterization with the barycentric
interpolation based mapping of Porumbescu et al. [67]. This method presents
a significant speed up to the mapping of implicit geometric textures at the cost
of a reduced visual quality. In Chapter 10, we demonstrate how the presented
geometrical texture mapping methods can be applied to animation. We present
methods for handling both animation of the base surface, key frame animations
of the texture and a combination of both. We round off Part III with a brief
evaluation of the proposed methods and a comparison to similar algorithms.

Finally, in Part IV, we sum up the contributions of this thesis and give a
short presentation of some of the issues that we would like to address in the
future.
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Chapter 2

Introduction

Real-time visualization of large terrains has been an active area of research for
more than a decade. In the past few years, as a natural result of the constantly
increasing capabilities of modern graphics hardware, the focus has shifted from
CPU intensive algorithms, where level of detail is determined per triangle, to
the more GPU intensive algorithms, where the level of detail is determined for
a group of triangles rather than for each individual triangle. The result is a
much simpler and faster level of detail calculation. The price we pay for this is
that we need to render the entire group at the same level of detail, which has
to be high enough that nothing is drawn at too low a level of detail. Thus, we
are likely to render more triangles than actually required. This is however not
a big problem, as current and future graphics hardware is capable of rendering
the increased number of triangles with little or no extra cost.

There are several aspects involved in rendering large terrains, of which ren-
der speed and memory consumption obviously receive by far the most attention.
Often, a terrain will be too large to be stored in main memory. It is therefore
crucial to keep the overall memory requirements, measured in bytes per vertex,
as low as possible, to avoid having to constantly swap data in and out of main
memory. As for the rendering speed, often a terrain consists of far more tri-
angles than the hardware can possibly display at interactive frame rates. This
is typically handled using a combination of back face culling, frustum culling,
level of detail and possibly also occlusion culling [52]. In most cases, however,
the equally important issue of how to add a texture map to these large terrains
has been ignored. The problem arises because modern graphics hardware is
limited to displaying textures of sizes up to 2048×2048 or 4096×4096, which
for most applications (particularly games) is more than sufficient, but for a
terrain covering an area of 80km2, such a texture would only provide one texel
per 20 or 40 meters. Game programmers typically solve this problem by using
several repeating textures, blended according to height, slope etc. to hide the
repeating pattern. If on the other hand, the texture is a map or a (satellite)
photo, that approach just is not good enough.

In the following, we demonstrate how a geometric mipmap based terrain en-
gine [18] can be adapted to efficiently render large scale terrains and at the same
time handle textures that are larger than the maximum texture size displayable
by the graphics hardware. By combining carefully designed data structures with

11



12 Chapter 2. Introduction

the use of vertex programs, the proposed system requires less than 2.5 bytes per
vertex. The presented algorithm is simple, yet powerful and flexible enough that
it remains possible to alter the terrain at runtime with no significant impact on
the performance. Before we dwell further into the details of our algorithm, we
will start by reviewing some of the previous work related to our work.



Chapter 3

Existing Approaches to Terrain

Visualization

Most terrain rendering algorithms, including the one presented here, focus on
rendering of height fields; that is, a two dimensional array of height samples.
The algorithms for interactive rendering of height fields are typically divided
into two categories: Algorithms that take advantage of the regular structure of
the datasets to create an efficient hierarchical representation of the terrains; and
algorithms based on a more general unconstrained triangulation of the terrain,
triangulated irregular networks, or TINs.

The most popular algorithms in the first category are the quad-tree based
approach of Lindstrom et al. [43], the triangle bin-tree based ROAM algo-
rithm [23] or longest edge bisection as used by Lindstrom et al. [44, 45]. They
all generate the mesh at run-time by progressive refinement or simplification.
The refinement process starts with one or more isosceles right triangles, which
are recursively refined by bisecting the longest edge, thereby creating two new
isosceles right triangles, until a given mesh quality is achieved. Simplification
is done by reversing those steps. When changing the viewpoint, the mesh is
regenerated, either from scratch [43–45], or by refining and simplifying the ex-
isting mesh to fit the new viewpoint [23]. The first four levels of a triangle
bin-tree is depicted in figure figure 3.1. Whether or not a given triangle is to
be refined (or simplified) is determined by comparing a user defined threshold
against an error associated with each triangle. This error is typically some vari-
ant of a screen space error, meaning that it is a measure for the visual error
introduced by not refining this triangle (or in the case of simplification, the
visual error introduced by merging this triangle and a triangle sharing an edge
with it into one triangle), although more simple error metrics such as distance
to the viewpoint are also used.

Figure 3.1: The first four levels of a triangle bin-tree refinement hierarchy.

13



14 Chapter 3. Existing Approaches to Terrain Visualization

In contrast, algorithms based on triangulated irregular networks pre-calculate
a hierarchy of optimized meshes at different resolutions, which at runtime are
combined to give the desired mesh quality from a given view point. The run-
time performance of TIN based terrain algorithms are usually higher than that
achieved by the runtime refinement algorithms, and they have been shown [25]
to generate meshes of higher quality (smaller error) than other algorithms using
the same number of triangles. However, the TIN based algorithms are usually
much harder to implement, and the pre computation-time needed is consider-
able. One of the most prominent example of algorithms from this category is
the view dependent progressive meshes of Hoppe [35].

Inspired by the massive evolution in consumer graphics hardware, a new
group of algorithms have started to appear. Taking advantage of the increased
triangle throughput of modern graphics hardware, existing algorithms have
been modified [14, 42] and new algorithms have been invented [18, 49]. What
these new algorithms have in common is that they utilize far simpler algorithms
which, at the cost of rendering more triangles than required to achieve the
desired mesh quality, has a significantly lower CPU overhead. In other words,
most of the work is shifted from the CPU to the GPU. An interesting example
of this is the BDAM algorithm [14], which is a combination of the ROAM
algorithm [23] and a TIN based approach. The BDAM algorithm uses the
same triangle bin-tree layout as used by the ROAM algorithm, but rather than
having each node in the tree correspond to a single triangle, each node contains
a small chunk of triangles forming a highly optimized TIN, typically containing
between 200 and 8000 triangles. These TINs, which are constructed offline
in a preprocessing step, are constructed such that they match up with the
neighboring TINs of the same level or one level coarser sharing the nodes longest
edge, and with the TINs of the same level or one level finer sharing one of the
two of the nodes shortest edges. This constraint combined with the properties
of the triangle bin-tree guarantees a fully connected triangulation of the terrain.
The terrain is then drawn by traversing the triangle bin-tree. Once a branch of
the tree is reached matching the desired quality, the entire chunk of triangles
contained in that node is rendered, and traversal of that branch is terminated.

Although texture mapping is an important aspect of terrain rendering,
most papers completely skip this issue [18, 43, 45], others leaves it for future
work [23, 42] or only very briefly touches the subject [49]. The standard ap-
proach for the few systems that actually handle large textures, is to partition
the texture into tiles, binding each tile to a certain part of the terrain [35]. In
some cases the textures are arranged into a pyramidal structure to facilitate
texture level of detail along with the geometric level of detail [14, 22]. Google
Earth [31] appears1 to be using a tiling scheme where the terrain is split up in
small tiles each with its own texture. Textures and tiles are then streamed into
memory as they are needed, starting with a low resolution model and texture
and then refining the model as the required data gets loaded. This way, they can
keep the entire world in a huge database while only keeping the currently used

1As Google Earth is a proprietary system, no details about the algorithms used are released
to the public. Hence, the discussion of their methods is based solely on the system in use.
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neighborhood in memory. In all cases, the texture handling is tightly coupled
with the geometrical level of detail algorithm; the only truly general approach,
in the sense that is completely independent from the geometrical level of de-
tail algorithm used, is the clip-map [78], which unfortunately requires special
hardware. The approach presented here is also based on texture tiling, but
with texture level of detail limited to standard hardware controlled mipmap-
ping. This system can easily be extended with texture management as in [22]
and [14] with only minor changes to the rest of the system.

The system presented here is developed with flexibility in mind. Thus, while
we cannot compete performance wise (rendering speed) with most of the high
performance GPU optimized systems such as the geometry clipmap system [49]
or the BDAM family [14, 15, 29], it does perform better than these systems in
terms of flexibility. Most notably, our system allows for changing the terrain
at runtime without incurring a noticeable performance penalty. In terms of
rendering speed, our system still outperforms the more CPU intensive systems
such as [23,43–45].
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Chapter 4

Optimized Geometric Mipmap Terrain

Visualization

In the following chapter, we present our representation of large terrains as well
as the algorithms we have developed to enable visualization of the terrain at in-
teractive frame rates. The terrain engine presented here has been implemented
as part of a commercial program; a program requiring more than just fast ren-
dering of the terrain. We require the ability to render the terrain with a texture
that is larger than the textures displayable by current hardware. Furthermore,
we need to add support for altering the terrain on the fly; a requirement that
effectively rules out any expensive pre-computations that would need to be re-
peated when the terrain is changed. Although our approach is based on an
existing terrain rendering algorithm, we presents a number of novel ideas. Our
main contributions are

1. We present a number of optimizations that allows us to significantly re-
duce the amount of memory used to represent the terrain.

2. Careful organization of the terrain allows us to efficiently texture the
terrain using very high resolution textures.

3. By taking advantage of our memory layout, we can allow the terrain to
be modified at run time without imposing any significant impact on the
overall performance of the system.

4.1 Data Structures and Memory Layout

In designing a system that satisfies all of our requirements, we have turned
to the GeoMipMap algorithm [18], where the terrain is divided into smaller
patches, called GeoMipMaps, of size (2n+1)×(2n+1). The original GeoMipMap
algorithm is clearly designed for smaller scale terrains used in games, as nothing
is done to reduce the amount of memory used by the system1, but we have
extended it to be suitable also for rendering larger terrains.

Our system uses a three level data structure:

1More than 12 bytes are used per vertex.
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class GeoMipMap
{

//Current level of detail
unsigned short LoD;
//delta max for each detail level
unsigned short *deltaMax;
unsigned short *heights;
VboElement *vboElm;
//Bounding box
unsigned short ymin, ymax;

};

Figure 4.1: Class Declaration of GeoMipMap. The VboElement entry is de-
scribed in section 4.4.

• At the bottom level we have a 2D array of GeoMipMap structures, con-
taining the heights of the vertices in that particular patch as well as some
information needed for the level of detail algorithm. The class declaration
is listed in figure 4.1.

• At the mid level, we have a 2D array of the MapBlock structure. This
structure is used for controlling the texture mapping, ensuring that a given
texture is applied to the correct GeoMipMaps. Each MapBlock holds a
reference to tu × tv GeoMipMaps as well as one or more textures, which
are used for decorating all of the referenced GeoMipMaps. Like [22], tex-
tures can be combined using any of the blending operators supported by
OpenGL. For efficiency reasons, this structure also holds a (compressed)
bounding box, and its indices into the 2D array of MapBlocks.

• Finally, at the top level we have a single Terrain structure, which forms
the interface between the terrain engine and the rest of the system. The
Terrain structure also holds all data that can possibly be reused between
different MapBlocks or GeoMipMaps, such as the size of the GeoMipMaps
and MapBlocks, the indices, render flags etc.

Storing the heights in the GeoMipMaps instead of having one large 2-
dimensional array means that heights along the shared edge of two GeoMipMaps
need to be stored in both GeoMipMaps. However, choosing this layout allows
us to reuse the same set of indices for each GeoMipMap as well as a generic set
of x and z coordinates. Thus, the net result is a reduction in memory usage
rather than an increase.

4.2 Level of Detail

The level of detail algorithm used in our system is based on the geometrical
mipmapping algorithm presented by de Boer [18]. We follow the convention
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from [18] where the y coordinate of our vertices represents the height of the
terrain.

Figure 4.2: Mesh layout for a map size of 5×5. The black circles are the vertices
used for lower detail level mesh (level 1). Both the white and black circles are
used for the highest resolution mesh (level 0).

The terrain is subdivided into a number of smaller patches of containing
(2n + 1) × (2n + 1) samples (typically either 17×17, 33×33 or 65×65). Each
patch, also called a GeoMipMap, is then rendered at either full resolution, ev-
ery second vertex only, every fourth vertex only etc. depending on the desired
level of detail. In other words, the desired level of detail is determined for
the entire GeoMipMap, making the refinement process both simple and fast.
Changing from one GeoMipMap level to the next simply amounts to removing
every second vertex in both directions, thus reducing the number of vertices
from (2n + 1)× (2n + 1) to (2n−1 + 1)× (2n−1 + 1), see figure 4.2. At creation

Figure 4.3: Geometrical error introduced by removing a single vertex as seen
from the side. The length of the dotted line is the geometrical error introduced
by removing the gray dot, and replacing the two lines from the white dots to
the gray dot by a straight line between the two white dots. The maximum
geometrical error is defined as max(δpi), where δpi is the error introduced by
removing vertex pi ∈ Pl, and Pl is the set of vertices removed when changing
from level 0 to level l.

time we calculate, for each level of each GeoMipMap, the maximum geometri-
cal error caused by changing from level 0 (highest resolution) to that level, see
figure 4.3. Selection is then done at run-time, given the current view param-
eters and the world space bounding box of a GeoMipMap, by calculating the
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maximal geometrical error allowed inside that bounding box, with respect to
a user supplied threshold. This value is compared to the error values for the
GeoMipMap, and the lowest detail level with a maximum error below this value
is chosen to be rendered.

Calculating the maximal geometrical error allowed is done using the distant
terrain LoD scheme described in [24], but a more accurate scheme with no
assumptions, or a simpler scheme, based for example only on distance from the
view point, can easily be used instead.

S

N
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Figure 4.4: The 5 regions of a single GeoMipMap implicitly defined to simplify
the task of avoiding cracks in the mesh. Note that when no more than 3x3
vertices remain, the center region is empty.

If two neighboring GeoMipMaps are rendered at different levels of detail,
then the tessellation of their shared edge will be inconsistent, leading to holes,
or cracks, in the mesh. To avoid these undesirable artifacts, we divide each
GeoMipMap into 5 separate regions, see figure 4.4. While the tessellation of
the center region is based entirely on the currently selected level of detail, the
tessellation of the four border regions are based on the currently selected level
of detail as well as the level of detail of the neighbor GeoMipMap sharing an
edge with that region. If the neighbor is at a higher resolution, we add the
missing vertices to the shared edge to ensure a consistent tessellation between
GeoMipMaps, as demonstrated in figure 4.5. This is the opposite approach
of [18] and [41], where vertices are removed rather than added. Removing
vertices instead of adding them results in fewer triangles to render, but at the
cost of removing triangles with a potential geometrical error larger than the
calculated maximum. We believe that providing a tessellation of a (potentially)
lower quality than implied by the user specified threshold is an ill design choice,
and therefore prefer the slightly increased triangle count.

4.3 Reducing Memory Requirements

An important benefit from using a regular grid height map for terrain visual-
ization is that the x and z coordinates can easily be calculated at runtime, and
thus need not be stored. To avoid having to recalculate the x and z coordinate
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Figure 4.5: When two neighboring GeoMipMaps have different resolution, extra
vertices (black dots) are added to the lower resolution GeoMipMaps represen-
tation of the shared edge, making the two edges identical.

whenever we need to draw a triangle, we take advantage of the fact that each
map has its own copy of the y coordinates making up that map. By precalcu-
lating the x and z coordinates of one map, we can reuse these coordinates for
all other maps, by simply translating the vertices to the position of the new
map relative to the original map.

In practice, this means that we store the x and z coordinates of the lower left
block in one array, and the y coordinates for each of the n×m maps in separate
arrays (owned by the corresponding GeoMipMap object). When rendering, we
then pass in the x and z coordinates using the 0th OpenGL vertex attribute
array, and the y values are passed in through the 1st vertex attribute array. We
then use a simple vertex program to assemble this into a full vertex.

Using the GeoMipMap structure listed in figure 4.1, the amount of mem-
ory needed to store a single GeoMipMap of size 17×17 is 604 bytes. As the
MapBlock structure is a lightweight structure containing only a compressed
bounding box (2 shorts), two indices, one or more texture ids, and a list of
visible maps, it contributes little to the overall memory consumption. And as
the top level Terrain structure is never instantiated more than once, even with
all the indices stored (see section 4.4), the total memory consumption for even
moderate size terrains2 is less than 2.5 bytes per sample3.

4.4 Rendering the Terrain

Vertex Buffer Object Management In order to achieve high frame rates,
it is important that we have all the needed vertex data in graphics memory,
however due to the large memory requirements of the textures combined with
the additional use of graphics resources by the application itself (that is, tex-
tures and vertex data for other geometry displayed along with the terrain), it
is equally important that we do not waste resources on parts of the terrain that

2The larger the terrain, the smaller is the influence of the single Terrain structure
31.5 bytes if we stored heights as bytes instead of floats as e.g. in [43]
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are not drawn.
For this reason we have implemented a manager for OpenGL vertex buffer

objects. Each GeoMipMap stores a pointer to a VBOElement, which is a wrap-
per around an OpenGL vertex buffer object [59]. VBOElements are managed
using a standard least recently used approach. Whenever we are about to ren-
der a GeoMipMap with no VBOElement assigned, we revoke the least recently
used, and assign it to the GeoMipMap.

An important detail for this to work properly is that no VBO is allowed to
be used more than once per frame. Should a VBO be used twice in the same
frame, then the least recently used sharing approach will often cause most if
not all VBOs to be updated, effectively killing performance. To avoid this, we
keep track of how many VBOs are used each frame. If at any one time we
have used all VBOs in our queue, and a GeoMipMap makes a request for a
VBOElement, a new one is immediately created instead, growing the queue to
fit the current requirements. If the number of VBOElements in use is less than
the current size of the queue, we slowly shrink the queue4 in order to reclaim
graphics resources when possible.

Pre-calculated indices For efficiency, we pre-calculate the indices for all
possible levels of detail configurations for a GeoMipMap and its 4 neighbors. For
a GeoMipMap of size 17×17 this results in 354 different sets of indices, taking
up a total of 88896 bytes of memory (58718 after being converted to tristrips),
which are turned into triangle strips, and stored in a single VBO. A more
memory efficient approach would be to separately render each of the sections
of the five section GeoMipMap layout presented in section 4.1. This reduces
the total memory requirement for the (stripified) indices to 4338 bytes (for a
17x17 GeoMipMap), but at the cost of having to call glDrawRangeElements
five times per GeoMipMap rather than one. Using maps of size 17×17, we have
seen a performance increase of up to 7% when using only one draw call and
therefore recommend using that approach, however for map sizes larger than
17×17, the memory needed to store the indices may become a problem5, in
which case drawing the five regions separately may then be advisable.

Frustum Culling View frustum culling is performed using the optimized
two point axis-aligned bounding box/plane intersection test with masking by
Assarsson and Möller [6]. Rather than introducing a new hierarchy only to
be used for culling, we have chosen to use the already existing 3 level layout
presented in section 4.1. Because the bounding boxes of all three levels are
aligned to the same coordinate system, the n-vertices and p-vertices used for
culling, see [6], are the same for all structures, and therefore need only be found
once per frame. As a result, frustum culling using the existing data structures
is fast, even without introducing any additional data structures.

4By removing at most one element per frame
5Stripified indices for a 65×65 GeoMipMap requires 1238716 bytes.
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Texture Handling As a consequence of splitting the terrain into smaller
patches, handling of high resolution textures becomes relatively straight for-
ward. Our approach is to cut the high resolution texture into smaller sub-
textures, each sub-texture being small enough to be displayable by the graphics
hardware. The high resolution texture is divided in a way that ensures that
each sub-texture fits exactly n×m GeoMipMaps. Each sub-texture is then as-
signed to a MapBlock controlling exactly the n×m GeoMipMaps covered by
that sub-texture. During the cull phase, each visible GeoMipMap is added to
a visibility list of the corresponding MapBlock. The visible GeoMipMaps are
then rendered, one MapBlock at a time, thus requiring the textures of that
MapBlock to be bound only once per frame.

To avoid visible texture seams, the sub-textures are generated such that two
adjacent sub-textures overlap by a one texel border. Splitting textures is done
in an offline step for image textures that are independent of the actual terrain,
while textures, such as light maps, that are tightly coupled to the geometry are
generated and subdivided at runtime.

An outline of the rendering loop, including culling, level of detail calculations
etc. is depicted in Algorithm 1.

Function Render-Terrain()
visibleMapBlocks.clear();
foreach MapBlock mb in mapBlocks do

if mb is visible then
visibleMapBlocks.add(mb);
foreach GeoMipMap gmm in mb.geoMipMaps do

if gmm is visible then
mb.visibleGeoMipMaps.add(gmm);
gmm.calculateDesiredLoD();

end
end

end
end
foreach MapBlock mb in visibleMapBlocks do

mb.setupTextures();
mb.updateVertexProgramState();
foreach GeoMipMap gmm in mb.visibleGeoMipMaps do

gmm.getNeighbourLoDs(&n, &s, &e, &w);
gmm.setupVertexArrays(n, s, e, w);
gmm.updateVertexProgramState();
renderPatch();

end
end
Algorithm 1: Pseudo-code describing the rendering procedure.
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4.5 Editing the Terrain

Most current terrain rendering systems assume the height-map to be static.
With this assumption, it is acceptable to perform any number of expensive pre-
calculations, as for example is the case in [49], where a 40GB terrain dataset
is compressed in a five hour long preprocessing step. While this assumption is
natural for a lot of applications, e.g. in a flight simulator or a racing game where
one would expect the terrain to remain unchanged, there are some applications
where this is not an acceptable assumption. One such example is an application
targeted towards landscape architects. For example, when designing a new park
it is often necessary to remove large parts of the terrain in order to level the
area, or it could be required to change the path of a stream etc. In this case,
it is necessary to be able to change the shape of the terrain at run time. As
our system is in fact targeted towards these kind of applications, we intend to
allow run-time alterations of the terrain. This can be done using an operator
much like the polygon sculpt tool in Maya [4]. Such an operator would affect all
vertices within a given distance from the point at which the operator is applied.
Depending on the current configuration of the operator, this will either raise or
lower the terrain within the region of influence of the operator, with the center
being raised or lowered the most followed by a smooth falloff for vertices closer
to the edge of the region of influence.

When the users alter the terrain, all the affected vertices must of course be
updated. This triggers an update of the bounding boxes and geometrical errors
thresholds for each GeoMipMap containing updated vertices. Fortunately, with
the data layout described above, recalculating the bounding boxes and geomet-
rical errors for the level of detail for a limited number of GeoMipMaps can easily
be done without a noticeable impact on performance. Changing the height of
some of the vertices also changes the shading of the terrain, which means that
the light maps needs to be recalculated as well. This is a bit more costly than
recalculating bounding boxes and geometrical error thresholds. Fortunately,
the visual impact of the light maps are subtle, and we can therefore justify a
short delay in the recalculation as long as the rest of the system remains unaf-
fected. This means that we can dedicate a separate (low priority) thread to the
task of recalculating the light maps. This way, they will be recalculated using
only spare CPU cycles, and thus only incur a minor performance penalty. As
the topology of the terrain is unchanged, indices etc. need not be recalculated.

4.6 Compressing Terrain Data

One of the most important aspects of a terrain rendering algorithm is keeping
the memory usage at a minimum due to the large data set sizes. Section 4.3
showed how our system uses less than 2.5 bytes per height sample, however
Losasso et al. [49] managed to get a memory requirement far below one byte
per height sample by compressing the heights.

Unlike Losasso et al., we are not able to perform an expensive offline com-
pression of the heights, as this would have to be repeated whenever the user
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alters the terrain. We can, however, implement a small scale compression of
our heights by compressing the heights in each GeoMipMap separately. When
we then need the uncompressed heights for a given GeoMipMap, they are un-
compressed into a different array and kept as long as the GeoMipMap is in use.
When no longer needed, the heights, if changed, are compressed, and the old
compressed heights are overwritten.

Clearly, this will not have the same impact as compressing the entire terrain
at once, as we will have to restrict ourselves to a compression scheme optimized
for speed rather than compression ratio. It is however something that can be
done at run time. Primarily because only a few GeoMipMaps need to have
their heights compressed at a time, and as with updating the light maps, this
can be done using spare CPU cycles in the background.

Due to time constraints, we have unfortunately not yet had the opportunity
to implement and test the impact of compressing the height data.

4.7 Results and Evaluation

Our primary tests of the proposed system were performed on a laptop computer
powered by an Intel Pentium M 1.5GHz processor with one gigabyte of mem-
ory and an nVidia GeForceFx 5650 Go chip with 128MB dedicated graphics
memory.

Figure 4.6: View of the Broad-Law terrain

Our test terrain is an area in Scotland known as Broad Law. The terrain is
made up of 8193×8193 height samples, and rendered with a 8192×8192 RGB
image tiled into 8×8 textures of size 1024×1024 and a 1024×1024 light map
also tiled into 8×8 sub textures, see figure 4.6.

With a screen space error, τ , of one and a GeoMipMap size of 17×17,



26 Chapter 4. Optimized Geometric Mipmap Terrain Visualization

(a) τ = 1 pixel

(b) τ = 3 pixel

Figure 4.7: Wire frame rendering of terrain with different error thresholds.

the terrain is rendered at on average 70 frames per second at a rate of up to
35M∆/sec.

Choosing the optimal size for the GeoMipMaps is a matter of balancing the
number of OpenGL function calls versus the number of unnecessary triangles
drawn. When we decrease the size of the GeoMipMaps, more draw calls are
required to render the terrain, but having too many draw calls can severely hurt
performance. Similarly, by increasing the size of the GeoMipMaps, more redun-
dant triangles are likely to be drawn. According to our initial tests on the above
mentioned system, the best performance is obtained when using GeoMipMaps
of size 17×17, at which point the balance between the number of draw calls
and number of unnecessary triangles drawn seems to be optimal. This corre-
lates with the results obtained by Larsen and Christensen [41]. Further tests
performed on a significantly faster system, powered by a nVidia GeForce 7800
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GT card confirmed our suspicions that the optimal GeoMipMap size depends
heavily on the underlying hardware. On the faster system, using GeoMipMaps
of size 17×17, the limiting factor appeared to be the number of OpenGL func-
tion calls rather than the number of triangles rendered. On this latter system,
the highest performance was observed when using a map size of 65×65.

Figure 4.7 shows a wire frame rendering of the terrain from figure 4.6, with
a screen space error of 1 and 3 pixels.

Our system does have one obvious flaw: In some cases, e.g. when viewing
the terrain from above, most other algorithms are able to simplify the terrain to
just a few triangles. As we are limited by the size and number of GeoMipMaps,
our lowest resolution terrain is of a much higher resolution. In practice, how-
ever, this is of little importance, as the rendered mesh is still of relatively low
resolution, and more importantly, the situations where the problem arises are
relatively rare.

While the presented system cannot compete with current state-of-the-art
rendering systems [14,15,29,49] performance wise, our system is by design more
flexible than most previous systems. In addition to the support for displaying
high resolution textures, which for example is not clear how to do with the
geometry clipmap algorithm [49], and the terrain editing facilities which to
the best of our knowledge has not been handled by any previous system6, our
system capable of handling missing parts of the terrain. If a part of a terrain
is missing, the heights pointer (see figure 4.1) in the GeoMipMaps covering
this area will simply be null pointers and those GeoMipMaps will be ignored
during rendering. If at some point the data for that part of the terrain becomes
available, the affected GeoMipMaps are simply updated with this new data, and
will subsequently be treated like all other GeoMipMaps. This is in contrast to
having to represent those unspecified areas as flat areas in the terrain. While
this certainly is an option, is leaves the user in the blind, as it will not be clear if
the areas are unspecified or that part of the terrain just is meant to be flat. And
even with this approach, systems such as the BDAM family or the geometry
clipmap will not be able to handle the case where the data becomes available
during runtime.

The system presented here is currently being used (and have been for almost
two years) in the ToposTM visualization software package [1] (see figure 4.8).

Using the kind of modifications to the terrain discussed in section 4.5, we
allow the user to easily change the flow of a stream, or to level a part of the
terrain to help visualize a (future) building site etc. While this may be sufficient
for some applications, it also reveals the limitations of the underlying geomet-
rical representation of the terrain: With the height map representation of the
terrain, we can only raise or lower the terrain, that is, no matter what operator
we apply to the geometry, only the y-coordinate of the vertices changes. If
more advanced alterations of the geometry were to be applied, we would need

6Although some of the previously presented systems, in particular the geometrical mipmap
[18] which our system is based upon but also most of the CPU intensive systems [23, 43–45],
are likely to be able to handle this, most of the recent systems [14,15,29,49] rely on a long pre-
processing step to compress the terrain data or generate the simplified tessellation, thereby
effectively ruling out performing any kind of runtime alterations of the terrain.
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Figure 4.8: Screenshot of the ToposTM application using an implementation of
our terrain rendering algorithm. Reprinted with permission from 43D.

to look at a less restrictive representation of the geometry. While this may not
be a reasonable approach in the context of terrain rendering due the benefits
of this simple representation in terms of algorithmic simplicity and efficiency,
other applications may benefit significantly from a more advanced surface edit-
ing paradigm. In the next part of this thesis, we will focus explicitly on this
particular issue, but rather than staying within the limited context of terrain
rendering, we will look at the problem within a more general setting.
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Geometric Texture Mapping
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Chapter 5

Introduction

Motivated by the limited terrain editing operations made possible by the un-
derlying height map representation, we will in the following chapters present a
number of more flexible and more general techniques for adding and warping
arbitrary geometric textures onto surfaces with arbitrary topology. For years,
the standard approaches to increase geometric complexity have primarily been
2D texture [9], bump [8], and displacement mapping [16]. These techniques,
while capturing a wide range of geometric phenomena, are limited in the types
of detail they can represent. Kajiya and Kay [38] realized this early on and
introduced volumetric textures to represent more topologically complex struc-
tures. Recently, the focus has shifted towards more sophisticated volumetric
and geometric texturing approaches in an effort to capture a wider range of
complex geometric phenomena [7, 13, 67, 83]. Unlike previous approaches, we
can produce topologically connected surfaces with smooth blending and low
distortion. Specifically, we present a novel 3D fine-scale explicit and implicit
geometry mapping technique based on level sets, interpolation and radial basis
functions. While we will assume a level set representation of the base surface,
we will present methods for mapping both explicitly and implicitly defined ge-
ometric textures. To facilitate our mapping, we parameterize the embedding
space of the base level set surface using a novel particle based localized parame-
terization. We can then warp explicit texture meshes onto this surface at nearly
interactive speeds or blend level set representations of the texture to produce
high-quality surfaces with smooth transitions.

Our contribution leverages the recent introduction of DT-Grid data struc-
tures and algorithms [55] and the large body of level set research to bridge the
gap between existing volumetric and explicit geometric mapping techniques.
Our general approach uses an implicit level set representation of both the base
surface and the texture geometry [61]. This representation allows for robustness
to topology changes during the mapping, flexibility when defining the blend of
the base and texture geometry, and is amenable to high quality offset surface
generation. Additionally, level sets offer a large body of advanced numerical
techniques for easily computing surface properties and performing arbitrary de-
formations. In fact, as has been shown in previous work [53], direct control of
blended surface properties is easily achievable with level sets. This high degree
of robustness and flexibility, however, comes at the price of increased compu-
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tational complexity when compared to purely explicit approaches. To address
this issue, we have developed a fast semi-implicit technique that can conve-
niently be used for near real-time previewing. It combines an implicit level set
representation of the base surface and an explicit polygonal representation of
the textures.

We proceed by introducing the most important properties of level sets and
implicit surfaces relevant to our work before going into further detail regarding
our geometrical texture mapping methods.



Chapter 6

Level Sets and Implicit Surfaces

6.1 Level Set Theory

When talking about geometry in computer graphics, people usually think about
lines, triangles/polygons, nurbs, subdivision surfaces etc., all of which fall into
the category of explicit surfaces. Most real-time applications (games etc.) use
only points, lines and triangles, as these are the only primitives supported by
current graphics hardware.

Although this is an efficient geometry representation for many applications,
it does fall short in some situations. One of the most significant shortcomings
of the explicit surface representations is related to deforming surfaces. Consider
for example a surface as depicted in Figure 6.1(a), represented using a num-
ber of line segments. Assuming we were to dilate the surface, simply moving
each vertex a given distance along the vertex normal would result in a situa-
tion where the surface ends up intersecting itself as depicted in Figure 6.1(b).
Obviously the surface is no longer physically realizable, as there is no longer
a clear distinction between what is inside the surface and what is outside it.
A physically plausible simulation of moving fronts would need to detect and
resolve such situations. Furthermore, if the deformation of the surface causes
it to change topology, by for instance breaking up into several surfaces or if
several surfaces were to merge into one surface, this would also require special
handling. Although these situations can, in most cases, be tracked and handled
using an explicit surface representation, it is a complex and error prone task.

In contrast, an implicit surface representation defines the surface as the
isocontour of a Lipschitz continuous function [85] φ(x). Representing e.g. the
zero isocontour, a surface in Rn is defined as

Ω0 = {x ∈ Rn|φ(x) = 0},

that is, the set of points x ∈ Rn satisfying the equation φ(x) = 0. We denote
φ(x) the embedding function. It is common to use the zero-isocontour, as this
simplifies many aspects of the implicit surface representation. This can be done
without loss of generality, as for a given function φ(x) and an isocontour value
α ∈ R, we can always define a new function φ̂(x) = φ(x) − α, for which the
zero-isocontour is identical to the α-isocontour of φ(x). With this convention,
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(a) Interface in 2 dimensions represented
using connected lines

(b) Moving the vertices in the direction of
the vertex normal causes the interface to
self-intersect

Figure 6.1: Deforming an explicitly represented interface may cause the inter-
face to self-intersect, leaving a region that is at the same time both inside and
outside the object.

we can define the interior of the geometry as Ω− = {x ∈ Rn|φ(x) < 0} and the
exterior as Ω+ = {x ∈ Rn|φ(x) > 0}. Using an implicit representation of the
surface may at first seem inefficient, as we are using a function defined on all
of Rn to represent a surface of dimension n− 1. However, we will see that this
representation has a number of important properties. Using the classification of
interior and exterior domain defined above, determining if a given point is inside
or outside the volume becomes a check on the sign of the embedding function
evaluated at that point. Also, by using a single valued function to define the
surface, we are guaranteed a physically realizable closed surface, which means
that self intersections are impossible by construction. This is of course due
to the fact that a single-valued embedding function by nature cannot at the
same time have both positive and negative sign. Furthermore, when using an
implicit representation changes in the topology, for example when two water
drops collide and merge into one, are handled automatically.

The gradient of an implicit surface is defined as

∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
(6.1)

The gradient is a vector perpendicular to the isocontours of φ, pointing in
the direction of increasing function values. Therefore, if x is a point on the zero
isocontour of φ, then the gradient points in the same direction as the outward
unit surface normal, N . Thus, knowing the gradient, we can define the unit
surface normal as N = (nx, ny, nz) = ∇φ

|∇φ| . The mean curvature of the interface
is defined in 3D as half the divergence of the normal [60]:
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)
. (6.2)

Other operations, such as finding the surface area or the volume of the interior
can be found by integrating φ(x)w(x) over Rn, where w(x) depends on the
property we are looking for. For example, if we are interested in finding the
volume of the interior, we set

w(x) =

{
1 if φ(x) < 0,

0 otherwise.
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Discrete Representation of Implicit Surfaces

In practice, the implicit surface is rarely represented by an analytic expression
such as φ(x) = |x| − 1, as it can be extremely hard, if not impossible, to
perform any type of deformation of the surface and subsequently find a new
analytic expression for the function defining the deformed surface. Instead, the
typical approach is to sample the function on a rectilinear grid, and then use
interpolation of the values at the grid points to approximate the function value
between grid points. In the following, φijk denotes a lookup in the grid at
position i, j, k, corresponding to evaluating φ(i∆x, j∆y, k∆z). For the sake of
clarity, we will suppress indices in upcoming equations if they are constant or
not important in that equation. ∆x, ∆y and ∆z denotes the distance between
sample points in the x, y and z direction respectively. In the remainder of this
thesis, we will follow the assumption that ∆x = ∆y = ∆z = 1.0.

The consequence of using a discrete representation of the function is that
all of the properties defined above can only be approximated through numerical
methods. Depending on the application, the derivatives in equation (6.1) can
be approximated using a first order accurate forward difference, φ+

x :

∂φ

∂x
≈ φi+1 − φi

∆x
, (6.3)

a first order accurate backward difference, φ−x :

∂φ

∂x
≈ φi − φi−1

∆x
, (6.4)

or a second order accurate central difference, φ0
x:

∂φ

∂x
≈ φi+1 − φi−1

2∆x
. (6.5)

Similar equations are used for calculating the derivatives in the y and z di-
rections. The finite difference approximation to the derivatives of φ in equa-
tion (6.3)-(6.5) are derived from a Taylor expansion. Equation (6.3) for example
is derived from the Taylor series approximation to φ at the point x+∆x about
x:

φ(x + ∆x, y, z) = φ(x, y, z) +
∂φ

∂x
∆x + O(∆x2) ⇓

∂φ

∂x
=

φ(x + ∆x, y, z)− φ(x, y, z)
∆x

+ O(∆x)

Omitting the O(∆x) term leads to the approximation in equation (6.3). This
approximation is first order accurate, referring to the error introduced by omit-
ting the O(∆x) term. In general, an n’th order accurate approximation is an
approximation with a O(∆xn) error.

The combination of discretising the implicit function and using numerical
approximations introduces a potential problem: If φ is not well behaved, then
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the error in the numerical approximations might be rather large. In this con-
text, well behaved means that we would like φ to be as smooth as possible.
Fortunately, as we are only interested in the zero-isocontour of the function,
we can freely choose the function defining the surface in any way we please, as
long as it preserves the zero isocontour. The signed distance function turns out
to be a very good choice for representing implicit surfaces. A distance function
d(x) is defined as d(x) = min(|x−xI|) for all xI ∈ Ω0, that is, a function giving
the shortest distance to the surface. A signed distance function is a function
φ(x) defined as

φ(x) =

{
−d(x) if x is in the interior of the geometry,
d(x) otherwise.

Another desirable property of a signed distance function is that the length
of the gradient is identically one, i.e. |∇φ| = 1, except at corners or kinks
(jumps/discontinuities in the derivatives) where the gradient is not defined. In
fact, this is a defining property of the signed distance function, that is, φ is a
signed distance function if and only if |∇φ| = 1.

Level Set Methods

A deformable surface, S(t), is defined as a time dependent implicit surface:

S(t) = {x(t) ∈ Rn|φ(x(t), t) = 0}. (6.6)

Differentiating equation (6.6) with respect to t and applying the chain rule,
gives the fundamental level set equation

φt +∇φ · dx
dt

= 0 (6.7)

Here, dx/dt denotes the vector field used to deform the surface. Several numer-
ical schemes for solving this partial differential equation exist, depending on
the application and the desired numerical precision. We will go into detail with
these schemes in section 6.2. A more detailed discussion of this subject can be
found in [60]. As N and ∇φ points in the same direction, T · ∇φ = 0 for any
tangent vector T . This implies that for a given velocity field V, the tangential
component vanishes. In other words, when specifying a velocity field, we need
only worry about the velocity in the normal direction, V = VnN . The velocity
field Vn is often referred to as the speed function. If we substitute this into the
level set equation, we get:

φt + VnN · ∇φ = 0.

Furthermore, as N · ∇φ = ∇φ
|∇φ|∇φ = |∇φ|2

|∇φ| = |∇φ|, we can rewrite equation
(6.7) as:

φt + Vn|∇φ| = 0. (6.8)

An example of a surface deformation providing serious challenges with the ex-
plicit representation is morphing. Morphing one surface into another using level
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sets on the other hand is simple. Given the signed distance representation of
two implicit surfaces, φ1 and φ2, morphing from φ1 to φ2 is done as follows:
First, we initialize our working volume φ to φ1. Then we iteratively solve equa-
tion (6.8) with the speed function Vn = φ − φ2 to steady state [10, 86]. The
only requirement is that all connected components of φ2 overlap with the initial
volume, φ1.

Re-Initialization

As mentioned above, using a signed distance function as the embedding func-
tion is beneficial. However, even if we start out with a signed distance function,
there is no guarantee that it remains a signed distance function following a
deformation through evaluation of equation (6.7) or (6.8). In order to keep
harvesting the benefits of a signed distance function, we need to reset the em-
bedding function to a signed distance function. Again, as we are only interested
in the zero isocontour of the function, performing such a reinitialization step is
perfectly legal as long as the zero isocontour remains unchanged.

One way to reinitialize the embedding function to a signed distance function
is to solve the reinitialization equation

φt + S(φ)(|∇φ| − 1) = 0 (6.9)

to steady state. When reaching steady state, φt = 0, and the equation is
reduced to |∇φ| = 1 as desired. In equation (6.9), S(φ) is a sign function,
originally taken as 1 in Ω+, -1 in Ω− and 0 on the interface. The sign function
enables us to work with two different equations, depending on the sign of φ
at a given location. For points in Ω+, we solve the equation φt + |∇φ| = 1,
whereas in Ω−, we solve the equation φt − |∇φ| = −1. Both equations, when
solved to steady state yields the result |∇φ| = 1, however changing the sign
for points in Ω− ensures that the calculations performed for each grid point
uses only information from grid points in the direction of the interface rather
than using information from grid points further away from the interface. As a
consequence, the zero crossing remains fixed while the distance is propagated
away from the zero crossing in each direction, slowly resetting φ to a signed
distance function. In practice, it turns out that better results are obtained
when using a numerically smeared out sign function. Peng et al. [65] suggests
that

S(φ) =
φ√

φ2 + |∇φ|2(∆x)2
(6.10)

is a good choice. Equation (6.9) is a Hamilton-Jacobi type partial differential
equation, which can be solved using the same numerical techniques used for
solving equation (6.7), including higher order spatial and temporal schemes. In
other words, if we are willing to sacrifice performance, we can achieve a very
high degree of accuracy in our reinitialization step.

The problem with reinitialization through solving equation (6.9) is the per-
formance penalty. Solving the PDE can be quite time consuming, and as it
has to be done after every few iterations of the original level set simulation, it
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quickly becomes the bottle neck of a level set simulation. Alternative techniques
do exist, most notably the fast marching method [73] and the more recent fast
sweeping method [90]. Both of these methods usually perform significantly
faster than the PDE based approach1, however they are both, in their initially
form, only first order accurate. Both methods can be extended to a higher order
of accuracy, although to the best of our knowledge, the fast marching method
has only been extended to second order accuracy [69, 89]. In our work, we uti-
lize a combination of the first order accurate fast sweeping method whenever
appropriate, and a fifth order accurate PDE approach elsewhere.

6.2 Implementing and Representing Level Sets

6.2.1 Solving the Level Set Equations on a Regular Grid

In the previous section, we introduced the implicit surface representation and
the level set methods as a powerful representation for dynamic geometry. Sam-
pling the embedding function on a regular grid provided a means for working
with complex models without having to derive an analytic expression for the
embedding function. We will now go into more details on how to solve the level
set equations in this discrete context.

Higher Order Finite Difference Schemes

In the previous section, we introduced the first order accurate forward- and
backward-difference and the second order accurate central difference approx-
imation to the derivatives of φ (equation (6.3)-(6.5)). While these methods
are often sufficiently accurate, more accurate methods are available if required.
The Hamilton-Jacobi Essentially Non Oscillatory (HJ ENO) finite difference
scheme uses Newton polynomial interpolation [39] to approximate φ. Using a
divided difference table, the smoothest possible polynomial interpolating φ is
found. The constructed approximating polynomial is then differentiated to get
the final approximation to the derivatives of φ. Although HJ ENO can be con-
structed at any order of accuracy, the most commonly used is a third order ac-
curate scheme. In the third order accurate scheme, using the divided difference
table to construct the interpolating polynomial, one of exactly three possible
polynomials is chosen depending on the behavior of φ in the vicinity of the point
(i, j, k). Choosing the smoothest possible polynomial, reduces the risk of inter-
polating across a discontinuity in the derivative thereby avoiding the error that
would otherwise have been introduced. Calculating the approximation to (φ−x )i

using this scheme uses a subset of the samples {φi−3, φi−2, φi−1, φi, φi+1, φi+2},
depending on the which polynomial is used. Similar, the calculation of (φ+

x )i

1With the fast sweeping method being the faster of the two. The fast sweeping method has
O(N) complexity as opposed to the O(N log(N)) complexity of the fast marching method,
where N is the number of grid points.
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uses a subset of the samples {φi−2, φi−1, φi, φi+1, φi+2, φi+3}. This set of sam-
ples that a given finite difference scheme uses is usually referred to as its stencil.

By employing a convex combination of the three different interpolating poly-
nomials used for the HJ ENO scheme, the Hamilton-Jacobi Weighted Essentially
Non Oscillatory (HJ WENO) finite difference scheme is able to approximate
the derivatives of φ with a fifth order of accuracy in smooth regions using the
same stencil as the HJ ENO scheme. Outside smooth regions, the weights are
chosen to favor the HJ ENO approximations not interpolating across disconti-
nuities thereby obtaining third order accuracy. For more details on both the
HJ ENO and the HJ WENO schemes, we refer to [60].

Temporal Discretization

In order to solve the level set equation (equation (6.7) and equation (6.8)), we
need to discretize the equations on our regular three dimensional spatial grid as
well as on a one dimensional temporal grid. In practice, the spatial and temporal
discretizations are treated differently. The forward-, backward- and central
difference methods as well as the HJ ENO and HJ WENO schemes are used for
the spatial discretization, but not generally for the temporal discretization. One
of the most widely used and most simple methods for temporal discretization
of the level set equations is the first order accurate forward Euler method. The
forward Euler time discretization method is a one sided forward difference in
time. Applied to equation (6.8) this yields the following expression:

φm+1 − φm

∆t
+ V m

n |∇φm| = 0,

where φm denotes the values of φ at time m, and V m
n denotes the values of

the speed function Vn at time m. To obtain higher orders of accuracy, Total
Variation Diminishing Runge-Kutta (TVD RK) [77] methods can be applied.
The first order accurate TVD RK method is just the forward Euler method.
Higher order accurate TVD RK methods are obtained as a convex combination
of the initial data and the results from several successive Euler time steps. A
second order accurate TVD RK scheme for example is obtained by first applying
two successive forward Euler time steps to obtain φm+2. Then, the final solution
is obtained by averaging the original values, φm, and φm+2:

φm+1 =
1
2
(φm + φm+2).

Higher order accurate TVD RK schemes proceeds in a similar, yet obviously
more complicated, fashion. See [77] or [60] for further details.

Numerical Solutions to Hyperbolic Level Set Equations

Several different numerical schemes are applied in order to solve the level set
equations (equation (6.7) and (6.8)), depending on the chosen speed function
or velocity field. When the speed function or velocity field does not depend on
derivatives of φ of higher than first order, these equations are hyperbolic PDEs,
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known as Hamilton-Jacobi Equations. These PDEs have the property that
information is propagated in certain directions known as characteristics. While
the two equations are mathematically identical, their use differs significantly
numerically, and thus needs to be treated differently. Equation (6.7) is often
used in conjunction with an externally generated velocity field V(x, t), that is,
we rewrite equation (6.7) as

φt +∇φ ·V(x, t) = 0. (6.11)

To solve this equation, we can perform a single forward Euler time step, and
use one of the available FD schemes to approximate the derivatives of φ. If we
expand equation (6.11) around a single spatial point, xi, and apply the first
order forward Euler time step, we get the following equation:

φm+1
i = φm

i +∆t(V(xi,m)x(φx)m
i +V(xi,m)y(φy)m

i +V(xi,m)z(φz)m
i ). (6.12)

We will only focus on evaluating the V(xi,m)x(φx)m
i term. The technique we

use to approximate this term can be applied independently to the remaining
two terms in a dimension by dimension manner. The fact that the information
is propagated through each point in space in exactly one direction (the charac-
teristic) implies that we should look in the other direction, known as the upwind
direction, to determine the future value of φ at that point. Consequently, we
should use upwind values of φ to determine the derivatives of φ, rather than
downwind values. This means that if V(xi,m)x > 0, we should use φ−x to
approximate φx, and φ+

x if V(xi,m)x < 0.
To ensure convergence, that is, to ensure that the correct solution is obtained

as ∆x → 0 and ∆t → 0, is according to the Lax-Richtmyer theorem [60] equiv-
alent to ensuring consistency and stability. Both the upwind scheme combined
with a forward Euler time step and the schemes outlined below are consistent
approximations to the partial differential equations, as the approximation er-
ror converges to 0 as ∆x → 0 and ∆t → 0. The stability condition ensures
that small errors are not amplified over time. This is enforced by restricting
the size of the time step taken. In the case of the scheme just outlined, the
time step restriction, known as the Courant-Friedrichs-Lewy stability condition
(CFL condition), is ∆t < ∆x

max{|V|} [60].
To solve equation (6.8), a somewhat different approach is required. As

the equation is non-linear in terms of φ, we cannot apply the straightforward
upwind scheme used to solve equation (6.11). Instead, we can apply the widely
used Gudonov scheme [70] to approximate the squared derivatives:

φ2
x =


max(φ−x ,−φ+

x , 0)2 if Vn > 0
max(−φ−x , φ+

x , 0)2 if Vn < 0
0 otherwise.

(6.13)

As with the upwind scheme, the Gudonov scheme is applied independently to
the derivatives of each dimension. The estimates calculated using this scheme
can then be used to estimate the norm of the gradient, |∇φ| =

√
φ2

x + φ2
y + φ2

z.
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As with the upwind scheme, we can combine the Gudonov scheme with a first
order accurate forward Euler time step, or a higher order TVD RK scheme
if desired. Similarly, the derivatives in equation (6.13) are calculated using
either first order finite difference schemes or using higher order accurate HJ
ENO or HJ WENO schemes. In this case, the CFL condition is a bit more
complicated, but a conservative time step restriction is ∆t < ∆x

max{|Vn|}d , where
d is the dimension [60].

Numerical Solutions to Parabolic Level Set Equations

When the speed function depends on derivatives of higher than first order,
typically the mean curvature, the level set equations become parabolic equa-
tions. These equations have different properties than the hyperbolic equations
described above. Unlike the hyperbolic PDEs, a parabolic PDE has no real
characteristics. Instead, information flows into each point from (potentially)
every direction. Moreover, the propagation speed of this information is (in
principle) infinite. Consequently, we need to use the central finite difference
scheme, e.g. equation (6.5), to estimate the spatial derivatives of φ.

As a consequence of the (potentially) infinite propagation speed, a more
restrictive time step is required. If for instance Vn = bκ, where κ is the mean
curvature and b is a scaling parameter, then the required time step restriction
for a 3 dimensional solution becomes ∆t < ( 2b

∆x2 + 2b
∆y2 + 2b

∆z2 )−1 = ∆x2

6b .

6.2.2 Level Set Representations and Narrow Band Methods

While sampling the embedding function on a regular grid may enable us to
actually work with implicit surfaces and solve the level set equation, it unfor-
tunately leads to a representation that is prohibitively expensive with respect
to memory consumption as well as execution time. Representing a surface in
3-dimensional space sampled on a grid with resolution 2563 using 4-byte floats
to hold the sample values requires a total of 64Mb of memory. Furthermore, de-
forming a surface using equation (6.7) or (6.8) involves solving the equation on
each grid point. Thus, the complexity of the level set simulation is proportional
to the size of the embedded volume rather than the size of the actual surface.
In the following, we will briefly introduce a number of methods addressing these
two limitations of the level set method.

As we have already stated several times, we are only interested in the zero
iso-contour of the embedding function. Furthermore, as we will constantly be
resetting the embedding function to a signed distance function, solving the level
set equation on the entire grid is an unnecessary waste of processing power. This
observation has lead to the development of local level set methods, including
that of Peng et al. [65] commonly referred to as the narrow band method. The
narrow band method works by first identifying the grid points for which the
absolute value of φ is within a given range. These points are classified, see
Figure 6.2, as belonging to the beta tube if |φ(x)| < β, the gamma tube if
|φ(x)| < γ and the delta tube if |φ(x + y)| < γ for some y ≤ ∆x. The delta
tube contains all grid points contained in the gamma tube plus all grid points
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Figure 6.2: Narrow band representation. (a) A signed distance function with
values outside the narrow band clamped to ±γ. (b) Close up of the narrow
band, with the beta tube highlighted in orange, the gamma tube in green and
the delta tube in brown. (c) The complete distance range covered by each of
the tubes.

not in the gamma tube, but lying right next to one or more points in the gamma
tube. The value of φ in grid cells outside the delta tube are clamped to γ or
−γ, depending on the sign of φ. With this classification of the grid points, we
proceed to solve a slightly modified level set equation

φt + c(φ)∇φ · dx
dt

= 0 (6.14)

or
φt + c(φ)Vn|∇φ| = 0, (6.15)

only on the grid points belonging to the gamma tube. Here, c(φ) is a cut off
function introduced to prevent numerical oscillation at the boundary of the
tube:

c(φ) =


1 if |φ| ≤ β

(|φ| − γ)2(2|φ|+ γ − 3β)/(γ − β)3 if β < |φ| ≤ γ

0 if |φ| > γ

(6.16)

By limiting the time step taken such that the front moves less than one grid
point, we are guaranteed that the gamma tube of φi+1 , that is φ after time step
i+1, is contained within the delta tube of φi. Hence, we need only perform our
reinitialization of φ on grid points within the delta tube. Finally, we need to
reclassify the grid points into the beta, gamma and delta tubes before we are
ready to perform another step of the level set simulation. The numerical values
of β and γ depends on the numerical scheme used for solving the (modified)
level set equation. Typical values for a second or third order correct scheme is
β = 2∆x, γ = 4∆x, and for a fifth order accurate scheme, β = 3∆x, γ = 6∆x.

The narrow band method reduces the computational complexity to O(n),
where n is the number of grid points in the delta tube, but it does not reduce
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the memory requirements. In fact, it actually increases the amount of memory
required, as we now also need to maintain a list of grid points contained within
the narrow band (that is, the delta tube), as well as a classification of each of
these grid points.

(a) (b)

Figure 6.3: 1-Dimensional level set. (a) The grid cells colored gray are the grid
cells within the narrow band, and thus the only cells we wish to represent in
memory. (b) Maintaining a list of the minimum and maximum x-coordinate
of each connected component allows us to compress the values into an array
containing only the narrow band values. To be able to distinguish the two
connected components in the collapsed array, the first connected component is
colored yellow, while the second is green.

Reducing the memory footprint of a level set system has been the focus
of attention for several authors in a number of recent papers [36, 37, 48, 56].
Common to these systems is, that they provide data structures enabling a sparse
representation of the implicit surface, storing only samples in the regions of
interest, which is typically the delta tube required for the narrow band solution
presented above. The result is a level set solver with memory and execution
time complexity depending on the size of the interface rather than the size of
the grid. An in depth discussion of all these systems is out of the scope of this
thesis. The interested reader is referred to the respective papers for details.
Instead we will give a short description of only one of those data structures,
the DT-Grid [56], which is the one we have chosen to use. Our choice is based
solely on availability, as all of the above mentioned data structures appear to be
equally well suited for our purpose, We have chosen to use the DT-Grid simply
because we have an existing implementation readily available.

The DT-Grid is a hierarchical data structure designed to hold a sparse rep-
resentation of an implicit surface, sampled regularly on a n-dimensional grid.
The general idea with the DT-Grid is to store the values in the narrow band
along with the information required to retrieve the stored value given a position
in n-dimensional space. This is achieved using the following approach: Consider
a level set in 1-dimension. Disregarding the values outside the delta tube, the
signed distance function can be described as a number of connected components,
see Figure 6.3(a). If we store the smallest and largest x-coordinate in a separate
list, then we can create an array containing the elements of each connected com-
ponents stored sequentially: [φ1,1, . . . , φ1,c1 , φ2,1, . . . , φ2,c2 , . . . , φn,1, . . . , φn,cn ],
where φi,j is the value of the j’th element of the i’th connected component, n
is the number of connected components, and ci is the number of values in the
i’th connected component. To extend this into a 2-dimension level set, we first
create a boolean projection of the level set onto the x axis, that is, we find the
set X = {x|∃y : grid point (x, y) is in the narrow band}, see Figure 6.4. Each
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Figure 6.4: DT-Grid data structure. (a) A 2D grid with the grid points in the
narrow band highlighted in yellow and blue. (b) 2D DT-Grid representation of
(a). (c) A 1D grid, corresponding to the projection of the 2D grid onto the x
axis. (d) 1D DT-Grid corresponding to (c). This 1D DT-Grid forms part of
the 2D DT-Grid as depicted in (b). Reprinted with permission from [56].

x ∈ X corresponds to a column containing at least one value inside the narrow
band, which in turn can be viewed as a 1-dimensional level set and represented
using the method described above. Similarly, the set X can be represented us-
ing this compact method, only rather than storing φ values, we store pointers to
the 1-dimensional DT-Grids representing the corresponding column, see Figure
6.4. Extending this further into 3 or more dimensions is straightforward. For
further details, please consult the original article.

6.2.3 Re-sampling

When working with volumes and level set methods, most operations only in-
volves reading and modifying the sampled values. However, sometimes this is
not enough, and we need to estimate the function values in between the grid
points. Typically, this is done using linear interpolation of the function values
at the surrounding grid points using the following formula:

φ̃(i, j) = (φ(ii, ji)(1− if ) + φ(ii + 1, ji)if )(1− jf )
+ (φ(ii, ji + 1)(1− if ) + φ(ii + 1, ji + 1)if )jf ,

(6.17)

where φ̃(i, j) is the interpolated value at position (i, j), ii is the integer part
of i, if is the fractional part of i, and φ(ii, ji) is the sampled function value at
integer location (ii, ji). For reasons of simplicity, the previous example as well
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as the rest of this discussion will focus on the two dimensional case. Extending
this to three or more dimensions is straightforward.

(a) (b)

Figure 6.5: (a) Implicit surface sampled on a coarse grid. The blue curve is
the linear approximation to the interface generated from the samples. (b) Re-
sampling the volume to four times the resolution using linear interpolation.
The blue curve is again the linear approximation to the interface generated
from the new samples, whereas the red curve is the linear approximation to the
interface generated from a re-sampling of the embedding function on the same
grid. Note, that the blue curve in (a) and (b) are identical. In the lower right
corner of (b), a single voxel from the coarse grid is highlighted in yellow. The
red dots are the samples for that voxel taken from the coarse grid. The blue
and green dots are the new samples added to the higher resolution grid.

Using linear interpolation is for the most cases sufficient. This is for in-
stance the case when using the marching cubes algorithm to extract a triangle
mesh from the iso-surface as described in section 6.4. This seems obvious, as
the triangle mesh already is a linear approximation of the iso-surface, hence in-
troducing an extra linear term at the vertices will not produce visible artifacts.
This is, however, not the case when re-sampling volumes to a different reso-
lution. If we restrict ourselves to a linear interpolation, re-sampling a volume
to a higher resolution will actually result in a lower quality approximation of
the embedding function, see figure 6.5. The problem is, that the sample values
no longer represent the best possible approximation to the embedding function
given the current resolution. Furthermore, surface properties such as gradients,
normals, curvature etc. depending on the partial derivatives will be calculated
using the linearly interpolated values. Consider the volume in figure 6.5(a). Re-
sampling the volume to four times the resolution results in 3 new samples being
inserted along the axes between each adjacent pair of samples (blue dots in fig-
ure 6.5(b), lower right corner), and 3×3 samples inside the voxel (green dots in
figure 6.5(b), lower right corner). Due to the linear interpolation, the three blue
points on a horizontal line will have the same partial derivative with respect to
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the x coordinate, as the rate of change along that line is constant. Similarly, the
three blue points on a vertical line will have the same partial derivative with
respect to the y coordinate. Finally, the green points, that is, the points added
inside a voxel, will all have the same partial derivative with respect to both the
x and y coordinates. This is obviously not a desirable result, so a better, higher
order, interpolation is required. To derive a higher order interpolation scheme,
we observe that the linear interpolation scheme from equation (6.17) is in fact
equivalent to a convolution with a separable triangle filter of width 1 [50]:

φ̃(i, j) =

∑fwi
x=−fwi

∑fwi
y=−fwi

w(x− if , y − jf )φ(ii + x, ji + y)∑fwi
x=−fwi

∑fwi
y=−fwi

w(x− if , y − jf )
, (6.18)

where fwi is the integer width of the filter (if fw is the width of the filter, then
fwi = dfwe), in this case 1, and w is the filter function:

w(x, y) =

{
(fw − |x|)(fw − |y|) if (x, y) ∈ [−fw, fw]2,
0 else.

This means that we can achieve a higher order interpolation simply by
changing the filter function and/or the width of the filter in equation (6.18).
When high order interpolation is required, we use a cubic spline filter of width
2 (support width 4). The image in figure 6.9(a) is generated using high order
interpolation to locate the intersection point between a ray and the implicit
surface. Had we used linear interpolation instead, the result would have been
virtually identical to figure 6.9(b). As always, the price we pay for the gained
quality is performance. Using a filter of width 2, we need to lookup 16 samples
(64 in 3 dimensions) to calculate the new φ value. In contrast, linear inter-
polation requires only 4 samples (8 in 3 dimensions) to calculate the desired
value.

6.3 Modeling with Level Sets and Implicit Surfaces

While level set methods and dynamic implicit surfaces have been quite popular
for a number of applications like segmentation and physical simulations of water,
smoke flowing around obstacles or snow etc., there has been little previous work
on implicit models as a modeling tool, one of the strong holds of the explicit
surface representation. This is quite a shame, as the implicit representation
offers many advantages over the explicit surface representations2. One such
advantage is the ease with which constructive solid geometry (CSG) operations
are performed on implicit surfaces. Performing a CSG operation on polygon
meshes, subdivision surfaces or nurbs is a complex and error prone task3. On

2Note, that we do not in any way advocate that the implicit surface representation should
replace the use of an explicit surface representation, instead we see it as a geometric represen-
tation that could be used in parallel with explicit representations, similar to the way many
modelers already support polygon meshes, nurbs and subdivision surfaces to coexist in a single
scene.

3Even leading commercial modeling systems such as Maya and 3D Studio Max have diffi-
culties in performing these operations robustly.
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the other hand, performing these operations on a pair of implicit surfaces is
straightforward: Given two implicit surfaces φ1(x) and φ2(x), the union of
the interior regions of φ1 and φ2 is given by φ(x) = min(φ1(x), φ2(x)), the
intersection of φ1 and φ2 is given by φ(x) = max(φ1(x), φ2(x)), the complement
of φ1 is φ(x) = −φ1(x), and the region resulting from subtracting φ2 from φ1 is
given by φ(x) = max(φ1(x),−φ2(x)). These standard CSG operators give sharp
edges at the intersection curve of the two input volumes. To produce a softer
and more pleasing intersection, Dekkers et al. [19] added a blending function to
the basic CSG operators. With the blending function, the generalized union is
given by φ(x) = min(φ1(x), φ2(x))− fb(|φ1 − φ2|, n), where n is a user defined
non negative value that determine the amount of blending (n = 0 corresponding
to the non blended standard CSG operator). Similar expressions are given for
the intersection and subtraction operators. While the choice of the function
fb is free, four desirable properties of the function are given in their paper.
These four properties are that the function should be differentiable, it should
present an intuitive control over the blending, it should have a limited domain
of influence and it should satisfy the Lipschitz condition for λ = 1, that is,
−1 ≤ f ′b(x, n) ≤ 0, for all x ≥ 0, n ≥ 0. One function given in the paper,
satisfying all four conditions is

fb(x, n) =

{
n(x

n −
1
4)2 for x < n

4

0 for x ≥ n
4

This approach generally works quite well, but there are cases where it produces
undesirable results. One such example is the union of two volumes that are close
together but without actually overlapping each other. Even though the objects
do not overlap, applying the generalized CSG union will produce a single, fully
connected, surface as long as the two objects are within the blending distance
of each other. The CSG operators, with or without blending, are, when used
carefully, a very flexible and intuitive tool. This was demonstrated by Wang
and Kaufman who developed a complete volume sculpting system by combining
a set of carefully designed volumes with the standard CSG operators [82].

A more advanced level set surface editing framework was presented in 2002
by Museth et al. [53], introducing several localized surface editing operators
defined by speed functions. These speed functions are defined by a combination
of three distinct building blocks:

F(x,n, φ) = Dq(d)C(γ)G(γ), (6.19)

where Dq(d) is a distance based cut-off function depending on the distance d
to the geometric structure q, G(γ) is a function depending on some geometric
measure γ, derived from the level set surface, and C(γ) is a cut-off function
controlling the contribution of G(γ) to the speed function.

Specifically, two of their operators are of great importance to our work.
Most important is their CSG operations with automatic localized blending.
Following a CSG operation, the authors find the voxels containing the zero
crossing from both volumes. These are the voxels containing the intersection
curve shared by the two volumes. Letting Dq(d) in equation (6.19) depend
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on the shortest distance to (a point wise approximation to) this curve, and by
letting G(γ) be proportional to the mean curvature of the surface, the result is
a localized smoothing of the surface around the intersection of the two initial
surfaces. Additionally, restricting the speed function to either only positive
values or only negative values, restricts the operator to only add (outwards
motion only) or remove (inwards motion only) material. The effect of this
operator is demonstrated in figure 6.6. As this method is applied to the surface
near the intersection after the CSG operation is performed rather than on the
embedding function during the CSG operation as in [19], it does not suffer
from the problem with nearby surfaces being merged together even if they not
intersect. As described in chapter 8, this operator is crucial to us in order to
produce a single closed surface of high quality from our mapped geometry.

Figure 6.6: Localized blending using mean curvature flow. Left: Closeup of
a wing (red) and dragon model to be merged together.Middle: Merging the
two models together using a CSG union produces sharp, undesirable creases.
The box shows a zoom in on a portion of intersection showing this. Right:
Same region after automatic blending based on mean curvature. The blending
is constrained to only move outwards. Reprinted with permission from [53].

The second operator that is important to our work is the embossing oper-
ator. This operator is implemented through point set attraction or repulsion.
Any number of points are placed on or near the surface. Then the distance
based cut-off function, Dq(d), is set to depend on the distance to the nearest
point. The geometric cut-off function, C(γ), is set to be non-zero only for points
where the surface normal points in the direction of the nearest point (or points
away from it if the point is inside the volume), to ensure movement of the sur-
face only in the direction of the point set. Finally, G(γ) is set proportional to φ
at the nearest point, which forces the interface to stop moving once it reaches
one of the points. Although not directly related to our work, this operator has
served as a great inspirational source, as we in many ways consider our work
an extension to this functionality. Many of our original ideas were inspired by
this operator and this framework in general, and although it may not shine
through in the final algorithms presented in this thesis, this work has had a
great impact on the paths explored during the development of our algorithms.
All in all, we consider our work an additional tool to be added to the implicit
modeling toolbox initiated by this work.



6.4. Visualizing Level Sets and Implicit Surfaces 49

6.4 Visualizing Level Sets and Implicit Surfaces

Unlike explicit surface representations, such as triangle meshes, implicit surfaces
have no natural visual representation. Where a triangle mesh is represented by
a list of triangles that are easily displayed, an implicit surface is given by a
(possibly discretely sampled) function, whose kernel defines the surface. Ulti-
mately, we have two possible approaches to visualizing an implicit surface: We
can either approximate it using an explicit representation; or we can try to vi-
sualize the surface directly by determining what pixels on the screen it projects
onto.

Using an explicit surface representation to approximate an implicit function
is usually done using either triangles or points/point-sprites.

Figure 6.7: Triangulation of the 15 basic cubes used by the marching cubes
algorithm.

The most common approach is to use the Marching Cubes algorithm [47].
This algorithm divides space into a discrete set of cubes, or voxels, which are
then processed individually. If the implicit function has all positive or all neg-
ative values in the 8 corners of the voxel, then it is either completely outside
the surface or completely inside, and no triangles are generated. Otherwise,
the voxel is intersected by the surface, and the sign of the values in each of
the 8 corners can be used to determine the configuration of triangles for that
particular voxel. The values in the 8 corners are then subsequently used to
find an improved estimate of the location of the triangle vertices using linear
interpolation. In the original paper, the triangulation of different basis voxels
were given, see Figure 6.7, leaving the remaining 241 possible configurations
to be determined through rotational and complementary symmetry. However,
a couple of those base configurations turned out to have a problem with re-
spect to the complementary symmetry: If a, possibly rotated, voxel matches a
given base configuration, only with the opposite sign in all corners, then the
triangulation used is the same as the one described by that basis configuration,
but with the triangles facing the opposite direction. Although this leads to a
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consistent meshing scheme, it does in some cases lead to holes in the extracted
mesh. To fix this, another 8 base configurations were added to replace the
automatically generated triangulation for the complement of 8 of the original
base configurations. This yields a total of 23 base configurations, which are
used to generate the remaining 233 configurations. Combined with a narrow
band level set representation as described in section 6.1, the marching cubes
algorithm is fast, as utilizing the narrow band, we know exactly what cubes
will have corner values of different sign, and only these cubes need to be ex-
amined. When using the marching cubes algorithm to extract a mesh from
an implicit surface, it is important that the function defining the surface is
smooth and well behaved. If this is not the case, then the linear interpolation
used to find the vertex positions will produce inaccurate results. Again, the
signed distance function turns out to be a good choice for representing implicit
surfaces. In the more than 20 years that have passed since the invention of
the marching cubes algorithms, a number of improvements have been added
to the algorithm, primarily intended to improve the quality of the extracted
mesh [46, 58]. One of the problems with the marching cubes algorithm (and
the signed distance function representation of implicit surfaces) is it’s failure to
properly handle implicit surfaces with sharp features. The problem arises when
a sharp feature (an edge or a corner) is present inside a voxel. The triangula-
tion created by the marching cubes algorithm will only have vertices located on
the edges of the voxels, but a proper representation of a sharp feature located
inside a voxel would require a vertex to be located inside the voxel rather than
on the edge. Kobbelt et al. [40] addresses this issue by proposing an extended
signed distance representation as well as an extension to the marching cubes
algorithm. The directed distance function is a three component signed distance
function, storing for each grid point the signed distance to the interface in the
x, y and z direction. This representation allows for a more accurate estimation
of the surface along the edges of the voxels. This is combined with an extended
marching cubes algorithm, which follows the approach of the original marching
cubes, but additionally, it locates the voxels containing a sharp feature. Then,
additional sample points lying on the features are computed and added to the
mesh. These feature points are estimated based on the local distance values
and the gradients. Finally, a small post processing step is required, flipping the
edge shared by all triangle pairs where the flipped edge connects two feature
points. Although the combination of a directed distance function and the ex-
tended marching cubes algorithm produces the best results, the two methods
are independent and can easily be used without the other. Figure 6.8 shows
an example of a mesh extraction performed on a 653 volume dataset using the
original marching cubes method with a standard signed distance function as
well as the improved directed distance function, and the extended marching
cubes method on the same two variants of the dataset.

Despite the many improvements to the marching cubes algorithm, there is
one limitation of the algorithm that was only just solved recently: Shortly after
the presentation of the algorithm, the inventors were granted a 20 year patent
on the algorithm in USA in 1985. As a result, a number of alternative algo-
rithms, based on similar techniques have appeared through the years, including
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marching tetrahedra [21] and marching triangles [2, 3].

Figure 6.8: Triangulation of a fandisk volume using the original marching cubes
method (left), using the original marching cubes method on a directed distance
function (center left), using the extended marching cubes method (center right),
and using the extended marching cubes method on a directed distance function
(right). The approximation error to the original polygonal model is below 0.25%
when using the extended method on a directed distance function. Reprinted
with permission from [40].

Another approach to explicitly approximate an implicit surface is to dis-
tribute a large number of particles on the surface. This is done using e.g. the
techniques described by Witkin and Heckbert [88]. Each particle is then ren-
dered using a point sprite of a given radius. This approach, usually dubbed
point splatting, is fast and easy to implement, but has the disadvantage that
if the point sprites are either too small or too large, artifacts will appear. As
such, this approach is useful only for fast visualization of intermediate results.
Alternatively, the particles can be used to generate a triangle mesh as described
in [17].

Direct rendering of implicit surfaces is usually done by means of ray tracing
or ray casting. For each pixel on the screen, one or more rays are traced
from the eye point through that pixel. If these rays intersects the implicit
surface, the intersection point is found, and the color of the corresponding pixel
is determined from the material assigned to the surface, the light reaching the
intersection point from light sources and/or the environment, the surface normal
at the intersection point and the ray direction.

Finding the intersection point between an implicit surface, φ(x), and a ray,
r(t) = o + t~d, amounts to solving the equation φ(r(t)) = 0, for t > 0 (Solutions
to the equation with t ≤ 0 corresponds to intersections with the ray behind the
ray origin, and are thus not considered.). If no solution is found, then the ray
does not intersect the surface, whereas one or more solutions mean one or more
intersections. If more than one intersection is found, the one with the smallest
positive t corresponds to the nearest intersection, which is the one required. If
the implicit surface is discretely sampled on a regular grid, we cannot solve this
equation analytically, and have to resort to alternative methods. First, we step
along the ray, evaluating, at each sampled point along the ray, the function by
interpolating (trilinear or higher order) the surrounding grid values. Then, if
at any point in this process, the sign of the function changes, then there must
exist a point on the line segment between the current point and the previous
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point, for which the function evaluates to zero. In other words, there must be
an intersection between the ray and the implicit surface in between these two
points on the ray. Now, all that has to be done is to find the exact location
of this intersection point. A simple but efficient method is to use the Secant
method for root finding [39] with the t values of latest points as start condition.

Stepping through the volume, looking for the first point of opposite sign
can be quite expensive. Fortunately there exists several different approaches to
speeding this up, utilizing octrees, nested regular grids [63], KD-Trees [81] etc.
to quickly skip over large areas of empty space. If however, the implicit surface
is given by a signed distance function, which is the case throughout this thesis,
a much simpler and equally efficient approach is what is known as ray leaping.
Since the absolute value of φ(x) is by definition the shortest Euclidean distance
to the surface, we know that we can safely skip |φ(x)| units ahead as we are
then guaranteed that no intersection can exist between the current point and
the new point. This works well until |φ(x)| is below a certain threshold. At this
point, we need to use a more accurate approach to ensure that we don’t stall
due to a step size virtually identical to zero, nor skip over the interface due to
taking too large steps.

(a) Visualizing an implicit surface using
volume ray tracing.

(b) Visualizing an implicit surface using
marching cubes.

Figure 6.9: Visualization of an implicit surface. The sphere is represented
as a level set sampled on a 20 × 20 × 20 grid, and rendered using direct ray
tracing with high order interpolation (a) and through a mesh extracted using
the marching cubes algorithm (b). To make the comparison fair, the extracted
mesh is ray traced in the same environment as the direct implicit rendering.

Using ray tracing or ray casting to visualize implicit surfaces is usually much
slower than using an explicit approximation, but the images generated are typ-
ically much more accurate as it does not rely on a polygonal approximation.
Instead, an intersection is computed using the trilinearly interpolated sample
points or, if so desired, even using a higher order interpolation scheme. Fig-
ure 6.9 shows the rendering of an implicit surface using respectively marching
cubes and ray tracing. Throughout this thesis, when interacting with implicit
surfaces, we will use a triangle mesh extracted using the marching cubes algo-
rithm for rendering as this allows for interactive frame rates. For intermediate
results, or when illustrating errors, things that went wrong etc., screen shots,
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from the application we have developed during this project, will be used. This
application uses OpenGL to render one or more triangle meshes extracted using
the marching cubes algorithm. For final results on the other hand, the rendering
is done using ray tracing, as in this case, the image quality is more important
than the render time.
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Chapter 7

Related Work

Our work builds on level set, implicit surface modeling as well as volumetric and
geometric texture research. A recent body of work proposing various compact
data structures and fast algorithms for level set models [36,48,56] is critical to
our work. Common to all these data structures is that they uniformly sample
distance values to a surface in a narrow band embedding the surface. This uni-
form sampling is paramount to perform our smooth blending operations since
they amount to solving mean curvature based level set equations. This effec-
tively requires spatial discretization of parabolic partial differential equations
which, to the best of our knowledge, cannot be accomplished accurately on
non-uniform grids. Consequently, we have not considered adaptive distance
fields (i.e. “truly adaptive” octrees) [27], though other parts of our texturing
pipeline (e.g. CSG operations) could potentially benefit from it. Instead we
have chosen to base our texture mapping technique on the “Dynamic Tubular
Grid” (DT-Grid) presented in [56]. This data structure has been shown to be
very CPU and memory efficient and typically allows us to represent level set
models of effective resolutions exceeding 10003 using less then 100MB.

Much effort has been put into deriving methods for adding textures to un-
parameterized 3D models, specifically implicit surfaces and level sets, including
vector field driven texture synthesis [80] and methods based on parameteriza-
tions of support surfaces of lower geometric complexity combined with a map-
ping from the support surface to the actual surface [79,92]. Common for these
methods is a lack of flexibility and user control. Pedersen [64] presented an in-
teractive method to create a parameterization of implicit surfaces by letting the
user manually divide the surface into rectangular and triangular texture patches.
His system works by distributing a set of particles on the surface using a particle
system like the one described by Witkin and Heckbert [88]. The surface is then
divided into rectangular and triangular patches in the following manner: First
three or four particles are selected as corner points for a patch. Then the edges
of the patch are formed by approximating geodesics between the corner points.
First, a rough approximation to the geodesic is created using Dijkstra’s shortest
path algorithm [30] on a graph of the particles. This rough approximation is
then optimized further to provide a better approximation to the geodesic. The
geodesics are then discretely sampled, and a number of u- and v-curves are
created inside the patch between the sample points on the curves. The u- and
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v-curves are optimized using either an approach similar to the geodesic opti-
mization or 2D flow. Given these internal curves and the edge curves, the patch
now has a natural parameterization, and moreover, these curves are also used
to create a high resolution triangulation of the patch. Finally, when patches
are created for the entire surface, a set of texture decoration operations can
be performed. The strength of this system is its flexibility. It can be used to
apply a texture to the entire surface, or to only a part of the surface, either
way, the user is in full control. This method has generally been considered as
state of the art since its publication in 1995. Recently, Schmidt et al. presented
a local parameterization based on discrete exponential maps [71], producing a
simple yet powerful interface applying localized textures (also known as decals)
to implicit surfaces. Provided only a local parameterization is required, this
method appears to be as flexible as that of Pedersen, but with a significantly
more simple and intuitive interface.

Kajiya and Kay introduced the notion of volumetric textures [38]. Their
method utilizes volumetric data sampled on a regular grid, and traces rays
through a shell volume on a surface. Rays that intersect the shell are trans-
formed to texture space and traced through the sampled data grid. Material
properties were constrained across any region. Neyret extends volume tex-
tures, allowing the use of multiple different materials in a single region, and
objects of different types to be tiled onto a surface [54]. Wang et al. present a
generalization of displacement maps. For each location in a grid surrounding
the base surface, a distance is computed to the geometric texture, called the
mesostructure, for some discretization of all directions. Several other variables
are precomputed for rendering, including BRDF information and local shad-
ows [83]. Peng et al. [66] averaged distance field functions to generate offset
surfaces. Then 3D volumes are sliced into 2D textures, and the textures are
applied to various levels of the offset surface. The technique allows interactive
rendering of the resulting volume.

Fleischer et al. propose to use a biologically inspired cellular texturing tech-
nique to produce organic looking surface details [26]. While producing impres-
sive results, their modeling approach is not very intuitive to use due to a rather
complicated underlying biologically motivated simulation engine. Bhat et al.
demonstrate a volumetric extension of the image analogies technique [33]. This
allows them to tile a surface with semi-repeatable patterns at high effective
resolution. The patterns do not need to be height fields, and can represent
complex structure on the surface [7]. These methods allow for semi-automatic
generation of very complex surface geometry, but they appear to add a sig-
nificant amount of noise to the base geometry (see e.g. figure 8 and 9 in the
original paper). Furthermore, the vector flow based parameterization leaves the
user with little control over the final result.

Recently shell maps [67] generalized the notion of volumetric textures by
mapping explicit geometry without converting models into regular grids. Shell
maps are invertible mappings between texture space and shell space – the space
near an object – that facilitate the transfer of explicit geometry, procedural
functions, and scalar fields as fine scale detail near an object. Their method
starts by creating an offset surface from the original mesh. This offset surface
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has the exact same topology and connectivity as the original surface, and is
generated by offsetting a copy of the original mesh’s vertices a user supplied
distance in the direction of the surface normal. In case of a surface self inter-
section, the involved vertices are moved backwards until the self intersection is
avoided. Then, a prism is defined between each corresponding pair of triangles
on the original mesh and the offset surface, and each prism is then further di-
vided into three tetrahedrons. Using the s and t texture coordinates from a
predefined parameterization of the original mesh, and an r coordinate of 0 for
vertices on the original mesh and 1 for vertices on the offset surface, a mapping
between texture space and shell space is defined through point location queries
coupled with barycentric interpolation on the tetrahedrons. The technique is
powerful, but the resulting mappings are only C0 at tetrahedral boundaries
and can create artifacts like the one shown in figure 11.1(b). Furthermore, the
mapped geometry and the base mesh do not create a new closed mesh, which
can be problematic for applying shaders over the entire surface. The level-set
representatin we present complements the explicit geometry representation of
Shell Maps by more naturally dealing with sharp discontinuities and changes
in topology necessary to generate closed surfaces (when desired). Unlike the
method we are presenting, the shell map method requires a global parameteri-
zation of the base geometry.
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Chapter 8

Geometric Texture Mapping

8.1 Notation and overview

As a prelude to a more detailed presentation of the techniques proposed here, we
introduce the following terminology. We use the term geometry interchangeably
for both explicit meshes and implicit level sets. Assume we wish to map a
geometric texture, A, onto a base surface, B. We shall denote the explicit mesh
representation of A as MA and the implicit level set representation by φA. The
geometric representation of B is always implicit, and will therefore be denoted
φB. The embedding space of A (e.g. defined from its bounding box) will be
called texture space. The corresponding embedding space of A, after it has
been mapped onto B, is called patch space (analogous to a portion of “shell
space” [67]). The semi-implicit texture mapping then simply works by defining
a map of vertices of MA from texture space to patch space. In contrast, the
implicit texture mapping is based on a re-sampling of φA into patch space which
amounts to establishing a map from grid points in patch space to texture space.
Thus, both techniques are based on establishing a mapping between the two
embedding spaces, but in different directions (see figure 8.1).

We assume that we are given a base surface as a compact level set (e.g. a
DT-Grid) and a geometric texture either defined by a triangle mesh or as a
compact level set surface. If required, conversion between triangle meshes and
level sets can be performed using Mauch’s fast scan conversion technique [51] or
marching cubes [47]. Given this geometry, our system briefly works as follows:

• First, the user manually outlines a patch on the base level set which
defines the location of the geometric textures. Given such a patch outline,
we then construct a parameterization of the space above the patch. This
effectively creates the mapping needed to warp the texture into the space
near our base level set surface.

• With the particle based parameterization in place, the user can map the
texture mesh onto the base level set at nearly interactive rates using our
semi-implicit mapping.
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• Alternatively, the user can utilize a higher quality implicit mapping, which
maps an implicitly defined geometric texture onto the base surface. The
warped implicit texture surface can then be blended with the base surface
into a single topologically connected surface with a smooth intersection
between the two previously separate surfaces.

Figure 8.1: Defining the relationship between texture space and patch-space,
defined on a portion of the surface. The arrows indicate the mappings performed
when applying an implicit geometric texture and when applying an explicit
geometric texture.

8.2 Parameterizing Patch Space

While the volumetric parameterization of texture space is assumed known (e.g.
u = x, v = y, w = z), we have to derive the warped parameterization of the
corresponding patch space. For this we have developed a number of techniques,
based on an initial u, v parameterization of a 2D patch of the base surface and
using Lagrangian tracker particles to sweep out u, v, w in the corresponding
patch space. However, the distribution of these tracker particles is done in
different ways thereby offering distinct features, such as following the base sur-
face faithfully or lowering distortion, for the resulting 3D texture mapping. This
flexibility is one of the strengths of our system. In the following we describe our
three currently available particle distribution methods as well as their common
base.
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A common initial step for all our current mapping techniques is the defini-
tion and parameterization of a 2D patch on the base surface where the texture
is to be applied. We define this patch as a simple control quadrilateral on
φB

1. Constrained interaction with the vertices, Vi, i = 1 . . . 4, of this control
quadrilateral is easily implemented since projections of Vi onto φB amounts to
the closest point transform Vi − φB(Vi)∇φB(Vi). This is a consequence of our
requirement that the level set, φB, is represented by a signed distance func-
tion. This control quadrilateral is parameterized using a technique similar to
Pedersen’s [64]. In short, approximate geodesics are first computed between
the vertices V . These edges are then subdivided evenly, with a resolution de-
termined by the roughness of the surface2, and assigned u, v coordinates. Next
u, v are swept into the interior of the quadrilateral by means of defining a 2D
grid of iso-parametric curves of approximate geodesics connecting the subdi-
vided edges. At each of the grid points of this 2D iso-parametric grid we place
a Lagrangian tracker particle, i.e. an infinitely small and massless particle, each
associated with a unique u, v, w coordinate. In the following we refer to these
Lagrangian tracker particles as patch particles or just particles. The position
of the patch particles are then optimized to reduce texture distortion. This
is achieved by means of a simple constrained mass-spring model [68] where
particles on the boundary curves of the patch quadrilateral are fixed and the
remaining interior particles are restricted to lie on the base surface.

Surface conforming parameterization: Once the patch particles are
generated on the base surface, we propagate the particles along the gradient
field of φB until they reach the desired offset (i.e. level of φB). The w coordinate
for the advected particles is then defined to be 1. In the case of the implicit
mapping described in section 8.3, it is often necessary to have intermediate
layers of particles with 0 < w < 1 (see section 8.5). This is obtained by
distributing a number of particles evenly on the line segment between each
advected particle and it’s corresponding particle on the surface, using linear
interpolation to determine the w value. Figure 8.2 illustrates the particle set
distributed for a single patch using this method. Note thateven though φB is
defined as a signed distance function, two particles with the same w coordinate
will generally not lie at the same distance away from B (Unless w = 0). This
is a consequence of the fact that the gradients are strictly speaking not defined
at points that have more than one closest point transform to B since here φB

is only C0. This occurs along the medial-axis of B and numerically manifests
itself as |∇φB| ≤ 1 when using central finite difference to compute the gradient.
This has the desired feature that although the advected particles might reach
other particles, they will never cross paths3. As the particles generated by this
method are generally not uniformly distributed in patch space, this can lead to

1Note that this is not a regular planar quadrilateral since the edges are constrained to lie
on the base surface.

2As we assume φB is regularly sampled with dx = dy = dz, keeping the sample distance
below dx guarantees a sufficient sampling. If, however, the surface is smooth, a lower sample
rate is often sufficient.

3Numerical roundoff errors and inaccuracies in the finite difference potentially breaks this
guarantee, although such particles are still guaranteed to remain close together.
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Figure 8.2: The surface conforming parameterization propagates the (u, v) co-
ordinates using a Lagrangian advection method. The particles roughly follow
the normal direction, which will spread the parameterization in convex regions
and cluster them in concave regions.

significant distortion of the geometric texture. We note, that depending on the
application, this may or may not be a desirable feature.

By distributing the tracker particles as just described, we end up with a
mapping that is in many ways similar to shell-mapping [67]. Consequently
this distribution scheme is hampered by most of the limitations of Shell Map,
in particular the sensitivity of the mapping with respect to the curvature of
the base surface (See section 8.5). However, one of the main strengths of our
method is the flexibility with respect to the method used for distributing the
tracker particles. We next present two alternative particle distribution schemes
that offer different and improved properties of the resulting geometric texture
mapping.

Reduced distortion level set parameterization: The problem with
the previous particle distribution method is the (implicit) dependence of the
curvature of the base surface. As the tracker particles are advected away from
the surface in a direction normal to the surface, small irregularities in the surface
can cause severe distortion of the texture due to particles moving closer together
in concave regions and away from each other in convex regions. To mend this, we
introduce a particle distribution scheme with a stronger focus on the vertices
of the user specified control quadrilateral. With this method, these vertices
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Figure 8.3: The low distortion parameterization can be thought of as uniform
layers of an onion. The particles are advected as with the surface conform-
ing parameterization, but then they are relaxed to give each level a uniform
parameterization.

are the only particles to be offset along the gradient field of φB. At regular
intervals, derived from the desired offset height and the desired number of
particle levels, a new level of particles is created from the four advected control
vertices. We do this using the same technique as used for the particles on the
surface, only this time we embed it on the $’th level set of φB, where $ is the
(fictitious) time during the propagation. The particles at this level are assigned
a w value $ divided by the desired offset height. The overall result is a uniform
parameterization of each discrete level in the patch space, see figure 8.3, leading
to geometric texture mappings with significantly less distortion than the first
method (see figure 8.5). This method has an additional number of advantages
over the first particle distribution method. First, as a new set of particles are
generated at the individual levels, the number of particles generated at each
level are independent. Thus if the surface area of the patch changes with the
distance to the base surface, we can adjust the number of particles generated
at each level to maintain a desired particle density, thereby guaranteeing a
sufficient sampling of each level. Furthermore, we can optionally let the user
specify the direction along which each control vertex is offset, rather than forcing
it to be in the normal direction. This is feasible as only four particles are offset
from the base surface and therefore does not impose a significant extra burden
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Figure 8.4: Specifying a different direction for the particles to evolve along adds
extra flexibility to the parameterization. The white particles are obtained by
specifying a custom direction of evolution, parallel to the normal at the center
point, at both control vertices.

on the user. The effect of this is depicted in figure 8.4. By allowing the user to
specify the offset direction, we add an extra level of control over the final result.
This allows, for example, the user to control the distortion of a texture with a
large offset in the w direction on a highly curved surface, as seen in figure 8.4.
We have used this extra control in several examples in the following sections,
most notably in figure 11.1(a).

(a) (b)

Figure 8.5: Left: Mapping a geometry texture to a bumpy part of the bunny
using the surface conforming parameterization. Right: Using the low distortion
parameterization.

The difference between the surface conforming and the low distortion param-
eterizations is illustrated in figure 8.5. This example shows how the mapping
based on individually advected particles (figure 8.5(a)) follows the local cur-
vature of the base surface more closely than the mapping based on uniformly
distributed particles (figure 8.5(b)), whereas the latter reduces the overall dis-
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Figure 8.6: Parameterization of a patch (simplified to 2D) using the spline
advection paramerization.

tortion of the mapped geometry.
Spline advection: The two particle distribution schemes outlined above

both rely on the distance transform of the base surface (i.e. the level set φB) to
respectively propagate the particles in the patch space. This effectively means
that texture information is propagated in a fixed direction away from the base
surface. To add more flexibility we have developed a third parametrization
scheme where the particles are propagated along a spline curve originating at
the center of the patch. It works as follows: As with the previous distribution
schemes, we start by generating the particles on the base surface, assigning
u, v-coordinates to each particle. The particles are then propagated in small
steps in the direction defined by the spline curve. At each step, the particles are
furthermore rotated around the current spline point to align with the tangent
of the curve at that point, see Fig. 8.6. As in the previous methods, copies of
the particles are saved at regular intervals, and a w-coordinate, derived from
the normalized distance traveled along the spline, is assigned to each particle.
An example mapping generated with this technique is shown in Fig. 8.7. As
the particles move along the spline, it is often desirable to slowly lessen the
influence of the surface curvature, see Fig. 8.8. Initially, due to the curvature
of the base surface, the particles will be placed at different distances from the
plane tangent to the surface at the origin of the spline. With the approach
described above, the propagated particles will stay exactly this far away from
the plane perpendicular to the tangent of the current point on the spline. Since
we can always find this plane, it is however easy to let the particles move closer
to the plane such that once the particles are propagated all the way to the end
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(a) (b)

(c)

Figure 8.7: The three images show a horse with wings mapped onto it in three
different postures using the spline based particle distribution scheme.

of the spline, all particles will lie exactly on this plane.
We note that during the propagation of the particles along the spline curve,

care must be taken to avoid particles crossing paths. This would potentially
lead to non-monotonic interpolations of the corresponding texture coordinates
which in turn result in inconsistent texture mappings. One possible solution
to this problem is to treat the advancing particles as small spheres and apply
continuous collision detection algorithms [32] to ensure that particles do not
cross. Continuous collision detection algorithms, while more difficult to imple-
ment, offer several advantages over their discrete counterparts. Most notable
are their ability to compute the time of first contact versus the discrete ap-
proach of simply sampling an object’s trajectory and reporting intersections
(small, fast moving objects could pass through each other).

As a final remark we note that both the surface conforming- and the low
distortion parameterization assume that φB is defined throughout the patch
space. Since we employ a very storage efficient level set representation of φB,
[55], distance information is only stored in a narrow tube of B. Hence, as a
prelude to these two methods we first sweep out distances from this narrow
tube to the remaining patch space (which is typically a very small sub-space of
the bounding volume of B). This has been implemented efficiently using the
fast sweeping method [90] which has linear time complexity in the number of
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Figure 8.8: The effect of the surface curvature can easily be made to fade away
as the particles are advected along the spline. For simplicity, the spline in this
figure is just a straight line. Blue dashed lines indicates the plane perpendicular
to the spline tangent, and white dots indicate the updated particle positions

voxels in the patch space.

8.3 High-Quality Implicit Mapping

The implicit mapping allows us to warp the geometric texture to follow the cur-
vature of the base surface, and subsequently blend the level set representations
of both the warped texture and base surface into a single surface. Our mapping
is based on radial basis function interpolation of the texture coordinates asso-
ciated with the patch particles. The algorithm is as follows. First, we define a
regular 3D grid, bounding the region of space spanned by the patch particles,
we call this the embedding volume. The resolution of this grid is chosen to
match the resolution of the grid on which the texture level set is sampled in
texture space. Next we define a mapping from patch space to texture space, us-
ing radial basis functions to interpolate over our correspondence points between
these two spaces. The resulting texture coordinates are then used to resample
our texture in patch space. Essentially, for each grid point xp in the embedding
volume, we map it to texture space via the radial basis function interpolation,
getting the point xt. We then use the point xt to perform an interpolation4 on
the texture volume to get the texture function value φA(xt), which we assign
to the grid point xp. Once all points in the grid have been updated with a
texture function value, the embedding volume will contain a warped instance
of the texture geometry.

The method we use for our radial basis function is similar to that of Dinh
et al. [20], which is a good candidate because of its robustness with respect to
irregularities of the sample points. Furthermore it adds flexibility due to the fact

4In our case, this is a trilinear interpolation, but higher order interpolation can of course
be used instead, if desired.
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that it allows for both strict interpolation as well as a smoother approximation.
For the sake of completion we will summarize this technique below.

Assume the patch particles have Cartesian coordinates {pi, i = 1...n} and
texture coordinates {ki, k = u, v, w, i = 1...n}, as described in section 8.2. Now
we wish to establish a mapping from Cartesian coordinates in patch space to
texture coordinates in texture space, Φp→t. The key idea is to split the mapping
into three independent mappings

Φp→t(xp) = xt ⇒
Φp→t,u(xp) = xu

Φp→t,v(xp) = xv

Φp→t,w(xp) = xw

with each of the texture mapping functions, Φp→t,k, expressed as a weighted
sum of radial basis functions:

Φp→t,k(xp) = Pk(xp) +
n∑

i=1

ωk,iϕ(|xp − pi|), (8.1)

where ϕ : R → R is a radially symmetric basis function; n is the number of
basis functions; pi is the center of the i’th basis; ωk,i are the weights for the
i’th basis for texture coordinate k; and Pk(xp) = ρk,0xx + ρk,1xy + ρk,2xz + ρk,3

is a polynomial spanning the null space of the basis function. Similar to [20],
we center a basis function at each patch point.

To find the weights and polynomial coefficients, for the k mapping, we apply
equation (8.1) to each of the patch points. Since we already have assigned
a k coordinate to each patch point, this leads to a linear system of n + 4
equations with n + 4 unknowns: To find the weights, ωk,i, and polynomial
coefficients, ρk,j = {ρk,0, ρk,1, ρk,2, ρk,3} for each mapping, k = {u, v, w}, we
apply equation (8.1) to each of the patch points. Since we already have assigned
a k coordinate to each patch point, this leads to a linear system of n+4 equations
with n + 4 unknowns:

2
6666666664

ϕ(|p1 − p1|) + λ1 · · · ϕ(|p1 − pn|) p1 1
...

...
...

...
ϕ(|pn − p1|) · · · ϕ(|pn − pn|) + λn pn 1

p1,x · · · pn,x 0 0
p1,y · · · pn,y 0 0
p1,z · · · pn,z 0 0

1 · · · 1 0 0

3
7777777775

2
6666666664

ωk,1

...
ωk,n

ρk,0

ρk,1

ρk,2

ρk,3

3
7777777775

=

2
6666666664

k1

.

..
kn

0
0
0
0

3
7777777775

(8.2)

This linear system is solved for k and the resulting expansion coefficients ωk,i

are next used in Equation 8.1 to compute u, v, w coordinates on the 3D grid in
patch space.

The λ values on the diagonal of the matrix in equation (8.2), allow us to
control the smoothness of the mapping. As we have previously mentioned, each
particle, pi with position xp,i, corresponds to a specific position in texture space,
xt,i. Thus, applying equation (8.1) to the position of a given particle should
yield its corresponding texture space position, that is, Φp→t(xp,i) = xt,i. By
adding the λ values to equation (8.2), we can relax this correspondence leading
to the following inequality: |Φp→t(xp,i) − xt,i| ≤ ζi, where the constant ζi is
deducted from λi. The larger λi is, the larger ζi will be, also if λi is zero then
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so is ζi. As the ζ values increase, the interpolation between the sample values
becomes less restricted enabling a smoother interpolation, and thereby also a
smoother mapping. For the results in this paper we have typically used two
different λ values. Particles on the interface, that is particles with a w value of
0, are assigned small λ values to ensure that the mapping follows the interface
closely. These values typically fall in the range 0.001 to 0.01. The remaining
points are assigned a larger λ usually between 0.1 and 0.5 to ensure a smoother
mapping away from the interface.

Using this mapping involves evaluating equation (8.1) at each grid point in
the embedding volume. Thus if np is the number of particles and ng is the
number of grid points in the embedding volume, then the execution time for
this mapping is O(ng × np). Due to using DT-Grids to represent our volumes,
the memory required for the mapping is O(np +nn), where nn is the number of
grid points in the narrow band of the embedding volume of the warped texture5.
The setup cost is bounded by the linear system of equations in equation (8.2).
Solving such a system can be done in time O(n3

p) using O(n2
p) memory using a

standard LU decomposition [39].

8.4 Near Real-Time Semi-Implicit Mapping

Along with the implicit mapping just described, we have also developed a simple
and efficient semi-implicit technique that maps an (explicit) polygonal mesh,
MA, onto the implicit base surface, φB. This mapping is useful either as a
faster “preview mode” for our implicit mapping, or as a stand alone method for
applying explicitly defined geometry textures onto a given base surface. Where
the implicit mapping utilized a mapping from patch space to texture space,
using an explicitly defined texture requires a mapping from texture space to
patch space. Given such a mapping, we warp the vertices of MA in texture space
into patch space, leaving the mesh connectivity unchanged. This technique as
well as the implicit technique can be used in combination with any of the
parameterization methods described in section 8.2.

One possible way of defining a mapping from texture space to patch space is
to follow the approach taken in the previous section and use radial basis func-
tion interpolation of the patch space positions of each particle, with a radial
basis function centered at the texture space position of each particle. We would
then apply equation (8.1) to each vertex in the mesh to transform the vertices
from texture space to patch space. While this definitely would produce a valid
mapping, we have chosen a much faster and more simple solution, which makes
use of the fact that the patch particles form a semi-regular three-dimensional
lattice in texture space - see figure 8.9, left. By this we mean that, in tex-
ture space, the particles are distributed into regularly spaced levels in the w
direction. Each of these levels consists of a two-dimensional regular grid of

5In addition to this, we also need memory for the base geometry, the texture geometry and
the warped texture geometry. However, to avoid confusion, we have chosen not to include this
in the memory cost, as this is not really a consequence of the specific algorithm used for the
mapping.
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particles, but the number of particles need not be the same at all levels (See
figure 8.9 for a two-dimensional example). Since the texture value associated
with each particle is given by their position in patch space, we can define a
mapping Φt→p(xt) = xp of a vertex xt = (xu, xv, xw) ∈ MA as a tri-linear inter-
polation of the particle texture values. As the number of particles may not be
the same at each level in the patch space, we need to apply the interpolation
in a specific order: We first interpolate at the two levels located immediately
above and below the vertex in texture space, followed by an interpolation in
between the levels. Figure 8.9 illustrates this: First the patch space position
of the blue dots are obtained from interpolation along the green line segments.
Next, we interpolate the values (patch space position) of the blue dots along the
yellow line to get the patch space position of the vertex (red dot). Because each
particle level form a regular two-dimensional grid, and the levels are uniformly
spaced, finding the interpolants is a constant time operation. Thus, calculating
the patch space position of a single vertex is also a constant time operation.

Figure 8.9: Illustrating the semi-implicit mapping on a patch set with a different
number of particles at each level. To get the position of a given vertex (red
dot) in patch space (right) given it’s position in texture space (left), we first
interpolate along the green lines to get the patch space position of the blue
dots. These are then used to interpolate along the yellow line to get the patch
space position of the texture space vertex.

We briefly note that the proposed mapping is somewhat reminiscent of the
free-form deformation technique presented by Sederberg et al. [72]. The main
difference is that our scheme can handle semi-regular samplings and is strictly
bounded to the patch space. These properties are very important for our ap-
plication and are not shared by the higher order interpolation proposed in [72].
Figure 5 in [72] clearly illustrates that geometry is not bounded to the control-
polygon which in our application would result in textures mappings that are
not explicitly confined to the base surface.
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Figure 8.10: Recursive mapping: Mapping a bunny onto another bunny, which
then again has a third bunny mapped onto it. The middle bunny is held onto
the bigger bunny using a couple of metal latches.

8.5 Results and Applications

Since the implicit mapping uses level set representations for both the texture
and the base geometry we can easily produce a topologically connected surface
by merging the two volumes. This can be achieved with a boolean constructive
solid geometry (CSG) union of the two level sets which simply amounts to a
min (or max) operation of the distance fields followed by a re-initialization in
the resulting narrow band. This however creates a very visible C1 discontinuity
along the intersection. To address this issue, we employ the techniques described
in [53] which perform mean curvature based smoothing in the vicinity of the
intersection of the two level sets. This approach allows for direct user control
of mean curvature, and thus the smoothness, of the resulting volume. Both
the merging/CSG union and the smoothing of the intersection are optional
operators applied, if desired, once the mapping is completed.

Figure 8.13 shows a torus with several spikes mapped onto it using this
technique. Figure 8.13(b) shows a close up of the intersection of the torus and
a single spike merged into one without smoothing the intersection. Similarly,
figure 8.13(c) shows a closeup of the same part of the torus, only this time the
intersection between the torus and the spike has been smoothed.

Merging the base volume and the texture volumes into one volume this way
introduces two new problems:

• How do we merge two volumes of different resolution?

• If the base and texture volumes differs significantly in resolution, what
should the resolution of the final volume be? If we choose a resolution
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Figure 8.11: Bunny with 55 starfish models added. This figure is inspired by
figure 6 in [67]

that is lower than the highest resolution of the volumes to be merged,
then we risk loosing some geometric details. Resampling everything at
the highest resolution may on the other hand result in a level set that is
too large to fit in main memory.

The first problem is solved by re-sampling the volumes to a common resolu-
tion. In order to avoid re-sampling artifacts due to linear interpolation, we use
the higher order interpolation described in section 6.2. The second problem is
a bit harder to address. Typically we re-sample to the resolution of the high-
est resolution volume, as we prefer having to deal with memory issues rather
than loosing geometric detail. In a worst case scenario, where the final volume
becomes so large that it does not fit in main memory, we still have the option
of using an out-of-core version of the DT-Grid representation [57]. Another vi-
able alternative is to delay the CSG operation, and perform it while rendering.
We have implemented such a multi-volume CSG-on-the-fly rendering plugin for
our ray-tracer, allowing us to represent both the base volume and the warped
texture volumes at their optimal resolution while rendering, and still be able to
treat them as a single surface. Rendering is performed as described in section
6.4, with the following changes: Whenever we need to evaluate φ, we evaluate
it on all of the volumes and return the smallest value. This is equivalent to the
value we would get, had we performed the CSG operation beforehand. Once
an intersection is found we need to find a surface normal for shading purposes.
Rather than calculating the normal at the surrounding grid points (using finite
difference) and then use tri-linear interpolation to get the final normal, we cal-
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Figure 8.12: Mapping a number of small dragons onto a mother dragon using
the proposed technique.

culate it directly at the intersection point using finite difference on interpolated
φ values. This allows us to use the same evaluation scheme for φ as used for
finding the intersection point, thereby guaranteeing a consistent shading. To
calculate the normal we use a second order central difference scheme (equation
6.2 and 6.5), with a delta value (∆x in equation 6.5) equal to the grid point
distance in the highest resolution volume. To avoid the re-sampling artifacts
discussed in section 6.2, we need to use a high order interpolation method when
calculating the normals. Using tri-linear interpolation for finding the intersec-
tion is usually good enough. Figure 8.14 shows an example of our multi-volume
renderer using high order interpolation for the normals and tri-linear interpola-
tion when finding the intersection point. In figure 8.15, tri-linear interpolation
is used not only for finding the intersection point, but also for finding the nor-
mal (the base volume is sampled at a resolution that is roughly a factor of ten
lower than that of the texture). In figure 8.15(a), the delta value is set to the
grid point distance of the highest resolution volume, whereas in figure 8.15(b),
the delta value is equal to the grid point distance of the lower resolution vol-
ume. In both cases, the rendering artifacts are very obvious. In figure 8.15(a),
the base volume appears flat shaded due to using normals based on tri-linearly
interpolated data, and in figure 8.15(b), the shading of the texture volume is
hampered by inaccurate normals resulting from using sampled too far apart in
the calculations. When using the CSG-on-the-fly renderer, we obviously cannot
perform the curvature based local smoothing. What we can do is to apply a
smooth CSG intersection operation as described in [19]. Although applying a
smooth CSG operation may not always produce as good results as the localized
curvature based smoothing, it does provide a nice alternative when using the
CSG-on-the-fly rendering approach.
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(a)

(b) (c)

Figure 8.13: Mapping a number of spikes onto a torus. The closeups of a
single spike shows the difference between not applying the CSG union (b) and
applying the CSG union as well as the blending of the intersection (c). Notice
the discontinuity in the shading in (b), which is a result of the spike and torus
being separate geometries. Merging (and blending) the two surfaces resolves
the issue (c).

Choosing basis function

In section 8.3, we presented our mapping based on radial basis function interpo-
lation, however nothing was said about what function we use as our radial basis
function. In this section, we will make a comparison of some of the most used
radial basis functions in order to justify our choice of preferred basis function,
which is ϕ(r) = r. The basis functions tested are the following:

1. The multi-order Laplacian basis [20]:
ϕ(r) = 1
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Figure 8.14: On-the-fly CSG union using our multi-volume rendering plugin.

(a) Using the smaller resolution grid dis-
tance as delta value

(b) Using the larger resolution grid dis-
tance as delta value

Figure 8.15: Rendering artifacts due to using linear interpolation when calcu-
lating the surface normals on a multi volume.

2. The triharmonic spline [5]:
ϕ(r) = r3

3. The thin-plate spline [87]:
ϕ(r) = r2 log(r)

4. The sum of the triharmonic spline and the thin-plate spline:
ϕ(r) = r3 + r2 log(r)

5. The biharmonic spline [5]:
ϕ(r) = r

6. The Gaussian basis [87]:
ϕ(r) = e−r2

The first basis function has two user controlled parameters δ and τ . These
two parameters control the amount of first and third order smoothness re-
spectively, and the balance between them controls the amount of second order
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Figure 8.16: Plot of the different basis function tested. Note, that in order to
enhance the shape of the first basis function, it has been scaled by a factor of
100.

smoothness [20]. For simplicity, we only show test results for one particular con-
figuration, namely τ = 0.02 and δ = 5.0, as these are the parameters with which
we have achieved the best results. Figure 8.16 shows a plot of the different basis
functions. Note that the values of the first basis function has been scaled by a
factor of 100 to enhance the shape of the curve (without this scaling, the curve
for that function would appear as a horizontal line). Using the seven different
basis functions, we have generated two different mapping examples which we
will use to perform a visual comparison of the results produced using the differ-
ent basis functions. Figure 8.17(a) to figure 8.17(f) shows a dragon mapped onto
the side of the Stanford bunny. Apart from figure 8.17(a) and figure 8.17(f),
there is little visual difference in the results. Figure 8.17(a) and figure 8.17(f)
however appears to have been deformed a little less than actually desired (See
e.g. the front foot). This is particularly a problem in figure 8.17(f), where the
dragon appears not to have been deformed at all. Moreover, the dragon in
figure 8.17(f) is disfigured by some dents and holes, including a very obvious
hole on the back of its neck and a dent on the back.

Figure 8.18(a) to figure 8.18(f) show similar examples where another dragon
is mapped onto a wavy surface. Again, there is little visual difference between
figures 8.18(b) to 8.18(d). There are however some differences in how much it
is stretched in the height, which is most noticeable at the back of the dragon.
In this example, figure 8.18(e) stands out in that it shows the same quality of
the mapping near the surface as seen in figures 8.18(b) to 8.18(d), but without
the pronounced stretching of the dragons back. Again, the results produced
by the first and last basis function (figure 8.18(a) and figure 8.18(f)) perform
significantly worse than the remaining functions. This is particularly visible
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(a) Radial basis function no. 1 (b) Radial basis function no. 2

(c) Radial basis function no. 3 (d) Radial basis function no. 4

(e) Radial basis function no. 5 (f) Radial basis function no. 6

Figure 8.17: Mapping a dragon onto the side of the Stanford bunny using the
six different radial basis functions. The red circles highlight mapping artifacts
with two of the functions.

near the surface, where the dragons feet are not properly warped to follow
the base surface. Furthermore, figure 8.18(f) exhibits similar artifacts to those
visible in figure 8.17(f), most noticeable on the dragons back right foot. These
artifacts along with the overall poor performance of the first and last radial basis
functions are a consequence of the rather local nature of these two functions.
Both functions have their maximum value at r = 0 and tend quickly towards
zero as r increases, which means that only nearby particles will have an influence
on the mapping. If the particle spacing is to large, which is clearly the case in
these examples, then these two functions will not produce satisfactory results.

Table 8.1 shows the time taken for performing the mappings for the two
test cases. The numbers in table 8.1 clearly show that the fifth basis function
performs significantly faster then most of the other functions. The only function
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(a) Radial basis function no. 1 (b) Radial basis function no. 2

(c) Radial basis function no. 3 (d) Radial basis function no. 4

(e) Radial basis function no. 5 (f) Radial basis function no. 6

Figure 8.18: Mapping a dragon onto a wavy surface using the six different
radial basis functions. The red circles highlight mapping artifacts with two of
the functions.

Basis function 1 2 3 4 5 6
Test case 1 25219ms 6734ms 21719ms 21390ms 5907ms 36766ms
Test case 2 709818ms 183016ms 598433ms 618814ms 160911ms 1595677ms

Table 8.1: Mapping time for the two radial basis function test cases.

remotely close to the fifth basis function, performance wise, is the second basis
function. As the basis functions are evaluated once per particle per grid point,
it comes as no surprise that the complexity of the chosen basis function has
a significant impact on the performance of the entire system. From the above
we observe that the fifth basis function produces visual results as good as, and
sometimes even better then the other functions. As it furthermore performs
significantly faster than most of the other functions, it seems only logical to
choose that function as the preferred basis function.
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Figure 8.19: Adding custom transformations to the patch set. Prior to perform-
ing the mapping, a 180◦ twist transformation has been applied to the patch.

Benefits of using several patch levels

As we have already hinted in section 8.2, we often prefer to use more than
two levels of particles for our parameterizations. At first, it may appear that
only two levels are required: One level at the surface, and one level at the
desired offset distance. There are however two important reasons for introduc-
ing a number of intermediate levels. First of all, having more than two levels
adds flexibility to the parameterization. The spline based parameterization for
example would not be of any use if only the start and end levels were used.
Similarly, by using multiple levels of particles, we can perform various other
transformations of the patch prior to using it for our geometrical texture map-
ping. This is demonstrated in figure 8.19, where a 180◦ twist transformation
has been applied to the patch before using it to map the Buddha statue onto
the base surface. Using only the top and bottom levels, the mapping becomes
a linear interpolation between the top and bottom layer unable to produce the
desired result as shown in figure 8.20(b).

The second reason for using more than two levels applies only to the im-
plicit mapping. As the implicit mapping is based on a radial basis function
interpolation approximating a smooth function, it is important that we have
enough samples of the function we are trying to approximate. If we do not
provide enough samples of the function, then the approximation to the func-
tion becomes unpredictable. This is demonstrated in figure 8.21, which shows
a mapping of the dragon onto a bumpy surface. Using 6 levels of particles, the
warped dragon has the desired shape, where in contrast, when only 2 levels are
used, the warped dragon exhibits an undesirable stretching.
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(a) (b)

Figure 8.20: (a)The Buddha statue mapped onto a sphere using the standard
reduced distortion parameterization as in figure 8.19, but without the twist
transformation applied. (b)The result of performing the same mapping as in
figure 8.19, but using only two particle levels.

(a) (b)

Figure 8.21: Comparison between using only two layers of particles (a) and
using more layers (b). A total of 6 layers of particles were used to generate the
mapping in (b); both (a) and (b) were generated using the implicit mapping.
Notice the uneven stretching of the dragon in (a). In contrast, the dragon in
(b) retains a shape faithful to its original shape.



Chapter 9

Shell Map Hybrid

9.1 Introduction

In the previous chapter, we presented a method, based on radial basis func-
tion interpolation, for mapping implicit geometric textures onto an implicitly
defined base surface. Although the presented method is stable and produces
high quality results, it fails to impress when it comes to execution time. The
execution time for the actual mapping is O(ng × np), where np is the num-
ber of particles and ng is the number of grid points in the embedding volume.
This quickly becomes a problem when using high resolution geometric textures,
leading to a large number of grid points in the warped texture, or when the
base geometry is very detailed, in which case a large number of particles are
needed to sample the patch space. This led us to the development of a new
mapping inspired by the shell map algorithm [67], using a combination of the
approach presented in chapter 8 and the shell map method to obtain a faster
implicit-on-implicit mapping.

9.2 Shell Map Hybrid

The idea is to generate two levels of particles for each patch, one at the surface,
and one at the maximum desired offset height. Following the approach of [67]
using the first particle level as the base surface and the second level as the
offset surface, we can fill the space between the two levels with tetrahedrons.
This allows us to perform the patch-space to texture-space mapping using a
fast barycentric interpolation rather than the significantly slower radial basis
function interpolation.

In order to facilitate the construction of the tetrahedrons, we need to en-
force a single additional constraint on the particle sets: Each level must contain
the same number of particles in the same topological configuration (number of
particles in the u direction and number of particles in the v direction). Of the
different particle generation methods presented in chapter 8, only the reduced
distortion parameterization needs to be altered to comply with this new con-
straint: Once the particles on the surface have been generated, we lock the
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number of points for consecutive particle levels to that of the first level. This
has the obvious drawback that the sampling rate will decrease away from the
surface in convex regions. A more correct approach is to determine the largest
number of particles needed in the u and v direction for all of the levels needed,
lock the patch sizes to these numbers, and regenerate all levels. This, on the
other hand, results in a higher sampling rate than required in concave regions.
Although this results in more particles, it is still to be preferred over a potential
under-sampling of the patch space.

If we form a triangulation of the first particle level, and an identical (index
wise) triangulation of the second particle level, each pair of corresponding tri-
angles constitutes the caps of a prism, and the union of all the prisms defined by
each triangle pair completely covers the patch space without overlapping. As
the sides of the prisms will not in general be planar, the prisms will not gener-
ally be convex either. This rules out using the general barycentric interpolation
techniques [84] on the prisms. Therefore, following [67], we split each prism into
three tetrahedrons, that are easily interpolated using barycentric coordinates.
To avoid interpolation artifacts between adjacent prisms, the tetrahedrons need
to be created in a way that guarantees a proper alignment, that is, if a face is
shared by two prisms, creating the tetrahedrons needs to be done in a way that
ensures that the face is split along the same diagonal for both prisms.

Figure 9.1: Relationship between prism vertices and the created tetrahedrons.

For a prism P with particle indices v0, v1 and v2 at the lower particle level,
and particle indices v3, v4 and v5 at the upper level, see Figure 9.1, we rearrange
the order of the indices such that v0 < v1 < v2. The remaining indices are
reordered as well, so that v3 remains above v0, v4 remains above v1 and v5

remains above v2. If for example v0 = 12, v1 = 5, v2 = 14, v3 = 34, v4 = 27
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and v5 = 36, then we reorder the order of the vertices such that v0 = 5, v1 =
12, v2 = 14, v3 = 27, v4 = 34 and v5 = 36. Note, that due to the way we create
the particles and prisms, we always have that v3 = v0 + c, v4 = v1 + c and
v5 = v2 + c, where c is the number of particles per level. With the reordered
indices, we create the following three tetrahedrons [34]: T (v0, v1, v2, v5), T (v0,
v1, v4, v5) and T (v0, v3, v4, v5). The combination of this ordering and a
consistent generation of the tetrahedrons guarantees that faces shared by two
prisms will always be split along the same diagonal when creating tetrahedrons
for those two prisms. This follows from the fact that the diagonal is always
created between the vertex with the highest index and the vertex with the
lowest index.

Once we have a set of tetrahedrons, we are ready to define our mapping from
patch space to texture space (or vice versa). Since the vertices of the tetrahe-
drons correspond to the patch particles, we have a texture space coordinate
associated with each corner of a given tetrahedron. Assuming we know that
a given point, p, lies inside the tetrahedron T , we can find the texture space
coordinate of p using barycentric interpolation of the texture space coordinates
assigned to each of T ’s corners.

The only problem remaining is how to quickly locate the tetrahedron con-
taining a given point. Using the brute force method of testing against all
tetrahedrons in turn leads to an O(ng×np) execution time similar to the radial
basis function interpolation based approach we are trying to improve upon. To
do this, we need a way to quickly zero in on the correct tetrahedron without
having to check all tetrahedrons. As this test is in fact not much different
from the ray-primitive intersection tests performed in ray-tracing, it is natural
to look at some of the data structures used to speed up the ray-primitive in-
tersection testing. We have chosen to use a bounding volume hierarchy with
axis aligned bounding boxes [76], as it provides a good balance between ease of
implementation, construction cost and lookup cost. Constructing a bounding
volume hierarchy can be done in time O(n log n) in the number of elements,
which in our case is the number of tetrahedrons, or equivalently the number
of particles. Creating the tetrahedrons takes linear time, which leads to the
total setup cost being O(np log np). Although the lookup cost remains linear
in the number of tetrahedrons (and thus the number of particles), this is the
worst case scenario, that is, when all tetrahedrons overlap. If however, the
tetrahedrons are well distributed with little or no overlap, then the expected
lookup time is O(log np). Fortunately, the way we generate the tetrahedrons
guarantees a reasonably uniform distribution of non-overlapping tetrahedrons,
which in turn means that with this optimization, the expected execution time
is reduced to O(ng× log np). To create the bounding volume hierarchy, we only
need the tetrahedrons and their bounding boxes. Hence, creating the bounding
volume hierarchy is done using O(np) memory. Similarly, as the particles and
the bounding volume hierarchy contains all the information we need for the
mapping, this is performed using O(np) memory.

While the original shell map method [67] used a single offset surface, and
thereby always had only a single layer of prisms, we have, for several reasons,
preferred using several layers of particles for the previous two methods pre-
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sented. Similarly, with this method, we allow additional layers of prisms to be
generated if more than two layers of particles exists. For a patch set with n
particle levels, we construct n− 1 levels of prisms. Although introducing more
than one layer of prisms does not in general improve the quality of the mapping,
there are two other important benefits:

1. By introducing more levels, the generated tetrahedrons become smaller
and more regular shaped, yielding a smaller, more quadratic shaped bound-
ing box. This in turn means that fewer bounding boxes will overlap, re-
ducing the number of actual point-in-tetrahedron tests that need to be
performed, thereby speeding up the lookup operation. Although more
tetrahedrons are created, the use of a bounding volume hierarchy ensures
that this has a smaller influence on performance than the reduction in
point-in-tetrahedron tests.

2. More layers mean more flexibility. One of the key strengths of the methods
presented so far is the flexibility with respect to the distribution of the
patch particles, however without introducing support for multiple layers,
particle distribution methods such as the spline based method would not
be supported.

Figure 9.2: To avoid artifacts along the edge of the mapped region (yellow
area), we need to extend the mapping to cover a larger region (green area).

A final detail regarding this method is that since we are using implicit geom-
etry as our texture, we need to take extra care to re-sample the warped texture
volume, not only in the area of interest, but also in the region surrounding the
area of interest, as illustrated in Figure 9.2. This is necessary, as we would oth-
erwise not have the required samples needed for reconstructing the geometry
at the border of the area of interest, leading to artifacts such as those visible
in figure 9.3. This problem is not unique for this method, however due to the
nature of the radial basis function interpolation, which interpolates to perfectly
valid values even outside the mapping region, the problem is automatically han-
dled when using the radial basis function based mapping. The problem with
the Shell Map inspired mapping is that once we have a sample point outside
the region defined by the particles there will be no tetrahedron containing that
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point. The result is an undefined texture coordinate for that point, which we
map to a constant φ value of γ, that is, we force the points to be outside the
implicit surface and outside the narrow band. We fix this problem by adding
an extra layer of particles below the surface. Particles in this layer are assigned
a negative w coordinate. Additionally, an extra layer is added above the patch
set with a w value higher than 1.0 assigned to the particles. Similar borders are
added in the u and v directions.

Figure 9.3: Aliasing artifacts along the intersection of the base geometry and
the texture geometry as a result of resampling the texture geometry only within
the actual area of interest.

9.3 Results and Discussion

In this section, we will present some results produced using the Shell Map
Hybrid method, and we will evaluate them against results produced by the two
previous methods. Our primary test case will be the mapping of the Stanford
bunny onto another copy of the same bunny, and the mapping of a dragon onto
the nose of a larger dragon depicted in Figure 9.4.

As with the semi-implicit mapping, the Shell Map hybrid mapping is based
on linear interpolation, which means that it is only C0, with a (possible) discon-
tinuity in the derivative along the sides of each of the tetrahedrons. Whether
or not these discontinuities are visible is highly dependent on the magnitude of
the change in the derivative. The larger the change in the derivative, the more
visible. Obviously, the kind of artifacts resulting from this are unwanted. For-
tunately there is a very simple approach to reducing these artifacts: This issue
is not much different from trying to represent a smooth curved surface using
triangles: The more/smaller triangles you use to approximate the surface, the
smoother it will appear. This same approach works well in our case as well; by
increasing the number of tetrahedrons/decreasing the size of the tetrahedrons,
we effectively decrease the magnitude of the change in the derivatives along the
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Figure 9.4: Baby dragon mapped onto nose of mother dragon using the Shell
Map Hybrid method.

sides of the tetrahedrons, thereby reducing the visual effect of the discontinu-
ities in the derivatives. The only remaining questions are how small the largest
distance between the particles should be in order to achieve the desired results,
and what influence this increased particle count has on the performance of the
mapping. Figure 9.5 shows four examples of the bunny mapped onto another
copy of the bunny. In these four images, the particle spacing in the u and v
directions were kept below 6 units, 3 units, 1.5 units and 0.75 units in terms of
the grid spacing on the base volume. The particle spacing in the w direction
was chosen to roughly match the u and v spacing to get as square bounding
boxes for the prisms and tetrahedrons as possible. Table 9.1 lists the total
number of particles used for generating each image, the time spent on setting
up acceleration data structures etc., the time spent on the actual mapping, and
the total time spent on setup and mapping. In all four cases, approximately
2.8 point-in-tetrahedron tests were performed on average per grid point in the
warped texture volume, a volume of size 189× 193× 203. With a low particle
density, linear artifacts are visible in the warped texture. As expected, these
artifacts become less and less visible as we increase the particle density. Once
the particles are restricted to be no further than 0.75 units away from each
other, all artifacts are as good as gone. As can be seen from table 9.1, perform-
ing a mapping based on a maximum particle spacing of 6 is, in this example,
only approximately 34% faster than the same mapping based on a maximum
particle spacing of 0.75. Thus, the performance penalty is rather low compared
to the gain in quality. All our other sample images created using this method
were created using a maximum particle spacing between 1.0 and 0.75.
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(a) Particle spacing ≤ 6 units (b) Particle spacing ≤ 3 units

(c) Particle spacing ≤ 1.5 units (d) Particle spacing ≤ 0.75 units

Figure 9.5: The influence of the particle density on the result of the Shell Map
Hybrid method. With a low particle density, linear interpolation artifacts are
visible, most notably on the back of the bunny. With a maximum particle
distance below 1.5, only a few artifacts are noticeable, and once the particle
distance is kept below 0.75, there are virtually no visible artifacts left.

Particle spacing Particle count Setup time Mapping time Total time
6 480 47ms 9750ms 9797ms
3 2926 78ms 10797ms 10875ms

1.5 13194 485ms 11671ms 12156ms
0.75 52896 2266ms 12641ms 14907ms

Table 9.1: Patch size and timings for mapping with different particle densities.

A similar test was performed in order to test the performance impact of
using several levels of particles in order to get more regular shaped tetrahedrons.
Using the same mapping scenario as above, the bunny was mapped onto the
other bunny, using two different patch sets. Both patch sets cover the same
area and have a maximum particle distance in the u and v directions below
0.75. The only difference is the number of particle levels used, which for the
first case is 29 and for the second case only 6 levels. Using 29 levels, a total of
52896 particles were used. Creating the bounding volume hierarchy took 2.2s,
while performing the mapping/warping took 12.6s. The total time spent on the
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mapping was then 14.9s, using approximately 2.8 point-in-tetrahedron tests per
grid point. With 6 particle levels 10944 particles were used. This reduced the
time spent on creating the bounding volume hierarchy to 0.4s, however due to
an increase in the point-in-tetrahedron tests up to approximately 7.1 tests per
grid point, the mapping time increased to 26704 giving a total time of 27.1s.
Thus, as expected, by increasing the number of levels, the bounding volumes
used in the bounding volume hierarchy become more tight fitting giving a much
more effective tree and consequently a significantly more efficient mapping.

As with the radial basis interpolation based approach, comparing the Shell
Map hybrid method to the semi-implicit method is somewhat misleading due to
the fundamentally different texture representation. The two different geometric
representations have different properties, resulting in a number of differences
in the final result. Most notably, the semi-implicit method does not allow
the warped texture to be merged with the base volume into a single piece
of geometry. Due to the direct representation of the surface, however, the
complexity of the algorithm is significantly reduced (as we showed in section
8.4, the complexity is O(nv), where nv is the number of vertices in the mesh).
Performing the same mapping as displayed in Figure 9.5, using the particle set
with a maximum distance of 0.75 and a mesh with 35947 vertices, the semi-
implicit mapping needs only 62ms as opposed to the 14907ms used by the shell
map hybrid method. A more fair comparison between this method and the
semi-implicit method would be to compare the semi-implicit method to a semi-
implicit version of the Shell Map hybrid, that is, a version using the tetrahedron
interpolation to map explicit geometry rather than implicit geometry, which is
basically the original Shell Map using our parameterizations. As this mapping
would have to be from texture space to patch space, we can use the regularity
of the particle positions in texture space just as we did with the semi-implicit
mapping, leading to a O(nv) algorithm1. This mapping should be just as fast
as the semi-implicit mapping (it is essentially Shell Mapping), however we have
not had the time to implement this and are therefore unable to verify it.

Comparing the Shell Map hybrid method to the radial basis function in-
terpolating method is quite reasonable, as both methods use implicit geometry
as texture. Clearly, the radial basis function interpolation based mapping pro-
duces higher quality results when compared to the barycentric interpolation of
the Shell Map hybrid, but the latter has other advantages. Most important
is the performance. Clearly, the expected running time of O(np log np) of this
method is superior to the O(np × np) running time for the radial basis inter-
polation method. Table 9.2 shows a performance comparison between the two
different methods. As expected, these figures clearly show, that the Shell Map
hybrid outperforms the radial basis function method. In both cases, the Shell
Map hybrid is approximately a factor of 7 faster than the other method.

Apart from being significantly faster, there are a few other advantages with
the Shell Map hybrid. First of all, although it requires significantly more parti-
cles to produce good results, it still has a (potentially) lower memory footprint

1Note, that the bounding volume hierarchy or a similar data structure is not needed for
this mapping.
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Scene SMH Particles SMH Exec. Time RBF Particles RBF Exec. Time Speedup
Bunny Scene (Fig. 9.5) 52896 14907ms 361 102828ms 6.90
Dragon Scene (Fig. 9.4) 3822 55609ms 248 406156ms 7.30

Table 9.2: Performance comparison between the Shell Map hybrid mapping
(SMH) and the radial basis function interpolation based mapping (RBF). Note,
that the number of particles used in the examples depends on the roughness
of the surface, the size (area) of the patch and the height of the patch. The
number of particles is chosen such that the two different mappings produce
results of roughly identical visual quality.

than the radial basis function method. This is due to the fact that the latter
method uses O(n2) memory as opposed to the O(n) memory usage of the Shell
Map hybrid. Secondly, this mapping is bijective. This means that we can im-
plement a ray tracer performing the mapping while tracing the rays, similar to
the renderer described in the Shell Map paper [67]. The advantage of this is
that if the same texture is used several times, we would only need to keep the
original texture in memory, rather than say 20 warped copies. Unfortunately,
with this approach, we will no longer be able to perform the smooth blending
between the base surface and the textures, and as we would have to perform
the mapping over and over, the performance is likely to suffer.
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Chapter 10

Geometric Texture Animation

One of the most important properties of level sets and implicit surfaces is the
ease with which they can dynamically deform. A great part of this strength
stems from the fact that changes in topology requires no special treatment,
as the implicit representation automatically resolves this. Similarly, artifacts
such as surface self intersections that would, if not handled correctly, lead to
a physically impossible surface are also resolved automatically by the implicit
representation. With this in mind, it seems natural to try to extend our ge-
ometrical texture mapping to dynamic implicit surfaces. In this chapter, we
present our preliminary work on geometrical texture mapping on dynamic im-
plicit surfaces.

We divide our work on animations into three categories: Animating textures,
base surface animations and key frame animation of the patch.

Animating textures Using animated textures is by far the simplest case
of the three. As the base geometry and texture geometry are independent,
the only thing tying the two together is the particle based parameterization.
As such, using an animated texture simply corresponds to mapping different
textures (different frames of the texture animation) onto the same base using
the same particle set.

Base surface animation The term base surface animation covers the case
where the base surface is deforming, and where the applied texture follows the
deformation of the surface. One of the challenges in this case lies in defining
the desired effect: How do we expect the geometric texture to respond to the
deformation of the base surface? We have chosen to let the texture follow
the movement of the surface in the direction of the surface normal. With
the signed distance function representation, this is done using the following
approach: First, the patch corners for a desired parameterization is defined on
the initial surface. Then, during the animation of the base surface, and after
each iteration, these four particles defining the patch are moved along with the
surface, thereby creating the base for a new parameterization for the current
surface. Moving the particles along with the surface is achieved by projecting
the particles onto the closest point on the animated surface. With a signed
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distance function, this is done using the following formula:

p̃ = p− ∇φ(p)
|∇φ(p)|

φ(p).

We then use the four translated particles to automatically create a unique pa-
rameterization for each frame in the animation of the base surface. An example
of this is depicted in figure 10.1.

(a) Base surface animations, frame nr. 210 (b) Base surface animations, frame nr. 260

(c) Base surface animations, frame nr. 265 (d) Base surface animations, frame nr. 290

Figure 10.1: Example of a geometric texture mapped onto an animated base
surface.

Key frame patch animation The third type of animation we have investi-
gated is key frame based animation of the patch on a static base surface. Our
current approach supports scaling and translation of the patch using the follow-
ing approach: Assuming we are given two distinct patch definitions, that is, the
corner particles defining the two patches, we wish to perform a smooth transi-
tion from the first patch set to the second. Starting with the corner particles
ps1, . . . , psn for the source patch and the corresponding particles pd1, . . . , pdn for
the destination patch, we create the (approximated) geodesic curves (using the
same approach as in section 8.2) c1, . . . , cn between the corresponding points of
the two patch sets. Thus, ci(t) denotes the (approximated) geodesic curve be-
tween the two points psi and pdi, with ci(0) = psi and ci(1) = pdi. We can then
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calculate the position of the corner particles for the animated patch at frame
fc of fmax as the position along the individual curves at the time t = fc

fmax
, as

depicted in figure 10.2.

Figure 10.2: Interpolation of a single patch corner between two patches. The
white curve represents the geodesic between the two corresponding corner points
of the source patch (green square) and the destination patch (red patch). The
black dot represents the interpolated position of the corner point at t = 1

3 .

Bringing it all together While the three animation methods presented
above may provide a set of useful tools for some applications, they are still
quite limited with respect to what can be achieved. It is not until we start
combining the different methods that we start to see the full potential in these
methods. Consider for example a snake zig-zagging across a rough surface. This
can be animated using a key frame animation of the snake’s path combined with
a texture animation of the snake’s zig-zag movement. Or alternatively, a water
droplet, running down a balloon being inflated. This latter example would re-
quire a combination of the base animation method for animating the balloon,
a key frame animation of the droplet’s path down the balloon, and perhaps
even a texture animation of the droplet itself to add a bit of extra realism. The
problem with this example is that combining the key frame animation with a
base animation introduces a new challenge: How do we maintain the geodesics
curves on the base surface when it is being animated? For the key frame ani-
mation, we require a source and target patch that we can interpolate between.
When the base surface is animated, we want to specify the source patch on
the first frame of the base animation, and the target patch on the last frame
to have full control over the final position of the patch. We cannot generally
expect to be able to specify the destination patch on the initial base surface
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and then have it end up at the desired position on the final base surface. In-
stead, we need to specify the patch on the final base surface, and then run the
animation backwards in order to calculate all the intermediate positions for the
destination patch. Thus, to combine a key frame animation with a base surface
animation we use the following algorithm:

1. Load base surface and source patch corners

2. Animate base surface one iteration at a time. For each intermediate step:

(a) Update position of source patch corners

(b) Save current patch and volume

3. Load destination patch corners

4. Step backwards through animation. For each intermediate volume:

(a) Load current volume

(b) Update position of destination patch corners

(c) Save current patch

Then, to generate the i’th frame, we load the volume, source and destination
patch corresponding to frame i. We then use this as input to a standard key
frame animation (as described above), evaluating the intermediate patch at time
i/(nf −1), where nf is the total number of frames in the animation. The result
is the corner particles defining the patch for the ith frame of the animation.

10.1 Results

We have used the above described methods to produce some proof of concept
animations. Figure 10.1 shows four still frames from an animation using the
base animation method on a fluid simulation. Figure 10.3 shows four still
frames, superimposed into one image, from an animation of the dragon moving
across the back of the Stanford bunny, created using the key frame animation
technique (the dragon itself is not animated). Finally, figure 10.4 shows four
still frames from an animation of the Stanford bunny morphing into the Utah
teapot. During the animation, a starfish is moving from a user defined position
on the bunny to a user defined position on the teapot. This animation is created
using the combination of the key frame animation and base animation described
above.

While the examples in figures 10.1, 10.3 and 10.4 show some of the poten-
tial of the presented methods, there are still a number of issues needing to be
resolved before they will be truly useful in general: First of all, the particles
defining the corners of the patch, or both the source and destination patch
in the case of a key frame animation, need to be at the same topologically
connected component of the surface. If the source and destination patch re-
sides on two disconnected components, then there is no way we can create the
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Figure 10.3: Key frame animation of a dragon moving across the back of the
Stanford bunny. The green dragon on the left is the initial position of the
dragon, that is the dragon at time t = 0.0. Then, the next dragon is at the
position for time t = 0.33, followed by t = 0.66, and finally, the red dragon is
the final frame, that is t = 1.0.

geodesics between the corresponding corner particles on the source and desti-
nation patches. Without the geodesics, we cannot perform the interpolation
between the two patches, which is fundamental to that technique. Similarly
for the base surface animation technique, if somehow the particles defining the
patch end up at different connected components, we cannot create the required
geodesics between the corner particles. This means that we cannot generate the
parameterization that is crucial to our mappings. Even if the corner particles
remain on the same connected component, there is still the risk that one or
more of the particles, while following the movement of the surface, is moved far
away from the other particles, as illustrated in figure 10.5. While this does not
invalidate the patch as such, as we will still be able to generate the required
geodesics, the end result is still a severely distorted patch, leading to a severely
distorted texture. Another issue lies in the use of several geodesics (one per
corner particle pair) for key frame animations rather than one geodesic for the
entire patch: Consider for example the base surface being a cylinder with the
source patch at the front of the cylinder, and the destination patch at the exact
other side, each patch defined by four corner particles. In this case, two of the
geodesics will run left around the cylinder while the other two will run to the
right. This means that rather than moving the patch, this animation will result
in the patch being stretched around the cylinder. At a certain point during the
animation, the shortest path between the particles will no longer be around the
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(a) Frame nr. 1 (b) Frame nr. 2

(c) Frame nr. 3 (d) Frame nr. 4

Figure 10.4: Combined base surface and key frame animation example. While
the base surface is morphing from a bunny into a teapot, the green starfish is
moving slowly across the morphing base surface from left to right.

front of the cylinder but around the back. At this point, the patch will jump to
the back of the cylinder and start to shrink into its final shape. Finally, there
are minor issues such as the lack of proper support for rotating the patch in a
key frame animation.

Although the issues just described limit the usefulness of these animation
techniques, we do believe that if we can resolve them there is definitely a great
potential in these techniques. We are currently working on different strategies
for solving all of the above mentioned issues except from the issue with the
source and destination patch being on different connected components. This
includes a new parameterization which is based on the exponential map [12,
71]. The exponential map is a local parameterization based on geodesic polar
coordinates. This mapping takes geodesic curves originating from a seed point
p to straight vectors originating from p in the tangent plane to the surface
at p. Thus, as opposed to the four particles currently needed, only a single
seed point and a direction vector is needed for this mapping. The idea is then
to use the exponential map to drive the distribution of the particles. With
only a single particle and a direction vector defining the patch, we no longer
have any problems with the defining particles drifting in different directions.
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(a) Frame number 1 of the
fluid simulation base anima-
tion

(b) Frame number 10 of the
fluid simulation base anima-
tion

(c) Frame number 20 of the
fluid simulation base anima-
tion

Figure 10.5: Illustration of the problem with particles drifting far away from
the rest of the patch. In (a), we see the initial position of the four corner
particles (red dots). (b) shows a wave on the base geometry rolling over one of
the particles, thereby forcing it to move in a different direction then the other
particles. (c) shows the position of the particles once the wave has passed. Note
how one of the particles has moved away from the other particles.

Furthermore, with this parameterization, it will be much easier to support key
frame animations including rotations of the patch. Unfortunately, we do not yet
have a working implementation of an exponential map based parameterization.
As for the issue with the source and destination patch residing on different
connected components, we are not sure if this case makes sense anyway, as it
would require the texture to jump from one connected component to another.
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Chapter 11

Applications and Evaluation of Geometric

Texture Mapping

In the previous chapters we have presented a framework for geometrical tex-
ture mapping of implicit surfaces. Our system uses a particle based parame-
terization, for which we have presented three different distribution techniques
emphasizing the flexibility of our parameterization technique. Along with our
parameterization, we have presented three different mapping methods based on
our particle parameterization. We list some of the properties of these three
mapping methods in table 11.1

Semi-Implicit Rbf interpolation Shell Map Hybrid

Texture Geometry Explicit Implicit Implicit

Initialization cost (time) O(1) O(n3
p) O(np log np) (O(1))

Setup cost (memory) O(np) O(n2
p) O(np) (O(np))

Running cost (time) O(nv) O(ng × np) O(ng × log np) (O(nv))

Running cost (memory) O(np) O(np) O(np) (O(np))

Mapping type Linear High order Linear

Table 11.1: Comparison of the three mapping methods presented in this thesis.
In the above table, np is the number of particles, nv is the number of mesh
vertices, ng is the number of grid points in the warped volume and nn is the
number of grid points in the narrow band of the warped volume. Values en
parenthesis in the Shell Map Hybrid column represents the (not implemented)
explicit version as mentioned in chapter 9.

The methods presented here are in some ways similar to those presented
by Porumbescu et al. in their Shell Map paper [67]. There are however some
fundamental differences between their work and ours. Firstly, we have chosen
to use level sets to represent the base geometry, whereas they are using triangle
meshes. Secondly, our method uses a local parameterization, while Shell Maps
requires a full global parameterization of the entire mesh. Needles to say, these
differences obviously impact the results produced by the two different methods.
Most notably is the flexibility offered by the implicit representation, and the
improved quality of the produced mappings. For example, with the implicit ap-
proach, we have the option of generating a single topologically connected and
smooth surface from the base geometry and all the applied geometric textures
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(a) (b)

Figure 11.1: Mapping a dragon onto a sharp corner using (a) our new geo-
metric texture mapping technique (semi-implicit mapping), and (b) using the
technique of [67]. Both mappings were done in less than one second.

(see e.g. figure 8.13). Additionally we do not have to worry about self intersect-
ing geometry, not even if different textures intersect each other when mapped
onto the base surface. In the following, we will go into details with some of the
advantages of choosing an implicit or semi-implicit approach over an explicit
approach.

Figure 11.1 shows an example of mapping an explicit geometric texture (a
triangle mesh) onto an object with a sharp edge. The parameterization used
by the shell mapping technique [67] combines the base surface with an offset
surface generated by offsetting the vertices in the base mesh a given distance
in the normal direction. Consequently, discontinuities in the base mesh, such
as the sharp edge in figure 11.1 will also be present in the offset surface and
will consequently influence the entire parameterization. As a result, the object
mapped using the shell mapping technique, figure 11.1(b), becomes severely
distorted. Our reduced distortion parameterization on the other hand, guaran-
tees a uniform distribution of the patch particles. Consequently our mapping,
figure 11.1(a), produces a smooth result, even across such sharp edges. Al-
though the distortion minimization technique presented in [91] can help reduce
the distortion in the case of shell mapping, it cannot completely resolve the
problem due to the linear interpolation in shell space. The only way to com-
pletely resolve this problem is to generate a smoother offset surface, which is
exactly what our approach does. As for the performance of the two techniques,
both mappings were done in roughly the same time, which is in less than one
second.

Using the signed distance function to generate our offset surface presents
a number of advantages. First of all, the further we move away from the base
surface, the smoother the offset surface becomes. This means that the influence
of high frequency details in the base geometry reduces the further we move away
from the surface, yielding smoother looking results, as seen e.g. in figure 11.1(a).
Also, most similar systems using explicit geometry representations are limited
to rather small offsets. The problem is that the vertices are offset in a fixed
direction. Consequently, if a vertex is about to collide with a different part of the
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Figure 11.2: The offset on the left is a natural result of the level-set’s implicit
representation. On the right we see an explicit polygonal offset (note the de-
generacies in concave regions) using the method proposed in Shell Maps [67].

offset surface, then that vertex cannot be moved any further. This is illustrated
in figure 11.2, which shows the offset surfaces generated for the bunny model
using level sets and the method used for Shell Maps. The creases we observe in
the offset surface generated with the explicit approach are due to vertices being
locked prematurely to avoid self intersections. This problem is not present in
the offset surface generated using the level set approach. The small bunnies
in figure 8.10 is an example of mappings using larger offsets (although our
method is capable of handling significantly larger offsets). In addition to being
significantly more stable, generating the offset surface using level set techniques
is also a much simpler task than using the explicit technique. With the explicit
technique, self intersections and aliasing are issues that has to be dealt with
manually. In contrast, with the level set approach this is handled by solving
equation (6.8) with Vn = 1.

As we have already mentioned in section 8.5, using an implicit surface as
base- and texture-geometry allows us to perform a smoothly blended CSG union
to get a single connected surface, smoothed in the regions of the intersection
of the two original volumes. Performing CSG operations on explicit geometry
on the other hand is very hard, and due to the finite numerical precision used,
not all cases can be handled correctly. To further elaborate on the advantage
this presents, we note that apart from adding geometry using a CSG union, we
can also do a CSG difference. Performing a CSG difference between the base
and the texture results in the texture being subtracted from (or carved out of)
the base volume. This is illustrated in figure 11.3, where a number of stars are
carved out of a teapot.

As always, everything has its price: In our case, the price we have to pay
for all the benefits just described is speed. Warping implicit surfaces is much
slower than warping explicit geometry. There are basically two reasons for this
difference in performance. The first reason is, that we need to calculate a value
for each grid point in the embedding volume of the warped texture, and that the
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Figure 11.3: Teapot with star shaped cut-outs created using our mapping and
CSG subtraction.

embedding volume typically has significantly more grid points than a explicit
representation has vertices. Even though we are using a memory efficient narrow
band representation, we still need to calculate the value for all grid points in
the full embedded volume before we can determine whether or not those values
should be stored in the compact representation. Thus, the total number of
points needing to be mapped from one space to the other is typically higher for
the implicit mapping than for the explicit mapping. The second reason that the
implicit mapping is slower is, that we need to perform the mapping from patch
space to texture space rather than the other way around. As the sampling of
texture space is a regular sampling, we can exploit this to create a very fast
mapping from texture space to patch space. The sampling of patch space on
the other hand is by no means regular, and we must thus apply a more generic
interpolation scheme. Consequently, we have not been able to optimize this
method to the same degree as we could with the scheme used for the mapping
from texture space (for example, finding the nearest sample point in texture
space can be achieved in constant time, whereas the same operation in patch
space requires logarithmic time in the number of sample points). Considering
these two issues, we cannot expect the implicit mapping to compete with the
Shell Map method, or our semi-implicit mapping which is just as fast as the
Shell Map method, in terms of execution time. We do, however, believe that
the improved result, the possibility to generate a single topologically connected
surface and the overall flexibility of our system more than compensates for this.



103

As a part of the geometric texture mapping methods presented in this the-
sis, we have presented three different particle based parameterizations of the
patch space, and three different mapping methods used to warp a geometric
texture to follow the base surface as dictated by the parameterization. While
these different methods help to illustrate some of the flexibility of the proposed
methods, they also pose a potential problem: What method should be used
when? Of the three methods, the semi-implicit method stands out because
it is based on an explicit representation of the texture geometry. Obviously, if
the texture for some reason cannot be converted into an implicit representation,
then the semi-implicit method is the only option. Similarly, if the response time
is an issue and a single connected surface is not required, we also recommend
using the semi-implicit approach. This could for instance be the case in the
modeling phase, where the semi-implicit mapping could be used until a satis-
factory result is obtained, at which point the final high quality model could be
generated using one of the implicit methods. The choice between the two im-
plicit methods is a bit less obvious. Clearly, the Shell Map hybrid is faster than
the radial basis interpolation variant, and if the particle spacing in the param-
eterization is kept small enough, the results are in most cases of a very good
quality. Overall, however, the radial basis interpolation based mapping does
produce higher quality mappings due to the higher order interpolation used.
In particular, there are cases where this higher order interpolation is a great
advantage: Consider mapping a texture onto a surface with many relatively
large bumps using the reduced distortion parameterization. Due to the high
sampling density required for the Shell Map hybrid, these bumps will propagate
through the texture and influence the warping of the texture even away from
the surface (although some of the effect will wear off away from the surface due
to the use of the signed distance function to generate the particles). In contrast,
due to the higher order interpolation of the radial basis function interpolation,
a significantly lower sample density can be used away from the surface. As a
result, the bumps in the surface will have a reduced influence on the mapping
away from the surface. In fact, by changing the sample density, we can control
to which extend small features in the base surface affects the mapping away
from the surface.

As already pointed out, the biggest limitations of the presented methods is
the performance of the implicit methods. Most of the examples shown so far has
taken from a couple of seconds (e.g. the stars added to the bunny in figure 8.11
and removed from the teapot in figure 11.3) and up to several minutes (e.g. the
baby dragons in figure 8.12) to complete per mapped texture. While some of the
time spent can be ascribed to the fact that the current implementation is a proof
of concept implementation that lacks full optimization, we cannot claim this to
be fully responsible for the performance. By introducing the Shell Map hybrid,
we managed to reduce the problem somewhat, although there is still plenty of
room for improvements. Fortunately, we have several ideas of how to improve
on the overall performance of our system. First of all, we believe that we can
speed up the Shell Map hybrid method by taking advantage of the coherence
in tetrahedron lookups. Whenever we are to locate the tetrahedron containing
a given point, we can speed up the process by looking at the previously tested
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point. As these two points are close in world-space, the new point will either
be in the same tetrahedron as the previous one, or in a tetrahedron close by. If
we add neighbor pointers to the faces of each tetrahedron, we can step from the
previous tetrahedron in the direction of the new point until we find the actual
tetrahedron containing this point. As the previous and current points are close
in world space, we will in most cases step through no more than one or two
tetrahedrons. This essentially means that we can reduce most of the lookups
from logarithmic to constant time. There are special cases where this lookup
cannot be used, e.g. if no previous tetrahedron was found, however, for most
grid points, this method should be applicable. Another possible optimization
stems from the fact that the calculations performed per grid point in the warped
volume are independent of each other. This means that both mapping methods
are perfect candidates for a multi threaded implementation allowing it to utilize
multiple processors or multiple processor cores. Also, the calculations required
for the radial basis function based mapping is completely identical for all grid
points, which means that another evident optimization would be to utilize the
SIMD instruction set available on most current processors. Finally, we have
recently become aware of a the Aranz FastRBFTM engine [5], which according
to the company’s website is able to perform radial basis function interpolation
significantly faster than with our current implementation. With their RBF
engine, the complexity of the radial basis function mapping reduces from O(ng×
np) to O(np log np + ng). We will return to this in the future work chapter.



Part IV

Conclusion and Future Work
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Chapter 12

Future Work

We have several suggestions for improvements and ideas for future work, both
with respect to the terrain rendering algorithms presented in part II and the
geometrical texture mapping methods presented in part III, and we will now
discuss them in that order.

Regarding the terrain rendering, we have two areas that we would like to fur-
ther improve in the future: improved texture management; and better support
for out-of-core terrain rendering.

To handle textures more efficiently, we plan to investigate a paging system
inspired by those described in [14,22], although in a slightly simplified version.
This entails keeping the texturing system as is, but in the cull phase we will
ensure that only the textures that are actually needed (or are likely to be needed
within the next few frames) reside in texture memory. An alternative we would
like to investigate is to cut down the textures size such that each texture is
applied only to a single GeoMipMap. This would allow for a much finer control
over the texture caching and pre-fetching.

To allow for rendering of terrains with a memory footprint larger than the
available main memory, the first step is to implement the compression scheme
discussed in section 4.6. If this does not reduce the memory footprint suffi-
ciently, a paging system would be required to load the GeoMipMaps that are
not currently loaded, but are likely to be needed within the next couple of
frames. Similarly, GeoMipMaps that are not in use, and not expected to be
used soon either would have to be unloaded in order to free up system memory.

Regarding the geometrical texture mapping, our primary focus for the future
is to further improve the performance of the implicit mapping methods as well
as adding new features to our flexible system.

We are currently looking at two different approaches for speeding up the
implicit mappings. The first is to optimize the code rather than the actual
algorithms. As previously mentioned, our current implementation is an exper-
imental proof of concept implementation, meaning that it has been developed
with a strong focus on flexibility rather than speed. If we choose to remove
some of that flexibility, e.g. by restricting ourselves to choosing the radial basis
function at compile time rather than at run time, we would gain some signif-
icant performance improvements. Furthermore, as mentioned in chapter 11,
most of the heavy calculations are great candidates for a multi threaded imple-
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mentation allowing us to utilize multiple processors or multiple processor cores.
Similarly, utilizing the SIMD or a similar instruction set available on most cur-
rent processors would also allow for a significant increase in performance. The
other approach for increasing the performance is to look at reducing the com-
plexity of the algorithms. We have already, in chapter 11, presented our idea
for improving the complexity for the shell map hybrid: by utilizing knowledge
of the previous point-in-tetrahedron lookup, most lookups can be performed
in constant time, thereby, in practice, reducing the overall complexity from
O(ng × log np) to O(ng). At the same time, we are investigating possible ways
of improving the performance of the radial basis function based mapping. Our
first idea is to use a radial basis function with local support rather than the
current global support. This way, we will only need to sum over the particles
within a certain distance rather than over all particles. We then intend to place
the particles in a spatial data structure such as a kD-Tree or a grid to be able
to locate the particles within this distance in sub-linear time. Another idea
is to use a similar data structure to let us quickly locate the nearest particle.
If the texture coordinate associated with that particle maps to a point in the
texture volume outside the narrow band, we may be able to conclude that the
current point in patch space will also map to a point outside the narrow band.
If this is true, it will not be necessary to perform the full radial basis function
interpolation for this point, which again would provide a significant speedup to
the mapping. Finally, as briefly mentioned in chapter 11, we have just recently
become aware of the Aranz FastRBFTM engine [5]. According to the company
website, utilizing this radial basis function engine rather than a standard ra-
dial basis interpolation engine such as the one we are currently using would
reduce the time complexity of our radial basis mapping from O(ng × np) to
O(np log np + ng). Obviously, we are quite keen on experimenting with this
engine in practice.

One of the interesting aspects of the geometrical texture mapping methods
in terms of further development is the animation toolbox presented in chapter
10. As mentioned previously, there are a couple of issues with our current meth-
ods for animating geometric textures. Most of these issues are a consequence
of the fact that there is currently no constraints on the patch corners. Thus,
there is nothing that keeps the corner particles from drifting in different direc-
tions, thereby distorting the patch and consequently also the texture. Rather
than trying to introduce some kind of spatial relationship between these corner
particles, which most likely would significantly increase the complexity of the
system, we are currently investigating the potential of exponential maps [12,71].
As mentioned in chapter 10, the exponential map is defined by a single seed
point and a direction vector. Thus, if we employ a parameterization based on
this mapping, we avoid the problem with the defining particles drifting in dif-
ferent directions, as there will only be one defining particle. Furthermore, with
this parameterization, it will also be possible to support key frame animations
including rotations of the patch, as this will reduce to a (quaternion based) key
frame animation of the direction vector. Finally, by employing a parameteri-
zation on the exponential maps, we believe that the system will become even
simpler and more intuitive to use, as the interface for the exponential maps is
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indeed very simple and intuitive.
This does not mean that we intend to retire our current corner based ap-

proach, as we still believe that is has its own advantages. Specifically, it offers a
great deal of flexibility, which is something we plan on taking further advantage
of. One such idea is to add more user control over the bounding curves gen-
erated between the patch corners by adding a number of control points on the
generated curves, and then let the user manually adjust these points to produce
the desired curves.

As mentioned in section 8.2, our system is very flexible with respect to
the specific methods used to distribute the patch particles. We have already
presented three different methods, and we believe that there is still a great
possibility to develop additional methods, including the exponential map based
method we are currently working on.

One issue that we have not looked at in great detail is the distortion of the
warped texture geometry. We optimized our mappings to minimize the 2D dis-
tortion of the particles on the surface, and in the case of the reduced distortion
parameterization, this was also done at the remaining particle levels. We did,
however, not try to minimize the overall 3D texture distortion for any of the
parameterizations. We believe that we will be able to adapt the distortion met-
ric presented by Zhou et al. [91] to also work with our parameterizations. The
method they presented performed an optimization on the texture coordinates
associated with vertices of the offset surface used for shell mapping.

Finally, we are interested in looking into how the parameterizations and
mapping methods can be adapted to also work with a base geometry specified
as a triangle mesh. In particular, we are interested in using a height field as our
base geometry, as it would allow us to easily add the kind of details to a terrain
discussed in section 4.7. Obviously, this would mean that we would sacrifice
some of the features of our methods such as the ability to produce a single
smooth topologically connected surface. We do, however, believe that e.g. the
spline based parameterization combined with the semi-implicit mapping would
be a valuable tool for adding trees etc. to a bumpy landscape.





Chapter 13

Conclusion

The focus of this thesis has been on developing flexible and effective algorithms
for various kinds of geometric texturing, both in terms of terrain visualization
and in terms of geometric texture mapping.

First, we have presented a flexible framework for real-time rendering of large
textured terrains. This system stands apart from other systems in that not only
does it support real time rendering of large textured terrains, it also abides to
a more unusual requirement: it is possible to alter the terrain on-the-fly with
virtually no impact on performance. By carefully designing the data layout, and
using vertex programs to optimize data storage, less than 2.5 bytes is stored in
memory per vertex. While our algorithm is not as fast as the current state-of-
the-art algorithms, it is significantly more flexible than previous systems: we
support arbitrarily large textures, on-the-fly altering of the terrain and even
partial specification of the terrain with on-the-fly updating of the terrain if
additional data should become available. Additionally, the presented methods
are simple and easy to implement. It is currently being used (and have been for
almost two years) in the ToposTM visualization software package [1], that apart
from being a commercial product also forms the backbone of a major incident
overview demonstrator prototype on the Palcom research project [62,74].

Second, we have presented robust and flexible techniques for warping and
blending (or subtracting) geometric details, in the form of a geometric texture,
onto level set surfaces. Our current approach is based on the use of implicit
geometry, which makes it easy to merge the base and texture geometry into a
single topologically connected object as well as robustly smoothing the inter-
section between the base and texture geometry guaranteeing a smooth surface
with smooth normals. Furthermore, our mapping employs a flexible particle
based parameterization. As the parameterization is characterized by the distri-
bution of the particles, we can easily change the parameterization by changing
the way the particles are distributed. To demonstrate this flexibility, we have
presented three different methods for distributing the particles, including a
method that reduces the overall texture distortion. Additionally, a number of
interesting effects can be achieved by applying different transformations to the
patch particles. One example of this was shown in section 8.5 (figure 8.19).

Although the semi-explicit mapping proposed in this thesis is very fast, the
radial basis function based implicit mapping can be slow. The problem is that
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the speed of the implicit mapping depends, not only on the size of the volume it
is being mapped into, but also on the total number of particles defining the pa-
rameterization. Although the improved results compared to e.g. the Shell Map
technique [67] and the possibility to generate a single topologically connected
surfaces should well compensate for this, we are currently considering differ-
ent approached to increase the speed of the mapping without compromising
the high quality provided by the radial basis function interpolation. We have
already presented an alternative approach based on the tetrahedronization of
shell space introduced in the Shell Map paper by Porumbescu et al. [67]. As
shown in chapter 9, this Shell Map hybrid has a lower run time complexity,
and in the tests we have performed it was roughly a factor of 7 faster than the
radial basis function method. The trade-offs are that the barycentric interpo-
lation used causes interpolation discontinuities, reducing the mapping to C0 -
just as the original Shell Map method [67]. Furthermore, the extended control
of the smoothness of the mapping provided by the λ-values in the radial basis
function weight calculation is not available for the shell map hybrid. Thus, the
two mappings each have their advantages: while the Shell Map hybrid method
is the faster of the two, the radial basis function method produces results of
higher quality.

Finally, we have presented a set of animation building blocks, allowing our
geometric texture mapping techniques to be applied in an animation context
as well. Although it can be argued that the presented building blocks have not
fully matured yet, they show the potential of the presented methods.

We have developed a very powerful and flexible toolbox for geometric textur-
ing and stimulating conversations with people in the movie industry makes us
confident that our techniques can be useful in actual production environments.

In general, the idea of using level sets and implicit surfaces as a tool for
surface modeling and editing has been introduced in several previous publica-
tions( [28, 53, 82]). The methods presented here adds to this already existing
level set modeling toolbox and will, hopefully, help promoting level sets as a
viable modeling tool to coexist with current explicit geometrical representations
in future modeling systems.
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Real-Time Visualization of Large Textured Terrains

Anders Brodersen∗

University of Aarhus

Abstract

In this paper, we present a framework for real-time rendering
of large scale terrains with texture maps larger than what
the graphics hardware can display in a single texture. The
presented system is compact and efficient, yet very simple
and easy to implement.

Keywords: terrain rendering, level of detail, texturing

1 Introduction

Real-time visualization of large terrains has been an active
area of research for more than a decade. In the past few
years, as a natural result of the constantly increasing capa-
bilities of modern graphics hardware, the focus has turned
from CPU intensive algorithms, where level of detail is deter-
mined per triangle, to the more GPU intensive algorithms,
where the level of detail is determined for a set of triangles
at a time. The result is a much simpler and faster level of de-
tail calculation at the cost of a somewhat increased triangle
count.

In most cases, however, the important issue of how to add
a texture map to these large terrains have been ignored.
The problem arises because modern graphics hardware is
limited to displaying textures of sizes up to 2048×2048 or
4096×4096, which for most applications (particularly games)
is more than sufficient. However, for a terrain covering an
area of 80km2, such a texture would only provide one texel
per 20 or 40 meters!

In this paper, we demonstrate how a geometric mipmap
based terrain engine can be adapted to efficiently render
large scale terrains and at the same time allow textures larger
than what the graphics hardware is capable of displaying us-
ing a single texture. By combining carefully designed data
structures with the use of vertex programs, the proposed
system requires less than 2.5 bytes per vertex.

2 Related Work

Algorithms for interactive rendering of height fields are typ-
ically divided into two categories: Algorithms that take ad-
vantage of the regular structure of the datasets to create an
efficient hierarchical representation of the terrains, which is
then used for run-time by progressive mesh refinement or
simplification[Duchaineau et al. 1997; Lindstrom and Pas-
cucci 2002]; and algorithms based on a more general un-
constrained triangulation of the terrain, such as the BDAM
algorithm[Cignoni et al. 2003] and the view dependent pro-
gressive meshes presented by Hoppe[Hoppe 1998].

∗rip@daimi.au.dk, Åbogade 34, 8200 Århus N, Denmark

Inspired by the massive evolution in consumer graphics hard-
ware, a new group of algorithms has started to appear. Tak-
ing advantage of the highly increased triangle throughput
of modern graphics hardware, existing algorithms have been
modified[Levenberg 2002; Cignoni et al. 2003] and new algo-
rithms have been invented[Losasso and Hoppe 2004; de Boer
2000]. What these new algorithms have in common is that
they utilize far simpler algorithms which, at the cost of ren-
dering more triangles than required to achieve the desired
mesh quality, has a much lower CPU overhead. In other
words, most of the work is shifted from the CPU to the
GPU.

Although texture mapping is an important aspect of terrain
rendering, most papers touch only very briefly the subject.
The standard approach for the systems that do handle large
textures is to partition the texture into tiles, binding each
tile to a certain part of the terrain[Hoppe 1998]. In some
cases the textures are arranged into a pyramidal structure
to facilitate texture level of detail along with the geometric
level of detail[Döllner et al. 2000; Cignoni et al. 2003; Hua
et al. 2004]. In all cases, the texture handling is tightly cou-
pled with the geometrical level of detail algorithm; the only
truly general approach is the clip-map[Tanner et al. 1998],
which requires special hardware. The approach presented
in this paper is also based on texture tiling, but with tex-
ture level of detail currently limited to standard hardware
controlled mipmapping. Extending this system with texture
management as in [Döllner et al. 2000] and [Cignoni et al.
2003] can easily be done with no significant changes to the
rest of the system.

3 Data Structures and Memory Layout
The terrain engine presented here has been implemented as
part of a commercial program, requiring more than just fast
rendering of the terrain. One requirement is the ability to
render the terrain with a texture larger than the textures
displayable by current hardware. Another requirement is
that preprocessing of the data should be limited to no more
than a few minutes.

In designing a system that satisfies all of our requirements,
we have turned to the GeoMipMap algorithm[de Boer 2000],
where the terrain is divided into smaller patches, called
GeoMipMaps, of size (2n + 1)× (2n + 1). The original Ge-
oMipMap algorithm is clearly designed for smaller scale ter-
rains used in games, but we have extended it to be suitable
also for rendering larger terrains.

Our system uses a 3 level data structure:

• At the bottom level we have a 2D array of GeoMipMap
structures, containing the heights of the vertices in that
particular patch as well as some information needed for
the level of detail algorithm. The class declaration is
listed in figure 1.

• At the mid level, we have a 2D array of the Map-
Block structure. This structure allows us to control the
texture mapping. Each MapBlock controls n×m Ge-
oMipMaps as well as one or more textures, used for dec-
orating all of the controlled GeoMipMaps. Like [Döllner
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class GeoMipMap
{

//Current level of detail
unsigned short LoD;
//delta max for each detail level
unsigned short *deltaMax;
unsigned short *heights;
VboElement *vboElm;
//Bounding box
unsigned short ymin, ymax;

};
Figure 1: Class Declaration of GeoMipMap. The VboEle-
ment entry is described in section 5.

et al. 2000], textures can be combined using any of the
blending operators supported by OpenGL.

• Finally, at the top level we have a single Terrain struc-
ture, which forms the interface between the terrain en-
gine and the rest of the system. The Terrain structure
also holds all data that can be reused between different
MapBlocks or GeoMipMaps.

Storing the heights in the GeoMipMaps instead of having
one large 2-dimensional array means that heights along the
shared edge of two GeoMipMaps need to be stored in both
GeoMipMaps. However, as we will see in the next sections,
the benefits of this layout makes this a very small price to
pay.

4 Level of Detail

The level of detail algorithm used in our system is based
on the geometrical mipmapping algorithm presented by de
Boer[de Boer 2000]. We follow the convention from [de Boer
2000] that the y coordinate of our vertices represents the
height of the terrain.

Figure 2: Mesh layout for a map size of 5. The black circles
are the vertices used for lower detail level mesh (level 1).
Both the white and black circles are used for the highest
resolution mesh (level 0).

The terrain is subdivided into a number of smaller patches,
called GeoMipMaps, of size (2n +1)× (2n +1) samples (typ-
ically either 17×17 or 33×33), which is then rendered at
full resolution, every second vertex only, every fourth ver-
tex only, etc., depending on the desired level of detail. In
other words, the desired level of detail is determined for the
entire GeoMipMap, making the refinement process both sim-
ple and efficient. Changing from one GeoMipMap level to
the next simply amounts to removing every second vertex in
both directions, thus reducing the number of vertices from
(2n +1)× (2n +1) to (2n−1 +1)× (2n−1 +1), which is depicted
in figure 2. At creation time we calculate, for each level of
each GeoMipMap, the maximum geometrical error caused by
changing from level 0 (highest resolution) to that level. This

is the largest vertical distance between a vertex in the origi-
nal mesh and the triangulation of the current level. Selection
is then done at run-time, given the current view parameters
and the world space bounding box of a GeoMipMap, by cal-
culating the maximal geometrical error allowed inside that
bounding box, with respect to a user supplied threshold.
This value is then compared to the error values for the Ge-
oMipMap, and the lowest detail level with a maximum error
below this value is chosen to be rendered.

S

N

W EC

Figure 3: The 5 regions of a single GeoMipMap implicitly
defined to simplify the task of avoiding cracks in the mesh.
Note that when no more than 3x3 vertices remain, the center
region is empty.

One last issue with the level of detail algorithm is how T-
vertices and the resulting cracks in the mesh are avoided.
We divide each GeoMipMap into 5 separate regions, see fig-
ure 3, where tessellation of the center region is based entirely
on the currently selected level of detail. The tessellation of
the four border regions are based on the currently selected
level of detail, and the level of detail of the neighbor Ge-
oMipMap sharing an edge with that region. If the neighbor
is at a higher resolution, we add the missing vertices to the
shared edge to ensure a consistent tessellation between Ge-
oMipMaps. This is demonstrated in figure 4. This is the
opposite approach of [de Boer 2000] and [Larsen and Chris-
tensen 2003], where vertices are removed rather than added.
Removing vertices instead of adding them results in fewer
triangles to render, but at the cost of removing triangles
with a potential geometrical error larger than the calculated
maximum. We believe that providing a tessellation of a (po-
tentially) lower quality than implied by the user specified
threshold is an ill design choice, and therefore prefer the
slightly increased triangle count.

Figure 4: When two neighboring GeoMipMaps have different
resolution, extra vertices (black dots) are added to the lower
resolution GeoMipMaps representation of the shared edge,
making the two edges identical.

4.1 Keeping Memory Usage at a Minimum
An important benefit from using a regular grid height map
for terrain visualization is that the x and z coordinates can
easily be calculated at runtime, and thus need not be stored.
To avoid recalculating the x and z coordinate whenever we
need to draw a triangle, we take advantage of the fact that
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each map has its own copy of the y coordinates making up
that map. By precalculating the x and z coordinates of one
map, we can reuse these coordinates for all other maps, by
simply translating the vertices to the position of the new
map relative to the original map.

In practice, this means that we store the x and z coordinates
of the lower left block in one array, and the y coordinates for
each of the n×m maps in separate arrays. When rendering,
we pass in the x and z coordinates using the 0th OpenGL
vertex attribute array, and the y values using the 1th vertex
attribute array. We then use a simple vertex program to
assemble this into a full vertex.

Using the GeoMipMap structure listed in figure 1, the
amount of memory needed to store a single GeoMipMap of
size 17×17 is no more than 604 bytes. The MapBlock struc-
ture is a lightweight structure containing nothing more than
a compressed bounding box (2 shorts), two indices, one or
more texture ids and a list of visible maps, thus it contributes
little to the overall memory consumption. As the top level
Terrain structure is never instantiated more than once, even
with all the indices stored (see section 5), the total memory
consumption for even moderate size terrains1 is less than 2.5
bytes per sample.

5 Efficient Rendering
Vertex Buffer Object Management In order to achieve
high frame rates, it is important that we have all the needed
vertex data in graphics memory. However due to the large
memory requirements of the textures combined with the ad-
ditional use of graphics resources by the application itself
(that is, textures and vertex data for other geometry dis-
played along with the terrain), it is equally important that
we do not waste resources on parts of the terrain that are
not drawn.

For this reason we have implemented a manager for OpenGL
vertex buffer objects. Each GeoMipMap stores a pointer to
a VBOElement, which is a wrapper around an OpenGL ver-
tex buffer object (VBO). VBOElements are managed using
a standard least recently used approach. Whenever we are
about to render a GeoMipMap with no VBOElement as-
signed, we revoke the least recently used, and assign it to
the GeoMipMap.

An important detail for this to work properly is that no VBO
is allowed to be used more than once per frame. Should a
VBO be used twice in the same frame, then the least recently
used sharing approach will often cause most if not all VBOs
to be updated, effectively killing performance. To avoid this,
we keep track of how many VBOs are used each frame. If
at any one time we have used all VBOs in our queue, and a
GeoMipMap makes a request for a VBOElement, a new one
is immediately created instead, growing the queue to fit the
current requirements. If the number of VBOElements in use
is less than the current size of the queue, we slowly shrink the
queue2 in order to reclaim graphics resources when possible.

Pre-calculated indices For efficiency, we pre-calculate the
indices for all possible level of detail configurations for a Ge-
oMipMap and its 4 neighbors, which for GeoMipMaps of
size 17×17 results in 354 different sets of indices. This takes
up 88896 bytes of memory (58718 after being converted to
tristrips), which are turned into triangle strips, and stored in

1The larger the terrain, the smaller is the influence of the single
Terrain structure

2By removing at most one element per frame

Render-Terrain()
1 visibleMapBlocks.clear();
2 for each mb in mapBlocks
3 do if mb is visible
4 then visibleMapBlocks.add(mb);
5 for each gmm in mb.geoMipMaps
6 do if gmm is visible
7 then mb.visibleGeoMipMaps.add(gmm);
8 gmm.calculateDesiredLoD();
9 for each mb in visibleMapBlocks

10 do mb.setupTextures();
11 mb.updateVertexProgramState();
12 for each gmm in mb.visibleGeoMipMaps
13 do gmm.getNeighbourLoDs(&n,&s,&e,&w);
14 gmm.setupVertexArrays(n,s,e,w);
15 gmm.updateVertexProgramState();
16 renderPatch();

Figure 5: Pseudo-code describing the rendering procedure.

a single VBO. A more memory efficient approach would be
to separately render each of the sections of the five section
GeoMipMap layout presented in section 3. This reduces the
total memory requirement for the (stripified) indices, to a
mere 4338 bytes (for a 17x17 GeoMipMap) but at the cost
of having five draw calls per GeoMipMap instead of one. Us-
ing maps of size 17×17, we have seen a performance increase
of up to 7% when using only one draw call and therefore rec-
ommend using that approach. However, for map sizes larger
than 17×17, the memory needed to store the indices may
become a problem, and drawing the five regions separately
may then be advisable.

Frustum Culling View frustum culling in performed
using the optimized two point axis-aligned bounding
box/plane intersection test with masking by Assarsson and
Möller[Assarsson and Möller 2000]. Culling is performed on
the 3 level layout presented in section 3. Because the bound-
ing boxed of all three levels are aligned to the same coordi-
nate system, the n-vertices and p-vertices are the same for
all structures, and therefore need only be found once per
frame. As a result, frustum culling using the existing data
structures is very fast, without introducing any additional
data structures.

Texture Handling Handling textures of arbitrary size is
done by cutting the textures in to smaller sub-textures, each
sub-texture being small enough to be displayable by the
graphics hardware. The subdivision of the texture is done in
a way that each sub-texture fits exactly n×m GeoMipMaps.
Each sub-texture is then assigned to a MapBlock controlling
exactly the n×m GeoMipMaps covered by the sub-texture.
During the cull phase, each visible GeoMipMap is added to
a visibility list of the corresponding MapBlock. The visible
GeoMipMaps are then rendered, one MapBlock at a time,
thus requiring the textures of that MapBlock to be bound
only once per frame.

Splitting textures is done in an offline step for image textures
that are independent of the actual terrain, while textures,
such as light maps, that are tightly coupled to the geometry
are generated and subdivided at runtime.

An outline of the rendering loop, including culling, level of
detail calculations etc. is depicted in figure 5.

6 Results

The implementation has been tested on a laptop computer
powered by an Intel Pentium M 1.5GHz processor with one
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gigabyte of memory and an nVidia GeForceFx 5650 Go chip
with 128MB dedicated graphics memory.

Figure 6: View of the Broad-Law terrain

Our test terrain is an area in Scotland known as Broad Law.
The terrain is made up of 8193×8193 height samples, and
rendered with a 8192×8192 RGB image tiled into 8×8 tex-
tures of size 1024×1024 and a 1024×1024 light map also tiled
into 8×8 sub textures, see figure 6.

With a screen space error, τ, of one and a GeoMipMap size
of 17×17, the terrain is rendered at on average 70 frames per
second at a rate of up to 35M∆/sec.

It is our experience that the best performance is obtained
when using GeoMipMaps of size 17×17, at which point the
balance between the number of draw calls and number of
unnecessary triangles drawn seems to be optimal. This
correlates with the results obtained by Larsen and Chris-
tensen[Larsen and Christensen 2003].

Figure 7 shows a wire frame rendering of the terrain from
figure 6, with a screen space error of 3 pixels.

Figure 7: Wire frame rendering of terrain with τ = 3 pixel.

7 Future Work
We have two issues that we would like to address in the
future: Improved texture management and better support
for terrains larger than what fits in main memory.

To handle textures more efficiently, we plan to investigate a
system inspired by those described in [Döllner et al. 2000;
Cignoni et al. 2003], although in a slightly simplified version.
This entails keeping the texturing system as is, but in the
cull phase we will ensure that only the textures that are
actually needed or are likely to be needed within the next
few frames, reside in texture memory, and that unneeded
levels of the mipmap remain unspecified.

As for terrains larger than what fits in main memory, the
first step is to implement the compression scheme similar to
that of [Losasso and Hoppe 2004]. Another option is to use
memory mapped files and then leave the rest to the operating
system, as done f.ex. in [Lindstrom and Pascucci 2002].

8 Conclusion
We have presented a framework for real-time rendering of
large terrains with texture maps larger than what the graph-
ics hardware can display in a single texture. By carefully
designing the data layout, and using vertex programs to al-
low reusing of as much data as possible, less than 2.5 bytes
is stored in memory per vertex.

Finally, the presented system is simple, efficient and easy to
implement.
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Geometric Texturing Using Level Sets
Anders Brodersen, Ken Museth, Serban Porumbescu and Brian Budge

Fig. 1. Carving patterns into an irregular surface by subtracting a geometric
texture using the proposed technique.

Abstract— We present techniques for warping and blending (or
subtracting) geometric textures onto surfaces represented by high
resolution level sets. The geometric texture itself can be repre-
sented either explicitly as a polygonal mesh or implicitly as a level
set. Unlike previous approaches, we can produce topologically
connected surfaces with smooth blending and low distortion.
Specifically, we offer two different solutions to the problem of
adding fine-scale geometric detail to surfaces. Both solutions
assume a level set representation of the base surface which is
easily achieved by means of a mesh-to-level-set scan conversion.
To facilitate our mapping, we parameterize the embedding space
of the base level set surface using fast particle advection. We
can then warp explicit texture meshes onto this surface at nearly
interactive speeds or blend level set representations of the texture
to produce high-quality surfaces with smooth transitions.

Index Terms— Geometric texture mapping, parameterization,
implicit surfaces, volume texturing, geometric modeling.

I. INTRODUCTION

WE present a novel 3D fine-scale explicit and implicit
geometry mapping technique based on level sets, inter-

polation, and radial basis functions. Our work is motivated by
the need to easily model fine geometric detail in a convenient
fashion. For years, the standard approaches to increase geo-
metric complexity have primarily been 2D texture [1], bump
[2], and displacement mapping [3]. These techniques, while
capturing a wide range of geometric phenomena, are limited
in the types of detail they can represent. Kajiya and Kay [4]
realized this early on and introduced volumetric textures to

Anders Brodersen is with University of Aarhus, Denmark.
Ken Museth is with both Linköping University, Sweden and University of

Aarhus, Denmark.
Serban Porumbescu and Brian Budge are with University of California,

Davis.

(a) (b)

Fig. 2. Base geometry (left) and texture geometry (right) used to created
Fig. (1).

represent more topologically complex structures. Recently, the
focus has shifted towards more sophisticated volumetric and
geometric texturing approaches in an effort to capture a wider
range of complex geometric phenomena [5]–[8].

Our contribution leverages the recent introduction of DT-
Grid data structures and algorithms [9] and the large body
of level set research to bridge the gap between existing
volumetric and explicit geometric mapping techniques. This is
achieved by providing a fast geometric mapping suitable for
modeling and previewing and an implicit mapping approach
that complements existing explicit mapping techniques (e.g.
[8]) by generating closed, smoothly blended surfaces. Our
general approach uses an implicit level set representation of
both the base surface and the texture geometry [10]–[12].
This representation allows for robustness to topology changes
during the mapping, flexibility when defining the blend of the
base and texture geometry, and is amenable to high quality
offset surface generation (see Fig. 15 for a comparison of
implicit versus explicit offset surfaces). Additionally, level
sets offer a large body of advanced numerical techniques for
easily computing surface properties and performing arbitrary
deformations. In fact, as has been shown in previous work
[13], direct control of blended surface properties is easily
achievable with level sets. This high degree of robustness
and flexibility, however, comes at the price of increased
computational complexity when compared to purely explicit
approaches. To address this issue, we have also developed a
fast semi-implicit technique that can conveniently be used for
near real-time previewing. It combines an implicit level set
representation of the base surface and an explicit polygonal
representation of the textures.

We assume that we are given a base surface as a compact
level set and a geometric texture either defined by a triangle
mesh or as a compact level set surface. If required, conversion
between triangle meshes and level sets can be performed using
a fast scan conversion technique [14] or marching cubes [15].
Given this geometry, our system briefly works as follows:
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• First, the user manually outlines a patch on the base level
set which defines the location of the geometric textures.
Given such a patch outline, we then construct a param-
eterization of the space above the patch. This effectively
creates the mapping needed to warp the texture into the
space near our base level set surface. The process of
defining the patch and the creation of the parameterization
is described in section II.

• Section III then presents a simple procedure that maps the
texture mesh onto the base level set at nearly interactive
rates.

• Alternatively, to produce a single topologically connected
surface with smooth blending between the texture and
base, the user can utilize a higher quality implicit map-
ping. This is the topic of section IV.

A. Contributions

The techniques presented in this paper include:

Implicit geometry mapping with smooth blending. We
complement existing explicit geometry mapping techniques by
using an implicit approach which smoothly blends mapped
geometry to create closed surfaces suitable for rendering
and various surface property computation. We do this using
compact level set representations of the the base and texture
surfaces. It is the first general texture space to shell space
mapping technique utilizing implicits that we are aware of.

Fast semi-implicit geometry mapping. We also introduce
a near real-time semi-implicit mapping approach that com-
bines an implicit level set representation of the base surface
with an explicit polygonal representation of mapped textures.
This technique is useful as a preview tool (prior to implicit
mapping) and as a stand alone method for mapping explicit
geometry.

Flexible volumetric parameterization. We compute a
low distortion parameterization with a minimum of user-
interaction. Our parameterization is not dependent on prior
surface texture coordinates. Instead, it is based on a local
parameterization generated on the fly, using a simple and easy
to use point and click interface. Furthermore, our parameteri-
zation is characterized by the distribution of a set of particles,
but is independent of the algorithm used to distribute these
particles. This means that the particles can be distributed in
a number of different ways, allowing for a vast number of
unique mapping effects. Finally we include results from a
simple free-form variation of our mapping technique where
the texture warping is derived and controlled by a deformable
spline curve.

B. Related Work

Our work builds on level set, implicit surface modeling, and
volumetric and geometric texture research. A recent body
of work proposing various compact data structures and fast
algorithms for level set models [9], [16], [17] is critical to

our work. Common to all these data structures is that they
uniformly sample distance values to a surface in a narrow band
embedding the surface. This uniform sampling is paramount
to perform our smooth blending operations since they amount
to solving mean curvature based level set equations. This
effectively requires spatial discretization of parabolic partial
differential equations which, to the best of our knowledge,
cannot be accomplished accurately on non-uniform grids.
Consequently, we have not considered adaptive distance fields
(i.e. “truly adaptive” octrees) [18], though other parts of
our texturing pipeline (e.g. CSG operations) could potentially
benefit from it. Instead we have chosen to base our texture
mapping technique on the “Dynamic Tubular Grid” (DT-Grid)
presented in [9]. This data structure has been shown to be very
CPU and memory efficient and allows us to represent level
set models of effective resolutions exceeding 10003 using less
then 100MB.

Much effort has been put into deriving methods for adding
textures to un-parameterized 3D models, specifically implicit
surfaces and level sets, including vector field driven texture
synthesis [19] and methods based on parameterizations of
support surfaces of lower geometric complexity [20], [21].
Common for these methods is a lack of flexibility and user
control. Pedersen [22] presented an interactive method to
create a parameterization of implicit surfaces by letting the
user manually divide the surface into rectangular and triangular
texture patches. This method has generally been considered as
state of the art since its publication in 1995. Recently, Schmidt
et al. presented a local parameterization based on discrete
exponential maps [23], producing a simple yet powerful in-
terface for texturing implicit surfaces, provided only a local
parameterization is required.

Kajiya and Kay introduced the notion of volumetric textures
[4]. Their method utilizes volumetric data sampled on a regular
grid, and traces rays through a shell volume on a surface.
Rays that intersect the shell are transformed to texture space
and traced through the sampled data grid. Material properties
were constrained across any region. Neyret extends volume
textures, allowing the use of multiple different materials in
a single region, and objects of different types to be tiled
onto a surface [24]. Wang et al. present a generalization of
displacement maps. For each location in a grid surrounding
the base surface, a distance is computed to the geometric
texture, called the mesostructure, for some discretization of
all directions. Several other variables are precomputed for
rendering, including BRDF information and local shadows [6].
Peng et al. [25] averaged distance field functions to generate
offset surfaces. Then 3D volumes are sliced into 2D textures,
and the textures are applied to various levels of the offset
surface. The technique allows interactive rendering of the
resultant volume. All of these techniques map geometry by
first 3D scan converting models into a regular grid which leads
to data storage and aliasing related issues.

Fleischer et al. propose to use a cellular texturing technique
to produce organic looking surface details [26]. While pro-
ducing impressive results, their modeling approach is not very
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intuitive due to a rather complicated underlying biologically
motivated simulation engine. Bhat et al. demonstrate a volu-
metric extension of the image analogies technique [7]. This
allows them to tile a surface with semi-repeatable patterns at
high effective resolution. The patterns do not need to be height
fields, and can represent complex structures on the surface.

Recently Shell Maps [8] generalized the notion of volumetric
textures by mapping explicit geometry without converting
models into regular grids. Shell maps are invertible mappings
between texture space and shell space – the space near
an object – that facilitate the transfer of explicit geometry,
procedural functions, and scalar fields as fine scale detail near
an object. The approach generates a correspondence between
texture space and shell space via a tetrahedral tiling. Point
location queries coupled with barycentric mappings between
corresponding tetrahedra are used to transform objects be-
tween spaces. The technique is powerful, but the resultant
mappings are only C0 continuous at tetrahedral boundaries
and can create artifacts like the one shown in Fig. 12(b).
Furthermore, the mapped geometry and the base mesh do
not create a new closed mesh, which can be problematic for
applying shaders over the entire surface. The level set approach
presented in this paper complements the explicit geometry
representation of Shell Maps by more naturally dealing with
sharp discontinuities and changes in topology necessary to
generate closed surfaces (when desired).

We present a novel technique for the mapping of geometry
onto surfaces. While sharing some conceptual similarities
with other methods that map 2D textures (e.g. images, bump
or displacement maps) and 3D textures (i.e. volumetric and
geometric) onto meshes there are some significant differences.
Our technique can map explicit geometry, but can also treat ge-
ometry implicitly which allows us to create closed continuous
meshes (topological 2-manifolds). This nice property allows
us to define important surface properties like normals and
curvatures on the resulting surface. The method requires no
surface-wide parameterization, and our local parameterization
only requires the user to select the region where they want to
map their geometry.

C. Notation

As a prelude to a more detailed discussion of our techniques
we shall briefly introduce some terminology. In this paper
the term geometry is used interchangeably for both explicit
meshes and implicit level sets. Assume we wish to map a
geometric texture, A, onto a base surface, B. We shall denote
the explicit mesh representation of A as MA and the implicit
level set representation by φA. The geometric representation
of B is always implicit, and will therefore be denoted φB. The
embedding space of A (e.g. defined from its bounding box)
will be called texture space. The corresponding embedding
space of A, after it has been mapped onto B, is called patch
space (analogous to a portion of “shell space” in [8]). The
semi-implicit texture mapping then simply works by defining
a map of vertices of MA from texture space to patch space.

Fig. 3. The semi-implicit method uses a direct correspondence between grid
points in patch space and texture space. For a given point xt the corresponding
8 surrounding points in texture space are found. Weights are computed from
these 8 points, and the weights are applied in a trilinear interpolation in patch
space. The implicit method uses the correspondence between points in patch
space and texture space to solve for the weights of a radial basis function.
Patch space can then be sampled with xps, finding corresponding points in
texture space using the radial basis function. Finally, a trilinear interpolation
on the texture volume is used to find the distance value.

In contrast, the implicit texture mapping is based on a re-
sampling of φA into patch space which amounts to establishing
a map from grid points in patch space to texture space. Thus,
both techniques are based on establishing a mapping between
the two embedding spaces, but in different directions (see
Fig. 3).

II. PARAMETERIZING PATCH SPACE

While the volumetric parameterization of texture space is
assumed known (e.g. u = x,v = y,w = z), we have to derive the
warped parameterization of the corresponding patch space. For
this we have developed a number of techniques, based on an
initial u,v parameterization of a 2D patch of the base surface
and using Lagrangian tracker particles to sweep out u,v,w
in the corresponding patch space. The specific distribution
of these tracker particles is created in different ways thereby
offering distinct features, such as following the base surface
faithfully or lowering distortion, for the resulting 3D texture
mapping. This flexibility is one of the strengths of our system.
In the following we describe the common base for all our
(current) particle distribution methods.

A common initial step for all our current mapping techniques
is the definition and parameterization of a 2D patch on the
base surface where the texture is to be applied. We define this
patch as a simple control quadrilateral1 on φB. Constrained
interaction with the vertices, Vi, i = 1 . . .4, of this control
quadrilateral is easily implemented since projections of Vi onto
φB amounts to the closest point transform Vi−φB(Vi)∇φB(Vi).
This is a consequence of our requirement that the level set,

1Note that this is not a regular planar quadrilateral since the edges are
constrained to lie on the base surface.
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Fig. 4. The surface conforming parameterization propagates the (u,v) texture
coordinates using a Lagrangian advection method. The particles roughly
follow the normal direction, and the time of arrival is used as the third texture
coordinate w.

φB, is represented by a signed distance function. This control
quadrilateral is parameterized using a technique similar to
Pedersen’s [22]. In short, approximate geodesics are first
computed between the vertices V1 and V2, V2 and V3, V3 and V4,
and V1 and V4. These edges are then subdivided evenly, with
a resolution determined by the roughness of the surface2, and
assigned u,v coordinates. Next u,v are swept into the interior
of the quadrilateral by means of defining a 2D grid of iso-
parametric curves of approximate geodesics connecting the
subdivided edges, each curve corresponding to a unique u or
v value. At each of the grid points of this 2D iso-parametric
grid we place a Lagrangian tracker particle, i.e. an infinitely
small and massless particle, each associated with a unique
u,v,w coordinate. The u and v values are obtained from the
two curves intersecting at that point, and the w value is set
to zero. In the following we refer to these Lagrangian tracker
particles as patch particles or just particles. The position of the
patch particles are then optimized to reduce texture distortion.
This is achieved by means of a simple constrained mass-spring
model [27] where particles on the boundary curves of the patch
quadrilateral are fixed and the remaining interior particles are
restricted to lie on the base surface.

Surface conforming parameterization: Once the patch par-
ticles are generated on the base surface, we propagate the
particles along the gradient field of φB until they reach a
desired offset (i.e. level of φB). The w texture coordinate
for the advected particles is then defined to be 1. In the
case of the implicit mapping described in section IV, it is
often necessary to have intermediate layers of particles with
0 < w < 1. This is obtained by distributing a number of
particles evenly on the line segment between each advected
particle and it’s corresponding particle on the surface, using

2As we assume φB is regularly sampled with dx = dy = dz, keeping the
sample distance below dx guarantees a sufficient sampling. If, however, the
surface is smooth, a lower sample rate is often sufficient.

Fig. 5. The low distortion parameterization can be thought of as uniform
layers of an onion. The particles are advected as with the surface conforming
parameterization, but then they are relaxed to give each level a uniform
parameterization.

linear interpolation to determine the w value. Fig. (4) illustrates
the particle set distributed for a single patch using this method.
Note thateven though φB is defined as a signed distance func-
tion, two particles with the same w coordinate will generally
not lie at the same distance away from B (Unless w = 0).
This is a consequence of the fact that the gradients are strictly
speaking not defined at points that have more than one closest
point transform to B since here φB is only C0. This occurs
along the medial-axis of B and numerically manifests itself
as |∇φB| ≤ 1 when using central finite difference to compute
the gradient. This has the desired feature that although the
advected particles might reach other particles, they will never
cross paths3. As the particles generated by this method are
generally not uniformly distributed in patch space, this can
lead to significant distortion of the geometric texture. We note,
that depending on the application, this may or may not be a
desirable feature.

By distributing the tracker particles as outline above, we end
up with a mapping that essentially resembles shell-mapping
[8]. Consequently this distribution scheme is hampered by
most of the limitations of Shell Map, in particular the sen-
sitivity of the mapping with respect to the curvature of the
base surface (See section V). However, one of the main
strengths of our method is the flexibility with respect to
the distributing the tracker particles. We next present two
alternative particle distribution schemes that offer different
and improved properties of the resulting geometric texture
mapping.

Reduced distortion level set parameterization: The problem
with the previous particle distribution method is the (implicit)
dependence of the curvature of the base surface. As the tracker
particles are advected away from the surface in a direction

3Numerical roundoff errors and inaccuracies in the finite difference poten-
tially breaks this guarantee, although such particles are still guaranteed to
remain close together.
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Fig. 6. Specifying a different direction for the particles to evolve along adds
extra flexibility to the parameterization. The white particles are obtained by
specifying a custom direction of evolution, parallel to the normal at the center
point, at both control vertices. The orange particles correspond to the surface
conforming distribution.

normal to the surface, small irregularities in the surface can
cause severe distortion of the texture. This is due to the fact
that particles will typically move closer together in concave
regions and away from each other in convex regions. To
mend this, we introduce a particle distribution scheme with
a stronger focus on the vertices of the user specified control
quadrilateral. With this method, these vertices are the only
particles to be offset along the gradient field of φB. At regular
intervals, derived from the desired offset height and the desired
number of particle levels, a new level of particles is created
from the four advected control vertices. We do this using the
same technique as used for the particles on the surface, only
this time we embed it on the ϖ’th level set of φB, where ϖ

is the (fictitious) time during the propagation. The particles
at this level are assigned a w value ϖ divided by the desired
offset height. The overall result is a uniform parameterization
of each discrete level in the patch space, see Fig. 5, leading to
geometric texture mappings with significantly less distortion.
This method has an additional number of advantages over
the first particle distribution method. First, as a new set of
particles are generated at the individual levels, the number of
particles at each level are independent. Thus, if the surface
area of the patch changes with the distance to the base
surface, we can adjust the number of particles generated
at each level to maintain a desired particle density, thereby
enabling a sufficient sampling of each level. Furthermore, we
can optionally let the user specify the direction along which
each control vertex is offset, rather than forcing it to be in
the normal direction. The effect of this is depicted in Fig. (6).
By allowing the user to specify the offset direction, we add
an extra level of control over the final result. This allows,
for example, the user to control the distortion of a texture
with a large offset in the w direction on a highly curved
surface, as seen in Fig. (6). We have used this extra control
in several examples in the following sections, most notably in
Fig. (12(a)).

The difference between the (initial) surface conforming
parametrization and the new low distortion parameterization
is illustrated in Fig. (7). This example clearly shows how the
mapping based on individually advected particles (Fig. (7(a)))

Fig. 8. Parameterization of a patch (simplified to 2D) using the spline
advection paramerization. Note how the particles move faster or slower
depending on the curvature of the spline-curve.

follows the local curvature of the base surface more closely
than the mapping based on uniformly distributed particles
(Fig. (7(b))), whereas the latter reduces the overall distortion
of the mapped geometry.

Spline advection: The two particle distribution schemes out-
lined above both rely on the distance transform of the base
surface (i.e. the level set φB) to respectively propagate the
particles in the patch space. This effectively means that texture
information is propagated in a fixed direction away from the
base surface. To add more flexibility we have developed a third
parametrization scheme where the particles are propagated
along a spline curve originating at the center of the patch. It
works as follows: As with the previous distribution schemes,
we start by generating the particles on the base surface,
assigning u,v-coordinates to each particle. The particles are
then propagated in small steps in the direction defined by the
spline curve. At each step, the particles are furthermore rotated
around the current spline point to align with the tangent of the
curve at that point, see Fig. 8. As in the previous methods,
copies of the particles are saved at regular intervals, and a
w-coordinate, derived from the normalized distance traveled
along the spline, is assigned to each particle. An example
mapping generated with this technique is shown in Fig. 9.

We note that during the propagation of the particles along the
spline curve, care must be taken to avoid particles crossing
paths. This would potentially lead to non-monotonic interpo-
lations of the corresponding texture coordinates which in turn
result in inconsistent texture mappings. One possible solution
to this problem is to treat the advancing particles as small
spheres and apply continuous collision detection algorithms
[28] to ensure that particles do not cross. Continuous collision
detection algorithms, while more difficult to implement, offer
several advantages over their discrete counterparts. Most no-
table are their ability to compute the time of first contact versus
the discrete approach of simply sampling an object’s trajectory
and reporting intersections (small, fast moving objects could
pass through each other).
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(a) (b)

Fig. 7. Left: Mapping a geometry texture to a bumpy part of the bunny using the surface conforming parameterization. Right: and using the low distortion
parameterization.

(a) (b)

(c)

Fig. 9. The three images show a horse with wings mapped onto it in three different postures using the spline based particle distribution scheme.

As a final remark we note that both the surface conforming
and the low distortion parameterization assume that φB is
defined throughout the patch space. Since we employ a very
storage efficient level set representation of φB, [9], distance

information is only stored in a narrow tube of B. Hence, as a
prelude to the parameterization methods outline above we first
sweep out distances from this narrow tube to the remaining
patch space (which is typically a very small sub-space of
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the bounding volume of B). This has been implemented very
efficiently using the fast sweeping method [29] which has
linear time complexity in the number of voxels in the patch
space.

III. NEAR REAL-TIME SEMI-IMPLICIT MAPPING

We have developed a simple and efficient semi-implicit tech-
nique which can be used as a “preview mode” for our implicit
mapping, to be described in the next section. The semi-implicit
method maps an (explicit) polygonal mesh, MA, onto the im-
plicit base surface, φB, by warping the vertices of MA in texture
space into patch space using fast tri-linear interpolation. The
mesh connectivity is left unchanged. This technique, as well
as the implicit technique, can be used in combination with any
of the parameterization methods described in section II.

The semi-implicit mapping makes use of the fact that the
patch particles form a semi-regular three-dimensional lattice
in texture space - see Fig. (10), left. By this we mean that, in
texture space, the particles are distributed into regularly spaced
levels in the w direction. Each of these levels consists of a
two-dimensional regular grid of particles, but the number of
particles need not be the same at all levels (See Fig. (10) for a
two-dimensional example). Since the texture value associated
with each particle is given by their position in patch space,
we can define a mapping Φt→p(xt) = xp of a vertex xt =
(xu,xv,xw) ∈ MA as a tri-linear interpolation of the particle
texture values. As the number of particles may not be the
same at each level in the patch space, we need to apply the
interpolation in a specific order: We first interpolate at the
two levels located immediately above and below the vertex
in texture space, followed by an interpolation in between the
levels. Fig. (10) illustrates this: First the patch space position
of the blue dots are obtained from interpolation along the green
line segments. Next, we interpolate the values (patch space
position) of the blue dots along the yellow line to get the patch
space position of the vertex (red dot). Because each particle
level form a regular two-dimensional grid, and the levels are
uniformly spaced, finding the interpolants is a constant time
operation. Thus, calculating the patch space position of a
single vertex is also a constant time operation.

We briefly note that the proposed mapping is somewhat rem-
iniscent of the free-form deformation technique presented by
Sederberg et al. [30]. The main difference is that our scheme
can handle semi-regular samplings and is strictly bounded to
the patch space. These properties are very important for our
application and are not shared by the higher order interpolation
proposed in [30]. Figure 5 in [30] clearly illustrates that
geometry is not bounded to the control-polygon which in our
application would result in textures mappings that are not
explicitly confined to the base surface.

IV. HIGH-QUALITY IMPLICIT MAPPING

The implicit mapping allows us to warp and subsequently
blend level set representations of both the geometric texture

Fig. 10. Illustrating the semi-implicit mapping on a patch set with a different
number of particles at each level. To get the position of a given vertex (red
dot) in patch space (right) given it’s position in texture space (left), we first
interpolate along the green lines to get the patch space position of the blue
dots. These are then used to interpolate along the yellow line to get the patch
space position of the texture space vertex.

and base surface. We use radial basis functions to perform
our mapping. The algorithm is as follows. First, we define
a regular 3D grid, bounding the region of space spanned by
the patch particles. We call this the embedding volume. The
resolution of this grid is chosen to match the resolution of
the grid on which the texture level set is sampled in texture
space. Next we define a mapping from the patch space into the
texture space by means of radial basis function interpolation.
This essentially allow us to resample our texture geometry
in patch space. More specifically, for each grid point xp in
the embedding volume, we map it to texture space via the
radial basis function, resulting in the point xt . We then use the
point xt to perform an interpolation4 on the texture volume,
thereby getting the desired distance value. Once all points in
the grid are assigned a distance value, the embedding volume
will contain a warped instance of the texture geometry.

The method we use for our radial basis function is similar to
that of Dinh et al. [31], which is a good candidate because
of its robustness with respect to irregularities of the sample
points. Furthermore, it adds flexibility due to the fact that it
allows for both strict interpolation as well as approximation,
simply by varying a parameter (λi). For the sake of complete-
ness we will summarize this technique below.

Assume the patch particles have Cartesian coordinates {pi, i =
1...n} and texture coordinates {ki,k = u,v,w, i = 1...n}, as de-
scribed in section II. Now we wish to establish a mapping from
Cartesian coordinates in patch space to texture coordinates in
texture space, Φp→t . The key idea is to split the mapping into
three independent mappings

Φp→t(xp) = xt ⇒
Φp→t,u(xp) = xu
Φp→t,v(xp) = xv
Φp→t,w(xp) = xw

with each of the texture mapping functions, Φp→t,k, expressed
as a sum of weighted radial basis functions:

Φp→t,k(xp) = Pk(xp)+
n

∑
i=1

ωk,iϕ(|xp−pi|), (1)

where ϕ(xp) is a radially symmetric basis function; n is the
number of basis functions; pi is the center of the i’th basis;

4We typically employ tri-linear, an occasionally tri-cubic, interpolation, but
essentially any bounded interpolation scheme can be used.
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(a)

(b) (c)

Fig. 11. Mapping a number of spikes onto a torus. The closeups of a single spike shows the difference between not applying the CSG union (b) and applying
the CSG union as well as the blending of the intersection (c). Notice the discontinuity in the shading in (b), which is a result of the spike and torus being
separate geometries. Merging (and blending) the two surfaces resolves the issue (c).

ωk,i are the weights for the i’th basis for texture coordinate
k; and Pk(xp) = ρk,0xx +ρk,1xy +ρk,2xz +ρk,3 is a polynomial
spanning the null space of the basis function. Similar to [31],
we center a basis function at each patch point.

To find the weights, ωk,i, and polynomial coefficients, ρk, j =
{ρk,0,ρk,1,ρk,2,ρk,3} for each mapping, k = {u,v,w}, we apply
Equation 1 to each of the patch points. Since we already have
assigned a k coordinate to each patch point, this leads to a
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(a) (b)

Fig. 12. Mapping a dragon onto a sharp corner using (a) our new geometric texture mapping technique (semi-implicit mapping), and (b) using the technique
of [8]. Both mappings were done in less than one second.

linear system of n+4 equations with n+4 unknowns:

ϕ(|p1 −p1|)+λ1 · · · ϕ(|p1 −pn|) p1 1
...

...
...

...
ϕ(|pn −p1|) · · · ϕ(|pn −pn|)+λn pn 1

p1,x · · · pn,x 0 0
p1,y · · · pn,y 0 0
p1,z · · · pn,z 0 0
1 · · · 1 0 0





ωk,1

...
ωk,n
ρk,0
ρk,1
ρk,2
ρk,3


=



k1

...
kn
0
0
0
0


(2)

After solving this linear system for each k = {u,v,w} the
resulting {ωk,i,ρk, j} and are next back-substituted into Equa-
tion 1 to compute u,v,w coordinates on the 3D grid in patch
space. The resampled texture level set is then simply computed
by interpolation in the texture space.

The λ values on the diagonal of the matrix in Equation 2, allow
us to control the smoothness of the mapping. As previously
mentioned, each particle, pi with position xp,i, maps to a
specific position in the texture space, xt,i. By adding the λi
values to Equation 2, we can relax this correspondence leading
to the following inequality: |Φp→t(xp,i)−xt,i| ≤ ζi, where the
constant ζi is deducted from λi. The larger λi is, the larger
ζi will be. Also, if λi is zero then so is ζi. As the ζ values
increase, the interpolation between the sample values becomes
less restricted enabling a smoother interpolation, and thereby
also a smoother mapping. For the results in this paper we have
typically used two different λ values. Particles on the interface
(i.e. particles with w = 0) are assigned small λ values to ensure
that the mapping follows the interface closely. These values
typically fall in the range 0.001 to 0.01. The remaining points
are assigned a larger λ usually between 0.1 and 0.5 to ensure
a smoother mapping away from the interface.

Since the implicit mapping uses level set representations
for both the texture and the base geometry, we can easily
produce a single topologically connected surface by merging
and blending the two volumes. This can be achieved with
boolean (CSG) operations like union or difference of the
two level sets. This in turn simply amounts to a min/max
operation of the distance fields followed by a re-initialization
in the resulting narrow band. However, the result of boolean
CSG operations typically create very visible C0 discontinuities

along the intersection seam. To further address this, we employ
the techniques described in [13] that performs localized mean
curvature based smoothing in the vicinity of the intersection of
the two level sets. This approach allows for direct user control
of mean curvature, and thus the smoothness, of the resulting
volume. Both the merging/CSG union and the smoothing of
the intersection are optional operators applied, if desired, once
the mapping is completed. Due to numerical issues, we cannot
guarantee that the base surface and the texture will match up
exactly. Thus, to ensure a sufficient overlap between the two
surfaces required to get a nice blending, we push the texture
slightly downwards by adding a small offset to the w texture
coordinate.

Fig. 11 shows a torus with several spikes mapped onto it using
this technique. Figs. 11(b) and 11(c) shows a close up of
the intersection of the torus and a single spike, one with the
merging and blending performed, Fig. 11(c), and one without,
Fig. 11(b). The shading is based on surface distance to the
top of the lower left spike. As the objects in Fig. (11(b)) have
not been merged into one, the shading breaks down in this
example, resulting in a very obvious transition between base
and texture geometry.

V. RESULTS AND APPLICATIONS

Fig. 12 shows an example of mapping a geometric texture onto
an object with a sharp edge. Due to the underlying parame-
terization of shell space, which is based on an offset surface
generated by offsetting the base mesh vertices in the direction
of the vertex normals, the object mapped using the shell
mapping technique of [8], Fig. 12(b), is severely distorted.
As our technique allows a guaranteed uniform distribution
of the patch points, our mapping, Fig. 12(a), guarantees a
smooth mapping, even across such sharp edges. Although the
distortion minimization technique presented in [32] can help
reduce the distortion in the case of shell mapping, it cannot
completely resolve the problem due to the linear interpolation
in shell space. The only way to completely resolve this
problem is to generate a smoother offset surface, which is
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Fig. 13. Mapping a number of small dragons onto a mother dragon using
the proposed technique.

exactly what our approach does. As for the performance of
the two techniques, both mappings were done in roughly the
same time, which is in less than one second.

One major problem with using regularly sampled implicit
surfaces is the memory requirements of the 3-dimensional
grid, which imposes a problematic limit at high and useful
resolutions. This is the primary reason for using the DT-grid,
which allows us to use significantly higher volume resolutions.
The large dragon in Fig. 13 has an effective resolution of
512x244x350 and all of the 12 baby dragons are made using
the same resolution.

Although the two mapping schemes presented in sections III
and IV produce almost visually identical results in many cases,
they are in many ways very different methods offering a
different set of features in addition to the obvious difference
in the geometric representation of the texture. The most
important feature of the semi-implicit method is its speed.
Whereas the time complexity of the implicit method scales
with the number of particles times the number of voxels in
the embedding volume, the semi-implicit mapping is linear in
the number of vertices on the texture geometry. The dragon
in Fig. 12(a) contains more than 400,000 vertices and was
mapped in less than a second using the semi-implicit method.
While the semi-implicit method is often capable of producing
good results relatively fast, the implicit method offers some
distinct benefits. Most importantly, since both the texture and
base surface are represented using level sets we can readily
produce a simple topologically connected surface by means
CSG operations - either prior to a mesh extraction or alter-
natively during direct ray-casting. Furthermore, we can apply
a smoothing operation (see [13]) on the intersection of the
base surface and the warped texture, if a smooth intersection
with continuous normals is desired. Another advantage of the
radial basis function interpolation is that it is significantly less
sensitive to the distribution of the patch points. If the base
surface has many high frequency features, these features will
directly influence the result of an explicit mapping. One the
other hand, the implicit mapping allows for direct control of
the smoothness through the parameters λi entering the linear

Fig. 14. Closeup of a single one of the baby dragons from Fig. 13. Notice
the high level of detail and topological change that results from blending.

system in equation (2). By increasing λi the implicit mapping
will retain the ability to produce a smooth mapping, while still
following for lower frequency features of the base surface.
Also, while the semi-implicit mapping is only C0, the implicit
mapping allows for multiple orders of continuity, although the
exact order is determined by the chosen basis function. In our
tests, we have seen the best results when using f (r) = r as our
basis function. Still, the implicit mapping is much slower than
semi-implicit scheme. Mapping a single model takes from 20-
30 seconds for the two latches in Fig. 16, using 280 particles
and an embedding volume of 4 million voxels for the small
latch, and 660 particles and 5.6 million voxels for the larger.
Mapping times vary between 4-5 minutes per baby dragon in
Fig. 13 (and Fig. 14) using 3-400 particles and an embedding
volume of 20-30 million voxels.

Another benefit of our implicit approach is we can easily map
new objects onto previously mapped objects. Fig. 16 shows
two latches and several bunnies mapped onto a base surface
and a previously mapped bunny. To achieve a similar result,
Shell Maps would have to fuse the two bunnies together,
generate new uv coordinates, and finally create a new offset
surface.

Using the signed distance of the level set function for gener-
ating offset surfaces offers several advantages. First of all, the
further we move away from the base surface, the smoother the
offset surface becomes. This means that the influence of high
frequency details in the base geometry decreases away from
the surface, resulting in smoother looking results, as shown
in Fig. 12(a). Previous approaches have employed explicit
geometry representations which can lead to problematic self-
intersections of the dilated offset surfaces. Consequently these
methods have been limited to rather small offsets which in
turn only allows for the mapping of small geometric textures.
This self-intersection problem is illustrated in Fig. 15, where
two offset surfaces are generated from the bunny model using,
respectively, level sets and the technique presented in Shell
Maps [8]. It should be evident from this simple example
that our current method is significantly more robust with
surface offsets. The small bunnies in Fig. 16 is an example
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Fig. 15. The offset on the left is a natural result of the level-set’s implicit
representation. On the right we see an explicit polygonal offset (note the
degeneracies in concave regions) using the method proposed in Shell Maps
[8].

of mappings using larger offsets (although our method allows
for even larger offsets).

VI. CONCLUSIONS AND FUTURE WORK

We have presented fast and flexible techniques for warping
and blending (or subtracting) geometric details, in the form of
a geometric texture, onto level set surfaces. These techniques
are similar in nature to the shell mapping technique, though we
have eliminated some of the limitations of the shell mapping
approach. Our current approach is based on using implicit
geometry, which makes it easy to merge the base and texture
geometry into a single topologically connected object as well
as smoothing the intersection between the base and texture
geometry guaranteeing a smooth surface with smooth normals.
Furthermore, our mapping employs a flexible particle based
parameterization. As the parameterization is characterized by
the distribution of the particles, we can change the parameter-
ization by changing the way the particles are distributed. To
demonstrate this flexibility, we have presented three different
methods for distributing the particles, including a method that
reduces the overall texture distortion.

Although the semi-explicit mapping proposed in this paper is
very fast, the implicit mapping is rather slow. The problem
is that the speed of the implicit mapping depends, not only
on the size of the volume it is being mapped into, but also
on the total number of particles defining the parameterization.
We are currently considering different approached to address
this issue. One idea is to replace the current global radial basis
functions with functions that have only local support. Another
interesting approach would be to only re-sample the level set
of the geometric texture in a local neighborhood of its surface.
However, this idea is far from simple and we have currently
not been able to device a robust algorithm.

Another interesting idea for future work is to replace the
2D parametrization technique of Pedersen [22] with discrete
exponential maps of [23]. The latter approach seems more
intuitive and simpler to use from an artist’s point of view5.

5For a single patch, our current approach requires the user to place four
particles on the surface whereas an approach based on discrete exponential
maps (DEM) would require only two. Furthermore, changing the size or
orientation of the patch requires us to change the position of all four particles,
as opposed to only moving a single point around with the DEM approach.

Fig. 16. Recursive mapping: Mapping a bunny onto another bunny, which
then again has several smaller bunnies mapped onto it. The middle bunny is
“held onto” the bigger bunny using a couple of metal latches that are in fact
texture mapped cuboids.

Though we do not claim to have developed flawless techniques
for geometric texturing, interactions with people in the visual
effects industry confirm our believe that the methods presented
in this paper are indeed very useful.
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