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Abstract. We present a novel way to efficiently compute Riemannian
geodesic distance over a two-dimensional domain. It is based on a previ-
ously presented method for computation of geodesic distances on surface
meshes. Our method is adapted for rectangular grids, equipped with a
variable anisotropic metric tensor. Processing and visualization of such
tensor fields is common in certain applications, for instance structure ten-
sor fields in image analysis and diffusion tensor fields in medical imaging.

The included benchmark study shows that our method provides sig-
nificantly better results in anisotropic regions and is faster than current
stat-of-the-art solvers. Additionally, our method is straightforward to
code; the test implementation is less than 150 lines of C++ code.

1 Introduction

The computation of distances in manifolds is important in both academic and
industrial applications, e.g. computational geometry [1], seismology, optics, com-
puter vision [2], computer graphics and image analysis [3,4]. Another cross dis-
ciplinary example is the versatile level set method [5] that propagates interfaces
embedded in scalar distance fields. Often the computations are performed on
rectangular grids. One way to define distance is the eikonal equation

||∇d(x)||2 = 1, x ∈ Ω, (1)

which is a nonlinear Hamilton-Jacobi PDE with boundary condition d|∂Ω = 0.
It defines d(x) as the Euclidian distance from x to an implicit source, ∂Ω.
Substituting the right-hand side in equation (1) with a positive scalar “speed
function” that depends on position, F (x), gives a nonuniform eikonal equation
that is often used in applications. However, this is not the most general case.
The nonuniform and anisotropic case is described by adapting the norm ||·|| to
an arbitrary and spatially varying metric tensor field gij(x). A metric tensor
is a positive definite quadratic form that defines the scalar product between
tangent vectors in a point ⟨v,u⟩g = vT giju. This, in turn, interprets the length
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of a tangent vector in a point as ||x||g =
√
⟨x,x⟩g. Thus equation (1) can be

generalized to take the metric into account

||∇d(x)||g = 1, x ∈ Ω. (2)

2 Previous Work

Considerable attention has been devoted to the computation of distances in
an anisotropic setting. Early work include shading from shape [6,7] and the
salience distance transforms [8]. In optics the problem is typically solved using
a shooting type of algorithm, like in [9] where a method based on solving ODEs
and tracking individual rays of light is used. This type of Lagrangian approach
is not efficient when it comes to computing a a continuous approximation over
the rays’ embedding domain, which is the case for a distance map.

It is well known that a distance function is the so called viscosity solution,
see e.g. [10,1]. Much of the previous work on anisotropic distances is based
on the discretization in [11] and involves a Godunov-type approximation of the
gradient. The solution (per grid point) is selected from a set containing solutions
to 8 quadratic equations in 2-D. In the original paper, an iterative sweeping
update scheme was used to find the global solution in O(k n) time where n is
the number of grid points in the discretization and k the number of sweeps.
This algorithm updates all grid points the same number of times, which is sub-
optimal. A different iterative update scheme was proposed in [12] based on the
same discretization. It keeps an unsorted list holding the expanding solution-
front and updates nodes on a need-to basis. Even though the run time is not
bounded, the method is fast in practice.

If the distance value at each node only depends on neighboring nodes with
smaller values, it is possible to construct an update scheme that finds all dis-
tances in the domain in one single pass. This causality property is the basis
for the well known fast marching method (FMM) [13], see also [14], which ap-
proximates isotropic distances on a regular grid in n steps with O(n logn) time
complexity. In [1], this is extended to parametric three dimensional manifolds.
Two recent one-pass methods are proposed in [15] and [16]; the former is uses
a reaction-diffusion setting and the latter is based on control theory. In [17] a
modified version of the FMM scheme was proposed that is supposed to be more
accurate in certain cases. Finally, [18] finds the exact distance over a triangle
mesh in O(n2 logn) time.

3 Basic Scheme for 2-D Grids

The problem of computing distances from a source over a regular grid is con-
ceptually simple. It can be broken down to successive applications of grid point
updates. If the distance computed is valid locally, and a monotonic update is
enforced, then it can be proved that distances will converge globally[19].
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Fig. 1. Left: A generalized setup around grid point i, j with local coordinates (0, 0).
Middle: Assuming an implicit triangulation (dotted) we define a boundary Γ (green)
for our domain. Local optimality ensures that the distance at origin is minimal, d(0) =
min ||v∗||2 + d(v∗) for v∗ ∈ Γ . Right: One of the four triangular simplices resulting
from splitting the 4-connectivity neighborhood. Unit grid spacing, h = 1, is assumed.

A local update can be constructed by placing the update point in a local
origin and minimizing the following nonlinear functional

d(0) = min
v∗∈Γ

||v∗||2 + d(v∗), (3)

for any domain with a closed boundary, requiring that the source is outside of
the domain. For a grid with an implicit triangulation a possible setup is shown
in figure 1. Equation (3) states local optimality and was discretized in [19,20] for
triangle meshes. The solution at 0 finds a point v∗ on the boundary for which
the sum ||v∗||2 + d(v∗) is minimal.

The update step of this type of method can be summarized as follows, given
a grid point (i, j) and its neighborhood (see figure 1):

1. Split the domain into 6 right angled triangular simplices
2. Solve equation (3) for each of the triangles and set di,j to the minimum

The outer loop then repeats this for all grid points (in some order) until conver-
gence. As the 6 different configurations and their solutions are similar, we only
depict one simplex illustrated in figure 1 (right).

The update value is found in two steps. First, interpolate the distance values
at vi+1,j and vi,j+1 along Γ and denote the interpolant d̃(v∗). Then compute
the minimum of the sum of the edge interpolant and the distance to the edge:

di,j = d(vi,j) = min
v∗∈Γ

||v∗||2 + d̃(v∗). (4)

As seen from equation (3), the minimization of (4) would yield the exact solution
if the interpolation was exact. Finding and differentiating exact interpolants for
complex wave fronts is nontrivial and potentially unstable, thus we constrain
our search to interpolants of order one and two.

Linear Sources. An early discretization was proposed in 1985 by Gonzalez
and Rofman [20]. They deployed a linear interpolant in equation (4) , which is
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straightforward to minimize. However, we can equally well find the minimizer
geometrically, without differentiation. We use the following definition:

Definition 1. A minimizer to equation (3) is also the closest distance from the
local origin to the wavefront source.

This is illustrated in figure 2. The minimizer (source-origin distance) is easy to
compute for a linear source. Following the figure, first find the source line ls
using the distances di+1,j and di,j+1, then compute the closest distance between
ls and origin. A similar (linear) approach is taken in the popular fast marching
method (FMM) [13], which was derived from a finite difference discretization.

Point Sources. A linear scheme can not accurately handle curved wave fronts.
This is especially evident close to a point source where curvature is high and
linearization is a poor approximation, see figure 2 (right). Both [17] and [19]
recognized the need for a more accurate scheme for point sources, and indepen-
dently came up with similar solutions.

From the geometry of the problem it is straightforward to find a closed form
solution. Placing the source point ps in figure 2 (right) reduces to a two-circle
intersection problem [19], and the minimizer is found as ||ps||2.

A point source approximation will, of course, not accurately find minimizers if
the wavefronts are linear functions. Thus care needs to be taken when choosing
source type. For this conference paper, we will focus mainly on point sources since
they are most commonly found in applications, e.g. when geodesic distance is
sought between two points in a manifold.

Fig. 2. (Left) The minimizer using linear interpolation can be found as the closest
distance from origin to the source line ls, for a linear wave front. (Right) For a point
source the minimizer is the distance between origin and the source, ps

Accuracy and Algorithms. We have seen that it is possible to find the update
as a distance in the plane. For a 2-D grid it is possible to place the source exactly.
Thus the update values, and hence the solutions, computed above are exact for
their respective type of source. For other types of sources this type of scheme
introduces a first order approximation [20,19].

For a flat metric with a linear interpolant and a regular grid, a one-pass
algorithm for the global solution of (4) can be found using the fact that larger
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values always depend solely on smaller values. However, when using the quadratic
interpolant for point sources, this is no longer true. Additionally, obtuse triangle
configurations can (and are likely to) occur when the metric is not flat, as we
will see in the next section. A robust and practical algorithm is described in [19]
that efficiently addresses these problems. Let S be the source that is initialized
to distance 0. Then add the index (or indices) of S to the sorted candidate set
C. Push and pop adds and extracts indices of C, and minC refers to the indices
associated with the smallest distance.

while C ̸= ∅ do
(i, j)← pop(minC)
for (k, l) ∈ neighbor(i, j) do

d′k,l ← update(k, l)
if d′k,l < dk,l then

dk,l ← d′k,l
C ← push(k, l)

From an implementation point of view, this scheme has a complexity similar to
the popular FMM. Due to space constraints we refer to [19] for more details.

4 Anisotropic Speed Functions

The update of distance values in section 2 was derived in the Euclidean plane.
However, the geometric construction indicates that we may incorporate a metric
into equation (4) by adapting the edge lenghts of the triangles. The generalized
metric dependent minimization reads

di,j = min
v∗∈Γ

||v∗||g + d̃(v∗), (5)

where ||·||g is measuring the geodesic length of v∗ under g. Geodesic distance
between two points, a and b, on a manifold is defined by a minimization over
all curves γ (in the manifold) joining the two points

dg(a, b) = inf
γ(0)=a,γ(1)=b

L(γ), where L(γ) =

∫ t=1

t=0

√
γ′(t)T gij(γx(t), γy(t))γ′(t) dt.

If two points are close, like two vertices in a triangle, the space-variant metric
can be approximated by a constant metric. Thus,

dg(a, b) ≈
√

(b− a)T (gij(a) + gij(a))/2(b− a), (6)

where a and b are the vertices of a triangle edge 1. We could now insert a second
order interpolant into equation (5), together with the metric distance equation
(6) to find minimizers. Directly doing so, however, involves finding roots of a

1 A similar scheme was described for isotropic speed functions in [19]. This reference
also mentions the possibility of using anisotropic speed functions.



270 O. Nilsson et al.

fifth order polynomial; this is feasible but impractical. Since the solution is still
only a linear approximation, we propose a simpler and more intuitive strategy.

Using the linear approximation of metric distance is approximately equivalent
to linearly “flatten” the simplex under ||·||g, as shown in figure 3. From this
follows that minimizing equation 5 is approximately the same as minimizing
equation 4 for a transformed simplex.

A consistent positioning of vertices, in Euclidean space, using the metric is
shown in figure 3 (left). Since the transformed simplex is flat, the Euclidian
distance function can be used to find distances from the origin to ps, and thus
approximately solve equation (5). In the rare cases when the edge lengths fails to
satisfy the triangle inequality, we have used Dijkstra update is deployed instead.

Fig. 3. Left: The simplex is (linearly) flattened using the metric g. For a consistent
positioning we first place v′

i,j in origin, then v′
i+1,j along the positive x-axis. The

position of v′
i,j+1 is then found using inter-vertex distances. Right: The minimizers to

equation (5) can be found in a flattened space as the Euclidian distance from origin to
ps, respectively. This is treated analogously for line sources.

5 Results and Benchmarks

To test the accuracy of geodesic distance computation, it is desirable to have a
set of representative “test manifolds” for which distances are known analytically.
In a 2D-manifold, the local geometry is completely characterized by the Gauss
curvature, K. From a geometric point of view, up to a scaling of the metric,
there are three principal cases to test: K > 0, K = 0 and K < 0, corresponding
to local isometry with the sphere, the plane and the hyperbolic plane. For this
reason, these manifolds have been chosen as test manifolds. In addition, we also
included the cone, which has zero curvature in all points except at the apex.
We compare our method against two state-of-the-art anisotropic eikonal solvers.
One from Lenglet et al. [16] and one by Jeong and Whitaker [12].

The test grid consists of 400 × 400 grid points with spacing h = .005. For
the metrics (see appendix A) that only live in the unit disk, we have restrained
computations outside a radius of 0.98 to avoid degenerate tensors at the border.
We place the sources exactly on grid points and report the mean of the absolute
error, that is l1/n, the max error l∞, and the time for the computations. The
findings are listed in table 1 and figure 4. We have also performed a numeri-
cal convergence study that is reported in figure 5. Finally, we investigated the
smoothness of the derivatives of the distance function for our and competing
works, see figure 6.
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Table 1. Comparison of accuracy and speed against competing work. Sp means that
point sources are used and Sl corresponds to line sources. Also see figure 4.

Our method Jeong and Whitaker Lenglet et al.
Metric l1/n l∞ Time l1/n l∞ Time l1/n l∞ Time
Plane, Sp 7.2e-16 6.2e-15 .34s 5.1e-03 9.3e-03 1.4s 5.1e-03 9.3e-03 1.9s
Sphere Sp 6.3e-05 5.8e-04 .82s 6.2e-03 1.7e-02 1.9s 6.3e-03 1.8e-02 3.4s
Poincaré Sp 1.3e-03 2.5e-02 .54s 1.0e-02 7.1e-02 1.6s 1.0e-02 7.1e-02 2s
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Fig. 4. Error distribution plots. Color shows absolute error (blue to red) and is linearly
scaled to fall in [0, l∞]. For more statistics, see table 1 and figure 5.

(a) Sphere (b) Cone (c) Poincaré

Fig. 5. Convergence under regular refinement using different metrics and the point
source interpolant (Sp). Plots show l1/n as a function of step size h. In the Poincaré
example (right), the metric tensor is isotropic and [16,12] behave identically.
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Exact distances Our Jeong/Whitaker Lenglet et al.
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Fig. 6. Visualizing distance map smoothness under a cone metric (with an extreme
slope (s = 5), compared to figure 5, to emphasize errors). Top row shows color coding
of the absolute error (from blue to red) of the distance map. Smoother transition in
color indicate smoother maps. Bottom row shows derivative smoothness by color coding
of the norm of the gradient of the respective map.

Anisotropic Partitioning and Sampling. One interesting application using
anisotropic distances is voronoi partitioning and anisotropic sampling [4,3]. One
experiment using our method can be seen in figure 7 (left and middle). Appli-
cations for this sampling include packing of tensor glyphs, for visualization of
diffusion tensor MRI, and adaptive sampling of images.

Fig. 7. Left: A picture of a fast moving car. A low-passed structure tensor field defines
a metric for the image, which then was partitioned into 300 geodesic Voronoi cells using
manifold Loyd relaxation[3]. Middle: Each cell is colored with its respective mean color.
Anisotropic cells align with lines and features in the image. Right top: Delineation of
cells using isoropic dilation fails. Right bottom: Delineation using anisotropic distances
from the structure tensor field for dilation, successfully delineates the cell.

Distance to Points and Objects. In many image analysis applications, an
important procedure is to compute distances from an object or point. These
methods are called distance transforms and they compute all distances from
a set of pixels in an image to all other pixels in the image [21,13]. Figure 7
(right) shows one example of an application that benefits from our method,
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namely anisotropic curve closing for cell nuclei segmentation [22]. In short, our
method enables accurate anisotropic versions of morphological operations such
as dilation, erosion, skeletonization and watershed segmentation.

6 Conclusion

We have presented a novel metric dependent solver that converges to geodesic
distances under grid-refinement. It is simple to implement, less than 150 lines
of C++ code, and performs in a predictable manner. It appears to have better
convergence properties than two current state-of-the-art algorithms.

Our main motivation for publishing these results is to present a solver that
we have found to be easy to implement and adapt. It is a solver that is different
from many current approaches, in particular FMM.

A Test Metrics and Analytic Distances

A spherical shell: K = 1, {x, y : x2 + y2 ≤ 0.982},

gij(x, y) = 1
1−x2−y2

[
1− y2 xy
yx 1− x2

]
, and

dS(a,b) = cos−1(aTb+
√

(1− aTa)(1− bTb)).

A flat square: K = 0, (x, y) ∈ [−1, 1]× [−1, 1], gij = δij , d(a,b) = ||a− b||2.
The Poincaré disk model: K = −1, {x, y : x2 + y2 ≤ 0.982},

gij(x, y) =
δij

(1−x2−y2)2
, dP (a,b) = 1

2 cosh−1
(
1 +

2||a−b||22
(1−||a||22)(1−||b||22)

)
.

The cone metric: K = 0, a cone z = s
√

x2 + y2 with slope s, {(x, y) ̸= (0, 0)}.

gij(x, y) = δij + s2

x2+y2

[
x2 xy
yx y2

]

d(a,b) =
√

[||a||22 + ||b||22 − 2||a||2||b||2 cos( ∠(a,b)√
(1+s2)

)](1 + s2)
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