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Abstract

We have performed full quantum mechanical

three body (non-adiabatic) scattering calculations

of the type:

1sσg

2sσg

3sσg

4sσg

3dσg

4dσg

5dσg

LL

S→ V←
H2

+

In the considered scattering calculations the in-

coming channels were respectively an electronic

1sσg  (as in the above figure), 2pσ u  and 2pπu

state. Non-adiabatic radial coupling terms were

included in the formulation, but angular coupling

terms were neglected as a first approximation. Thus

coupling between channels with different parity

was neglected.

The impetus behind the study presented here is

that the simple Born-Oppenheimer type approxi-

mation [1] (commonly known as the approximation

of infinite nuclear masses) and semi-classical

trajectory simulation methods do not form an

optimal way towards the calculation of accurate

scattering amplitudes for a three body system like

the hydrogen molecular ion.

The work takes point of reference in the

Wigner-Eisenbud [2] R-matrix theory where the

configuration space is divided into two regions (see

the above figure). A bounded internal interaction

region V and an external region in which the

interactions have vanished. The mapping of the

internal scattering wave function onto the

asymptotic states on the surface S enclosing V is

expressed in terms of log-derivative boundary

conditions represented by the R-matrix. The

variational formulation of the Schrödinger equation

and the associated scattering boundary conditions is

conveniently expressed in the J-functional [3]

which reads,

J ψ ,φ( ) ≡ dv E − W x( )( ) ψ 2
− ∇ψ

2{ }∫
+ ds ψ * x( )φ x( ) + φ * x( )ψ x( ){ }∫
− dsds©φ * x( )Rs x, x©( )φ x©( ){ }∫

where ψ (x)  denotes the scattering amplitude and

φ (x)  the asymptotic state. To reduce the full 3 × 3

dimensional problem of H2
+  to just three dimen-

sions, 3 translational and 3 rotational coordinates

are separated out [4] to yield the following 3 body-

fixed coordinates

  

ξ ≡
r
r + R 2

r
e3 +

r
r − R 2

r
e3[ ] R , where 1 ≤ ξ ≤ ∞

η ≡
r
r + R 2

r
e3 −

r
r − R 2

r
e3[ ] R , where −1 ≤ η ≤ 1

f ≡ R 2 , where 0 ≤ f ≤ ∞

where R denotes the inter-nuclear distance (in the

direction   
r
e3 ) and   

r
r = (x, y, z)  the vector from the

nuclear center of mass to the electron.

The full scattering matrix for H2
+  was then set

up using some aspects of R-matrix theory that are

derived from a finite element method (FEM, [5])

representation of ψ (x)  in the f coordinate. In the

spheroidal coordinates (ξ ,η) we used Born-

Oppenheimer approximate Sturmian [6] basis

functions, and a discrete variable representation

scheme (DVR, [7]) to evaluate the J-functional in

this basis-set.

To obtain absorption-coefficients for tran-

sitions of the type

H + H+ → H2
+ 2pσ u / 2pπu[ ]

→ H2
+ 1sσg[ ] → H + H+ + ν

we next have to generate transition dipole moments

between scattering wave functions initiated as re-

spectively 1sσg
 and 2pσ u / 2pπu  and subsequently

apply a modified version of M. Baranger’s

“simplified quantum-mechanical theory of pressure

broadening” [8]. The computed absorption spectra

should then be compared with the absorption

spectra recorded in hydrogen-rich white dwarf

atmospheres [9, 10].



 



iii

Acknowledgment

“If I have been able to see
farther than others, it was
because I stood on the
shoulders of giants”.

Sir Isaac Newton

This thesis entitled “Non-Adiabatic R-Matrix Calculations For Proton-Hydrogen

Scattering” (subtitled “A study of the full quantum mechanical three body problem of H2
+”) is

the result of my work towards the cand. scient. degree at the University of Copenhagen. The

research and work on which this thesis is based was carried out partly at the Department of

Theoretical Chemistry, Aarhus University, partly at the Chemical Laboratory III at University

of Copenhagen and finally for a short time at the Department of Theoretical Chemistry at

Université Paris-Sud, Orsay, France.

I wish to thank Professor Jan Linderberg, who acted as my supervisor during my study

at Aarhus University, for the inspiration and support that he gave me during all stages of the

work, and without whom this research project would never have been possible. I am equally

grateful to my present supervisor Professor Gert Due Billing at the University of Copenhagen

for all support, continuous interest and encouragement during faces of adversity, and for

providing me with the opportunities to participate at the 4’th Topsøe Summer School meeting

911 , the MOLEC IX2 and arranging for me to visit Professor Claude Leforestier [7] to whom

I also wish to extend my thanks. Further I am also graceful to Peter Thejll [10] at the Niels

Bohr Institute who originally motivated this research project from an astrophysics point of

view, Dr. Kurt Mikkelsen for his strong coffee and my friend Ph.D. Matthew Dean Todd for

many “useless” (in terms of the present work), but nevertheless very interesting and

stimulating discussions. Last but by no means least I am very much indebted to my girlfriend

Katrine Happe who constantly over the years have made me realize that there is more to life

than just science and quantum mechanics. As she have put it; “in some ways the two-body

problem is far more interesting than the three-body problem” - to be studied in this thesis.

1 Where I had the opportunity to meet both Professor William Miller and Professor Claude Leforestier in person, who
both as it turned out later, should play a significant role in my present work [7, 11, 12].

2 Where I presented a poster on my work on non-adiabatic H2
+  scattering, and was met with surprisingly great interest

in especially my applications of the FEM and DVR schemes to the three body problem.



 



v

Preface

“We are not observers, we
are participants in the
making of what we call
reality”.

John A. Wheeler

The presented thesis is, in more than one respect, the result of a very theoretical study

of the hydrogen molecular ion. Clearly it does not involve any experimental work whatsoever,

and moreover it is based on a wide range of concepts, theorems and techniques used in the

study of exact quantum mechanical treatments of small systems. It is my personal experience

that one of the major obstacles faced by many students in learning quantum mechanics, at this

level of exactness, is their unfamiliarity with many of these concepts and methods.

Furthermore, since many of the required concepts and numerical techniques are not discussed

in standard textbooks, I have dedicated the first part of this thesis (chapter 1-4) to an

introduction to these methods that form the basis of the thesis. Also, as the presented

approach to the three body problem of H2
+  has never been attempted before, I feel a certain

obligation towards the expert reader to make sure that he/she can follow the central ideas in

the new non-adiabatic formulation discussed in chapter 5. Thus I have tried to make

explanations clear and complete, and most of the derivations are hopefully given with enough

detail to make them easy to follow. Resort to the frustrating phrase “it can be shown that” is

avoided wherever possible, and some of the more involved derivations have been moved to

appendixes. However, this representation of course entails the risk that what might appear

relevant and complicated to me, might well be tiresome and trivial to the expert reader - in

which case I hope that he/she can bear with my style. This last comment is especially directed

towards chapter 5, where some readers perhaps will find the details long and tiresome, yet

presumably not trivial.

As motivated above, the thesis consists of three distinct parts. The first four chapters

serve as a general introduction to many of the required concepts, and a sort of mathematical

toolbox for the whole study of the hydrogen molecular ion; in chapter 1 the methodology and

some central techniques are introduces, then in chapter 2 the actual variational method is

presented, next two very important numerical methods are discussed in chapter 3 and finally

in chapter 4 some basic concepts, that will enable us to reduce the dimensionality of the three

body system are presented. Then follows the next part of the thesis (chapter 5) where the

explicit derivations of the working-formulas for the H2
+  system are given, and the numerical

schemes are explained. Finally, in chapter 6, an outline of the computer routines and the

implemented algorithms are given, and the actual results form the scattering calculations are

presented and subsequently discussed.
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General motivation

“It is wrong to think  that
quantum physics is a picture
of the natural world. It is
rather a way to describe it.
Thus there is no such thing
as the quantum world. It is
only an abstraction”.

Niels Bohr

Introduction

The hydrogen molecular ion, H2
+ , comprising two protons and one electron, is the

simplest molecule of all. It was first discovered in 1896 by J. J. Thomson at Cambridge in

cathode rays, and one of the first treatments of H2
+  was given in terms of the old quantum

theory by Pauli [11] in 1922. If we neglect all effects coming from the spin of the particles

and if in addition the motion of the protons is disregarded, we are faced with the problem of

an electron moving in the presence of two fixed Coulomb centers of attraction - the so-called

Born-Oppenheimer approximation [1]. In this from, the analysis of H2
+  has attended

considerable attention over the years; thus, Burrau [12] in 1927, Hylleraas [13] in 1931, Jaffé

[14] in 1934, Sandman [15] in 1935 and many others have performed Born-Oppenheimer

approximate calculations on both the ground state and some of the excited states. The

separability of the electronic Schrödinger’s equation in spheroidal coordinates enables

solutions of almost unlimited accuracy to be computed. The full three-body problem of H2
+  on

the other hand, forms a much bigger theoretical as well as computational task - in fact it is

well-known that there does not exist any analytical or even “exact” numerical solution to this

problem. Further since the Born-Oppenheimer approximation in general terms is

acknowledged as being a quite good approximation one could ask “why bother to try and

solve the full three-body problem of H2
+”?

Astrophysical motivation

Like atomic hydrogen, the molecular ion plays a fundamental role in the understanding

and interpretation of light emitted from a large number of stars. H line absorption is

proportional to the absorber density, but in the H2
+-system the absorber density is proportional

to the square of the H density, and hence a greater sensitivity to the pressure in the stellar

atmosphere is found in the absorption features of H2
+  than in H. In an atmosphere in

equilibrium the pressure is given by the temperature and the gravity of the star so that it

becomes possible to accurately study these parameters in stars that show H2
+  absorption. The
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stars in question are the hydrogen rich white dwarfs (WD). At a certain temperature (near

16000K) these WD’s show UV absorption features from H2
+  near 1400 Å on the wings of the

Lyman α-line3 [9]. The main interests in studying these WD’s lies in the generally interesting

role WD’s have as end-products of nearly all stellar evolutions; 90% of all stars are believed

to end up as WD’s [10]. Of particular interest to some astrophysics (Peter Thejll [10]) is the

presence of stellar oscillations in the so-called DA WD’s in a temperature range that coincides

with the range of temperature in which the H2
+  features can be seen. Stellar oscillations can be

used to study the stellar interior, and important insight into stellar evolution can be obtained if

the most accurate information about the star can be gathered from analysis of the observed

light-spectrum and collated with the information available from the analysis of the oscillations

[16]. With the development of new observation techniques and in particular the launching of

the International Ultraviolet Explorer Satellite (IUE) it is now possible to record very

accurate absorption spectra from DA WD’s, and correspondingly the need for more accurate

theoretical calculations have emerged. The study of the absorption due to transitions among

states of H2
+ , begins with the problem of obtaining a good representation of the transition

dipole moment, which expresses the amplitude for the given transition. So far the study of

transition dipole moments for H2
+  have only been done in the adiabatic or Born-Oppenheimer

approximation [1] using classical or semi-classical arguments. A good example of such an

approach is the work by Bates [17, 18] which is based on the adiabatic potential energy curves

for H2
+ . However, this and related models do not give the right absorption-coefficients, and it

is believed that this is due to the neglect of non-adiabatic effects, i.e. the coupling of the

nuclear and electronic motions. In other words we need to go beyond the simple Born-

Oppenheimer approximation, and try to include non-adiabatic effects.

Quantum mechanical motivation

At the very heart of practically all ab initio quantum mechanical calculations for

molecular systems lies either the Born-Oppenheimer [1] or the adiabatic approximation. The

philosophy of these approaches are a separation (complete or partial) of the electronic and

nuclear motions, taking point of reference in the large difference in the masses. Solving ab

initio quantum mechanical calculations for many particle systems in this picture of a clamped

nucleus Hamiltonian is difficult enough, and hence it is unlikely that calculations will be

made at a higher level of approximation in the near future. There are, however, and this is of

course the basis of this thesis, systems like H2
+  (and its isotopes) for which this statement is

definitely not true. These molecules contain so few particles that one need not make “any”

approximations in the solving of Schrödinger’s equation. Furthermore, since the nuclei are

very light, the corrections to the Born-Oppenheimer or adiabatic results will be greater for

3 The spectral Lyman series refer to transitions, 
  
n2 , l2 , m2 → n1 , l1 , m1 + λ , between states of the hydrogen atom

where   n1 = 1(l1 = m1 = 0) and n2 = 2, 3, 4,..{ } . The Lyman α-line is then the first allowed (  ∆l = ±1) spectral
transition i.e. 2,1, 0, ±1{ } → 1, 0, 0 + λα  where λα ≈1215.6Å.
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these molecules than for most others. Also as H2
+  has only one electron, it has a status in the

theory of molecules similar to that of the hydrogen atom in the theory of atoms; thus it serves

as the natural starting point in a more general discussion of non-adiabatic effects for many-

electron diatomic molecules.
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1    Introduction to quantum mechanical scattering theory

1.1 Introduction

It is well recognized that quantum mechanical scattering theory provides the most

complete and detailed description of atomic and molecular collisions, which is the

fundamental microscopic event that underlies a chemical reaction. Such a desirable theory,

able to describe the basic process for a chemical reaction from a knowledge of forces

operating at the atomic and molecular levels, explains some of the large effort that has been

and continues to be devoted to developing the theory to the practical stage that reliable

calculations can be carried out for “real” chemical reactions. Another and equally large factor

in the general motivation of theorists starting to think in terms of accurate reactive scattering

calculations is definitely the experimental progress in this field. Thus, since the 1960’s, when

crossed molecular beam experiments had developed to such an extent that it was possible to

study state-to-state dynamics of atom-diatom reactions such as

A + BC ν, j( ) Reactive → AB ′ν , ′j( ) + C (1.1.1)

there has been intense interest and effort devoted to the application of quantum mechanical

scattering theory to these reactions to give reliable values for the differential cross section

dσν , j→ ′ν , ′j θ,E( )
dΩ

(1.1.2)

This quantity, which gives a measure of the probability of producing the molecule AB in the

vibrational-rotational state ′ν , ′j( )  from the reactant molecule BC in the vibrational-rotational

state ν, j( )  with a solid scattering angle Ω = θ,φ( )  and fixed collision energy E, provides the

most detailed quantity that a reaction dynamical experiment can give. Crossed molecular

beam experiments enable these differential cross sections to be fully resolved with respect to

θ 4. However, averaging over the scattering angle θ  gives the integral cross section

σν , j→ ′ν , ′j E( ) = 2π
dσν , j→ ′ν , ′j θ,E( )

dΩ
sinθ








dθ

0

π

∫ (1.1.3)

which can, in principle, be measured in less sophisticated bulk experiments. Thermal rate

constants to specified product states AB ′ν , ′j( )  are then obtained by Boltzmann averaging

these integral cross sections over the possible initial vibrational-rotational states ν, j( )  and

collision energies E. This can be expressed as

4 For intermolecular (or isotopic) potentials which depend only on the separation of the two molecules, the scattering is
cylindrically symmetric with respect to the axis of the incident beam of molecules in the relative-motion picture. Thus
the scattering depends only on the deflection angle θ  and not on the azimuthal angle φ .
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σ ′ν , ′j T( ) = f ν , j E,T( )σν , j→ ′ν , ′j E( )dE∫
ν , j
∑ (1.1.4)

where f ν , j E,T( ) is the Boltzmann distribution function which gives the probability of BC

molecules to be in the state ν, j( )  with energy E at temperature T. These rate constants can

then be summed over all possible product states ′ν , ′j( )  to give the total reactive thermal rate

coefficient k(T).

k T( ) = σ ′ν , ′j T( )
′ν , ′j
∑ (1.1.5)

This thermal rate coefficient, in turn, can be measured quite directly in a bulb. Thus, the

theory of quantum mechanical scattering, which is the starting point in the derivation of an

accurate theory of chemical reaction dynamics, provides a crucial link between the results

obtained in detailed state selective molecular beam experiments and thermal average bulb

measurements.

As implied by the title of this chapter, this short review is restricted to a rigorous

accurate treatment of quantum calculations of reactive collisions. This is not meant to imply

that it is necessary or even desirable to approach all applications in this manner. It is well

recognized that if one is interested only in thermal reaction rate constants as the above k(T) in

Eq. (1.1.5), then transition-state theory is often adequate. There are also many examples

where classical trajectory simulation methods have been applied to describe more detailed

state-to-state properties of reactions. Furthermore, there are a variety of approximate quantum

mechanical and semi-classical methods (where only some of the degrees of freedom are

treated quantum mechanically, the remaining classical) that are satisfactory and useful in

various special situations. However, these models are, at least to some degree, empirical and

often cannot give complete account for quantum mechanical phenomena such as tunneling or

interference, and so only a rigorous quantum scattering calculation is guaranteed to be correct.

Hence, it is very important to develop these capabilities to as great an extent as possible in

order to be able, in some cases at least, to provide a “completely” reliable theoretical

description. Such is the point of view of this thesis.

As pointed out above, there has been great activity and interest in the field of accurate

quantum mechanical calculations of scattering problems for over 20 years. Quantum

mechanical methods are now well established for solving elastic scattering (i.e. no energy

transfer) problems,

A + BC ν, j( ) Elastic → A + BC ν, j( ) (1.1.6)

and the more “interesting” inelastic (i.e. with energy transfer) problems,

A + BC ν, j( ) Inelastic → A + BC ′ν , ′j( ) (1.1.7)
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but it is only very recently that practical and general quantum mechanical methods for three

dimensional reactive scattering problems like the ones in Eq. (1.1.1) have begun to emerge.

This comparatively slow progress is closely related to the problems involved in the derivation

of a set of coordinates that can most conveniently describe both the reactant and product states

- the so-called “coordinate problem” that will be reviewed in the next section. Another and

perhaps even larger factor than overcoming this coordinate problem is, simply, that in

theoretical (and experimental) research one tends to gear the type of problem one addresses to

the available resources at hand; ready access to super-computer facilities has stimulated many

theorists to start thinking again about how to carry out accurate reaction scattering problems.

In fact, this progress in computational hardware was strikingly evident during the evolution of

algorithms and models for the presented problem. When I started out working with this H2
+

problem at the University of Aarhus, I was “reduced” to working on an Alliant FX8/3 system

which even at that time was considered a small computer. Now two years later I (and the

theoretical group in Aarhus) have access to “real” super-computers that are more than 20-50

times as fast and have much bigger core memory than the Alliant FX8/3. In fact, now a days

scientists can acquire desktop-computers or workstations that outperform the Alliant by a

factor of 5-10, and only at a fraction the cost of the latter. So, in short, it was not until the

recent advent of large memory super-computers that these technical difficulties in connection

with three dimensional reactive scattering problems could “routinely” be overcome.

1.2 Coordinates

Before we move on to the real topic of this section, we briefly introduce the concept of

channels as used in the general formulation of rearrangement scattering, since this term shall

come in very handy in the following discussion of coordinates. Let us continue with the

simple case of a three particle collision as illustrated in Eq. (1.1.1) and Eq. (1.1.6,7). It is quite

deliberate that we have used the term particles, not in the classical sense, but simply to

emphasize that the actual nature of the particles have no influence on this concept to be

defined - so we could be referring to molecules, atoms, ions or even elementary particles as in

the case of the H2
+  system. With these three particles we assume that we can only form the

following set of chemically distinct arrangements

B − C + A; A − C + B; A − B + C; ABC{ } (1.2.1)

We shall further ignore any degeneracies that might arrive with the presence of identical

particles, treating all the particles in the system as distinguishable particles5. Each of the

arrangements corresponds to a special asymptotic form of the total wave function describing

this three particle collision, and each of these so-called target wave functions can be

5 In practice, of course, these degeneracies are more expediently removed using permutation symmetry arguments that
take proper account of the particle spin.
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characterized by a set of quantum numbers, corresponding to an exhaustive set of mutually

commuting operators of observable physical variables. In atomic and molecular collision

theory each arrangement, and the set of quantum numbers which are needed to specify the

target wave function, is called a channel. It is evident from Eq. (1.2.1) that we have assumed

that configurations in which the three particles are far apart only occur with negligible

probability, which physically corresponds to a scattering situation where the total energy lies

well below the threshold energy for a complete dissociation. We now call these channels with

an arrangement of three free particles closed channels, and all the other channels with

arrangements as shown in Eq. (1.2.1) open channels. Each of the reactions depicted in Eq.

(1.1.1) and Eq. (1.1.6,7) can now be viewed as reactions going from the same reactant

channel ( A + BC ν, j( )) to three different product channels.

As indicated in the introduction to this chapter, one of the nasty problems with doing

accurate quantum calculations on reactive collisions is the proper choice of coordinates. In

short, the problem is that the coordinates which most conveniently describe the reactants of a

chemical reaction are not particularly convenient for describing the products and vice versa.

At first this might come as a surprise, since it is a well known fact that classical trajectory

calculations on quite complicated reactions have been performed for some time, but the

answer to this curiosity is actually quite obvious. Quantum mechanical calculations, by virtue

of the uncertainty principle, describe all regions of the coordinate space at once6, whereas

classical trajectory calculations effectively access only a single point in this space at a time7.

To keep the notation as simple as possible, we first look at the situation of the collinear

(i.e. all particles move on a straight line) reaction as depicted in Eq. (1.1.1) - i.e. a two channel

reactive scattering. In this simple case a convenient choice of coordinates would be the

natural collision coordinates, as illustrated in figure 1. Here δu is the increment of the

translational coordinate u, which asymptotically describes the mass-scaled separation between

particle A or C and the pair BC or AB. In terms of scattering on a potential energy surface (to

be defined in detail in the next section) this set of coordinates has the great advantage of a

direct connection to the concept of the reaction path (illustrated as the thick line in figure 1).

The u coordinate simply follows the reaction path from the entrance channel A + BC  with

minus infinity ( u → −∞ ) to the exit channel AB + C with plus infinity (u →∞ ). Similarly,

δv is an increment of the vibrational coordinate v, which asymptotically describes a mass-

scaled separation of the two particles in the pair BC or AB. Obviously these natural collision

coordinates are very convenient, and swing smoothly from the reactants to the products.

However, the problem is how to generalize the coordinates to three dimensional and multi-

channel scattering situations. In 3D, at each value of the conserved total angular momentum

6 Physical observables in the quantum theory correspond to operators that are “averaged” over the whole configuration
space.

7 This intriguing, but fundamental relation between classical mechanics and quantum mechanics, is beautifully
described in the Feynman Path Integral formulation of the latter. In this formulation of quantum mechanics the
classical limit - the classical trajectory - is immediately visible.
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number j, the vibrational coordinate v in figure 1 become a 2D (rotational-vibrational) surface

which makes the idea of a vibrational coordinate somewhat more difficult to grasp, and in the

case of more than two open channel the idea of a well defined reaction path u looses its

meaning.

A + BC

AB + C

δ v
δu

ra

aR

Figure 1 Natural collision coordinates

The Jacobi-coordinates are probably the most popular coordinates in terms of actual

applications to be discussed in this section. Once again taking the simple collinear three

particle reaction depicted in Eq. (1.1.1) as the working example, increments of the reactant

and product mass-scaled Jacobi-coordinates Ra , ra( ) and Rc, rc( ) are shown in figure 2.

A + BC

AB + C

a

R a

r

δ

δ c

δRc

rδ

r

Ra

a

Figure 2 Mass-weighted Jacobi-coordinates
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Ra  is a mass-scaled distance between A and the center-of-mass of BC, and ra  is a mass-

scaled distance between B and C. The mass-scaling factors are generally chosen so that the

kinetic energy density contains only one mass-factor,

  
T Ψ( ) =

1
2m j

−ih∇ jΨ
2

j
∑ →

1
2M

−ih∇ jΨ
2

j
∑ (1.2.2)

where M can be chosen as the total mass. Rc  and rc  are defined in a analogous way. It should

be clear from figure 2 that either set of mass-scaled Jacobi-coordinates alone provides a

complete description of the available collinear coordinate space. However, it should be

equally clear that while Ra  and ra  are better suited to describing translational and vibrational

motions in the reactant channel, Rc  and rc  are more appropriate for a corresponding

description of the products. In spite of this coordinate problem, the Jacobi-coordinates are a

very popular choice in collision scattering calculations, which is probably because these

coordinates, and therefore also the formulations of quantum reactive scattering based on these

coordinates, are quite easy to construct and generalize to different systems. In appendix A we

present a scheme that can be used to construct the Jacobi-coordinates for a general N particle

system. Further, there is a quite straightforward “solution” to this coordinate problem related

to the Jacobi-coordinates, namely simply to retain both sets of coordinates at once, using each

set for convenience as required. This simultaneous use of Jacobi-coordinates for the various

arrangements is actually an approach that has been used for many years in electron structure

quantum chemistry under the name linear combination of atomic orbitals (LCAO). The

molecular orbitals for an electron are expanded in atomic orbital basis-functions utilizing the

coordinates of the electron with respect to the different nuclear centers. In other words, the

philosophy of this approach, similar8 to that in the LCAO model, is a multi-center expansion.

As a direct consequence of this natural and efficient way to represent a reactive scattering

wave function, another complexity in introduced. The translational and vibrational motions in

the reactant channel are coupled non-locally through the potential term in the Hamiltonian to

those in the product channel. This non-local coupling between states in the reactant and

product channels then appear as exchange integrals between basis-functions in different

chemical arrangements. These exchange integrals are simply a mathematical manifestation of

the interactions which cause the reaction to proceed, and they are quite analogous to electron

exchange interactions in LCAO-like quantum chemistry that arise from matrix elements in

which the electron coordinates have been exchanged.

The last approach to the coordinate problem that we shall discuss in this section is the

use of the hyper-spherical coordinates [19] which, for the collinear case in Eq. (1.1.1), are

simply polar coordinates as shown in figure 3 below.

8 It should be emphasized at this point that the analogy between multi-center expansions used in the Jacobi-coordinate
approach and in the LCAO-model does indeed have it’s limitations in the sense that the two cases refer to different
physical situations, but nevertheless I find the analogy  striking.
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A + BC

AB + C

ρ

δρ

θ a

θac

r

R

a

a

ρδθ a

Figure 3 Hyper-spherical coordinates

Generally speaking, hyper-spherical coordinates are a set of translationally and rotationally

invariant coordinates, where the characteristic hyper-spherical radius ρ  serves as a reaction

coordinate. The hyper-spherical radius for an N-particle system is defined as

  
ρ2 =

r
rj

2

j=1

N−1

∑ (1.2.3)

where   
r
r j are the mass-scaled Jacobi-coordinates, as defined in appendix A (recall   

r
rN ≡

r
RG =

center-of-mass vector). For the collinear example depicted in figure 3 the hyper-spherical

coordinate simply reads as

  
ρ2 =

r
ra

2
+

r
Ra

2
(1.2.4)

but it can equally well be defined in terms of the mass-scaled Jacobi vectors of the product

arrangement c AB + C( ), and in this sense the hyper-spherical coordinate is “universal”. The

definition of the remaining set of invariants in the hyper-spherical coordinate set (θa  in figure

3) is less straight-forward, which makes this choice of coordinate representation a little more

difficult to derive than the Jacobi-coordinates. For the collinear case in figure 3 the “Delvers

hyper-angle” [20, 21] , θa , is defined as

θa = tan−1 ra Ra( ) (1.2.5)

This coordinate is a function of the arrangement for which it is defined, and in fact the

reactant hyper-angle θa  and the product hyper-angle θc  are related by θa + θc = θac , where

θac = tan−1 mB µ( ) (1.2.6)
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with

µ ≡
mAmBmC

mA + mB + mC

(1.2.7)

is the skewing angle shown on the plot in figure 3. In the general three particle case a

convenient choice would be the Mead’s coordinates [22] where the invariants x and y are

defined as

  

x =
r
Ra

2
−

r
ra

2( ) ρ2

y = 2
r
Ra ⋅

r
ra ρ2

(1.2.8)

The big advantage of these hyper-spherical coordinates is that they describe the arrangement

channels in an equivalent fashion, and the hyper-spherical radius ρ  is a direct measure of the

overall extent of the configuration space. This is illustrated below in figure 4 [23].

B

C A

A-C-BA-C + B

C-A-B

A-B + C

B-C + A

C-B-A

Figure 4 Arrangement-channels for 3 particles

Since 
  

r
Ra ×

r
ra

2
= ρ4 1− x2 − y2( ) 4, points on the unit circle in the x,y( )-plane correspond to

collinear arrangements as depicted in figure 4, and points inside this circle refer to proper

triangles. In other words, the collinear reaction that we have used as a working example

throughout this section corresponds to a collision with the constraint x2 + y2 = 1. Hyper-

spherical coordinates in four particle systems is discussed in reference [24]. Pursuing the

(flimsy) analogy between multi-center expansions used in the Jacobi-coordinate approach and

in the LCAO-model, hyper-spherical coordinates correspond to some sort of a single center

expansion of the molecular orbital, and hence this approach does not introduce the tedious

exchange integrals.
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1.3 Beyond the Born-Oppenheimer approximation

At the very heart of practically all ab initio9 quantum mechanical calculations for

molecular systems lies either the Born-Oppenheimer or the adiabatic approximation. The

philosophy of these approaches is a separation (complete or partial) of the electronic and

nuclear motions, taking point of reference in the large difference in the masses (assumption of

infinite nuclear masses). Solving ab initio quantum mechanical problems for many particle

systems in this picture of a clamped nucleus Hamiltonian is difficult enough, and hence it is

unlikely that calculations will be made at a higher level of approximation in the near future.

There are, however, and this is of course the whole basis of this thesis, systems like H2
+  (and

its isotopes) for which this statement is definitely not true. These molecules contain so few

particles that one need not make any approximations10 in the solving of Schrödinger’s

equation. Furthermore, since the nuclei are very light, the corrections to the Born-

Oppenheimer or adiabatic results will be greater for these molecules than for most others.

In order to give a more precise definition of these approximations and an enhancement

of the methodology necessary for a detailed comparison of these and others approaches

discussed in this thesis, we shall consider an N-particle system with g nuclei and N-g

electrons. As a prelude to the separation of the nuclear and electronic motions, we introduce a

partitioning of the particles in which the labels 1 through g refer to nuclei and the remainder

to electrons. For this system the total non-relativistic Hamiltonian operator H reads as

H = TNuc + TElec + W (1.3.1)

where the nuclear and electronic kinetic energy operators respectively are given as

  

TNuc = −
h2

2m j

∇ j
2

j=1

g

∑

TElec = −
h2

2m j

∇ j
2

j=g+1

N

∑
(1.3.2)

and the potential energy operator for the case of Coulombic interaction is

W =
ejek

4πε0

Pjk
j,k =1
j<k

N

∑ (1.3.3)

where the operator P jk  is defined through its action on the wave function

9 It is a fallacy to put the term ab initio equal to exact in general. Strictly speaking Ab initio means “from the
beginning”, and when used in the context of natural science, it means exact within the framework of a given (non-
empirical) model or theory.

10 Except of course the approximation of representing the wave functions in a finite basis set (or grid) - due to the
limited core memory on computers. However it should be emphasized that this is by no means a trivial approximation
in the sense that a “bad” choice of the primitive basis functions can lead to very bad finite representations of the
overall wave functions.
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PjkΨ

r
r1,

r
r2 ,....,

r
rN( ) =

r
rj −

r
rk

−1
Ψ

r
r1,

r
r2 ,....,

r
rN( ) (1.3.4)

The fundamental equation of motion for the system is now given through the well known

time-independent Schrödinger equation

  H
r
r1,

r
r2 ,....,

r
rN( )Ψ r

r1,
r
r2 ,....,

r
rN( ) = EΨ

r
r1,

r
r2 ,....,

r
rN( ) (1.3.5)

where the eigenvalue E equals the total energy of the system. If we further define the

electronic Hamiltonian HElec  as the sum of TElec  and W we get an additional eigenvalue

equation

  
HElec

r
r1,

r
r2 ,....,

r
rN( )Φ r

r1,
r
r2 ,....,

r
rN( ) = ε

r
r1,

r
r2 ,....,

r
rg( )Φ r

r1,
r
r2 ,....,

r
rN( ) (1.3.6)

for fixed nuclear configuration 
  
r
r1,

r
r2 ,....,

r
rg( ). This equation is often referred to as the

“clamped nucleus equation” where ε is the electronic energy for the nuclear configuration

  
r
r1,

r
r2 ,....,

r
rg( ). Very generally speaking there now exist two distinct strategies to solve Eq.

(1.3.5), both leading to coupled vibrational equations. To simplify the notation we will denote

the nuclear coordinates 
  
r
r1,

r
r2 ,....,

r
rg( ) collectively by    

t
R and the electronic coordinates

  
r
rg+1,

r
rg+2 ,....,

r
rN( ) collectively by   

t
r .

One of the strategies involves the use of diabatic states   Φm
o t

r( ), where the orthonormal

electronic states   Φm
o t

r( ) are defined as solutions to the clamped nucleus equation Eq. (1.3.6) at

a chosen reference nuclear configuration   
t
R0:

  
HElec

t
r,

t
R0( )Φm

0 t
r( ) = εm

0 Φm
0 t

r( ) (1.3.7)

In other words   Φk
o t

r( ) does not depend explicitly on the nuclear coordinates. If we, as a first

“ansatz”, assume the basis-set   Φm
o t

r( ){ } to be complete in the Hilbert space of the electronic

domain L2 VElec( ) (which is not generally the case for a finite basis-set), the exact molecular

wave function in Eq. (1.3.5) can be expanded as follows

  
Ψ

t
r,

t
R( ) = Φm

0 t
r( )χm

0
t
R( )

m
∑ (1.3.8)

Inserting this expansion into Eq. (1.3.5) results in

  
TNuc

t
R( ) + HElec

t
r,

t
R( ){ }Φm

0 t
r( )χm

0
t
R( )

m
∑ = E Φm

0 t
r( )χm

0
t
R( )

m
∑ (1.3.9)

To obtain an equation for the vibrational functions 
  
χm

0
t
R( ) , we now proceed with a technique

that we will refer to as the “projection method”, where we project the Schrödinger equation

onto (in principle) all the diabatic states. This is done by multiplying Eq. (1.3.9) by all the

states   Φn
0* t

r( )  and integrating over the electronic domain, using the orthonormality relation
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d
t
rΦn

0* t
r( )Φm

0 t
r( )

V Elec

∫ = δnm (1.3.10)

We then obtain the coupled set of equations

  
TNuc

t
R( ) − E[ ]δnm + Hnm

Elec t
R( ){ }χm

0
t
R( )

m
∑ = 0 (1.3.11)

where we have further defined the matrix elements

  

Hnm
Elec t

R( ) = d
t
rΦn

0* t
r( )HElec

t
r,

t
R( )Φm

0 t
r( )

V Elec

∫ (1.3.12)

Note that the nuclear kinetic energy is diagonal in the diabatic basis, whereas the electronic

Hamiltonian, or more precisely the potential, couples the different diabatic states.

An alternative strategy, which is the one that we shall use throughout this thesis, is to

expand 
  
Ψ

t
r,

t
R( )  using a basis of adiabatic electronic states

  
Ψ

t
r,

t
R( ) = Φm

t
r,

t
R( )χm

t
R( )

m
∑ (1.3.13)

where the adiabatic states 
  
Φm

t
r,

t
R( )  are solutions of the clamped nucleus equation

  
HElec

t
r,

t
R( )Φm

t
r,

t
R( ) = εm

t
R( )Φm

t
r,

t
R( ) (1.3.14)

and depend parametrically on the nuclear coordinates   
t
R. Again we have, as a first “ansatz”,

assumed the basis-set 
  
Φm

t
r,

t
R( ){ }  to be complete in the Hilbert space over the electronic

domain L2 VElec( ). The expansion in Eq. (1.3.13) is referred to as the Born-Huang series, and

the electronic eigenvalues 
  
εm

t
R( ) define the usual adiabatic potential energy surface shown in

figures 1, 2 and 3 as contour plots. Inserting the adiabatic expansion Eq. (1.3.13) into the total

Schrödinger equation Eq. (1.3.5) and multiplying by 
  
Φn

* t
r,

t
R( )  followed by an integration over

the electronic domain, proceeding with the “projection method”, results in

  
εn

t
R( ) − E[ ]χn

t
R( ) + Tnm

Nuc t
R( )

m
∑ = 0 (1.3.15)

where we have used the orthonormality relation

  

d
t
rΦn

* t
r,

t
R( )Φm

t
r,

t
R( )

V Elec

∫ = δnm (1.3.16)

and defined the matrix elements

  

Tnm
Nuc t

R( ) = d
t
r Φn

* t
r,

t
R( )TNuc Φm

t
r,

t
R( )χm

t
R( )[ ]{ }

VElec

∫ (1.3.17)
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We note that the electronic Hamiltonian is diagonal in the adiabatic basis, whereas the

nuclear kinetic energy term couples the different adiabatic states 
  
Φm

t
r,

t
R( ) .

The diabatic states are in some ways convenient for practical calculations because they

refer to fixed nuclear configurations, but for a large nuclear domain, corresponding to the

situation in reactive scattering with different arrangements, this approach is actually quite

inefficient since one has to include many diabatic states in the expansion of the exact wave

function 
  
Ψ

t
r,

t
R( ) . The adiabatic electronic states and the associated potential surfaces 

  
ε

t
R( ) ,

on the other hand, emerge naturally from the theory of reactive scattering, and hence we shall

restrict attention to this strategy of expansion in the rest of this thesis.

We now move on to a more detailed analysis of Schrödinger’s equation Eq. (1.3.15)

resulting from the adiabatic expansion and the use of the conventional “projection method”.

The nuclear kinetic energy matrix element 
  
Tnm

Nuc t
R( ) has the explicit form, using Eq. (1.2.17)

  

Tnm
Nuc t

R( ) = −
h2

2m j

d
t
rΦn

* t
r,

t
R( )∇ j

2 Φm

t
r,

t
R( )χm

t
R( )[ ]

VElec

∫
j=1

g

∑ (1.3.18)

and if we now switch to the convenient bra-ket notation11, this is easily rewritten, using the

rule for differentiation of a product-function twice, to

  
Tnm

Nuc t
R( ) = −

h2

2m j

δnm∇ j
2 + Φn ∇ j

2 Φm + 2 Φn ∇ j Φm ∇ j[ ]χm

t
R( )

j=1

g

∑ (1.3.19)

and inserting this result into Eq. (1.3.15) gives us

  

−
h2

2m j

δnm∇ j
2 + Φn ∇ j

2 Φm + 2 Φn ∇ j Φm ∇ j{ } + δnm εn

t
R( ) − E{ }

j=1

g

∑










m

∑ χm

t
R( ) = 0 (1.3.20)

We are now about to realize one of the real disadvantages connected with the

conventional “projection method” used in the adiabatic basis expansion: The orthonormality

relation Eq. (1.3.16) in the bra-ket notation reads as

Φn Φm = δnm (1.3.21)

Taking the gradient of this expression with respect to the nuclear coordinate j, and assuming

that the differentiation simply goes inside the bra-ket notation, we have

11 The bra-ket notation is a short notation for integrals of the type:

f O g ≡ f O g[ ] ≡ dx f ∗ x( )O g x( )[ ]{ }
−∞

∞

∫ = dx O∗ g x( )[ ]f x( ){ }∗
≡ O g[ ] f

−∞

∞

∫ *

and we note that in the general definition operators always operate to the right, and only if the operator happens to be
Hermitian can the operator in the above equation operate to the left - that is if

dx f ∗ x( )O g x( )[ ]{ }
−∞

∞

∫ = dx O∗ f x( )[ ]g x( ){ }
−∞

∞

∫ ⇔ f O g ≡ f O g[ ] = O f[ ] g
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∇ jΦn Φm + Φn ∇ jΦm = Φm ∇ jΦn

*
+ Φn ∇ jΦm = 0 (1.3.22)

which shows that these matrix elements are skew Hermitian (Amn = −Anm
*

). If we take the

gradient of Eq. (1.3.22) once more, we arrive at the following expression

∇ j
2Φn Φm + 2 ∇ jΦn ∇ jΦm + Φn ∇ j

2Φm = 0 (1.3.23)

This expression clearly shows that matrix elements of the type Φn ∇ j
2 Φm  are not generally

Hermitian or even skew Hermitian. The term “generally” is used because only in a complete

basis where we can write the resolution of unity12 as

1 = Φk Φk
k
∑ (1.3.24)

do we have

Φn ∇ j∇ jΦm = Φn ∇ jΦk Φk ∇ jΦm
k
∑ (1.3.25)

which is clearly (from Eq. (1.3.22)) Hermitian. These observations lead us to the following

very important conclusion: Using the “projection method” in connection with the adiabatic

basis expansion generally leads to non-Hermitian matrix expressions. As a direct consequence

of this, the very important S-matrix derived within the framework of this approach is not

guarantied to be unitary, and hence the condition that the number of particles should be

conserved is not satisfied. This is guaranteed only in the limit of a complete adiabatic basis-

set, which is of course practically unattainable. This is actually one of the main reasons why

this approach is not very popular in terms of scattering calculations where the S-matrix is

often the goal. Instead theoreticians often turn to other strategies, like the variational

principles to be discussed in the next section, that do not suffer from this lack of symmetry.

Further we can pinpoint the element in Eq. (1.3.20) that causes this non-Hermicity. Since for

the vibrational functions 
  
χn

t
R( )  and 

  
χm

t
R( )  we have a set of expressions analogous to Eq.

(1.3.21,22), and since the term ∇ j
2  is diagonal (and therefore does not cause any problems

when Eq. (1.3.20) is projected onto 
  
χn

*
t
R( )), we conclude that the term Φn ∇ j

2 Φm  alone

causes the non-Hermicity.

One obvious, but very crude, way to overcome this problem of non-Hermicity is simply

to neglect off diagonal matrix-elements of the type Φm ∇ j Φn  and Φm ∇ j
2 Φn  which

correspond to using only one term in the expansion in Eq. (1.3.13). Eq. (1.3.20) then reduces

to

12 The conventional notation for this completeness relation reads as

1 = dx φ k
∗ x( )φ k y( )

k
∑











−∞

∞

∫ or δ y − x( ) = φ k
∗ x( )φ k y( )

k
∑
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−
h2

2m j

∇ j
2 + Φm ∇ j

2 Φm + 2 Φm ∇ j Φm ∇ j{ }
j=1

g

∑ + εm

t
R( ) − E












χm

t
R( ) = 0 (1.3.26)

This approach is referred to as the adiabatic approximation as opposed to the “exact” non-

adiabatic13 solution of Eq. (1.3.20). Clearly the original motivation for Born (1951) and Born

and Huang (1956) to introduce this approximation, was not just to overcome the discussed

problem of non-Hermicity, but rather to bring the expression Eq. (1.3.20) into a form that was

easier to solve. If we further take the adiabatic states 
  
Φm

t
r,

t
R( )  to be real, the term

Φm ∇ j Φm  vanishes14. In other words the adiabatic approximation neglects the terms

Φn ∇ j Φm , but includes the term Φm ∇ j
2 Φm . However, in the limit of a complete basis,

these terms are related through Eq. (1.3.25), and as such it seems unjustifiable to keep

Φm ∇ j
2 Φm  but neglect Φn ∇ j Φm . This curiosity of the adiabatic approximation has led

theoreticians to the opinion that for some systems15 the result of neglecting the term

Φm ∇ j
2 Φm  as well as Φm ∇ j Φm  actually is a more “justifiable” approximation. This is

the celebrated and well-known Born-Oppenheimer approximation. The corresponding

equation for the vibrational functions 
  
χm

t
R( )  reads as

  

−
h2

2m j

∇ j
2

j=1

g

∑ + εm

t
R( ) − E












χm

t
R( ) = 0 (1.3.27)

It is widely believed that the decoupling of electronic and nuclear motions in such a way as to

yield the above clamped nucleus Hamiltonian can be justified by reference to work presented

in a paper [1] by Born and Oppenheimer published in 1927. Nowadays, however, it is more

usual to attempt a justification in terms of an approach that was presented first by Born in

1951 and written up in a generally available form by Born and Huang [26] in 1954. It is also

appropriate at this point to mention some work [27] by Brian T. Sutcliffe, whom I had the

chance to meet during the “Advanced NATO Study Institute” held in Bad Windsheim,

Germany 1991. He especially drew attention to the fact that the Born-Oppenheimer

approximation (popularly known as the assumption of infinite nuclear masses) cannot be

justified in any simple way in a completely non-classical theory. This then leads to the

abandoning of molecular structures, and leaves us with what is known as non-adiabatic

theory.

1.4 Variational methods in reactive scattering

In this section we will give a review of a very important technique used extensively in

13 The term non-adiabatic is clearly a double negative construction, but is not equivalent to diabatic.
14 Amm = −Amm ⇔ Amm = 0
15 Keld Bak, Aarhus University, concludes in his thesis [25] from 1982 that for the H2 system with closely packed

adiabatic states this adiabatic approximation is poor and the Born-Oppenheimer approximation actually gives better
results.
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the study of accurate inelastic and reactive scattering, namely the variational method. We start

out with a short introduction to the course of history for these methods, and discuss some of

them as we go along. However, no attempt is made here to give a comprehensive description

of the various methods, but rather to summarize the basic ideas behind them and the problems

associated with them. As we shall see there are several different variational principles for

scattering problems, and although they are not all equivalent, many of them are special cases

of the “Kohn variational principle” (KVP) originally introduced by Hulthén [28, 29] and by

Kohn [30]  in the late forties. However, this approach is well known to be plagued by the so-

called “Kohn anomalies” [31], and hence most of these methods suffer from singularities and

general problems with convergence. Instead of going into a thorough discussion of the KVP

itself, we will give a fairly detailed description of a quite recent method [32] that, at least in

principle, has overcome these problems of “Kohn anomalies”. From this discussion it is then

easy to derive the variational functional in the KVP, and we will finally comment on the

explicit nature of the “Kohn anomalies”.

Variational methods have actually been used in quantum chemistry successfully for

more than 60 years, and as such there is really nothing curious about this approach. The

earliest quantal applications of this method were made by Kellner [33] and by Hylleraas [34,

35] in the late twenties to the stationary state problem of the helium atom. These bound state

calculations all take point of reference in the Rayleigh-Ritz variational principle, and they

provide both an upper bound to an exact energy and a stationary property that determines free

parameters (often the expansion coefficients) in the wave function. However, it was not until

in the late forties that this method was applied to scattering problems. This comparatively

slow progress is of course closely related to the different nature of the two problems. Bound

states of an entire system are associated with wave functions that have vanishing amplitudes

when the distance between any two particles tends to very large values16, whereas in

scattering problems the wave functions have boundary conditions corresponding to the

different arrangements. Further, in scattering theory the energy is specified in advance.

Generally, variational principles on these systems also determine the wave function, but not

with the variational bounds that the bound state calculation provide. In other words, the

parameters in the total wave function are determined so that a variational functional is made

stationary, but the sign of the residual error (i.e. upper or lower bound) is not usually

determined. This lack of a well-defined bounded quantity is a complicated aspect of

variational calculations in scattering theory, since there is no simple absolute standard of

comparison between different trial functions. As mentioned before there are several different

variational principles for scattering problems, but the three most commonly used variational

methods are due to Kohn and Hulthén (KVP) [28-30], Schwinger (SVP) [36] and Newton

(NVP) [37]. Many attempts have been made to point out simple relations existing among the

apparently independent variational methods, and some of the more elegant relations are given

16
  
Ψ

t
ω( )∈L2 V( )
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by Kato in his article from 1950 [38]. Simply by adjusting phase-constants, and rewriting the

variational functional, he managed to derive the Kohn-, Hulthén- and the Schwinger-method

from the same starting point. In the KVP, SVP and the NVP stationary estimates of the so-

called reactance matrix, K , is computed using different variational functionals. The main

difference in these three functionals is that the order of the error in the computed K  matrix,

for a given number of steps in the successive generation of the exact wave function,

increases17. The applied K  matrix is a real and symmetric matrix, that always will give a

unitary scattering matrix, S, simply through its definition

S = 1 + iK( ) 1− iK( )−1
(1.4.1)

In the simple case of a potential scattering (i.e. one-channel), the K  matrix is equal to the

tangent of the phase-shift in the asymptotic wave function. However, as mentioned before,

these variational methods have been somewhat unpopular in the past, due to the so-called

“Kohn anomalies” [31]. Until recently, especially the KVP has not been generally used

because of the spurious unphysical singularities that often result when it is used with standing

wave boundary conditions. These anomalous singularities inherent in the KVP were first

considered by Schwartz [39], who encountered the anomalies in variational calculations of

electron hydrogen scattering. Also “Schwinger anomalies” have been observed by a number

of people (e.g. [40]), but “Newton anomalies” have not yet been reported in the literature18,

though the NVP is a special case of the KVP and therefore would be expected to display

anomalous singularities.

The problems of these anomalous (i.e. spurious, unphysical) singularities was really, at

least formally, not overcome until in 1987 when Zhang and Miller published a paper [32] on

what they refer to as “the S-matrix version of the Kohn variational principle”. The philosophy

behind this approach is actually quite simple and straightforward, and since it also deals in a

more explicit way with the nature of the “Kohn anomalies”, it deserves a little more attention

than the variational methods mentioned above. Instead of first determining the real symmetric

reactance matrix K , and then obtaining the S-matrix via Eq. (1.4.1), Zhang and Miller derived

a variational functional, analogous to the one known from the Kohn variational principle, to

give the S matrix directly. The price for this simple direct approach, however, was that all the

calculations, at least in the most general formulation, had to be done in the complex space,

which, in terms of practical numerical implementations, is a high price to pay.

All of the relevant features and ideas of this method are illustrated by the simple case of

a potential scattering (i.e. one channel) situation, where the Hamiltonian is given by

17 If δf 0( )  is the error in the trial wave function f 0( ) , and δf 1( )  is the error in the first approximate wave function f 1( )

(which we expect to be a more accurate wave function than f 0( ) ) then the error term in the variational functionals are
respectively δf 0( )δf 0( )  for KVP, δf 0( )δf 1( )  for SVP and δf 1( )δf 1( )  for NVP.

18 Truhlar, Kouri, and co.-workers have used the NVP expensively (e.g. [41]), but have not noted any of these
anomalies in their applications.
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H = −

h2

2µ
d2

dr2
+ W r( ) (1.4.2)

and where the potential satisfies lim
r→∞

W r( )[ ] = 0. Further, in order to keep the same notation as

the one presented in the article [32], the convention is used throughout the rest of this section

that wave functions in bra symbol, , in bra-ket matrix element notation are not complex

conjugated - a somewhat odd convention. As mentioned above this method is characterized

by a stationary estimate of the scattering matrix S (as opposed to the K-matrix), where the

functional to be extremized (denoted by ext) reads as

  
S = ext St +

i
h

Ψt H − E Ψt






(1.4.3)

The label “t” refers to a trial state or matrix. The trial wave function, Ψ t r( ), which is assumed

to be regular at r=0, has an asymptotic form consisting of a superposition of an incoming19

plane wave exp −ikr( ) and an outgoing or scattered plane wave exp ikr( ), where the

component of the latter is given by definition as the S-matrix (here just a 1×1 complex matrix

or number of unit modules). That is

 lim
r→∞

Ψt r( )[ ] = −v− 1
2e− ikr + v− 1

2eikr St (1.4.4)

where the pre-exponential factor with   v = hk µ  corresponds to a simple flux normalization20,

and   k
2 = 2µE h2 . In order to introduce the parameters cm with which S should be

extremized with respect to, the strategy is now to write the trial function Ψ t r( ) in the form

Ψ t r( ) = −u0 R( ) + cmum r( )
m=1

N

∑ (1.4.5)

where we have introduced the complex energy dependent basis functions

u0 r( ) = f r( )e− ikrv− 1
2

u1 r( ) = u0 r( )*
(1.4.6)

19 The linear momentum of the plane waves read as

  
P

z
exp ±ikz( )[ ] =

h

i

d

dz
exp ±ikz( )[ ] = ±khexp ±ikz( )

The terms incoming and outgoing are then used for respectively the plane wave exp(−ikz)  and exp(ikz)  keeping in
mind that the domain of the reaction coordinate is z ≥ 0  so that z →∞  corresponds to the asymptotic state.

20 The probability current   
r
J , i.e. the flow of probability across unit area in unit time, is generally defined as

  

r
J ≡ −

ih

2µ
Ψ*

r
∇Ψ−Ψ

r
∇Ψ*( )

Since the probability refers to the presence of one particle, it also represents the average flow or flux of particles
across unit area pr. second. Hence we can also represent the flux as

  

r
J = Ψ 2 r

v

where Ψ 2  is the density of particles and   
r
v  the velocity. If multiplied by the charge of the particle we further have

the electric current.
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and a set of (unspecified) real square-integrable energy independent basis functions

um r( ),m = 2,...N{ }. The function f r( )  in Eq. (1.4.6) is a so-called cut-off function with the

property

lim
r→0

f r( )[ ] = 0

lim
r→∞

f r( )[ ] = 1
(1.4.7)

such that, in agreement with the condition Eq. (1.4.4), we have the following asymptotic

forms

lim
r→0

um r( )[ ] = 0, m ∈ 0,1,...,N{ }

lim
r→∞

u0 r( )[ ] = v− 1
2e− ikr

lim
r→∞

u1 r( )[ ] = v− 1
2eikr

lim
r→∞

um r( )[ ] = 0, m ∈ 2,3,...,N{ }

(1.4.8)

By comparison of Eq. (1.4.4-7) we further note that S = c1. Integrating by parts twice

  
ui H − E uj = uj H − E ui −

h2

2µ
ui

duj

dr
− uj

dui

dr





0

∞

(1.4.9)

we have the following commutation relations

  

M0[ ]
1
≡ u0 H − E u1 = u1 H − E u0 − ih

M0[ ]
m
≡ u0 H − E um = um H − E u0 , m ∈ 2,3,...,N{ }

M[ ]
mn

≡ um H − E un = un H − E um , m,n ∈ 1,2,...,N{ }

M00 ≡ u0 H − E u0

(1.4.10)

where we have defined the “almost” bound-bound N × N matrix M  (Hermitian), the free-

bound N ×1 matrix M0  and the free-free 1 ×1 matrix M0021. Substituting the expansion of

Ψ t r( ) in Eq. (1.4.5) into the variational expression Eq. (1.4.3), gives in terms of a matrix

notation

  
S =

i
h

ext M00 + C
T
MC − C

T
M0 − M0

T
C[ ] (1.4.11)

21 The unbound or free basis functions u
0

r( )  and u
1

r( )  are obviously not L2 V( )-functions, but nevertheless all the
matrix elements involving these functions exist because

  

lim
r→∞

H − E( )um r( )[ ] = lim
r→∞

−
h2

2µ
d2

dr2 − E








 um r( )













= 0, m ∈ 0,1{ }
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An optimization of this equation with respect to the expansion coefficients C - that is

∂
∂cm

S[ ] = 0, m ∈ 0,1,...,N{ } (1.4.12)

leads to the condition

C = M
−1

M0 (1.4.13)

and back substituting this into Eq. (1.4.11) gives the working equation

  
S =

i
h

M00 − M0
T
M

−1
M0[ ] (1.4.14)

The “problem” connected with a direct numerical implementation of this S-matrix

version of the Kohn variational principle is now evident; one has to invert a large N × N

complex matrix, which in terms of allocation of core memory can be a problem if the

dimension, N, is too large. The mathematical questions associated with the development of

suitable numerically methods that can handle such large matrix-inversion-problems, have

received considerable attention and a number of formal approaches have (and are being)

developed. Especially Wyatt [42] has been very active in this field over the years. He, and

co.-workers, have exploited a number of iterative methods that affords substantial savings in

the actual memory used for matrix storage, without resorting to writing matrix elements to

disk or other mass storage devices. In other words it is by no means impracticable to directly

implement the S-matrix version of the Kohn variational principle, but still it is not

numerically as “simple or uncomplicated” as most of the other variational methods discussed

in this thesis. Zhang and Miller show that the “complex-inversion-problem” can, to some

extent, be minimized by a partitioning of M
−1

 into a real energy independent part and a

complex energy dependent part, using the so-called Löwdin-Feshbach partitioning identity,

but this means that the actual matrix inversion is now done in real algebra, such that

singularities can in principle occur, though Zhang and Miller have not noted any of these

anomalies in their applications.

At this point it is useful to compare the above procedure with the original K-matrix

version of the Kohn variational principle, that we have discussed before. In this method the

trial wave function Ψ t r( ) is real with the asymptotic form

lim
r→∞

Ψ t r( )[ ] = v− 1
2 sin kr( ) + Ktv− 1

2 cos kr( ) (1.4.15)

We could now go through the same derivations as above, but this time with the real energy

dependent free functions u0 r( ) and u1 r( ) as
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u0 r( ) = f r( )v− 1
2 sin kr( )

u1 r( ) = f r( )v− 1
2 cos kr( )

(1.4.16)

to find the following final “working formula” for the K-matrix

  
K = −

2
h

M00 − M0
T
M

−1
M0[ ] (1.4.17)

where the matrix elements are defined in the same way as before, but note that all the

elements are now real. The problem with “Kohn anomalies” in the Kohn variational principle

and related methods now appears. In the present case the matrix representation of the

Hamiltonian in the basis um r( ), m ∈ 1,2,...N{ }{ }  is real symmetric, and hence its eigenvalues

are real. But every time that the energy E is equal to one of these eigenvalues, the matrix M
−1

is singular according to its definition Eq. (1.4.10). This may happen as the energy E is varied,

or at fixed E if non-linear parameters in the basis-set um r( ), m ∈ 1,2,...N{ }{ }  are varied to

cause one of the eigenvalues to pass through the value E. The problem is not so much when

these eigenvalues are exactly equivalent to E, since this is very improbable to happen, as

when they are close to E in terms of the machine precision on the used computer. Then M
−1

 is

close to singular, giving false large contributions to the K-matrix. This is exactly what

Schwartz [39] discovered in 1961, when he reported that for certain values of E the phase

shift (= K-matrix) did not converge. In the limit of a complete basis these so-called “false

resonances” become infinitely narrow, and thus unobservable. In other words these “Kohn

anomalies” are inevitable in variational approaches where the basis-set is real and finite, and

hence they have been a serious problem in many practical calculations as mentioned before.

In contrast, the S-matrix version of the Kohn variational method has no anomalous

singularities because the matrix of H  is here complex symmetric. In fact the condition that

M
−1

 in Eq. (1.4.15) is singular is the secular equation for eigenvalues of Schrödinger’s

equation

H − E[ ]Ψ r( ) = 0 (1.4.18)

where

Ψ r( ) = cmum r( )
m=1

N

∑ (1.4.19)

with the boundary conditions

lim
r→∞

Ψ r( )[ ] = lim
r→∞

u1 r( )[ ] ≈ eikr (1.4.20)

These complex energies are referred to as Siegert eigenvalues [43], and they are the

physically correct complex poles of the S-matrix which characterize the positions and widths
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of the scattering resonances. In other words Eq. (1.4.15) is only singular when it is supposed

to be singular. However originally and other variational principle attracted our attention as a

means by which one could avoid having to work in complex space and to introduce the

arbitrary damping or cut-off functions, Eq. (1.4.7), that arise in Zhang and Miller’s

formulation, which I still believe to be somewhat awkward features of their approach. This

“other variational principle” is the topic of the next chapter.
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2    The variational R-matrix formulation of scattering

2.1 Introduction

R-matrix theory, introduced by Wigner and Eisenbud in 1947 [2], offers the most

general approach to scattering problems in the adiabatic as well as the non-adiabatic pictures.

What makes this theory particularly interesting to a chemist is that it is formulated in terms of

states of the reactant and product arrangements, corresponding to the target wave functions in

the different open channels. In other words, this theory has the boundary conditions on the

solution wave function built into the Euler equations, and as such R-matrix theory can be

viewed as a (time independent) propagation method22, where the theory describes a way to

propagate the scattering wave function from the known reactant wave function to the various

known product target wave functions. Originally, R-matrix theory was derived for the study

of nuclear resonance reactions, but since the theory is complete and rigorous it can be applied

to reactions of any mechanism, within the limit of non relativistic quantum mechanics. These

chemically desirable formal properties, together with the flexibility and the relatively stable

numerical properties, would seem to place the R-matrix approach high among the candidates

for future development as a practical approach to three-dimensional scattering.

No attempt is made in this chapter to give a comprehensive review of the R-matrix

theory as it is presented in the original paper by Wigner and Eisenbud [2], since we shall

simply not adopt this particular formulation of the theory. The origins and early development

of R-matrix theory are well described in the exhaustive review by Lane and Thomas [44].

Instead, we will just point out the most important aspects of this model, and then move on to a

more convenient and recent formulation of the theory , in terms of a variational principle of

the R-matrix theory, much like the ones we described for the K- and S-matrix in the previous

chapter, but still with some important differences.

One of the important differences between, for example, the S-matrix version of the

Kohn variational principle and R-matrix theory is that in the latter approach the configuration

space is “truncated”. In all the methods we discussed in chapter 1, at least in the formal

presentation, all the matrix elements had to be evaluated over the entire configuration space.

The basic technique of R-matrix theory, on the other hand, is to divide space into two regions:

a bounded internal interaction region V within which all reactive and inelastic events take

place, and an external region in which the interactions have vanished. Outside of V are certain

configurations, arrangement channels, within which the particles are separated into one or

other of the possible pairs “a”. In order to make this idea more precise, we shall consider a

simple bimolecular reaction, and assume for simplicity that “for the rest of this paragraph the

22 When R-matrix theory is formulated in terms of a finite element basis (to be defined in chapter 3), this approach most
resembles a propagation method as seen in time dependent quantum mechanics, except that here we propagate over
space as opposed to time.
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Born-Oppenheimer separation of nuclear an electronic motions holds”, leaving a single

electronic potential energy surface for the nuclear motion as discussed in the previous chapter.

However, it should be emphasized that the R-matrix formulation is completely general, and is

therefore equally capable of describing electronically non-adiabatic reactions (which is of

course the central foundation or heart of this thesis). We further assume that in each

arrangement channel “a” there is some finite radius, ra = sa , beyond which neither molecule

experiences a significant polarizing potential field from the other. The interaction between the

two molecules in arrangement “a” is then, for all ra ≥ sa , simply a function of the

intermolecular displacement coordinate ra . With a total of g nuclei the equation ra = sa

defines a surface, Sa , in the 3g − 3 dimensional coordinate space of center-of-mass frame of

nuclear motion. From these “open-channel-surfaces” Sa{ } can be constructed a single closed

surface, S, which is defined such that ra = sa  on that part of S which borders arrangement

channel “a”. This surface encloses the internal region, V, separating it from the arrangement

channels. The point is now to evaluate the scattering wave function, Ψ ω( ), in the internal

region, ω ∈V , such that Ψ ω ∈Sa( )  equals the open-channel target wave functions

corresponding to arrangement “a”. This mapping of Ψ ω( ) onto the target wave functions on

S is exactly done via the R-matrix. In other words, each matrix element of R represents the

mapping of Ψ ω( ) onto a given reactant and product state. At this point we also note that

whereas the surface in Zhang and Miller’s formulation is very diffuse because of the arbitrary

cut-off functions, Eq. (1.4.7), the surface in the R-matrix theory acts more like a “hard

sphere”. The operator, or more correctly kernel, ℜ (corresponding to the continuous

representation of R), relates or “propagates” one point on S to another. The R-matrix is real

symmetric (as we shall see), which through the relation23

S = U 1 + iR( ) 1− iR( )−1
U (2.1.1)

where U  is a unitary matrix, ensures that the S-matrix is unitary as desired. Comparing Eq.

(2.1.1) with the corresponding relations for the reactant matrix K , Eq. (1.4.1), one might feel

tempted to put R equal to K  in the limit of an infinitely large surface S and interpret the

presence of U  in Eq. (2.1.1) as a consequence of a finite S, but this is nevertheless

fallacious24; R and K  are not equal - as some text books (e.g. [45] p. 305) erroneously state.

23 This simple relation is only valid in the one dimensional case. In more dimensions the relation is more complicated,
but it still ensures S  to be unitary for a real symmetric R .

24 In the simple one dimensional case, the S-, K- and R-matrix read as respectively

S ≈ exp 2iδ l( )
K ≈ tan δ l( )
R ≈ tan krs + δ l( )

where δ l  is the phase shift and rs  defines the internal configuration space in the R-matrix theory. Note that δ l  is the
quantum mechanical analog of the semiclassical phase shift ηl  defined by

Ψl r( ) ≈
r→∞

sin kr − 1
2 lπ + ηl( )
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Before we move on to an outline of the explicit form of the variational formulation of

R-matrix theory that will be used in the description of H2
+-scattering, we shall first stress a

very important feature of this variational functional, namely that it is Hermitian symmetric in

a finite basis, as opposed to the variational functionals and “conventional projection methods”

described in chapter 1. To give a general proof of this we shall have to go through some

tedious rewritings of the functional, but we will profit from some of the intermediate results

later on.

In contrast to the methods that we have discussed previously, where we had to evaluate

matrix elements over the Hamiltonian, the variational functional of R-matrix theory used in

this thesis,

dr T Ψ( ) + W Ψ( ){ }∫ + Surface − term (2.1.2)

consists of evaluating matrix elements over the kinetic energy density

  
T Ψ( ) =

1
2m j

−ih∇ jΨ
2

j=1

N

∑ (2.1.3)

and the potential energy density

  

W Ψ( ) =
ejek

4πε0

r
rj −

r
rk

Ψ 2

j<k
∑ (2.1.4)

plus an additional surface term containing the ℜ-kernel, to be described in detail in the next

section. Clearly the potential energy density is Hermitian in any basis-set, complete or not,

and we therefore restrict our attention to the kinetic energy density in Eq. (2.1.3). The aim is

now to bring T Ψ( )  into a form analogous to the one listed in Eq. (1.3.20), and then show that,

in a finite adiabatic basis-set, this expression is always Hermitian. As a prelude to this

rewriting of Eq. (2.1.3), we first transform the coordinates from the laboratory-fixed frame of

reference (with an arbitrary lab-fixed origin) to a space-fixed frame of reference whose origin

is the nuclear center-of-mass. In order to aid the later separation of the nuclear and electronic

motions we, further let the labels 1 through g refer to nuclei and the remainder to electrons.

We now define the above transformation of the lab-fixed coordinates 
  

′
r
r j{ } to the space-fixed

coordinates 
  
r
r j{ } as

  ′
r
r j →

r
r j = ′

r
r j −

r
g, j = 1,2,...N (2.1.5)

where the nuclear center-of-mass   
r
g is defined as

  

r
g = m j

r
′rj

j=1

g

∑ m j
j=1

g

∑ ≡ β j

r
′rj

j=1

N

∑ (2.1.6)
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We have further introduced the constants β j  as

β j ≡
mj

M , j = 1,2....g

β j ≡ 0, j = g + 1,g + 2....N
(2.1.7)

where M denotes the total nuclear mass. As an additional set of coordinates, we use the total

center-of-mass   
r
G  defined as

  

r
G = m j

r
′rj

j=1

N

∑ m j
j=1

N

∑ ≡ µ j

r
′rj

j=1

N

∑ (2.1.8)

where µ j ≡
mj

MG
 and MG denotes the total mass of the system. This choice will allow us, as we

shall see in chapter 4, to separate out this coordinate of the total wave function, corresponding

to the translational invariant case of zero linear momentum where the energy of the system

refers to the center-of-mass frame. Clearly this additional set of coordinates   
r
G  makes one of

the N sets of coordinates redundant and can therefore be removed from the wave function. We

choose to eliminate   
r
rg  - that is

  
r
rg =

r
k ⇒

r
∇gΨ = 0 (2.1.9)

Under the now fully specified transformation, the kinetic energy density can be shown (see

appendix B) to reduce to the form

T Ψ( ) = TN Ψ( ) + TE Ψ( ) + TG Ψ( ) (2.1.10)

where we have defined respectively the nuclear, electronic and center-of-mass kinetic energy

densities

  

TN Ψ( ) =
1

2m j

−ih
r
∇ jΨ

2









j=1

g−1

∑ −
1

2M
−ih

r
∇ jΨ{ }

j=1

g−1

∑
2

TE Ψ( ) =
1

2m j

−ih
r
∇ jΨ

2









j=g+1

N

∑ +
1

2M
−ih

r
∇ jΨ{ }

j=g+1

N

∑
2

TG Ψ( ) =
1

2MG

−ih
r
∇GΨ

2

(2.1.11)

As will be argued in chapter 4, the center-of-mass kinetic energy density is a constant in this

coordinate representation, and hence we restrict our attention to the two other terms. The last

term in the electronic kinetic energy density is referred to as the mass polarization term, and is

sometimes neglected due to large mass differences ( M >> m j, j = g + 1,...N), but we shall not

make this approximation since we seek an accurate solution to the H2
+  scattering problem. To

bring the nuclear kinetic energy density into a canonical form, we introduce the mass-

weighted Jacobi-coordinates (denoted by J) for the nuclear coordinates as described in
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appendix A (substitute N → g). That is

  

r
rj →

r
rj

J = β i Cij

r
ri

i=1

g

∑ , j = 1,2...g (2.1.12)

and, using the chain-rule on this transformation, Eq.(A.16), the orthonormality relation Eq.

(A.11) we conclude (see Eq.(A.17))

  

TN Ψ( ) =
1

2mi

−ih
r
∇iΨ

2





i=1

g

∑ −
1

2M
−ih

r
∇iΨ{ }

i=1

g

∑
2

=
β i

2mi

−ihCij

r
∇ j

JΨ
2






i=1

g

∑
j=1

g

∑ −
1

2M
−ih

r
∇ j

JΨ β i Cij
i=1

g

∑






j=1

g

∑
2

=
1

2M
−ih

r
∇ j

JΨ
2

j=1

g−1

∑

(2.1.13)

In other words, the orthogonality of the Jacobi-transformation ensures that the second term of

the nuclear kinetic energy density vanishes. The next step is to expand 
  
Ψ

t
r,

t
R( )  - where   

t
r

collectively denotes 
  
r
r1

J ,....,
r
rg−1

J( ) and   
t
R denotes 

  
r
rg+1,...,

r
rN( ) - in a set of orthonormal

adiabatic states 
  
φn

t
r,

t
R( ) , defined as solutions to the eigenvalue equation

  
TE φ

t
r,

t
R( )[ ] + W φ

t
r,

t
R( )[ ] = εn

t
R( ) (2.1.14)

The part of the variational functional Eq. (2.1.2) that we have considered up till now then

reads as

  

d
r
r TN Ψ( ) + TE Ψ( ) + W Ψ( ){ }∫ = εn

t
R( ) − E( )δmn −

h2

2M
∇χm

∗ ∇χnδmn +[

m,n

∑

φm ∇ φn ∇χm
∗ χn − χm

∗ ∇χn( ) + ∇φm ∇φn χm
∗ χn ]}

(2.1.15)

where we have used the skew-Hermicity relation Eq. (1.4.43). This functional is clearly

Hermitian symmetric25, as opposed to Eq. (1.4.41) when integrated further over the nuclear

domain, and we draw the important conclusion that, when using variational functionals of the

type Eq. (2.1.15), Hermitian symmetry is guaranteed - also in the case of a non-complete

basis. The complete variational functional is by definition stationary for an exact   Ψ(
t
r,

t
R) and

hence the additional surface term in Eq. (2.1.2) is also Hermitian symmetric. In other words,

the use of a variational functional of a form analogous to the one described in Eq. (2.1.2)

ensures that the S-matrix is always unitary.

25 Note that we have an analogous skew-Hermitian relation to Eq. (1.3.22) for the matrix elements of the type

  
d

t
R∇χm

∗ χ n∫ = − d
t
Rχm

∗ ∇χ n∫
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2.2 Optimization of the J-functional

The variational formulation for Schrödinger’s equation and the associated scattering

boundary conditions expressed in terms of the Wigner Eisenbud R-matrix is conveniently

expressed in the variational R-matrix functional [5, 46]

J Ψ,Φ( ) = dω E − W ω( )[ ]Ψ ω( ) 2
− TE Ψ( ) − TN Ψ( ){ }

V
∫

+ dω Ψ∗ ω( )Φ ω( ) + Φ∗ ω( )Ψ ω( ){ }
S
∫

− dωd ′ω Φ∗ ω( )ℜ ω , ′ω( )Φ ′ω( ){ }
S
∫

(2.2.1)

which we shall simply refer to as the J-functional. Note that ω  is a compact notation for both

nuclear and electronic coordinates. The idea is now first to take this J-functional as a

postulate, and then to derive Schrödinger’s equation as one of the Euler equations from the

constraint of a stationary property of the J-functional in the limit of an exact Ψ ω( ). This

derivation will quickly demonstrate the idea behind the J-functional approach, and a

definition of the wave function Φ ω( ) and the integral kernel ℜ ω , ′ω( ) also follows. To give a

general interpretation of the N-particle J-functional, we will have to make the assumption that

the sum of the electronic and the nuclear kinetic energy density is of the form

  
TE Ψ( ) + TN Ψ( ) =

1
2m j

−ih
r
∇ jΨ

2

j=1

N

∑ (2.2.2)

This type of total kinetic energy density can either be obtained if one neglects the mass

polarization term in Eq. (2.1.11) and puts m1 = m2 =....mg−1 = M 26 in Eq. (2.2.2), or, quite

generally for one electron systems such as the H2
+-system, if we put m1 = m2 =....mg−1 = M

and mg+1 = 1 mg+1 + 1 M in Eq. (2.2.2). We shall further omit the j = g in the summation of

Eq. (2.2.2). We proceed by examining the first variation of the J-functional with respect to the

functions Ψ ω( ) and Φ ω( ).

δJ = J Ψ + δΨ,Φ + δΦ( ) − J Ψ,Φ( ) − J δΨ,δΦ( ) (2.2.3)

Since the first term on the right hand side of Eq. (2.2.3) is simply given by

26 This is to obtain the canonical form in Eq. (2.1.13).
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δJ Ψ + δΨ,Φ + δΦ( ) = dω E − W[ ] Ψ + δΨ( )∗ Ψ + δΨ( ){
V
∫

−
h2

2m j

r
∇ j Ψ + δΨ( )[ ]∗

r
∇ j Ψ + δΨ( )

j=1

N

∑






+ dω Ψ + δΨ( )∗ Φ + δΦ( ) + Φ + δΦ( )∗ Ψ + δΨ( ){ }
S
∫

− dωd ′ω Φ + δΦ( )∗ℜ Φ + δΦ( ){ }
S
∫

(2.2.4)

where we have omitted the dependence upon ω  in Ψ,Φ,W  and ℜ, it is easy to see that the

overall variation of the J-functional reads as

  

δJ = dω E − W[ ]δΨ∗Ψ −
h2

2m j

r
∇ jδΨ[ ]∗

r
∇ jΨ

j=1

N

∑










V
∫ + C.C

+ dω δΨ∗Φ + δΦ∗Ψ{ }
S
∫ + C.C.− dωd ′ω δΦ∗ℜΦ{ }

S
∫ − C.C.

(2.2.5)

where C.C. denotes the complex conjugation of the term in front. The second term in the

volume integral of Eq. (2.2.5) can now be rewritten by applying the well-known Green’s

theorem

  
dω

r
∇f ω( )

r
∇g ω( ){ }

V
∫ = dω f ω( )

r
∇g ω( ) ⋅

r
n ω( ){ }

S
∫ − dω f ω( )∇2g ω( ){ }

V
∫ (2.2.6)

where   
r
n ω( )  is a unit vector on the closed surface S (i.e. ω ∈S) pointing away from the

volume V which S encloses. Now substituting g ω( ) → Ψ ω( )  and f ω( ) → δΨ∗ ω( )  in Eq.

(2.2.6), and noting that   
r
∇Ψ ω( ) ⋅

r
n ω( ), ω ∈S is simply the definition of the normal derivative

of Ψ ω( ) on the surface S, here denoted by ∂Ψ ω( ) ∂n ω( ) , we obtain the expression

  

dω
r
∇ jδΨ

∗
r
∇ jΨ ω( ){ }

V
∫ = dω δΨ∗ ∂Ψ ω( )

∂n j ω( )










S
∫ − dω δΨ∗∇ j

2Ψ ω( ){ }
V
∫ (2.2.7)

Substituting Eq. (2.2.7) into Eq. (2.2.5) and collecting the terms according to the type of

integration and variations with respect to Ψ ω( ) and Φ ω( ), we finally obtain the expression

  

δJ = dω E − W ω( )[ ]Ψ ω( ) +
h2

2m j

∇ j
2Ψ

j=1

N

∑











δΨ∗ ω( )

V
∫ + C.C

+ dω Φ ω( ) −
h2

2m j

∂Ψ ω( )
∂n j ω( )j=1

N

∑











δΨ∗ ω( )

S
∫ + C.C.

− dω Ψ ω( ) − d ′ω ℜ ω , ′ω( )Φ ′ω( )
S
∫








δΦ∗ ω( )

S
∫ + C.C.

(2.2.8)



30                                                                                                                Chapter 2

30

From Eq. (2.2.8) it is now easy to see that if we require the J-functional to be stationary with

respect to variation of the functions Ψ ω( ) and Φ ω( ) (i.e. δJ δΨ∗ = δJ δΦ∗ = 0), we obtain

the desired set of Euler equations. The functional derivative δJ δΨ∗  vanishes when

  

−
h2

2m j

∇ j
2

j=1

N

∑ + W ω( )











Ψ ω( ) = EΨ ω( ), ω ∈V (2.2.9)

which is simply the time-independent non-relativistic Schrödinger equation. δJ δΦ∗  vanishes

when

  
Φ ω( ) =

h2

2m j

∂Ψ ω( )
∂n j ω( )j=1

N

∑ , ω ∈S (2.2.10)

and

Ψ ω( ) = d ′ω ℜ ω , ′ω( )Φ ′ω( )
S
∫ , ω ∈S (2.2.11)

Substitution of Eq. (2.2.10) into Eq. (2.2.11) leads to the boundary condition

  
Ψ ω( ) =

h2

2m j

d ′ω ℜ ω , ′ω( ) ∂Ψ ω( )
∂n j ω( )S

∫
j=1

N

∑ , ω ∈S (2.2.12)

All in all we now have the very essence of the J-functional formulation of the R-matrix

theory, and we are in the position to interpret Ψ ω( ), Φ ω( )  and ℜ ω , ′ω( ). For a stationary J-

functional the function Φ ω( ), ω ∈S  is equal to the mass weighted sum of the normal

derivative of Ψ ω( ) on different points (channels) on the surface S, and hence from Eq.

(2.2.12) we conclude that the ℜ ω , ′ω( ) operator (a continuous representation of the R-matrix)

relates the normal derivative and amplitude of Ψ ω( ) on the boundary S. We further note from

Eq. (2.2.12) that if ℜ ω , ′ω( ) is zero everywhere on S the wave function Ψ ω( ) should have

zero amplitude on the boundary, while it is required to have zero normal derivative

everywhere if the reciprocal ℜ ω , ′ω( ) vanishes. Although it may be a mere mathematical

curiosity, we note that since the boundary condition Eq. (2.2.12) is expressed in terms of an

integral equation, the ℜ ω , ′ω( ) operator is some time referred to as the R-matrix kernel. The

stationarity also requires that in the volume V Ψ(ω ) is a solution to Schrödinger’s equation

Eq. (2.2.9). Summing up we conclude that for a stationary J-functional, Ψ(ω ) represents the

solution to a scattering process described through the corresponding Schrödinger's Eq.

(2.2.9) with the boundary condition Eq. (2.2.12).

For an approximation of the R-matrix (and hence a numerical determination of the

scattering amplitude), we now proceed with a finite basis expansion of the wave function

Ψ(ω ). To keep the notation as general as possible, in order to leave the specific choice of

basis functions to the next chapter, we simply choose a set of functions u j(ω ), j = 1,..K{ } in
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the Sobolev space H 1( )(V), which implies that integrals of the form

  
dω

r
∇um ω( )[ ]∗

r
∇un ω( ) + um

∗ ω( )un ω( ){ }
V
∫ (2.2.13)

exist i.e. converge. It is important to note that H 1( )(V) is a subspace of the corresponding

Hilbert space L2 (V), which is the space to which all the basis functions we described in

chapter 1 belong. We write Ψ(ω ) as

Ψ ω( ) = cju j ω( )
j=1

K

∑ (2.2.14)

and, inserting this expansion into Eq. (2.2.1), and defining the matrix elements Aij  as

  
Aij = dω E − W ω( )[ ]ui

∗ ω( )uj ω( ) − h2

2mk

∇kui
∗ ω( )∇ku j ω( )

k =1

N

∑






V

∫ (2.2.15)

the J-functional reduces to

J Ψ,Φ( ) = ci
∗cjAij

i, j=1

K

∑ + ci
∗ d ′ω uj

∗ ′ω( )Φ ′ω( ){ }
S
∫

j=1

K

∑

+C.C.− dωd ′ω Φ∗ ω( )ℜ ω , ′ω( )Φ ′ω( ){ }
S
∫

(2.2.16)

Since the solutions to Schrödinger’s equation with the associated scattering boundary

conditions are found for a stationary J-functional, we proceed with a variation of Eq. (2.2.16)

with respect to ci
∗

∂J
∂ci

∗ = cjAij
j=1

K

∑ + d ′ω ui
∗ ′ω( )Φ ′ω( ){ }

S
∫ = 0, i = 1,2,...K (2.2.17)

From the variation of J with respect to Φ ω( ) we found the integral equation Eq. (2.2.11), and

inserting the finite basis expansion Eq. (2.2.14) in to this equation simply gives us the

boundary condition

cju j ω( )
j=1

K

∑ − d ′ω ℜ ω , ′ω( )Φ ′ω( ){ }
S
∫ = 0, ω ∈S (2.2.18)

Expressing Eq. (2.2.17,18) in a matrix notation gives
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D ω( )

c1

c2

M

cK

1























≡

A11 A12 L A1K d ′ω u1
∗ ′ω( )Φ ′ω( ){ }

S
∫

A21 A22 L A2K d ′ω u2
∗ ′ω( )Φ ′ω( ){ }

S
∫

M M O M M

A1K AK2 L AKK d ′ω uK
∗ ′ω( )Φ ′ω( ){ }

S
∫

u1 ω( ) u2 ω( ) L uK ω( ) − d ′ω ℜ ω , ′ω( )Φ ′ω( ){ }
S
∫





























c1

c2

M

cK

1























= 0 (2.2.19)

A solution of this matrix equation is obtainable when the determinant of the K + 1( ) × K + 1( )
matrix, D ω( ), vanishes, that is if

det D ω( )[ ] = dω det E ω , ′ω( )[ ]Φ ′ω( ){ }
S
∫ = 0 (2.2.20)

where we have defined the matrix

  

E ω , ′ω( ) ≡

A11 A12 L A1K u1
∗ ′ω( )

A21 A22 L A2K u2
∗ ′ω( )

M M O M M

A1K AK2 L AKK uK
∗ ′ω( )

u1 ω( ) u2 ω( ) L uK ω( ) −ℜ ω , ′ω( )























(2.2.21)

This can only be so for an arbitrary surface function Φ ′ω( )  if

det E ω , ′ω( )[ ] = −ℜ ω , ′ω( )det A[ ] + det B ω , ′ω( )[ ] = 0 (2.2.22)

where we have defined the matrix B ω , ′ω( )

  

B ω , ′ω( ) ≡

A11 A12 L A1K u1
∗ ′ω( )

A21 A22 L A2K u2
∗ ′ω( )

M M O M M

A1K AK2 L AKK uK
∗ ′ω( )

u1 ω( ) u2 ω( ) L uK ω( ) 0























(2.2.23)

and hence we obtain the following general expression for the R-matrix kernel

ℜ ω , ′ω( ) = det B ω , ′ω( )[ ] det A[ ] (2.2.24)

Clearly, from Eq. (2.2.24), ℜ ω , ′ω( )  will exhibit poles if the matrix A  is singular, just as we

found that the KVP displays poles when the matrix M  in Eq. (1.4.17) is singular. In other

words this variational R-matrix approach is also “potentially plagued” by singularities

analogous to the “Kohn anomalies” we discussed in the previous chapter, but, as we shall see
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soon, these poles are not as troublesome as the poles in the Kohn variational principle in the

sense that we still obtain converges for the total wave function Ψ ω( ) - one could say that the

“poles are integrable”. For a singular A-matrix it is evident from Eq. (2.2.11) that a stationary

solution exists for Φ ω( ) = 0 on S. As an interesting special case we choose a orthonormal

basis u j ω( ), j = 1,2,..K{ }  on V to give a diagonal matrix A , since this will allow us to derive

an explicit expression for ℜ ω , ′ω( ). Eq. (2.2.22) then reduces to

  

E − E1 0 L 0 u1
∗ ′ω( )

0 E − E2 L 0 u2
∗ ′ω( )

M M O M M

0 0 L E − EK uK
∗ ′ω( )

u1 ω( ) u2 ω( ) L uK ω( ) −ℜ ω , ′ω( )

=

−ℜ ω , ′ω( ) E − Ei{ }
i=1

K

∏ − ui
∗ ′ω( )ui ω( ) E − E j{ }

j=1
j≠ i

K

∏













i=1

K

∑ = 0

(2.2.25)

which gives the so-called standard spectral form of the R-matrix kernel known from the

original paper by Wigner and Eisenbud [2]

ℜ ω , ′ω( ) =
ui ω( )ui

∗ ′ω( )
Ei − Ei=1

K

∑ (2.2.26)

From this expression it is clear that the R-matrix kernel exhibits poles if one or more of the

basis functions ui ω( ) happens to have an eigenvalue Ei = E , and this situation is again

analogous to the one we discussed in chapter 1 section 4 for the matrix M  in the Kohn

variational principle. We conclude this chapter by noting that for an arbitrary surface function

Φ ′ω( ) , Eq. (2.2.19) reduces to the central matrix equation,

  

A11 A12 L A1K u1
∗ ′ω( )

A21 A22 L A2K u2
∗ ′ω( )

M M O M M

A1K AK2 L AKK uK
∗ ′ω( )

u1 ω( ) u2 ω( ) L uK ω( ) −ℜ ω , ′ω( )























c1

c2

M

cK

1























=
r
0, ω , ′ω ∈S (2.2.27)
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3    Numerical implementation of reactive scattering

3.1 Introduction

Accurate methods for the estimation of the numerical predictions of quantum mechanics

have been sought since its inception. Generally, there exist three different types of approaches

in quantum mechanics to obtain a numerical solution of the Euler equations describing the

system at hand. The first approach represent the states of the system as ket vectors in the

“somewhat abstract” occupation number space, as it is done in the second quantization

method. These ket vectors do not contain a reference to any particular basis-set, as is the case

in the conventional “first quantization”. The reference to a particular basis-set is instead built

into the second quantization operators in such a way that there exist a correlation principle27

between the first and second quantization. Another characteristic feature of this method is that

the statistics, which the particles of the system obey, is built into the formulation itself28. The

second quantization formulation is an approach that has been successfully applied in many

fields such as quantum electrodynamics29 and electronic structure problems30. Although the

mathematical questions associated with the development of this method have received

considerable attention and a number of formal approaches have (and are being) developed

[49], their presentation in this chapter will be limited to the above comment for several

reasons. First, they lie outside my personal experience in terms of actual applications, and

second and most importantly they have not provided the formalism within which most

accurate quantal approaches to calculations of reactive scattering have been developed.

The second type of approach we have already become acquainted with in chapter 1;

namely a state expansion of the wave function, in, for example, diabatic or adiabatic states.

Strictly speaking this would imply that one does know an analytical expression for the

eigensolutions φn (x) of some zero-order Hamiltonian, and this is unfortunately seldom the

case for most scattering problems, including the H2
+-system. Instead it is more likely that one

does only know a numerical expression of φn (x) in terms of some convenient finite basis-set.

This finite basis representation (FBR) of a wave function is an approach that is widely used in

scattering problems. One can subdivide the FBR approach into two different types. We shall

refer to the first as a global element method (GEM31 ), where the basis elements are defined

27 For the fermions this correlation is given by the well-known Condon-Slater rules [47].
28 The so-called occupation number operator in the second quantization formulation obeys either Bose-Einstein

statistics (for bosons) or Fermi-Dirac statistics (for fermions).
29 A good example of the application of the second quantization method in quantum electrodynamics is given in

reference [48] p. 35, where the Hamiltonian for the free field is written as a sum of one-dimensional harmonic
oscillator Hamiltonians, which are in turn represented in second quantization annihilation and creation operators
obeying Bose-Einstein statistics.

30 The second quantization formulation offers a very convenient way to obtain the Hartree-Fock equations.
31 It is acknowledged that this is not a standard textbook notation, but we shall use it anyway for convenience. At this

point I would like to quote a theorist that once stated that “the problem with understanding modern quantum
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over the entire electronic or nuclear domain of interest. For instance the ui (x) basis functions

mentioned in Miller’s one channel S-matrix version of Kohn’s variational principle are

elements of this type. The other type of basis elements are only defined (or more correctly

have non-zero amplitude) in a local part of the space defining the coordinate domain of

interest. This approach is called a finite element method (FEM), and after giving a short

introduction below we shall apply this method on the results for the R-matrix formulation

obtained in the previous chapter.

This technique of splitting the space into a number of small domains directly lead us to

the last approach where the space is discretized on a grid or set of points. One of these grid

methods, the discrete variable representation (DVR), is quite popular in time independent as

well as time dependent scattering theory, and since it will play a central role in the numerical

calculations presented in this thesis we shall give an introduction to this method. As we shall

see this method is actually closely related to the FBR (or GEM), since there exists an

isomorphism - in terms of a unitary transformation - between the DVR and an orthonormal

FBR.

3.2 The finite element method

Originally the FEM was developed in the forties by the mathematician Richard Courant.

Soon it was used in engineering science, in order to calculate static and dynamic stresses of

complicated constructions, and as such it is a well known and mathematically thoroughly

prepared technique. Nevertheless, it is only recently (in the eighties) that this method has

proven useful for quantum mechanical problems. The FEM can be formulated in more than

one dimension, but we will first restrict our attention to the one-dimensional case, and then

later comment on multi-dimensional FEM as compared to multi dimensional DVR. The first

step in the FEM is to choose the grid on which the elements of the scheme should be defined.

Here we already encounter one of the great advantages of this method: the size and shape of

the underlying grid in the FEM can be defined very freely so that physical properties can be

taken into account, e.g. one can use small grid spacing in regions of physical importance and

large grid spacing in regions of lesser weight. Thus the point distribution can be adapted to a

given problem. The next step is to choose the functions that span each element; these are

typically polynomials of some given type and order. In the following we present a very easy

way to generate the N+1 “linearly independent”32 polynomials of degree N in the element

from a to b. We start by defining the linear functions B0
1 (x) and B1

1(x)33 through the relations

chemistry really boils down to how one should manage to recollect the meaning of all the different abbreviations used
in the literature.”

32 i.e., the basis set in each element is complete for any function that can be expressed as a polynomial of degree ≤ N .
That is the determinant of the matrix consisting of the N+1 coefficients of N+1 polynomials is required not to vanish.

33 I have chosen to use an other notation for the basis functions, Bk
N (x) , than the one presented in reference [50]. In my

opinion this leads to simpler notations, and the reader is not confused by the “Dirac-like” notation, which strictly
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[50]

B0
1 x( ) + B1

1 x( ) = 1, aB0
1 x( ) + bB1

1 x( ) = x (3.2.1)

which give the explicit expressions

B0
1 x( ) =

b − x
b − a

, B1
1 x( ) =

x − a
b − a

(3.2.2)

that are clearly linearly independent, and as in figure 5.

a b

1B0
1 x( ) B1

1 x( )

Figure 5 Bézier functions of degree 1

The higher degree functions are now defined from these functions in the following way

Bk
N x( ) ≡ B0

1 x( )[ ]N−k
B1

1[ ]k
, k = 0,1,...N (3.2.3)

and they are referred to as the Bézier functions of degree N. Clearly, these basis functions are

not orthogonal, but their overlap integrals are easily determined from the relation

dx B0
1 x( )[ ]n1 B1

1 x( )[ ]n2{ }
a

b

∫ = dx
x − a
b − a






n1 b − x
b − a







n2





a

b

∫ = b − a( ) n1!n2 !
n1 + n2 + 1( )!

(3.2.4)

Matrix elements of the Bézier functions, over a general polynomial function f(x) , are easily

obtained if f(x)  is first resolved in Bézier polynomials using Eq. (3.2.1), and the resulting

integral evaluated using Eq. (3.2.4). The x-derivative, d
dx Bi

N (x) , of the Bézier basis functions

of degree N, { Bi
N (x), i = 0,1,...N } , are easily expressed in the same Bézier basis using Eq.

(3.2.1), and, in general we write

d
dx

Bi
N x( ) = x P Bi

N = x Bj
N ƒBj

N

j=0

N

∑







P Bi

N = ƒBj
N P Bj

N x Bi
N

j=0

N

∑ (3.2.5)

speaking has nothing to do with a Dirac notation.
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where we have used the Dirac notation34 x f  for a general function f x( ). Further we have

introduced the functions x ƒα , which are biorthogonal3 5  to x α , used the associated

closure relation36, and replaced d dx by the symbol P  to remind us of the relation to the

linear momentum operator. For the first- and third-degree polynomials the matrices ƒα P β[ ]
are easily shown to be

ƒBi
1 P Bj

1[ ] =
P B0

1 B1
1

ƒB0
1

ƒB1
1

− 1
h

1
h

− 1
h

1
h










, ƒBi

3 P Bj
3[ ] =

P B0
3 B1

3 B2
3 B3

3

ƒB0
3

ƒB1
3

ƒB2
3

ƒB3
3

− 3
h

1
h 0 0

− 3
h − 1

h
2
h 0

0 − 2
h

1
h

3
h

0 0 − 1
h

3
h



















(3.2.6)

where h ≡ b − a. We can now write the simple matrix equation (arriving from successive use

of Eq. (3.2.5)) for the x-derivative of any order

ƒα dk dxk β[ ] = ƒα P β[ ]
k

(3.2.7)

We now move on to defining the overall elements Fj(x) of the FEM scheme, using the

discussed Bézier polynomials as “generators” for the basis-set. According to the theory of

finite element methods it is sufficient for the present problem to consider function spaces in

C0  since only first derivatives are present in the J-functional presented in the previous

34 The Dirac notation is closely related to the so-called Dirac function δ x − x0( ) . This function is actually the
eigensolution, Ψ(x) , to the eigenvalue equation xΨ x( ) = x0Ψ x( )  of the coordinate “operator” x, and has the
property

dxf x( )δ x − x0( )
−∞

∞

∫ = f x0( )

Hence the Dirac notation can be viewed as a standard bra-ket notation if we put

x f = d ′x f ′x( )δ ′x − x( )
−∞

∞

∫ = f x( )

For this reason the Dirac notation is sometimes referred to as the “coordinate representation of f (x)” ( f (x) is
projected onto the eigenfunction of x).

35 x ƒα ≡ ∆γα
−1 x γ

γ
∑  where ∆γα ≡ γ α  so that β ƒα = ∆γα

−1 β γ
γ
∑ = ∆γα

−1 ∆βγ

γ
∑ = ∆∆

−1








αβ

= δαβ

36 Since the Bézier basis set Bk
N (x), k = 0, . . , N{ } by definition spans the space of polynomials of degree ≤ N  any

polynomial f (x) of degree ≤ N  can be expanded as

x f = Ci x Bi
N

i = 0

N

∑
and multiplying this expression by the biorthogonal Bézier function ƒBj

N (x)  (see the previous footnote) followed by
an integration over x leads to the desired closure relation

ƒBj
N f = Ci

ƒBj
N Bi

N

i = 0

N

∑ = Ciδ ij

i = 0

N

∑ = C j

⇒ ƒBj
N f = ƒBi

N f ƒBj
N Bi

N

i = 0

N

∑ = ƒBj
N Bi

N ƒBi
N

i = 0

N

∑











f ⇒ Bi

N ƒBi
N

i = 0

N

∑ = 1
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chapter. Another example is considered in appendix C with C1 space which give wave

functions with continuous gradients. In order to fulfill the continuity criterion Fj(x) ∈C0  of

the solution from one element to the next, the basis functions in the FEM are constructed in a

special way. For the simple linear case we define the elements Fj(x), generated from the

Bézier functions of degree 1, in the following way

F j x( ) =

x − xj−1( ) xj − xj−1( ) for x j−1 ≤ x < xj

x j+1 − x( ) xj+1 − xj( ) for x j ≤ x < xj+1

0 otherwise









(3.2.8)

so that we obtain a situation as depicted in figure 6.

F F F F F F FFFF1 3 4 5 NN-1N-2N-3N-42

X1
X3X2 X4

XN-4 XN-3 XN-2 XN-1
XN

X5

~ ~
~ ~

Figure 6 Linear FEM functions

Clearly from figure 6 the basis function Fj(x) only has an overlap with the neighboring

functions Fj−1(x)  (that is if j ≥ 2) and Fj+1(x)  (if j ≤ N −1), and we further note that we have

as many basis functions Fj(x) as we have grid points. In other words, any general matrix

written in this basis-set will be tridiagonal. In appendix C we give an example of another

convenient choice of C1 FEM basis functions, the so-called third degree Hermite type

functions, where we have 2 functions per grid-point which effects another but still very simple

block structure of general matrices in this basis (see figure C.1). Besides the sparseness of the

matrices this is yet another advantage of the FEM; namely, that one can “force” the matrices

to have a desired block structure.

As an application of this feature of the FEM we shall now derive a recursive procedure

to solve the matrix equation Eq. (2.2.27) derived in the previous chapter. We start by defining

the basis functions ui (ω ) in the expansion Eq. (2.2.14) as a real product basis with the

coefficients Ci absorbed into the functions. That is,

Ψ ω( ) = ui ω( )
i=1

N

∑ , ui ω( ) = Fi q( ) Cj
iψ j

i ωq( )
j=1

M

∑ (3.2.9)

where Fi (q) are the linear FEM functions defined in Eq. (3.2.8), q is often chosen as the

hyper-spherical radius, and ψ j
i (ωq )  are channel wave functions of the remaining coordinates

collectively denoted by ωq . In this basis-set ui (ω ), i = 1,..,N{ }, it is evident from the above

discussion, and from the fact that only uN ω( ) has non-zero amplitude on the surface S, that
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the matrix equation Eq. (2.2.27) now reduces to

  

A11 A12 0 L 0

A21 A22 A23 0 0

0 A32 O AN−1N M

M 0 ANN−1 ANN uN
∗

′ω( )
0

T
0

T
L uN

T
ω( ) −R ω , ′ω( )























C1

C2

M

CN

1























= 0, ω , ′ω ∈S (3.2.10)

so that

A11C1 + A12 C2 = 0

Ajj−1Cj−1 + AjjCj + Ajj+1Cj+1 = 0, j = 2,3,..,N −1

ANN−1CN−1 + ANN CN + uN ′ω( ) = 0, ′ω ∈S

uN
T

′ω( )CN − R ω , ′ω( ), ω , ′ω ∈S

(3.2.11)

In the above equations Aij  is a square M × M matrix, uN  and Ci are column vector of

dimension M  and R(ω , ′ω ) (from now on denoted R) is a real number (or a one-dimensional

matrix). The idea is now to apply a recursive procedure that successively computes R ω , ′ω( )
starting at the boundary qN , and then going inwards to q1, in such a way that it allow us to

judge the possible convergence as more and more functions are included in the domain of

small q . From Eq. (3.2.11), we have

R = DN
T

CN

CN = RN DN + BN−1CN−1

(3.2.12)

where we have defined

DN ≡ uN

RN ≡ −ANN
−1

BN−1 ≡ RN ANN−1

(3.2.13)

and combining the two expressions in Eq. (3.2.12), we find

R = DN
T

RN DN + DN−1
T

CN−1 (3.2.14)

where we have defined

DN−1 = BN−1
T

DN (3.2.15)

Solving Eq. (3.2.11) for CN−1 we find

CN−1 = RN−1DN−1 + BN−2 CN−2 (3.2.16)
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I we define

RN−1 = − AN−1N−1 + AN−1N BN−1[ ]−1
(3.2.17)

and combining Eq. (3.2.16) and Eq. (3.2.14) we have

R = DN
T

RN DN + DN−1
T

RN−1DN−1 + DN−2
T

DN−2 (3.2.18)

where

DN−2 = BN−2
T

DN−1 (3.2.19)

We finally conclude with the recursive formula

R = DN−k
T

RN−k DN−k

k =0

N−1

∑ (3.2.20)

where

Dk = Bk
T
Dk +1

Rk = − Akk + Ak +1k
T

Bk[ ]
−1

Bk = Rk +1Ak +1k













, 1≤ k ≤ N −1 (3.2.21)

with the initial expressions for RN  and DN given in Eq. (3.2.13). The amplitudes now read as

C1 = R1D1

Ck = Rk Dk + Bk−1Ck−1, 2 ≤ k ≤ N
(3.2.22)

This recursive formula causes the amplitude of the scattering wave function to be propagated

from q1 to the boundary qN  .

3.3 The discrete variable representation

Grid methods have been applied to quantum mechanical problems for many years, but

the discrete variable representation (DVR) method is actually relatively new, and has proven

to be a powerful (and sophisticated) approach to the solution of numerical problems, in terms

of obtaining accurate matrix elements within a minimal basis-set. To put this method into an

appropriate historical perspective, we will briefly examine some of the more important stages

in its development.

Pointwise representations were first introduced by Hartree [51] and Hylleraas [35] in the

late twenties under the name finite difference methods (FD). Here the Euler equation (i.e., the

Schrödinger equation or a variational functional) is discretized on a grid. In this representation
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T + W
G
− EI[ ]Ψ = 0 (3.3.1)

Ψ  is a vector of the amplitudes on the grid, the potential is represented by a diagonal matrix

with elements corresponding to the values of W  in the grid points (denoted by the label G)

and the kinetic energy term T is a sparse matrix obtained from a Taylor series expansion of

the derivative on the grid (see appendix D37). Before the emerge of real super computers in

the eighties and massively parallel computers in the nineties the FD method had not really

proved advantageous in more than two dimensions since a very large number of grid points

was necessary to obtain an accurate representation of the kinetic energy term through the FD

scheme. This problem of representing T  in an accurate way (with the limited core memory

available) was more or less overcome with the introduction of the collocation or Pseudo-

Spectral methods in the early eighties. This method takes point of reference in a finite basis

representation (FBR) ui x( ){ }, generally chosen as eigenstates (or close to) of the kinetic

energy operator, such that matrix elements um T un  in the equation

Tun x( ) = um T un um x( )
m
∑ (3.3.2)

(assuming an orthonormal basis) are known. As in the FD method, the Euler equation is

discretized on a grid xp, p = 1,...,N{ } to give a very easy handling of the local potential

term (as opposed to the non-local T ).

Cn um T un um xp( ){ } + W xp( ) − E{ }un xp( )
m
∑










n
∑ = 0, p = 1,...,N (3.3.3)

If we now define the collocation matrix Rpn ≡ un xp( ), Eq. (3.3.3), can be written in the matrix

notation

RT + W
G
− EI( )R




C = 0 (3.3.4)

Inserting the unit matrix R
−1

R between the square bracket and C, and noting that

Ψ ≡ Ψ xp( )[ ] = RC, we obtain the relation between the FD and the collocation method

RTR
−1

+ W
G
− EI[ ]Ψ = 0 (3.3.5)

Multiplying Eq. (3.3.4) by R
−1

 from the left we arrive at the expression

T + R
−1

W
G

R − EI[ ]C = 0 (3.3.6)

37 This appendix D is really only included since I found some errors in the original lecture notes by Claude Leforestier
handed out during the 4’th Topsøe Summer School. In other words, we shall not use this method on the H2

+  problem.
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which shows that in the FBR associated with the collocation method the potential term reads

as

un W um = R
−1

W
G

R[ ]
nm

 (3.3.7)

and hence, for an ill-conditioned collocation matrix (i.e. R close to singular), corresponding

to a poor choice of basis-set and grid, the potential is not accurately represented. To overcome

this problem “routinely” we have to switch to DVR where the Gauss quadrature theorem

prescribes a way to obtain an optimum choice of grid points and basis-set. So as a prelude to

the introduction of DVR we will briefly present this Gauss quadrature theorem.

The idea of Gauss quadrature is to discretize an integral through the approximation

dxW x( )
a

b

∫ f x( ) ≈ ω if xi( )
i=1

N

∑ (3.3.8)

where f(x)  is an arbitrary function, W(x) is a known weighting function, ω i  are the weights

of the quadrature scheme, and xi  are referred to as the abscissas. The fundamental theorem of

Gauss quadrature now reads: if we choose the abscissas in the N-point quadrature formula Eq.

(3.3.8) as the N roots xi , i = 1,...,N{ } of the polynomial PN (x) of degree N orthogonal over

the interval a;b[ ] with the weighting function W(x), meaning PN (x) ∈ Pm (x), 0 ≤ m ≤ ∞{ }
where

 dxPn x( )W x( )Pm = Nnδnm

a

b

∫ (3.3.9)

and where Nn is a normalization constant, and if we choose the N weights ω i  as solutions to

the set of linear equations38

  

P0 x1( ) P0 x2( ) L P0 xN( )
P1 x1( ) P1 x2( ) L P1 xN( )

M M O M

PN−1 x1( ) PN−1 x2( ) L PN−1 xN( )





















ω1

ω2

M

ωN



















=

N0 P0

0

M

0



















(3.3.10)

then the Gauss quadrature formula Eq. (3.3.8) is exact if the function f (x) can be expressed

as a polynomial of degree ≤ 2N − 1. In order to use this result in the DVR method, we define

a set of orthonormal functions39

38 This set of linear equations simply ensures that Eq. (3.3.8) is correct if the function f (x) can be expressed as a
polynomial of degree ≤ N −1, since Eq. (3.3.9) with a polynomial of degree zero (i.e. a constant) gives

dxPn x( )W x( )P0 x( )
a

b

∫ = P0 dxPn x( )W x( )
a

b

∫ = P0 ω iPn xi( )
i=1

N

∑ = N0δ no , n = 0,1,...N −1

39 Note that these functions un (x)  are not generally polynomials due to the weighting function W(x)  in Eq. (3.3.11).



44                                                                                                                Chapter 3

un x( ) ≡ W x( )Pn x( )

Pn x( ) ≡ Pn x( ) Nn

(3.3.11)

so that for an arbitrary function g(x) can be approximated as

un g um = dxun x( )g x( )um x( )
a

b

∫ ≈ ω iPn xi( )g xi( )Pm xi( )
i=1

N

∑ (3.3.12)

where we have used Eq. (3.3.8) with f x( ) = Pn x( )g x( )Pm x( )  and ignored any error-terms40.

We now introduce the new weights Ωi  defined as

Ωi ≡ ω i W xi( ) (3.3.13)

such that Eq. (3.3.12) has the convenient form

un g um ≈ Ωiun xi( )g xi( )um xi( )
i=1

N

∑ (3.3.14)

Setting g(x) = 1 in Eq. (3.3.14) and introducing the collocation matrix Rin ≡ un (xi ) gives the

matrix relation41

R
+
ΩR = 1 (3.3.15)

where Ω  is defined as a diagonal matrix with the values given in Eq. (3.3.13). From Eq.

(3.3.15) it now follows that42

un g um = R
+
Ωg

G
R[ ]

nm
= R

−1
g

G
R[ ]

nm
(3.3.16)

40 For a N-point gaussian-like quadrature scheme we generally have [52]

dx f x( ){ }
a

b

∫ = A ω pf xp( )
p =1

N

∑ + B
d2 N

dx2 N
f x( )[ ], a < x < b

where A and B are constants. When applying this integration formula to Eq. (3.3.12) and Eq. (3.3.14), where
f x( ) = un x( )g x( )um x( ) , we would expect the largest error to enter the N-point DVR scheme when the degree of
f x( )  reaches a maximum value, i.e. when n = m = N −1. Hence the leading error-term, R, is given by

R ∝
d2N

dx2N
uN−1

2 x( )g x( )[ ] = g x( ) d2N

dx2N
uN−1

2 x( )[ ] + ′g x( ) d2N−1

dx2N−1
uN−1

2 x( )[ ]

+ ′′g x( ) d2N−2

dx2N−2
uN−1

2 x( )[ ] + ...... ∝ ′′g x( ) + ......., a < x < b

After this somewhat shallow analysis we conclude that the leading error-term in a N-point DVR scheme is
proportional to the second derivative of the function.

41 δ nm = RinΩ i R im

i=1

N

∑ = Rni

+

Ω iδ ij R jm

i, j=1

N

∑ ≡ R
+

ΩR



nm

42 As noted before the label “G” added to a matrix representation of a function, f x( ), indicates that the matrix is
diagonal with the elements equal to values of f x( ) in the discrete grid points - that is

f
G



 pq

≡ δ pqf xp( )
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which does not depend explicitly on the weights ω i . However, we will have to invert the

collocation matrix R in this formulation and so instead we define the unitary matrix U  as

Uin ≡ Ωi Rin ⇒ U = Ω
1

2

R (3.3.17)

such that Eq. (3.3.15) simply reads as

U
+
U = 1 (3.3.18)

Eq. (3.3.16) now reduces to the very important relation

un g um = U
+
g

G
U[ ]

nm
= Upn

∗ Upmg xp( )
p
∑ (3.3.19)

From the orthonormal basis-set un (x){ } we can now define another orthonormal basis-set

Xp (x){ } by the unitary transformation

Xp x( ) ≡ Upn
∗

un x( )
n=1

N

∑ ⇔ un x( ) = UpnXp x( )
p=1

N

∑ (3.3.20)

such that

Xp g Xq = UU
+
g

G
UU

+[ ]
pq

= g
G[ ]

pq
= g xp( )δpq (3.3.21)

Now we are finally in the position to define the overall DVR scheme. First we choose

the orthonormal basis-set un (x), n = 1,..,N{ } (see Eq. (3.3.11)) either as eigenstates of the

kinetic energy operator, or at least as a set of basis functions that enables us to determine the

matrix elements un T um . In chapter 5 we shall see how this is done in practice using the

characteristic recurrence relations for the derivative of the orthogonal polynomials. This set of

N functions then determines a Gauss quadrature scheme as discussed above, defining the

weights ω i  and the collocation matrix R. We then use the definition in Eq. (3.3.17) to give us

the unitary matrix U , which in turn defines the orthonormal basis-set Xp (x), p = 1,..,N{ }.

The wave function in the FBR un (x), n = 1,..,N{ } reads as

Ψ x( ) = Cnun x( )
n=1

N

∑ (3.3.22)

and, inserting Eq. (3.3.20) and Eq. (3.3.17) into Eq. (3.3.22) we obtain the expression for

Ψ(x) in the Xp (x), p = 1,..,N{ } basis-set43

43 Ψ x( ) = Cn UpnXp x( )
p=1

N

∑
n=1

N

∑ = Ωp Cn Rpn

n=1

N

∑










p=1

N

∑ Xp x( ) = Ωp Cnun xp( )
n=1

N

∑










p=1

N

∑ Xp x( ) = Ωp Ψ xp( )
p=1

N

∑ Xp x( )
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Ψ x( ) = ΩpΨ xp( )Xp x( )
p=1

N

∑ (3.3.23)

This is clearly a discrete variable representation of the function Ψ(x). In other words, there

exists an isomorphism (due to the unitary matrix U ) between the finite basis representation

(FBR) of Ψ(x) in un (x), n = 1,..,N{ } and a discrete variable representation (DVR) of Ψ(x) in

Xp (x), p = 1,..,N{ }. Setting the variable x equal to one of the N grid points (abscissas) xq  in

Eq. (3.3.23) results in

Ψ xq( ) = ΩpΨ xp( )Xp xq( )
p=1

N

∑ (3.3.24)

Now noting that the expansion coefficients Ψ(xp )  in Eq. (3.3.23) are linearly independent,

we arrive at the important result

Xp xq( ) = Ωp
− 1

2δpq (3.3.25)

which simply tells that the basis function Xp x( )  in the set Xp (x), p = 1,..,N{ }, defining the

DVR scheme, has the property of being zero at every grid point different from xp. It can

further be shown that

  
Xp x( ) << Ωp

− 1
2δpq for x ∈ x1;xp−1[ ]U xp+1;xN[ ] (3.3.26)

such that these basis functions Xp x( )  have a “delta-function-like” property at the quadrature

points. In other words, the underlying DVR basis discretizes the coordinate space in “much

the same way” as the FEM does. Because of this oscillatory behavior of the basis functions

Xp x( ) , with nodes at the grid points, the DVR scheme can give very poor results if the

function represented through the DVR, Eq. (3.3.23), has an oscillatory behavior close to that

of the basis-set Xp (x), p = 1,..,N{ }44 . With this in mind, we should stress that adding more

grid points (i.e. enlarging the basis-set) is strictly speaking not always tantamount to obtaining

greater accuracy in the DVR scheme45 - although this may be a mere mathematical curiosity,

as such situations, according to my own experience, are extremely rare in practice.

Although the one dimensional DVR just discussed is useful, the use of direct product

DVR for multi-dimensional problems is much more advantageous. There are four possible

44 As a sample “worst-case example”, consider the function

Ψ(x) ∝ x − x p( )
p=1

N

∏
having nodes exactly at the grid points. A discrete variable representation of this function will be very poor since
using Eq. (3.3.24) simply give us a zero-function.

45 Press et al. [53], in the introduction to quadrature methods, make the same point, provocatively, by asserting that “it
can not be overemphasized that high order is not the same as high accuracy. High order translates to high accuracy
only when the integrand is very smooth, in the sense of being well-approximated by a polynomial.”
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reasons for this. First, the Hamiltonian matrix in the multi-dimensional DVR is very easy to

construct as we shall see in chapter 5. Second, for a DVR in an orthonormal coordinate

system, the Hamiltonian is sparse. Third, the DVR handles singular terms (e.g.   1
r
r  in the

potential) in a very efficient way (i.e. analytical) by choosing the ad hoc FBR, as opposed to

the FEM where one has to be more careful (i.e. put certain elements to zero). Fourth, the

multi-dimensional DVR scheme easily allows for preconditioning and hence truncation of the

product basis in the different dimensions to give a very compact overall basis-set. To illustrate

this preconditioning, consider a two-dimensional Hamiltonian

H(ξ ,η) = H0 (ξ ,η) + W(ξ ,η) (3.3.27)

where H0 (ξ ,η)  is the zero order Hamiltonian, assumed at first not to be separable in the two

variables. Let there be given two ad hoc FBR basis-sets Li (ξ ){ } and Pi (η){ } and the

associated sets of DVR grid points ξ i{ }  and ηi{ } . Now fix the variable η , in the zero order

Hamiltonian, one by one to the different grid points ηp  and solve the corresponding

eigenvalue equation

H0 ξ ,ηp( )Yq
p ξ( ) = εq

pYq
p ξ( ) (3.3.28)

followed by a truncation of the expansion

Yq
p ξ( ) = Ciq

p Li ξ( )
i
∑ (3.3.29)

In an analogous way we can construct the truncated zero order basis functions Np
q (η) in the

basis Pi (η){ }. The full two-dimensional problem now reads as

H ξ ,η( )Ψ ξ ,η( ) = EΨ ξ ,η( ) (3.3.30)

where

Ψ ξ ,η( ) = CpqYq
p ξ( )Np

q η( )
pq
∑ (3.3.31)

The resulting product basis-set Np
q (η)Yq

p (η){ }, in which the zero order Hamiltonian is close

to diagonal, is compact as compared to the direct product basis-set Li (ξ )Pj(η){ } used in the

expansion

Ψ ξ ,η( ) = ′CijLi ξ( )Pj η( )
ij
∑ (3.3.32)

The price for this convenient compact basis-set on the other hand is the time consuming

truncations in every grid point, a step that is inevitable unless the zero order Hamiltonian is

separable in the different coordinates, which, as we shall see in chapter 5, is the case for the

zero order Hamiltonian for H2
+ . Then the zero order compact basis-set is simply constructed
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as the truncated eigenfunctions of the different components of the zero order Hamiltonian,

giving a product basis-set in which H0 (ξ ,η)  is diagonal. Nevertheless, we stress this feature

of the DVR scheme, and note that, in multi-dimensional finite element methods, we do not

have this type of preconditioning to obtain a compact basis-set.
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4    Translation and rotation in quantum mechanics

4.1 Introduction

In this chapter we are going to present some important results from the theory of

translations and rotations in quantum mechanics, that will enable us to reduce the nine

dimensional scattering problem, of the three particle system H2
+ , in the laboratory-fixed frame

of reference to a three dimensional problem in a body-fixed frame of reference. This

separation of 3 translational and 3 rotational coordinates from the wave function, is described

in the standard way [4], and the results and methods outlined will then be applied to the

variational R-matrix functional in chapter 5. Further we shall mention some coupling relations

for the so-called rotational matrix elements, to be defined, that will help us to derive the

expression for the dipole transition moment for H2
+  in the body-fixed frame of reference,

chapter 5 section 9.

As a prelude to the separation of the translational and rotational coordinates we will

briefly discuss the constants of motion that will be used to label, and hence characterize, the

wave function. These quantum numbers describe the eigenstates of a set of observables which

constitute a complete set of commuting observables for the physical system. The latter

concept is defined as a set of physical observables which all commute with one another and

for which there is only one simultaneous eigenstate belonging to any set of eigenvalues. From

the homogeneity and isotropy assumed for space, one induces the symmetries of spatial

displacements (translations) and rotations; that is, one assumes that space is Euclidean and

three-dimensional, having the isometry group, E(3), of rotations and translations. As we will

demonstrate in section two and three, the generators of translations and rotations are

respectively the linear momentum operator and angular momentum operator. Noting that a

symmetry operator, by definition, is an operator that commutes with the Hamiltonian

operator, we then conclude that in the absence of external fields a complete set of commuting

observables consists of the operators

  
H, J2 , J3 ,

r
P{ } (4.1.1)

where H  is the usual total non relativistic Hamiltonian, J2  is the square of the total angular

momentum (excluding spin), J3  is the third component of   
r
J  and   

r
P  collectively denotes the

three components of the total linear momentum. Correspondingly we have a set of six real

quantum numbers

  
E,J,m,

r
k{ } (4.1.2)

so that we can label the wave function as
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  ΨJm
r
k
ω( ) (4.1.3)

where

  

J2Ψ
Jm

r
k
ω( ) = h2J J + 1( )Ψ

Jm
r
k
ω( )

J3ΨJm
r
k
ω( ) = hmΨ

Jm
r
k
ω( )

r
PΨ

Jm
r
k
ω( ) =

r
kΨ

Jm
r
k
ω( )

(4.1.4)

ignoring the total energy E as a constant of motion, since it will be fixed in our scattering

calculations. The first step is now to separate out the label   
r
k.

4.2 Translational invariance

The description of the action of translational operators on wave functions in quantum

mechanic is actually quite easy, as compared to the problem of characterizing rotations. The

reason for this is that three dimensional translations, by virtue of the homogeneity of space,

form an abelian46 group. For physics, the translation generator is the (Hermitian) linear

momentum operator   
r
P , and the associated operator   P

r
a( ) generating finite displacements is

realized by

  
P

r
a( ) = exp −i

r
a ⋅

r
P h( ) (4.2.1)

This operator can be shown to displace the system be the vector   
r
a. Consider the action of

  P(
r
a) on the function   ϕ(

r
r ). Using the power series for the exponential and assuming that the

derivatives of   ϕ(
r
r ) exist we find

  

P
r
a( )ϕ r

r( ) =
1
n!n=0

∞

∑ −
i
h

r
a ⋅

r
P





n

ϕ
r
r( )

=
1
n!n=0

∞

∑ −
r
a ⋅

r
∇( )n

ϕ
r
r( ) = ϕ

r
r −

r
a( )

(4.2.2)

where we have used   
r
P ≡ −ih

r
∇  and the Taylor series for   ϕ(

r
r −

r
a) . The commutativity of

translations (  P(
r
a)P(

r
b) = P(

r
b)P(

r
a) = P(

r
a +

r
b)) is vectorially realized as the well known

parallelogram law. Further we note that if   ϕ
r
k
(
r
r ) is assumed to be an eigenstate of the linear

momentum   
r
P , we can insert Eq. (4.1.4) into Eq. (4.2.2) to give

  
P

r
a( )ϕ r

k

r
r( ) = exp −i

r
a ⋅

r
k h( )ϕ r

k

r
r( ) = ϕ r

k

r
r −

r
a( ) (4.2.3)

and setting   
r
k =

r
0 we find the elementary, but fundamental relation

46 A group where all elements commute with one another.
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  ϕ
r
0

r
r −

r
a( ) = ϕ r

0

r
r( ) (4.2.4)

which simply tells that an eigenstate of   
r
P  with zero linear momentum is translationally

invariant. Clearly   exp(i
r
k ⋅

r
r h) is an eigenstate of   

r
P , with linear momentum   

r
k, and hence we

can factor an arbitrary eigenstate of   
r
P  into a product of the latter times a translational

invariant function.

  
ϕ r

k

r
r( ) = exp i

r
k ⋅

r
r h( )ϕ r

0

r
r( ) (4.2.5)

We now return to the problem of an N particle system, where   
r
P  reads as

  

r
P = −ih

r
∇i

i=1

N

∑ (4.2.6)

and where an eigenstate of   
r
P  is a function of the coordinate set 

  

r
R1,

r
R2,.....,

r
RN{ }

  
Ψ r

k

r
R1,

r
R2,.....,

r
RN( ) (4.2.7)

In order to separate out a set of translational coordinates, we perform a linear transformation

on the laboratory-fixed coordinates to a set of coordinates,   {
r
r1,

r
r2 ,.....,

r
rN}, that we shall refer

to as the space-fixed coordinates. This linear transformation of the N-dimensional vector

space ( R3N ) into itself, is represented by the N × N matrix V

  
r
r1,

r
r2 ,....,

r
rN[ ] =

r
R1,

r
R2,....,

r
RN[ ]V (4.2.8)

where det V ≠ 0  ( V
−1

 should exist), and where the i’th column in V  contains the coefficients

for the linear combination of the space-fixed vector   
r
ri  in the set of laboratory-fixed vectors

  {
r
R1,

r
R2,.....,

r
RN}. We now seek a matrix V  that will construct as many translational invariant

space-fixed vectors (hence the name) as possible, i.e. as many as possible of the columns of

V  should have vanishing sum. Clearly if all the vectors   {
r
r1,

r
r2 ,.....,

r
rN} are translational

invariant, the determinant of V  vanishes47 and hence we do not have a linear transformation.

In other words this choice of V  results in a set of linearly dependent vectors, which is not

desirable. If we instead construct V  such that the sum of the elements in only the first N-1

columns vanish, corresponding to the set   {
r
r1,

r
r2 ,.....,

r
rN−1} being translational invariant, then

det V ≠ 0 . The translational vector   
r
rN is now denoted   

r
R0. The point is now that in these

coordinates the total linear momentum in Eq. (4.2.6) takes the simple form

  

r
P = −ih

∂
r
ri

∂
r
R j

∂
∂
r
rij=1

N

∑
i=1

N

∑ = −ih
∂
∂
r
ri

Vij

j=1

N

∑
i=1

N

∑ = −ih
∂
∂
r
rN

≡ −ih
r
∇R0

(4.2.9)

where we have used the chain rule and the fact that   
r
r1,

r
r2 ,.....,

r
rN−1{ } is chosen to be

47 By N-1 simple row additions we can bring V  into a matrix with a zero-row (i.e. det V( ) = 0 )
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translationally invariant48. Hence an eigenstate of   
r
P  as given in Eq. (4.2.7) can be expressed

as   exp(i
r
k ⋅

r
R0 h) times an eigenstate of   

r
P  with   

r
k =

r
0 only depending on the translational

invariant coordinates (in agreement with Eq. (4.2.4)).

  
′Ψ r
k

r
R1,

r
R2,....,

r
RN( ) = Ψ r

k

r
r1,

r
r2 ,....,

r
rN−1,

r
R0( ) = exp −i

r
k ⋅

r
R0 h( )Ψ r

0

r
r1,

r
r2 ,....,

r
rN−1( ) (4.2.10)

The kinetic energy term depending on the coordinate   
r
R0 in the Hamiltonian gives a constant

when acting on Eq. (4.2.10), and hence this term is insignificant. Consequently we simply

eliminate the translational coordinate   
r
R0 corresponding to the invariant case   

r
k =

r
0 where the

energy of the system refers to a space-fixed frame of reference (  
r
R0 =

r
0).

The explicit linear transformation from laboratory-fixed to space-fixed coordinates can

be performed in a number of different ways as discussed in chapter 1, and in the next chapter

we will give an example for the H2
+-system. In appendix A we have presented a very

convenient choice of the N × N matrix V , where the first N-1 coordinates are defined as

mass-weighted Jacobi coordinates and   
r
R0 is defined as the center-of-mass coordinates. This

matrix V  further has the nice property that |det V|= 1 (by virtue of the “orthogonal

construction”), and hence this transformation does not introduce any additional factors in the

volume element (see appendix E) in the variational functional. In this case we simply

eliminate the center-of-mass coordinates to obtain the translational invariant formulation.

Since   
r
k is now fixed to   

r
0 we shall not use this quantum number in the labeling of the wave

function any more.

4.3 Rotational invariance

The results obtained in the previous section for translations were all “thoroughly

familiar”, but when it comes to rotations we lack a primitive model - the rotational analogous

to vectors - capable of making the rotational structure intuitive obvious. The theory of

rotations in quantum physics is closely related to the theory of angular momentum, just as the

linear momentum was central in the discussion of translations, but in contrast to the latter the

characterization of rotations is less simple and involves an extensive use of group theoretical

arguments. Hence we shall just outline some of the most important aspects of this theory, and

present a number of relations that will be useful in the description of the H2
+  system in a body-

fixed frame of reference.

We start with the relatively simple matrix representation of the group of three-

dimensional pure rotations R(3) by 3 × 3 real, proper, orthogonal matrices R ∈SO 3( ) , but

before we do this we shall first parametrize the group of rotations. The “simplest”

parametrization of a rotation is of course through a vector and an angle characterizing the

direction and angle of the rotation, but throughout this thesis we are going to use the more

practical Euler angles α , β  and γ . Geometrically, the Euler angles are described by a

48 The coordinates 
  

r
r1 ,

r
r2 ,.....,

r
rN−1{ } are chosen as translationally invariant i.e. Vij

i=1

N

∑ = 0 for 1≤ j ≤ N −1.
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sequence of three rotations of vectors, which we now describe in terms of a fixed frame

  (
r
e1,

r
e2,

r
e3) (the space-fixed frame) and a frame   (

r
f1,

r
f 2 ,

r
f3) (the body-fixed frame) resulting

from the rotation, see figure 7 [54].

Figure 7 Definition of Euler angles

First we rotate the angle α  about   
r
e3, then β  about the new y-axis   

r
n2 = −sinα ,(

cosα , 0) and finally we rotate the angle γ  about the new z-axis   
r
n3 =

r
f3 = cosα sinβ ,(

sinα sinβ , cosβ ). Alternatively we can describe the three Euler angles in terms of a sequence

of three other rotations, where we first rotate the angle γ  about   
r
e3, then β  about   

r
e2 and

finally α  about   
r
e3. The two definitions are equal as they describe the same overall rotation.

In terms of a column-vector notation, a matrix representation of the overall rotation now reads

as

  
r
x → ′

r
x = R α ,β ,γ( ) ⋅ rx (4.3.1)

or equally

′xi ≡ Rij

j=1

3

∑ α ,β ,γ( )xj (4.3.2)

where

R α ,β ,γ( ) =

cosα −sinα 0

sinα cosα 0

0 0 1

















⋅

cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ

















⋅

cosγ −sin γ 0

sin γ cosγ 0

0 0 1

















(4.3.3)

which in the domain of definition for the Euler angles

0 ≤ α < 2π 0 ≤ β ≤ π 0 ≤ γ < 2π (4.3.4)

enumerate all elements of SO(3) exactly49 once. We further note that

49 This is not strictly true (for β = 0  or β = π ), but in order to use a convenient notation we shall ignore this. Actually
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R 2π − γ ,π − β ,2π − α( ) = R
T
α ,β ,γ( ) = R

−1
α ,β ,γ( ) (4.3.5)

where the last identity follows from the fact that R(α ,β ,γ ) ∈SO(3) i.e. R(α ,β ,γ )  is

orthogonal.

One can now show, via the so-called Cartan mapping [54], that there exist a two-fold

homomorphism50 between the group SU(2) of 2 × 2 unitary unimodular matrices u (i.e.

u
+
u = I and det u = 1) and the group SO(3), that we have just “shown” to form a

representation of the group R(3) of three-dimensional rotations. In Euler angles u α ,β ,γ( )
reads as

u α ,β ,γ( ) = exp −iα J3

1
2( )





exp −iβ J2

1
2( )





exp −iγ J3

1
2( )





(4.3.6)

where Ji

1
2( )

 are the 2 × 2 angular momentum matrices. It can now be shown, and this is far

from trivial, that the 2J + 1( ) × 2J + 1( )  unitary matrices

D
J
α ,β ,γ( ) = exp −iα J3

J( )[ ]exp −iβ J2
J( )[ ]exp −iγ J3

J( )[ ] (4.3.7)

where Ji
J( )

 are the general angular momentum matrices51, form all the distinct irreducible

unitary representations of the group SU(2) as J in Eq. (4.3.7) takes on all integral and half-

integral values. Having pointed out the homomorphism between the rotation group R(3),

represented by { R(α ,β ,γ ) ∈SO(3)}, and the unitary group { u(α ,β ,γ ) ∈SU(2)}, and the

complete set of irreducible representations of the latter { D
J
(α ,β ,γ ) ∈U(2J + 1)} we can now

write the irreducible representations of the rotation group directly. As special cases of Eq.

(4.3.7) we note that for J=0, J= 1
2  and J=1 respectively the rotation matrices reads as

D
0
α ,β ,γ( ) = 1

D
1
2 α ,β ,γ( ) = u α ,β ,γ( )

D
1
α ,β ,γ( ) = A

+
R α ,β ,γ( )A

(4.3.8)

this also means that the first identity of Eq. (4.3.5) [54]  (and Eq. (4.3.15) is not rigorously exact. The more “correct”
way would be to use the four real Euler-Rodrigues parameters (α 0 ,α1 ,α 2 ,α 3 ) , which define the surface of a unit
sphere, S3, in four space (i.e. α0

2 +α1
2 +α2

2 +α3
2 = 1), but since this parametrization is less easy to visualize, and

hence grasp, we shall not do so.
50 The two matrices u α ,β ,γ( )  and −u α ,β ,γ( )  are associated with the same matrix R α ,β ,γ( ) , and the Cartan

mapping formula [54] establishes the relation. Actually this mapping was originally established between isotopic
vectors (a vector of zero length) in three-dimensional Euclidean space and spinors (elements in two-dimensional
complex space).

51 Generally Ji
J( )

 is the 2J +1( ) × 2J +1( )  matrix representation of the i’th component of the angular momentum in a
complete basis of eigenstates with total angular momentum j - that is

Ji
J( )
≡ Jm J

i
J ′m m, ′m ∈ −J,−J +1,..., J{ }[ ]

For J = 1
2  as in Eq. (4.3.5) Ji

1
2( )

= 1
2 σ i , where the latter are the familiar Pauli matrices, known from the theory of

spin.
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where the matrix A  transforms   
r
e1,

r
e2,

r
e3( ) to the so-called spherical basis   

r
e+1,

r
e0,

r
e−1( ) given

as

  

r
e+1 = −

r
e1 + i

r
e2( ) 2

r
e0 =

r
e3

r
e−1 =

r
e1 − i

r
e2( ) 2

(4.3.9)

We now define the unitary operator U α ,β ,γ( )  as

U α ,β ,γ( ) = exp −iαJ3[ ]exp −iβJ2[ ]exp −iγJ3[ ] (4.3.10)

where Ji is the i’th component of the total angular momentum operator. The rotation matrix in

Eq. (4.3.7) can then be expressed in the form

D ′m m
J

α ,β ,γ( ) = J ′m U α ,β ,γ( ) Jm = exp −i ′m α( )d ′m m
J β( )exp −imγ( ) (4.3.11)

where we have used that Jm  is an eigenket of J3 , and defined the reduced rotation matrix

d ′m m
J β( ) ≡ J ′m exp −iβJ2[ ] Jm (4.3.12)

The action of U α ,β ,γ( )  on a given eigenket Jm  then reads as

Jm ′ ≡ U α ,β ,γ( ) Jm = D ′m m
J

α ,β ,γ( ) J ′m
′m =− J

J

∑ (4.3.13)

To interpret the physical significance of the unitary operator U(α ,β ,γ ), we consider the

transformation of the angular momentum   
r
J = (J1,J2 ,J3 ) corresponding to the change of basis

described above in Eq. (4.3.13). That is

Ji
′ Jm ′ ≡ U α ,β ,γ( )Ji Jm

= U α ,β ,γ( )JiU
−1 α ,β ,γ( )U α ,β ,γ( ) Jm

= U α ,β ,γ( )JiU
−1 α ,β ,γ( ) Jm ′

⇓ Ji
′ = U α ,β ,γ( )JiU

−1 α ,β ,γ( )

(4.3.14)

The point is now that one can show52 that when U(α ,β ,γ ) acts on the vector operator

Ji → Ji ′, corresponding to the unitary change of basis Jm → Jm ′ , given in Eq. (4.3.13),

Ji  is transformed according to a sequence of three rotations by the Euler angles

2π − γ ,π − β ,2π − α  - that is

52 Using the Baker-Campbell-Hausdorff relation together with the commutation relations   
r
J ×

r
J = i

r
J  and

  [
r
a ⋅

r
J,

r
J ] = −i

r
a ×

r
J  where [ ai ,J j ] = 0  [54].
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Ji
′ = Rij 2π − γ ,π − β ,2π − α( )

j=1

3

∑ J j = Rij
−1

α ,β ,γ( )
j=1

3

∑ J j = R ji α ,β ,γ( )
j=1

3

∑ J j (4.3.15)

where we have used Eq. (4.3.5). In other words the rotation R(α ,β ,γ )  of a coordinate vector

  
r
x ∈R3, Eq. (4.3.1), corresponds to the inverse rotation R

−1
(α ,β ,γ ) of a vector operator, Eq.

(4.3.14). In terms of spherical components Eq. (4.3.2) and Eq. (4.3.15) take the following

interesting forms

′xi = Dij
1∗
α ,β ,γ( )xj

j=−1

1

∑

′Ji = Dji
1
α ,β ,γ( )J j

j=−1

1

∑













i = −1,0,1 (4.3.16)

where we have used Eq. (4.3.8,9). This difference by R(α ,β ,γ )  (or D
1∗
α ,β ,γ( )) versus

R
−1

(α ,β ,γ ) (or D
1
α ,β ,γ( )) it not an error, but a consequence of an important distinction in

the meaning of the two transformations53. The duality arrives from the fact that one can

choose to work with either the passive or the active formulation of the effect of a group

element on a set of coordinates. In the passive formulation the set of coordinates denotes the

same point kept fixed in the space, and the coordinate system and symmetry elements are

changed under the operation. On the other hand, in the active formulation the coordinate

system and the symmetry elements are kept fixed, while the coordinate set is moved during

the symmetry operation. These two possible interpretations of a rotation are, to repeat, dual to

each other, and this duality accounts for the fact that R(α ,β ,γ )  appears in the active

transformation, Eq. (4.3.2), and R
−1

(α ,β ,γ ) in the passive transformation, Eq. (4.3.15). This

duality in viewpoint of a transformation can be very confusing, especially to an inexperienced

reader that tries to gain information form different textbooks using different conventions. I

found that most books on this subject either take the active view [54-56] or are not fully

consistent [57, 58] throughout. In the book by Rose [57] the passive view is taken in the

Cartesian representation, R(α ,β ,γ ) , of a rotation, but it fails to take the passive functional

convention and gets D
j
(α ,β ,γ )  functions that really represent the inverse of R(α ,β ,γ ) . The

book by Tinkham [58] also lack a consistent definition; it intends to take the active view, but

actually uses the passive convention when defining the Cartesian representation. A good

reference where the passive view is taken consistently throughout is the paper [59] by Pack

and Parker. However I found the book by Biedenharn and Louck [54] to be very useful. It

53 This difference, to repeat, is not an error, but - in the final analysis - the result of conventions made in the definition
of a so-called irreducible tensor operator. The irreducible tensor operators are the operator analoges of the basic ket
vectors in the multiplicity { Jm : m = J,...,−J}, and, like these multiplets, physical tensor operators usually carry
additional lables that specify the physical properties of the operator. Let us next note that the tensor operator concept
involves two distinct spaces on which transformations occur: The first is the Hilbert space which undergoes the
transformation Ψ → U Ψ ; and the second is the index space {(J,m)}, which lables the operators. The tensor
operator concept links these two spaces by requiring that the induced transformation Tm

J → UTm
J U−1 , Eq. (4.3.14), be

the same as the index transformation Jm →ΣD ′m m

J

α,β ,γ( ) J ′m , Eq. (4.3.13).
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takes the active view, and hence throughout this thesis we will restrict ourselves to use the

active convention, which is also what we have done so far in the definitions discussed above.

The present remark is intended to clarify this situation.

In order to be explicit let us the notation54 that ℜ represent an abstract rotation of the

axes and let R(ℜ) be the matrix which represents its action on Cartesian coordinates and

D
j
(ℜ) be the rotation matrix that represents its action on functions transforming as the j’th

irreducible representation of the rotation group in three dimensions. It is imperative, as

discussed above, that R(ℜ) and D
j
(ℜ) be homomorphic representations of the group; that is,

if ℜij  is the rotation that carries frame j into frame i, so that

ℜ31 = ℜ32ℜ21 (4.3.17)

then we must have

R ℜ31( ) = R ℜ32( )R ℜ21( ) (4.3.18)

and

D
j
ℜ31( ) = D

j
ℜ32( )D

j
ℜ21( ) (4.3.19)

The rotation matrices R(α ,β ,γ )  of Eq. (4.3.3) and D
j
(α ,β ,γ )  of Eq. (4.3.7) does satisfy Eq.

(4.3.18,19) respectively. In considering the action of rotations on functions of coordinates, we

use the functional convention

  
ℜΨ[ ] r

x( ) ≡ Ψ R
−1
⋅
r
x( ) (4.3.20)

The functional analog to Eq. (4.3.13) then reads as

  
ℜΨm

J[ ] r
x( ) = D ′m m

J
R( )Ψ ′m

J r
x( )

′m =− J

J

∑ (4.3.21)

Combining Eq. (4.3.20,21), we obtain the important (active) relation

  

Ψm
J r

′x( ) = ℜ−1ℜΨm
J[ ] r

′x( ) = ℜ−1Ψm
J[ ] R

−1
⋅
r
′x( )

= D ′m m
J

R−1( )Ψ ′m
J R

−1
⋅
r
′x( )

′m =− J

J

∑ = Dm ′m
J∗

R( )Ψ ′m
J R

−1
⋅
r
′x( )

′m =− J

J

∑

= Dm ′m
J∗

R( )Ψ ′m
J r

x( )
′m =− J

J

∑

(4.3.22)

where we have used the used the unitary property of the rotation matrices

54 In this notation for an abstract rotation ℜ  we do not use a parametrization in Euler angles, simply to keep the
notation short.
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D
J
ℜ−1( ) = D

J
ℜ( )[ ]

−1

= D
J
ℜ( )[ ]

+

(4.3.23)

in the second line of Eq (4.3.22), and the inverse of Eq. (4.3.1) in the last line. The relation in

Eq. (4.3.22) is very important in the discussion of body-fixed frames (to be introduced later),

and the use of complex conjugated rotation matrices is not a “perverse convention”, but a

necessity for overall consistency. The functions D ′m ,m
J∗

(α ,β ,γ ) - as opposed to the

D ′m ,m
J

(α ,β ,γ ) themselves - transform properly as state vectors carrying angular momentum

labels (J, m). In fact it is not that difficult to show55 that the function D ′m ,m
J∗

(α ,β ,γ ) is

actually the wave function for a rotating symmetric top (a solid body with center-of-mass

fixed in space) with a total angular momentum J, a z-component ′m  of the angular

momentum referred to space-fixed axis and a z-component m of the angular momentum

referred to body-fixed axis. For now we will just note that a wave function with sharp angular

momentum (J, m) can be expanded as a series of 2J + 1 wave functions that are functions of

rotated coordinates and with total angular momentum J, each weighted by a symmetric top

wave function also with total angular momentum J.

Before we move on to apply the results presented above on the H2
+  system, we will state

two important relations involving the rotation matrices D ′m ,m
J

(α ,β ,γ ), since they will be

needed later on. The reader who wishes derivations can get them from Biedenharn and Louck

[54] p. 68 and p. 86. The rotation matrices satisfy the fundamental orthogonality relations

dα dβ sinβ dγ D ′m m
J∗

α ,β ,γ( )D ′µ µ
′J

α ,β ,γ( ){ }
0

2π

∫
0

π

∫
0

2π

∫ =
8π 2

2J + 1
δ J ′J δ ′m ′µ δmµ (4.3.24)

and

dα dβ sinβ dγ D ′m m
J∗

α ,β ,γ( )D ′m1m1

J1
α ,β ,γ( )D ′m2m2

J2
α ,β ,γ( ){ }

0

2π

∫
0

π

∫
0

2π

∫ =
2π 2

2J + 1
C ′m1 ′m2 ′m

J1J2J Cm1m2m
J1J2J (4.3.25)

where Cm1m2m
J1J2J  and C ′m1 ′m2 ′m

J1J2J  in the latter orthogonality relation are Wigner coefficients; also

known as Clebsch-Gordan, Wigner and vector-coupling coefficients. There exist a large

number of relations for these coupling coefficients (symmetry and orthogonality relations and

the so-called triangle conditions), but we will not take up space with the many tiresome

relations here, as that would clearly be to go too far in the present context of this thesis.

Instead we will just refer to the excellent text book by Biedenharn and Louck [54] , where

these relations are discussed and where tables with explicit expressions for many of the

Wigner coefficients are presented.

55 See Biedenharn and Louck [54] p. 57-66. The proof is quite easy, but we will not take up space with the long
tiresome details here, as that would clearly be to go too far in the present context of this thesis.



Chapter 5                                                                                                                59

5    Numerical implementation of proton hydrogen scattering

5.1 Introduction

With the completion of the introduction to the required quantum mechanical

methodology, we are now finally in the position to treat the problem of proton hydrogen

scattering using the variational R-matrix formulation described in chapter 2. As a prelude to

the implementation of the scheme derived in chapter 3 (see Eq. (3.2.21-22)) we will derive an

explicit expression for the H2
+ J-functional, that allows the usage of several numerical

methods - with reference to the ones already discussed in chapter 3 section 2 and 3. In doing

so we will use the notation throughout this chapter that the “A-term of the J-functional” refers

to the J-functional, Eq. (2.2.1), excluding the surface term, corresponding to the operator

representation of the matrix A  defined in Eq. (2.2.15) - that is

A Ψ( ) ≡ dω E − W ω( )[ ]Ψ ω( ) 2
− TE Ψ( ) − TN Ψ( ){ }

V
∫ (5.1.1)

where the nuclear and electronic kinetic energy densities are given in Eq. (2.2.2). In the

following five sections of this chapter (5.2-6) we are going to rewrite this A-term of the J-

functional, in order to obtain a convenient form in which the zero order term, referred to as

the adiabatic term, is separable in three coordinates. Next we discuss the Born-Oppenheimer

approximate and the full three body treatment of H2
+  in section 5.7 and 5.8 respectively. The

outcome of the derivations in these sections forms the heart of the numerical calculations to

be discussed in chapter 6. Finally in section 5.9 we shall derive a numerical scheme for the

full three body transition dipole moment of H2
+  as this will be needed in a future study of H2

+

absorption in white dwarfs.

5.2 The J-functional in the Lab.-fixed frame of reference

In the laboratory-fixed frame of reference with an arbitrary origin the H2
+  system is described

in terms of the position-vectors of the three particles as depicted in figure 8. The two protons

are denoted respectively a and b, and the electron is denoted e. The laboratory-fixed frame of

reference is described in terms of the three unit vectors   
r
′ex,

r
′ey and 

r
′ez. Expressed in the

laboratory-fixed frame of reference, the A-term of the J-functional, Eq. (5.1.1), reads as

  
A Ψ( ) = d

r
rad

r
rbd

r
re E − W[ ]Ψ 2 −

h2

2ma

r
∇aΨ

2
−

h2

2mb

r
∇bΨ

2
−

h2

2me

r
∇eΨ

2





V

∫ (5.2.1)

where the potential energy density term, W, will be defined later. This is clearly a 9-

dimensional integral, but as argued in chapter 4 section 2 it is sufficient to treat the

translationally invariant case where the linear momentum of the system is fixed to   
r
0,
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corresponding to the elimination of the center-of-mass coordinates, such that Eq. (5.2.1)

effectively reduces to a 6-dimensional integral. In other words we need to introduce a new set

of coordinates which explicitly includes the center-of-mass coordinates, and this leads us to

what we shall refer to as the space-fixed coordinates.Laboratory-fixed coordinates

  
r 
r a

 
r 
r b

   
r 
r e

   
r
′ex

  
r
′ey   

r
′ez

Figure 8 Laboratory-fixed frame of reference

5.3 The J-functional in the space-fixed frame of reference

As mentioned in chapter 1 section 2, and outlined in appendix A, the mass-weighted

Jacobi coordinates, Eq. (A.14), provide a convenient set of translational invariant coordinates

that transform the kinetic energy density into a canonical form with only one mass-factor (see

Eq. (A.17)). Nevertheless this is not exactly the type of space-fixed coordinates that we are

going to apply on the H2
+  system. The reason for this is purely a matter of convenience since

the direct approach using the mass-weighted Jacobi-coordinates introduces the mass scaling-

factors listed in Eq. (A.14), which in turn prevents an easy physical interpretation of the

coordinates. In stead we choose to ignore the mass scaling-factors in the mass-weighted

Jacobi coordinates, and define what we could call the “non-mass-weighted Jacobi

coordinates” or simply Jacobi-coordinates   
r
′r , ′

r
R  and 

r
′RG  for a “heavy-heavy-light” particle-

system as H2
+ . We define

  

r
′r ≡

r
re −

ma

r
ra + mb

r
rb

ma + mb
r
′R ≡

r
ra −

r
rb

r
′RG ≡

1
M

ma

r
ra + mb

r
rb + me

r
re( )

(5.3.1)

where M ≡ ma + mb + me  is the total mass of the system. The matrix-representation for this

change of coordinates then reads as
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r
′r , ′

r
R ,

r
′RG[ ] =

r
ra ,

r
rb ,

r
re[ ]V =

r
ra ,

r
rb ,

r
re[ ]

−
ma

ma + mb

1
ma

M

−
mb

ma + mb

−1
mb

M

1 0
me

M























(5.3.2)

which should be compared to the transformation matrix V , entering Eq. (A.13), for the

corresponding mass-weighted Jacobi coordinates for a three-particle system (N=3). From the

above matrix-representation of the change of coordinates, Eq. (5.3.2), we can draw some

conclusions, much like the ones discussed for the mass-weighted Jacobi coordinates in

appendix A. First it is easy to show that the transformation matrix, V , is unimodular, see Eq.

(E.7), but since the columns and rows are clearly not orthonormal we conclude that the

coordinate transformation is not equal to a real unitary transformation. Further since the sum

of the elements in the first two columns is zero, we have, as expected, that both   
r
′r  and ′

r
R  are

translationally invariant. The physical significance and interpretation of this special choice of

space-fixed coordinates, see figure 9, is as follows;   
r
′R  is the inter-nuclear coordinate vector,

  

r
′RG  is the center-of-mass coordinate vector and   ′

r
r  is the coordinate vector from the nuclear-

center-of-mass to the electron, and is therefore referred to as the space-fixed electronic

coordinate vector.

 
  

r
′RG

  
r
′R

  ′
r
r

  
r
′ez  

r
′ey

  
r
′ex

Figure 9 Space-fixed frame of reference

In order to transform the A-term of the J-functional, Eq. (5.2.1), from the laboratory-

fixed coordinates into the space-fixed coordinates, we express the gradients with respect to

the old coordinates,   
r
ra ,

r
rb and 

r
re , in terms of the gradients with respect to the new

coordinates,   ′
r
r ,

r
′R  and ′

r
RG , using the chain-rule.
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r
∇eΨ =

δ ′
r
r

δ
r
re

r
∇ ′r Ψ +

δ ′
r
R

δ
r
re

r
∇ ′R Ψ +

δ ′
r
RG

δ
r
re

r
∇ ′R G

Ψ =
r
∇ ′r Ψ +

me

M

r
∇ ′R G

Ψ

r
∇aΨ = −

ma

ma + mb

r
∇ ′r Ψ +

r
∇ ′R Ψ +

ma

M

r
∇ ′R G

Ψ

r
∇bΨ = −

mb

ma + mb

r
∇ ′r Ψ −

r
∇ ′R Ψ +

mb

M

r
∇ ′R G

Ψ

(5.3.3)

We are now in the position to transform the kinetic energy density terms in Eq. (5.2.1) into

the new coordinates.

  

−
h2

2me

r
∇eΨ

2
−

h2

2ma

r
∇aΨ

2
−

h2

2mb

r
∇bΨ

2
= −

h2

2me

r
∇ ′r Ψ +

me

M

r
∇ ′RG

Ψ
2

−
h2

2ma

−
ma

ma + mb

r
∇ ′r Ψ +

r
∇ ′R Ψ +

ma

M

r
∇ ′RG

Ψ
2

−
h2

2mb

−
mb

ma + mb

r
∇ ′r Ψ −

r
∇ ′R Ψ +

mb

M

r
∇ ′RG

Ψ
2

= −
h2

2µe

r
∇ ′r Ψ

2
−

h2

2µ

r
∇ ′R Ψ

2
−

h2

2M

r
∇ ′RG

Ψ
2

(5.3.4)

where we have defined the mass-factors

µ ≡ 1 ma + 1 mb[ ]−1
= 918.07576000

µe ≡ 1 ma + mb( ) + 1 me[ ]−1
= 0.99972776545

(5.3.5)

and listed the values [60] for the H2
+  system in atomic units56. As Eq. (5.3.4) indicates it turns

out that when expressing the kinetic energy density in terms of the new space-fixed

coordinates all the cross-terms cancel out, and we are left with three terms each weighted by a

different mass-factor. This is a direct consequence of the fact that we have chosen to neglect

the mass-factors included in the mass-weighted Jacobi coordinates, Eq. (A.14), when we

defined the space-fixed coordinates, Eq (5.2.1). We also note that the two mass-factors,

µ and µe , defined in Eq. (5.3.5), are actually equal to respectively the two- and three-particle

reduced masses, µ12 and µ12,3, defined in the paragraphs following Eq. (A.9,10) (when

particle 3 equals the electron). From the fact that the transformation matrix, V , is found to be

unimodular, we further conclude (see Eq. (E.6-8)) that the volume element in Eq. (5.2.1)

simply transforms as

  
d
r
rad

r
rbd

r
re

V
∫ = d ′

r
R d ′

r
RGd

r
′r

V
∫ (5.3.6)

56 In the system of atomic units the following set of constants 
  

h, me , e, 4πε 0 , a 0{ } have a numerical value of 1.
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The A-term of the J-functional expressed in terms of the space-fixed coordinates then reads as

  
A Ψ( ) = d ′

r
R d ′

r
RGd

r
′r E − W[ ]Ψ 2 −

h2

2µ

r
∇ ′R Ψ

2
−

h2

2µe

r
∇ ′r Ψ

2
−

h2

2M

r
∇ ′RG

Ψ
2






V

∫ (5.3.7)

where the kinetic energy density is split into three terms with the following physical

significance; the first term describes the relative nuclear motion, the next the electronic

motion relative to the nuclear center-of-mass and the last term is a kinetic energy density term

related to the motion of the center-of-mass of the total system. As discussed in chapter 4

section 2 it is sufficient to treat the translationally invariant case where the linear momentum

of the system is fixed to   
r
0, corresponding to the elimination of the center-of-mass

coordinates, such that the A-term of the J-functional reduces to

  
A Ψ( ) = d ′

r
R d

r
′r E − W[ ]Ψ 2 −

h2

2µ

r
∇ ′R Ψ

2
−

h2

2µe

r
∇ ′r Ψ

2





V

∫ (5.3.8)

5.4 The J-functional in the body-fixed frame of reference

The next step is now to introduce a frame of reference,   
r
ex,

r
ey and 

r
ez, that is fixed to the

two-body system of the protons, and hence follow the motion of the protons. Such a frame is

referred to as a body-fixed frame of reference. An important property of all body-fixed

frames, in contrast to arbitrary moving frames, is that the translationally invariant coordinates

of the particles relative to the body-fixed frame are invariants under all rotations-inversions of

the particles. Another important property of a body-fixed frame is that the generator of

rotation of the frame is the total orbital angular momentum of the particles. In other words

(with reference to the discussion in section 4.3) the introduction of such a frame into the

description of the motion of the H2
+  system serves partially to define a transformation from

Cartesian coordinates to new coordinates in such a way that we are assured of being able to

construct states of the system having sharp total orbital angular momentum (i.e. good

quantum labels (J,m)). Corresponding to the space-fixed coordinates   
r
′r ,

r
′R  and 

r
′RG ,

expressed in terms of the unit-vectors   
r
′ex,

r
′ey and 

r
′ez, we define a set of coordinates in the body

fixed unit-vectors   
r
ex,

r
ey and 

r
ez, and denote then   

r
r,

r
R and 

r
RG . In these body-fixed coordinates

Eq. (5.3.8) then reads as

  
A Ψ( ) = d

r
Rd

r
r E − W[ ]Ψ 2 −

h2

2µ

r
∇RΨ

2
−

h2

2µe

r
∇rΨ

2





V

∫ (5.4.1)

The transformation from the space fixed frame of reference to the body fixed frame of

reference is chosen so that the new z-axis (  
r
ez ) will point in the direction of the inter-nuclear

vector, such that the inter-nuclear separation,   
r
R = 0,0,R( ), will appear explicitly in the

expression for the corresponding A-term of the J-functional - see figure 10.
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r
R

  

r
RG

  
r
r

  
r
ez   

r
ex

  
r
ey

Figure 10 Body-fixed frame of reference

The rotation operation is represented by the real unitary R(α ,β ,0)-matrix, Eq. (4.3.3), where

α and β  are the two Euler angles necessary to parametrize the rotation described above. The

definition of α and β  as the angles that rotate the space-fixed unit-vectors into the body-fixed

unit-vectors is illustrated in figure 11.

   
r
′ex

  
r
′ey   

r
′ez

  
r
′ez

  
r
ez

  
r
ey

  
r
ex

α β
  
r
ey

Figure 11 Rotation from the space-fixed to body-fixed frame

With the introduction of body-fixed coordinates as described above the inter-nuclear

coordinate vector   
r
R, can now be parametrized in terms of the two Euler angles α  and β ,

needed to rotate the space-fixed frame of reference into the body-fixed frame of reference,

and the inter-nuclear separation R. In other words the new coordinates are defined in such a

way as to give a simple description of the inter-nuclear vector, but the body fixed electronic

coordinate vector,   
r
r , does not enter the definition of   

r
ex,

r
ey and 

r
ez, and in the following we

will denote the three Cartesian components of   
r
r  by x, y and z. To express the nuclear kinetic

energy density, entering Eq. (5.4.1), in terms of the body fixed variables x, y, z, R, α  and β ,

we first have to derive an expression for the gradient with respect to   
r
R in terms of these

variables. To obtain such an expression we have to go through some long and tedious

derivations, but as I have never seen these derivations presented in the literature before, and

since the results obtained from these efforts form the very heart of this thesis, we shall not

retain going into a somewhat detailed discussion. The derivation takes of course point of

reference in the explicit definition of the rotation of the space-fixed unit vectors   
r
′ex,

r
′ey and 

r
′ez

into the body-fixed axis   
r
ex,

r
ey and 

r
ez.
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r
ex,

r
ey,

r
ez[ ] =

r
′ex,

r
′ey,

r
′ez[ ]R α ,β ,0( ) (5.4.2)

where R α ,β ,0( ) is the matrix representation of the rotation given in Eq. (4.3.3) - that is

R α ,β ,0( ) =

cosα cosβ −sinα cosα sinβ

sinα cosβ cosα sinα sinβ

−sinβ 0 cosβ

















(5.4.3)

The body-fixed coordinates expressed in terms of the space-fixed frame of reference then

reads as

  

r
r,

r
R[ ] ≡ r

ex,
r
ey,

r
ez[ ]

x 0

y 0

z R

















=
r
′ex,

r
′ey,

r
′ez[ ]R α ,β ,0( )

x 0

y 0

z R

















(5.4.4)

An infinitesimal variation of   
r
r  and   

r
R, with fixed axis   

r
′ex,

r
′ey and 

r
′ez, then reads as

  

δ
r
r,δ

r
R[ ] =

r
′ex,

r
′ey,

r
′ez[ ]δR α ,β ,0( )

x 0

y 0

z R

















+
r
′ex,

r
′ey,

r
′ez[ ]R α ,β ,0( )

δx 0

δy 0

δz δR

















(5.4.5)

Next we project the above equation onto the axis of the body-fixed frame of reference, by

multiplying Eq. (5.4.5) by the column vector 
  
r
ex,

r
ey,

r
ez[ ].

  

r
ex
r
ey
r
ez

















δ
r
r,δ

r
R[ ] = R

T

α ,β ,0( )

r
′ex

r
′ey

r
′ez

















r
′ex,

r
′ey,

r
′ez[ ]δR α ,β ,0( )

x 0

y 0

z R

















+R
T

α ,β ,0( )

r
′ex

r
′ey

r
′ez

















r
′ex,

r
′ey,

r
′ez[ ]R α ,β ,0( )

δx 0

δy 0

δz δR

















= R
T

α ,β ,0( )δR α ,β ,0( )
x 0

y 0

z R

















+

δx 0

δy 0

δz δR

















(5.4.6)

where we have used the fact that R α ,β ,0( ) is real unitary. The variation, δR α ,β ,0( ) , with

respect to the Euler angles reads as
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δR α ,β ,0( ) = δ

cosα cosβ −sinα cosα sinβ

sinα cosβ cosα sinα sinβ

−sinβ 0 cosβ

















=

−sinα cosβ −cosα −sinα sinβ

cosα cosβ −sinα cosα sinβ

0 0 0

















δα +

−cosα sinβ 0 cosα cosβ

−sinα sinβ 0 sinα cosβ

−cosβ 0 −sinβ

















δβ

(5.4.7)

and multiplying Eq. (5.4.7) with R
T
α ,β ,0( ) gives, after some rewriting

R
T
α ,β ,0( )δR α ,β ,0( ) =

0 −cosβ 0

cosβ 0 sinβ

0 −sinβ 0

















δα +

0 0 1

0 0 0

−1 0 0

















δβ (5.4.8)

Now substituting Eq. (5.4.8) into Eq. (5.4.6) gives

 

  

r
ex
r
ey
r
ez

















δ
r
r,δ

r
R[ ] =

0 −cosβδα δβ

cosβδα 0 sinβδα

−δβ −sinβδα 0

















x 0

y 0

z R

















+

δx 0

δy 0

δz δR

















(5.4.9)

which reduces to

  

δ
r
r ⋅

r
ex δ

r
R ⋅

r
ex

δ
r
r ⋅

r
ey δ

r
R ⋅

r
ey

δ
r
r ⋅

r
ez δ

r
R ⋅

r
ez

















=

δx + zδβ − ycosβδα Rδβ

δy + xcosβδα + zsinβδα Rsinβδα

δz − ysinβδα − xδβ δR

















(5.4.10)

Using this matrix identity we can first express the variations of α ,  β  and R by equating the

second columns.

  

δα = δ
r
R ⋅

r
ey Rsinβ( )

δβ = δ
r
R ⋅

r
ex R

δR = δ
r
R ⋅

r
ez

(5.4.11)

Substituting these expressions into the identities obtained by equating the first columns in Eq.

(5.4.10) then gives the variations in the electronic coordinates.

  

δx = δ
r
r ⋅

r
ex + δ

r
R ⋅

r
ey

y
R

cotβ −
r
ex

z
R







δy = δ
r
r ⋅

r
ey − δ

r
R ⋅

r
ey

x
R

cotβ +
r
ey

z
R







δz = δ
r
r ⋅

r
ez + δ

r
R ⋅

r
ey

y
R
−

r
ex

x
R







(5.4.12)

The variation of the total wave function caused by infinitesimal variations of x, y, z, R,
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α and β  or   
r
r and

r
R is given by the chain-rule.

  

δΨ = δx
∂Ψ
∂x

+ δy
∂Ψ
∂y

+ δz
∂Ψ
∂z

+ δR
∂Ψ
∂R

+ δα
∂Ψ
∂α

+ δβ
∂Ψ
∂β

= δ
r
r ⋅

r
∇rΨ + δ

r
R ⋅

r
∇RΨ

(5.4.13)

and substituting Eq. (5.4.11,12) into this expression give us

  

δΨ = δ
r
r ⋅

r
ex

∂
∂x

+
r
ey

∂
∂y

+
r
ez

∂
∂z









Ψ +

1

R
δ

r
R ⋅

r
ey y

∂
∂z

− z
∂
∂y









 −

r
ex z

∂
∂x

− x
∂
∂z













−
r
ey cotβ x

∂
∂y

− y
∂
∂x









 +

r
ex

∂
∂β

+
r
ey

sinβ
∂
∂α

+
r
ezR

∂
∂R




Ψ

(5.4.14)

We now introduce what we will refer to as the body-fixed Cartesian electronic57 angular

momentum operators

  
Lx ≡ −ih y

∂
∂z

− z
∂
∂y









 , Ly ≡ −ih z

∂
∂x

− x
∂
∂z






, Lz ≡ −ih x

∂
∂y

− y
∂
∂x









 (5.4.15)

Comparing Eq. (5.4.13,14) and substituting Eq. (5.4.15) into the result give us

  

r
∇RΨ =

1
hR

i
r
eyLx − i

r
exLy − i

r
ey cotβLz +

r
exh

∂
∂β

+
r
ey

h

sinβ
∂
∂α

+
r
ezhR

∂
∂R








Ψ (5.4.16)

To write this expression in terms of the well-known step-up and step-down angular-

momentum operators L+  and L− , defined as

L+ ≡ Lx + iLy , L− ≡ Lx − iLy (5.4.17)

we next introduce the spherical basis mentioned in chapter 4 section 3, such that the real

basis   
r
ex,

r
ey,

r
ez are now expressed the complex basis-vectors (see Eq. (4.3.9))

  

r
ex =

1
2

r
e+1 +

r
e−1( )

r
ey =

1
i 2

r
e+1 −

r
e−1( )

r
ez =

r
e0

(5.4.18)

Now substituting Eq. (5.4.18) into Eq. (5.4.16) and using the definition in Eq. (5.4.17) give us

57 Note that in the body-fixed frame of reference, the nuclear do not contribute to the total orbital angular momentum,
“  

r
R||

r
vnuc ⇒

r
Lnuc ≡

r
R ×

r
Pnuc =

r
0 ”, and the term “electronic” is then actually redundant.
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r
∇RΨ =

r
e−

2hR
cotβLz − L+ +

ih
sinβ

∂
∂α

+ h
∂
∂β









Ψ

−
r
e+

2hR
cotβLz − L− +

ih
sinβ

∂
∂α

− h
∂
∂β









Ψ +

r
e0

∂Ψ
∂R

(5.4.19)

From the orthogonality of the of the spherical basis-vectors we finally conclude

  

r
∇RΨ

2
=

1

2h2R2
cotβLzΨ − L+Ψ +

ih

sinβ
∂Ψ
∂α

+ h
∂Ψ
∂β

2

+
1

2h2R2
cotβLzΨ − L−Ψ +

ih

sinβ
∂Ψ
∂α

− h
∂Ψ
∂β

2

+
∂Ψ
∂R

2
(5.4.20)

Before we can write down the complete expression for the A-term of the J-functional in the

body-fixed coordinates we have to consider the corresponding change of the volume element

in the integral. In appendix E this change of basis is discussed in details, and we just conclude

(see Eq. (E.15)

  

d ′
r
R d

r
′r

V
∫ = d

r
Rd

r
r

V
∫ = d

r
r R2dR dα sinβdβ

0

π

∫
0

2π

∫
0

∞

∫
Velec

∫ (5.4.21)

Finally substituting Eq. (5.4.20,21) into Eq. (5.4.1) result in the following expression for the

overall change of coordinates for the A-term of the J-functional.

  

A Ψ( ) = d
r
r R2dR dα sinβdβ E − W( )Ψ 2 −

h2

2µe

r
∇rΨ

2

0

π

∫
0

2π

∫
0

∞

∫
V elec

∫

−
h2

2µ
∂Ψ
∂R

2

−
1

4R2µ
cotβLzΨ − L+Ψ +

ih

sinβ
∂Ψ
∂α

+ h
∂Ψ
∂β

2

−
1

4R2µ
cotβLzΨ − L−Ψ +

ih

sinβ
∂Ψ
∂α

− h
∂Ψ
∂β

2





(5.4.22)

5.5 Introduction of spheroidal coordinates

For any three-dimensional Schrödinger equation, whether exact solutions can be

obtained or not depends almost exclusively on the existence of certain coordinate systems in

which the Schrödinger equation can be reduced to a set of ordinary differential equations by

method of separation of variables. However, since the birth of quantum mechanics in 1926,

only a small number of physically useful separable Schrödinger equations have been

discovered. Even if the Born-Oppenheimer approximation is used there is still only one

molecule for which the electronic Schrödinger equation can be solved exactly. This is

precisely the hydrogen molecular ion. As it has only one electron, it has the status in the
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theory of molecules similar to that of the hydrogen atom in the theory of atoms. Whereas the

equation for the atom is separable in spherical polar coordinates, Burrau [12] showed in 1927

that the electronic equation for the molecular ion is separable in spheroidal coordinates.

The spheroidal (i.e. confocal ellipsoidal) coordinate scheme is the natural one to use for

a two-center system like H2
+ . Although these coordinates are discussed in many textbooks

[61], it seems appropriate to at least summarize their properties here. If the point “e” is

separated ra  and rb  from the two centers “a” and “b” respectively, we define two of the three

spheroidal coordinates ξ ,η,φ( ) as

ξ ≡ ra + rb( ) R, η ≡ ra − rb( ) R (5.5.1)

where R is the separation between the two centers, see figure 1258. The third spheroidal

coordinate φ  defines the angle between the plane “abe” and a fixed plane through “a” and

“b”. It should be noted that this coordinate φ  is actually equal to the third Euler angle γ

describing the angle of rotation about the z-axis. Lines of constants ξ ,η( ), ξ ,φ( ) and η,φ( )
are circles (in the xy-plane), ellipses, and hyperbolas respectively.

a b

e

ξ = const.→

ra → ← rb  
r
r →   

r
ez

  
r
ex

↑
R

← η = const.

Figure 12 Spheroidal coordinates

Next we note that for the two center problem of H2
+ , described in the Cartesian body-

fixed frame of reference introduced in the previous section, ra  and rb  respectively reads as

  ra =
r
r +

r
e3R 2 , rb =

r
r −

r
e3R 2 (5.5.2)

The overall transformation from the body-fixed coordinates   
r
r and R to the spheroidal

coordinates ξ ,η and φ  plus the coordinate f (defined as the half nuclear separation) then

reads as

58 To simplify the figure, the point “e” has been drawn for the special case for which φ = 0, corresponding to the
coincidence of the xz plane and the plane “abe”.
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ξ =
r
r +

r
e3R 2 +

r
r −

r
e3R 2[ ] R ,1≤ ξ ≤ ∞

η =
r
r +

r
e3R 2 −

r
r −

r
e3R 2[ ] R ,−1≤ η ≤ 1

φ = tan−1 y
x







,0 ≤ φ ≤ 2π

f = R 2 ,0 ≤ f ≤ ∞

(5.5.3)

where we have also listed the domain of definition for the new coordinates. The reverse

relations for the connection between ξ ,η,φ and f  and the Cartesian coordinate scheme x, y, z

and R is

x = f ξ 2 −1( ) 1− η2( ) cosφ

y = f ξ 2 −1( ) 1− η2( ) sinφ

z = fξη

R = 2f

(5.5.4)

An additional set of useful relations when working in the spheroidal coordinates are

  ra =
r
r +

r
e3R 2 = f ξ + η( ), rb =

r
r −

r
e3 R 2 = f ξ − η( ) (5.5.5)

In order to express the A-term of the J-functional, Eq. (5.4.22), in terms of the new

coordinates defined above we will have to go through some derivations much like the ones

discussed in the previous section for the body-fixed coordinates. Again these derivations

might seem long and tiresome to the reader, but as I have not yet seen them detailed in the

literature and since the results obtained through the effort, forms the heart of this thesis, I find

it appropriate to at least to some detail present them here. We use the chain-rule on Eq.(5.5.4)

to find the variations of x, y, z  and R in terms of ξ , η, φ and f .

δx = δξ
∂x

∂ξ
+ δη

∂x

∂η
+ δφ

∂x

∂φ
+ δf

∂x

∂f

= ξf
1− η2

ξ 2 −1
cosφδξ − fη

ξ 2 −1

1− η2
cosφδη − ξ 2 −1( ) 1− η2( ) f sinφδφ − cosφδf( )

=
xξ

ξ 2 −1
δξ −

xη
1− η2

δη − yδφ +
x

f
δf

δy =
yξ

ξ 2 −1
δξ −

yη
1− η2

δη + xδφ +
y

f
δf

δz = fηδξ + fξδη + ξηδf

δR = 2δf

(5.5.6)
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Writing this in terms of a matrix equation give us the inverse Jacobi-matrix J
−1

 (see appendix

E) for the transformation from the body-fixed Cartesian coordinates to the new coordinates.

δx

δy

δz

δR



















≡ J
−1

⋅

δξ

δη

δφ

δf



















=

xζ
ξ 2 −1

−
xη

1− η2
−y

x

f
yξ

ξ 2 −1
−

yη
1− η2

x
y

f
fη fξ 0 ξη

0 0 0 2























⋅

δξ

δη

δφ

δf



















(5.5.7)

As outlined in appendix E, Eq. (E.2), the change of volume associated with this change of

coordinates is now given by |det J
−1

|= 2f 3(ξ 2 − η2 ), and so all in all we have the following

transformation of the volume element entering Eq. (5.4.22)

  
R2dRd

r
r = 4f 2dRdxdydz = 4f 2 det J

−1
dξdηdφdf = 8f 5 ξ 2 − η2( )dξdηdφdf (5.5.8)

In order to express the kinetic energy densities, in Eq. (5.4.22), in the new coordinates we

need to know the variations of ξ ,η,φ and f  in terms of infinitesimal variations of x, y, z  and

R. In other words we have to determine59 the Jacobi matrix explicitly. The inverse of the

matrix-equation Eq. (5.5.7) reads as

δξ

δη

δφ

δf



















=

xξ
f 2 ξ 2 − η2( )

yξ
f 2 ξ 2 − η2( )

η ξ 2 −1( )
f ξ 2 − η2( )

−
ξ ξ 2 −1( )

2f ξ 2 − η2( )
−

xη
f 2 ξ 2 − η2( )

−
yη

f 2 ξ 2 − η2( )
ξ 1− η2( )
f ξ 2 − η2( )

−
η 1− η2( )

2f ξ 2 − η2( )
−

y
f 2 ξ 2 −1( ) 1− η2( )

x
f 2 ξ 2 −1( ) 1− η2( )

0 0

0 0 0
1
2































⋅

δx

δy

δz

δR



















(5.5.9)

The chain-rule in combination with Eq. (5.5.9) now gives

59 The matrix inversion is most easily done using a mathematical algebra program like “Mathematica” from Wolfram
Research, Inc.
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δΨ =
∂Ψ
∂ξ

δξ +
∂Ψ
∂η

δη +
∂Ψ
∂φ

δφ +
∂Ψ
∂f

δf

=
1

f 2 ξ 2 − η2( )
xξ

∂Ψ
∂ξ

− xη
∂Ψ
∂η

−
y ξ 2 − η2( )

ξ 2 −1( ) 1− η2( )
∂Ψ
∂φ









δx







+ yξ
∂Ψ
∂ξ

− yη
∂Ψ
∂η

+
x ξ 2 − η2( )

ξ 2 −1( ) 1− η2( )
∂Ψ
∂φ









δy

+f η ξ 2 −1( ) ∂Ψ
∂ξ

+ ξ 1− η2( ) ∂Ψ
∂η









δz

−
f

2
η ξ 2 −1( ) ∂Ψ

∂ξ
+ ξ 1− η2( ) ∂Ψ

∂η
− f ξ 2 − η2( ) ∂Ψ

∂f









δR





=
∂Ψ
∂x

δx +
∂Ψ
∂y

δy +
∂Ψ
∂z

δz +
∂Ψ
∂R

δR

(5.5.10)

such that

∂Ψ
∂R

2

=
1

4f 2 ξ 2 − η2( )2 ξ 2 −1( ) f
∂Ψ
∂f

− ξ
∂Ψ
∂ξ









 + 1− η2( ) f

∂Ψ
∂f

− η
∂Ψ
∂η











2

(5.5.11)

Next we derive   |
r
∇rΨ|2  in terms of the new coordinates ξ ,η,φ and f . The straight-forward

way would be to use

  

r
∇rΨ

2
=

∂Ψ
∂x

2

+
∂Ψ
∂y

2

+
∂Ψ
∂z

2

(5.5.12)

in combination with Eq. (5.5.10), but we will use a somewhat more cleaver approach. In a,

strictly speaking incorrect, but nevertheless useful mathematical notation, we can write

  

r
∇rΨ =

r
∇rξ

∂Ψ
∂ξ

+
r
∇rη

∂Ψ
∂η

+
r
∇rφ

∂Ψ
∂φ

=
∂Ψ
∂
r
r

=
∂ξ
∂
r
r
∂Ψ
∂ξ

+
∂η
∂
r
r
∂Ψ
∂η

+
∂φ
∂
r
r
∂Ψ
∂φ

(5.5.12)

and a “plain differentiation” of the relations in Eq. (5.5.3), then leads to the following

expressions for the gradient of the spheroidal coordinates with respect to   
r
r

  

r
∇rξ =

1
R

r
r +

r
ez R 2

r
r +

r
ez R 2

+
r
r −

r
ez R 2

r
r −

r
ez R 2











r
∇rη =

1
R

r
r +

r
ez R 2

r
r +

r
ez R 2

−
r
r −

r
ez R 2

r
r −

r
ez R 2











r
∇rφ =

r
ey x −

r
exy x2

1 + y x( )2 =
x
r
ey − y

r
ex

x2 + y2
=

r
ez ×

r
r

r
ez ×

r
r

2

(5.5.13)
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From these expressions it is easy to show the orthogonality relations

  
r
∇rξ ⋅

r
∇rη =

r
∇rξ ⋅

r
∇rϕ =

r
∇rη ⋅

r
∇rφ = 0 (5.5.14)

It is then evident that when taking the norm square of Eq. (5.5.12), to give   |
r
∇rΨ|2 , we do not

get any cross-terms - that is

  

r
∇rΨ

2
=

r
∇rξ

2 ∂Ψ
∂ξ

2

+
r
∇rη

2 ∂Ψ
∂η

2

+
r
∇rφ

2 ∂Ψ
∂φ

2

(5.5.15)

The above three norm squares of the gradients with respect to   
r
r  are now obtained as the sum

of the square of the first three elements in the corresponding first three rows of the Jacobi

matrix J , in Eq. (5.5.9) - recalling that for instance   
r
∇rξ ≡ ∂ξ

∂x , ∂ξ
∂y , ∂ξ

∂z[ ] = J11, J12 , J13[ ]. We then

write

  

r
∇rΨ

2
=

1

f 4 ξ 2 − η2( )2 x2ξ 2 + y2ξ 2 + f 2η2 ξ 2 −1( )2{ } ∂Ψ
∂ξ

2

+
1

f 4 ξ 2 − η2( )2 x2ξ 2 + y2ξ 2 + f 2ξ 2 1− η2( )2{ } ∂Ψ
∂η

2

+
y2 + x2

f 4 ξ 2 −1( )2
1− η2( )2

∂Ψ
∂φ

2

=
ξ 2 −1

f 2 ξ 2 − η2( )
∂Ψ
∂ζ

2

+
1− η2

f 2 ξ 2 − η2( )
∂Ψ
∂η

2

+
1

f 2 ξ 2 −1( ) 1− η2( )
∂Ψ
∂φ

2

=
1

f 2 ξ 2 − η2( )
ξ 2 −1( ) ∂Ψ

∂ξ

2

+ 1− η2( ) ∂Ψ
∂η

2

+
1

ξ 2 −1
+

1

1− η2










∂Ψ
∂φ

2











(5.5.16)

where we have used Eq. (5.5.4) in the intermediate step.

To express the body-fixed angular-momentum operators Lz ,L+ and L−  in terms of the

spheroidal coordinates, we use Eq. (5.5.4) and Eq. (5.5.10), and obtain

  

Lz ≡ −ih x
∂
∂y

− y
∂
∂x









 = −

ih

f 2 ξ 2 − η2( )
x2 + y2( ) ξ 2 − η2( )
ξ 2 −1( ) 1− η2( )

∂
∂φ

= −ih
∂
∂φ

(5.5.17)

and60

60 In the last step of Eq. (5.5.18) we have used the relations

  
ix m y( ) = i x ± iy( ) = ±i iy ± x( ) and iy ± x( ) = ± x ± iy( ) = ±f ζ 2 −1( ) 1− η 2( ) exp ±iϕ( )
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L± ≡ Lx ± iLy = −ih y
∂
∂z

− z
∂
∂y









 ± i −i( )h z

∂
∂x

− x
∂
∂z







 = zh i

∂
∂y

±
∂
∂x









 − h

∂
∂z

iy ± x( )

=
h iy ± x( )

f 2 ζ 2 − η2( )
zξ − fη ξ 2 −1( )( ) ∂

∂ξ
− zη − fξ 1− η2( )( ) ∂

∂η
±

iz ξ 2 − η2( )
ξ 2 −1( ) 1− η2( )

∂
∂φ













=
hz iy ± x( )

f 2 ξ 2 − η2( )
1

ξ
∂
∂ξ

−
1

η
∂
∂η

±
i ξ 2 − η2( )

ζ 2 −1( ) 1− η2( )
∂
∂φ













=
hexp ±iφ( ) ξ 2 −1( ) 1− η2( )

ξ 2 − η2
±η

∂
∂ξ

m ξ
∂
∂η

+
iξη ξ 2 − η2( )
ξ 2 −1( ) 1− η2( )

∂
∂φ













(5.5.18)

To complete the derivation of the A-term of the J-functional in terms of spheroidal

coordinates we need to define the potential term W. As the potential for the isolated H2
+

system is just a three-particle electrostatic coulomb potential we have

  

W =
e2

4πε0

1
r
ra −

r
rb

−
1

r
re −

r
ra

−
1

r
re −

r
rb











=
e2

4πε0

1
r
′R
−

1
r
′r +

r
′R 2

−
1

r
′r −

r
′R 2











=
e2

4πε0

1
r
R

−
1

r
r +

r
e3R 2

−
1

r
r −

r
e3R 2











=
e2

4πε0

1

2f
−

1

f ξ + η( )
−

1

f ξ − η( )








 =

e2

8πε0f
1−

4ξ

ξ2 − η2











(5.5.19)

where we have used the fact that the transformation from the space-fixed frame to the body-

fixed frame is unitary (i.e. norm conserving) in the second step, and used Eq. (5.5.5) in the

last step. Now finally substituting Eq. (5.5.8), Eq. (5.5.11) and Eq. (5.5.16-19) into Eq.

(5.4.22) we conclude

A Ψ( ) = df8f 5 dξ dη dφ dα dβ sinβ Aelec Ψ( ) + Aradi Ψ( ) + Aang Ψ( ) + ′Aang Ψ( ){ }
0

π

∫
0

2π

∫
0

2π

∫
−1

1

∫
1

∞

∫
0

∞

∫ (5.5.20)

where we have defined four terms; the electronic term

  

Aelec Ψ( ) = E −
e2

8πε0f
1−

4ξ
ξ 2 − η2



















 ξ

2 − η2( )Ψ 2

−
h2

2µef
2

ξ 2 −1( ) ∂Ψ
∂ξ

2

+ 1− η2( ) ∂Ψ
∂η

2

+
1

ξ 2 −1
+

1
1− η2










∂Ψ
∂φ

2











(5.5.21)

the nuclear kinetic or radial term



Chapter 5                                                                                                                75

  
Aradi Ψ( ) = −

h2

8µf 2 ξ 2 − η2( )
ξ 2 −1( ) f

∂Ψ
∂f

− ξ
∂Ψ
∂ξ









 + 1− η2( ) f

∂Ψ
∂f

− η
∂Ψ
∂η









2

(5.5.22)

and finally two terms

  

Aang Ψ( ) = −
h2

16µf 2 ξ2 − η2( )
i

sinβ

∂Ψ

∂α
+
∂Ψ

∂β
− i cotβ

∂Ψ

∂φ

−exp iφ( )
ξ2 −1( ) 1− η2( )
ξ2 − η2

η
∂Ψ

∂ξ
− ξ

∂Ψ

∂η
+

iξη ξ2 − η2( )
ξ2 −1( ) 1− η2( )

∂Ψ

∂φ











2 (5.5.23)

and

  

′Aang Ψ( ) = −
h2

16µf 2 ξ2 − η2( )
i

sinβ

∂Ψ

∂α
−
∂Ψ

∂β
− i cotβ

∂Ψ

∂φ

−exp −iφ( )
ξ2 −1( ) 1− η2( )
ξ2 − η2

−η
∂Ψ

∂ξ
+ ξ

∂Ψ

∂η
+

iξη ξ2 − η2( )
ξ2 −1( ) 1− η2( )

∂Ψ

∂φ











2 (5.5.24)

that we will refer to as angular momentum coupling terms. The physical significance, and

hence the naming of these terms, will be discussed in more details in the next section. We end

this section by stressing the fact that no approximations have been made in the derivations of

the above expressions.

5.6 Separation of rotational coordinates

In this section we will derive the final expression for the rotational invariant A-term of

the J-functional, to be used in the numerical implementation of the variational R-matrix

formulation of the hydrogen proton scattering. As a prelude to this separation of rotational

coordinates we first need an expression for the scattering wave function in terms of rotational

invariant coordinates. The methodology for such a discussion was developed in chapter 4.

To repeat, the separation of translational coordinates was obtained through the

transformation from the laboratory-fixed to space-fixed coordinates, followed by the

elimination of the center-of-mass coordinate. To be more precise we write, using Eq. (4.2.10),

  
Ψ r

k

r
ra ,

r
rb ,

r
re( ) = exp −i

r
k ⋅

r
′RG h( )Ψ r

0

r
′r ,

r
′R( ) (5.6.1)

We then put   
r
′RG =

r
0 , and ignore the linear momentum label, leaving us with a translationally

invariant scattering problem. Next we note that an arbitrary solution to the scattering problem

can be expressed as a sum over wave functions with sharp angular momentum - that is
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Ψ

r
′r ,

r
′R( ) = Ψm

J r
′r ,

r
′R( )

m=− J

J

∑
J=0

∞

∑ (5.6.2)

To go from the space-fixed to the body-fixed coordinates we use Eq. (4.3.22)

  

Ψ
r
′r ,

r
′R( ) = Dm ′m

J∗
α ,β ,0( )

′m =− J

J

∑ Ψ ′m
J r

r,R( )
m=− J

J

∑
J=0

∞

∑

= Dm ′m
J∗

α ,β ,0( )
′m =− J

J

∑ Φ ′m
J ξ ,η,φ , f( )

m=− J

J

∑
J=0

∞

∑
(5.6.3)

where we have introduced the spheroidal coordinates and f in the last step. Since

Φ ′m
J (ξ ,η,φ , f ), by definition, is an eigenfunction of the z-component of the body-fixed

angular momentum operator, Eq. (5.5.17), we can factor out the dependence on the φ

coordinate.

Φ ′m
J (ξ ,η,φ , f ) = exp(i ′m φ )Φ ′m

J (ξ ,η, f ) (5.6.4)

Now using the complex conjugated of Eq. (4.3.11) - that is

Dm ′m
J∗

α ,β ,φ( ) = exp imα( )dm ′m
J∗ β( )exp i ′m φ( ) (5.6.5)

it should be evident that we can absorb the dependence on the φ  coordinate into the rotation

matrices, such that Eq. (5.6.3) becomes

  
Ψ

r
′r ,

r
′R( ) = Dm ′m

J∗
α ,β ,φ( )

′m =− J

J

∑ Φ ′m
J ξ ,η, f( )

m=− J

J

∑
J=0

∞

∑ (5.6.6)

This is exactly the desired expression in which the scattering wave function is expressed in

terms of the rotational (and translational) invariant coordinates ξ ,η and f . The next step is

then to insert this expression for the wave function into the A-term of the J-functional,

derived in the previous section, and integrate out the rotational coordinates α ,β and φ .

Before we can do this we need to know the action of the differential operators, depending on

the rotational coordinates, on the complex conjugated of the rotation matrices. From the

definition, Eq. (5.6.5), we can show, see Biedenharn and Louck [54] p. 64, the following

eigenvalue equations

  

P± Dm ′m
J∗

α ,β ,φ( ) = exp ±iφ( ) J m ′m( ) J ± ′m + 1( )Dm ′m ±1
J∗

α ,β ,φ( )

Pz Dm ′m
J∗

α ,β ,φ( ) = ′m Dm ′m
J∗

α ,β ,φ( )
(5.6.7)

where we have defined the differential operators61

61 As mentioned before in chapter 4 section 3, it is easy to show that the functions Dm ′m

J∗

(α ,β ,φ ) are wave functions for
a rotating symmetric top (a solid body with center-of-mass fixed in space) with a total angular momentum of J, a z-
component of the angular momentum referred to space-fixed axis of m , and a z-component of the angular
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P± ≡
ih

sinβ
∂
∂α

m h
∂
∂β

− ihcotβ
∂
∂φ

Pz ≡ −ih
∂
∂φ

(5.6.8)

entering the A-terms of the J-functional. Now substituting Eq. (5.6.6) and Eq. (5.6.8) into Eq.

(5.5.20-24), inserting Eq. (5.6.7), and finally integrating over the rotational coordinates, using

the orthogonality relation Eq. (4.3.24) for the rotation matrices, we conclude62

A Ψ( ) = 8π 2 df8f 5 dξ dη Aelec Φm
J( ) + Aradi Φm

J( ) + Aang Φm
J( ) + ′Aang Φm

J( ){ }
−1

1

∫
1

∞

∫
0

∞

∫
m=− J

J

∑
J=0

∞

∑ (5.6.9)

where we have defined four terms; the electronic term

  

Aelec Φm
J( ) = E −

e2

8πε0f
1−

4ξ
ξ 2 − η2



















 ξ

2 − η2( )Φm
J 2

−
h2

2µef
2

ξ 2 −1( ) ∂Φm
J

∂ξ

2

+ 1− η2( ) ∂Φm
J

∂η

2

+
m2

ξ 2 −1
+

m2

1− η2









 Φm

J 2











(5.6.10)

the nuclear kinetic or radial term

  
Aradi Φm

J( ) = −
h2

8µf 2 ξ 2 − η2( )
ξ 2 −1( ) f

∂Φm
J

∂f
− ξ

∂Φm
J

∂ξ








 + 1− η2( ) f

∂Φm
J

∂f
− η

∂Φm
J

∂η








2

(5.6.11)

and finally two terms

  

Aang Φm
J( ) = −

h2

16µf 2 ξ2 − η2( )
J − m( ) J + m + 1( )Φm+1

J

−
ξ2 −1( ) 1− η2( )
ξ2 − η2

η
∂Φm

J

∂ξ
− ξ

∂Φm
J

∂η
−

mξη ξ2 − η2( )
ξ2 −1( ) 1− η2( )

Φm
J











2 (5.6.12)

momentum referred to body-fixed axis of ′m . The operators defined in Eq. (5.6.8) are exactly respectively the z-
component, the step-up and step-down angular momentum operators referred to the body-fixed axis for a symmetric
top.

62 Note that the integration over the rotational coordinates α ,β ,φ( )  introduces (see Eq. (4.3.24)) a trivial sum over the
index m going from -J to J, but as the functions Φ ′m

J ξ ,η, f( )   (see Eq. 5.6.6)) are independent of this index the
summation simply reduces to the factor 2J +1 which is turn is canceled out by the inverse factor in Eq. 4.3.24.
Finally for convenience we have substituted the lables ′m → m .
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and

  

′Aang Φm
J( ) = −

h2

16µf 2 ξ2 − η2( )
J + m( ) J − m + 1( )Φm−1

J

−
ξ2 −1( ) 1− η2( )
ξ2 − η2

−η
∂Φm

J

∂ξ
+ ξ

∂Φm
J

∂η
−

mξη ξ2 − η2( )
ξ2 −1( ) 1− η2( )

Φm
J











2 (5.6.13)

that we will refer to as angular momentum coupling terms. The electronic A-term came from

  |
r
∇rΨ|2 , Eq. (5.5.16), and is therefore clearly a pure electronic term. The nuclear kinetic or

radial term includes derivatives with respect to both the two electronic coordinates ξ and η

and the nuclear coordinate f, and therefore describes the radial non-adiabatic coupling of the

nuclear and electronic motion. The last two terms couples wave functions with difference of

unity in the m  quantum number, and hence we refer to them as the angular non-adiabatic

coupling terms or just the angular momentum coupling terms.

5.7 The clamped nucleus problem of the hydrogen molecular ion

The Born-Oppenheimer solutions and electronic structures of H2
+  have been studied by

a large number of theorists; thus, Burrau [12] in 1927, Hylleraas [13] in 1931, Jaffé [14] in

1934, Sandman [15] in 1935 and many others have performed Born-Oppenheimer

approximate calculations on both the ground state and some of the excited states. In other

words, the solutions to the Born-Oppenheimer treatment of the hydrogen molecular ion have

roughly speaking been known to theorists since the introduction of quantum mechanics, and

nowadays the results are included in nearly every textbook on introductory quantum

chemistry. Nevertheless we are also going to study this approximate approach, for two

reasons. First, since the Born-Oppenheimer approximation is well-known to be a “good

approximation”, we would definitely expect the electronic term of the J-functional, Eq.

(5.5.21), to be the leading term, when we later on include the other terms to study the full

three-body problem. Consequently the electronic term makes up the zero order term of the J-

functional, and therefore it is of great importance that we design our numerical scheme, to be

used on the full H2
+  problem, in such a way that we obtain a good estimate of the electronic

term. Secondly, since the Born-Oppenheimer solutions for H2
+ , are well-documented, in terms

of tables of potential-energies, this also gives us the possibility to test and optimize the

numerical scheme; a thing that would not have been possible to the same extent if we had

moved on to the full three-body problem right away.

In the Born-Oppenheimer approximation, to repeat, we fix the nuclear separation R and

solve the electronic problem using the variational method discussed previously - just now we
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exclude the surface term (the R-matrix) since this is of course not a scattering situation63. For

the hydrogen atom, by virtue of spherical symmetry of the system, the operators L2 and Lz

both commute with the Hamiltonian, and hence, see chapter 4 section 1, we can characterize

the wave function according to the values of (J, m). For H2
+  on the other hand we do not have

spherical symmetry, and we would find that [L2 ,Helec ] ≠ 0. In other words the total electronic

orbital angular momentum is not a constant for H2
+ , and the wave functions can not be

characterized by a sharp J. However, we do have axial symmetry, recalling that the two-body

system of the protons belong to the point group D∞h . In the discussion on rotations in chapter

4 section 3, we “showed” that the generator of rotations about the z-axis is the z-component

of the total orbital angular momentum, and hence we conclude that for H2
+  we have

[Lz ,Helec ] = 0 . Therefore the electronic wave function can be chosen to be an eigenfunction

to Lz . In the spheroidal coordinates we derived an expression for Lz  in Eq. (5.5.17), and the

normalized eigenfunctions of Lz  then read as (2π)−
1

2 exp(imφ ) where m = 0,±1,±2,±3,...,  .

As stated earlier, and to be verified soon, the electronic problem is separable in the spheroidal

coordinates, and therefore we assume that we can write any electronic wave function

Ψm (ξ ,η,φ ) , with sharp64 m quantum number, as the following product function

Ψm (ξ ,η,φ ) = 2π( )
−1

2 exp imφ( )Φm ξ ,η( ) (5.7.1)

where

Φm ξ ,η( ) = ϕΩ
m η( )ψΩ

m ξ( )
Ω=1

Mη

∑ (5.7.2)

The number of (still undefined) product functions, ϕΩ
m (η)ψΩ

m (ξ ), included in the above

expansion of Φm (ξ ,η) , is denoted by Mη . In principle the expansion is not strictly exact if

this number is finite, but knowing that the numerical scheme presented here, is to be

implemented on a computer, with a limited core memory, we write the upper limit of the

summation as a finite number, and just bear in mind that this number should be “large” to

ensure convergence. At other places in this chapter we shall use the same notation for an, in

principle, infinite sum of terms. Inserting Eq. (5.7.1) into the electronic A-term, Eq. (5.5.21),

and integrating over φ  (ignoring the Euler angles α and β  since the nuclear are fixed) we

obtain the following variational functional for the electronic problem

63 We are seeking electronic bound states for the H2
+  system (i.e. Ψ elec ∈L2 (Velec ) ), and hence if we choose the volume

of the configuration space in Eq. (2.2.1) to be very large (in principle infinitely large), the wave function will have no
amplitude on the surface enclosing Velec . Consequently Φ elec = 0 in Eq. (2.2.1), and the surface term vanish. The
working equation then reads as Eq. (2.2.27) except that the N’th row and column have vanished.

64 An arbitrary Ψ(ξ ,η,φ )  would then be expressed as a linear combination of these functions.
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′Jelec Φm( ) = dξ dη E −
e2

8πε0f









 ξ 2 − η2( ) +

e2ξ
2πε0f
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∫
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2µef
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1− η2
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 Φm

2








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
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



=
h2

2µef
2

dξ dη
2µef

2

h2
E −

e2

8πε0f









 ξ 2 − η2( ) +

e2ξ
2πε0f









Φm

2



−1

1

∫
1

∞

∫

− ξ 2 −1( ) ∂Φm

∂ξ

2

− 1− η2( ) ∂Φm

∂η

2

−
m2

ξ 2 −1
+

m2

1− η2









 Φm

2





(5.7.3)

As the nuclear are fixed in this treatment the first factor in Eq. (5.7.3) is just a constant, and

we are free65 to define a new variational functional without this factor giving the exact same

physical solutions.

Jelec Φm( ) = dξ dη λξ − κ ξ 2 − η2( ) − m2

ξ 2 −1









Φm

2

−1

1

∫
1

∞

∫

− ξ 2 −1( ) ∂Φm

∂ξ

2

− 1− η2( ) ∂Φm

∂η

2

−
m2

1− η2
Φm

2





(5.7.4)

where we have defined the parameters

  

κ ≡ −
2µef

2

h2
E −

e2

8πε0f











λ ≡
µee

2f
h2πε0

(5.7.5)

so that, in favor of these parameters, the J-functional does not depend explicitly on the energy

and the nuclear separation any more. Presently we are interested only in the bound states (i.e.

E < 0) of the investigated system, and hence we choose κ > 0. Note also that the m quantum

number only enters the variational functional in the form m2 . This implies that the energies

of the states are independent of the sign of m, so that states with a given m quantum number

are at least doubly degenerate. Without loss of generality we can therefore choose m to be a

positive integer or zero.

We now proceed with a finite basis expansion of ϕΩ
m (η) in normalized associated

Legendre polynomials66,   Pl
m (η) . The use of associated Legendre polynomials in the

65 A constant factor does of course not effect the solutions obtained upon variation of a functional.
66 The explicit expression for the normalized associated Legendre polynomials of order m and degree   l  reads as

  

Pl
m η( ) ≡ 2l +1( ) l − m( )!

2 l + m( )!
Pl

m η( ), 0 ≤ m ≤ l

where the associated Legendre polynomials themselves are defined as



Chapter 5                                                                                                                81

expansion of ϕΩ
m (η) is an approach followed in most studies of the electronic H2

+  system, for

obvious reasons as we shall soon see. Furthermore since these functions are orthogonal

polynomials they also define an underlying DVR grid as discussed in chapter 3 section 3.

Hence this choice of primitive basis functions ensures that we can define a DVR scheme in

the η  coordinate to be used in the evaluation of the higher order terms of the J-functional. In

order to adapt the DVR scheme discussed in chapter 3 section 3 directly, we will use

normalized associated Legendre polynomials. We write

  
ϕΩ

m η( ) = ClΩPm+l−1
m η( )

l=1

Nη

∑ (5.7.6)

where

  
dη Pl

m η( )P ′l
m η( ){ }

−1

1

∫ = δl ′l , 0 ≤ m ≤ l, ′l (5.7.7)

When inserting the expansion, Eq. (5.7.6), into Eq. (5.7.2) and substituting the result into the

functional, Eq. (5.7.4), it is clear that the two last terms in Eq. (5.7.4) introduce integrals over

η  of the type

  

Il ′l ≡ dη 1− η2( ) ∂Pl
m η( )
∂η

∂P ′l
m η( )
∂η


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
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

+
−1

1

∫ dη
m2

1− η2
Pl

m η( )P ′l
m η( )
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

−1

1

∫
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m η( ) 1− η2( ) ∂P ′l
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∂η
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

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1

− dη Pl
m η( ) 1− η2( ) ∂

2P ′l
m η( )

∂η2
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∂P ′l
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∂η

















−1

1

∫

+ dη
m2

1− η2
Pl

m η( )P ′l
m η( )






−1

1

∫

= dη Pl
m η( ) m2

1− η2
P ′l

m η( ) − 1− η2( ) ∂
2P ′l

m η( )
∂η2

+ 2η
∂P ′l

m η( )
∂η

















−1

1

∫

(5.7.8)

where we have made a simple integration by parts. It is at this very point that we can “justify”

for the particular choice of basis functions, Eq. (5.7.6), in the η -coordinate; associated

Legendre polynomials satisfy the characteristic second order differential equation [52]

  
Pl

m η( ) ≡ 1

2 l l!
1− η 2( )m 2 d

dη











m+l

η 2 −1( )l[ ], 0 ≤ m ≤ l

and satisfy the orthogonality relation

  

dη Pl
m η( )P ′l

m η( ){ }
−1

1

∫ =
2 l + m( )!

2l +1( ) l − m( )!
δ l ′l
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1− η2( ) ∂

2Pl
m η( )

∂η2
− 2η

∂Pl
m η( )
∂η

+ l l + 1( ) −
m2

1− η2









Pl

m η( ) = 0 (5.7.9)

which does of course also hold for the normalized associated Legendre polynomials, such that

  

m2

1− η2
Pl

m η( ) − 1− η2( ) ∂
2Pl

m η( )
∂η2

+ 2η
∂Pl

m η( )
∂η

= l l + 1( )Pl
m η( ) (5.7.10)

Inserting this into Eq. (5.7.8) then gives the simple result

  
Il ′l = l l + 1( ) dη Pl

m η( )P ′l
m η( ){ } =

−1

1

∫ l l + 1( )δl ′l (5.7.11)

The ξ -derivative term in Eq. (5.7.4) is clearly diagonal in the expansion in normalized

associated Legendre polynomials. However this is not the case for the first term of the

variational functional since it involves integrals over η2 . As we will see this gives coupling

in the different degrees,   l , of the normalized associated Legendre polynomials, but again we

can derive an analytical expression for the integral, this time taking point of reference in the

following recurrence relation67 .

  ηPl
m η( ) ≡ Υl

mPl−1
m η( ) + Υl+1

m Pl+1
m η( ) (5.7.12)

where we have defined the factor

  
Υl

m ≡
l + m( ) l − m( )
2l + 1( ) 2l −1( )

(5.7.13)

67 The associated Legendre polynomials satisfy the following recurrence relation [52]

  
ηPl

m η( ) =
l + m

2l +1
Pl−1

m η( ) +
l − m +1

2l +1
Pl+1

m η( )

and multiplying this relation by the normalization factor we obtain a recurrence relation for the normalized associated
Legendre polynomials

  

ηPl
m η( ) =

l + m

2l +1

2l +1( ) l − m( )!
2 l + m( )!

Pl−1
m η( ) +

l − m +1

2l +1

2l +1( ) l − m( )!
2 l + m( )!

Pl+1
m η( )

=
l + m( ) l − m( )
2l +1( ) 2l −1( )

2l −1( ) l −1− m( )!
2 l −1+ m( )!

Pl−1
m η( ) +

l + m +1( ) l +1− m( )
2l + 3( ) 2l +1( )

2l + 3( ) l +1− m( )!
2 l +1+ m( )!

Pl+1
m η( )

=
l + m( ) l − m( )
2l +1( ) 2l −1( )

Pl−1
m η( ) +

l + m +1( ) l +1− m( )
2l + 3( ) 2l +1( )

Pl+1
m η( ) ≡ Υl

m Pl−1
m η( ) + Υl+1

m Pl+1
m η( )
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The η2 -integral then reads as

  

dη Pl
m η( )ηηP ′l

m η( ){ }
−1

1

∫ = Υl
mΥ ′l

m dη Pl−1
m η( )P ′l −1

m η( ){ }
−1

1

∫ + Υl
mΥ ′l +1

m dη Pl−1
m η( )P ′l +1

m η( ){ }
−1

1

∫

+Υl+1
m Υ ′l

m dη Pl+1
m η( )P ′l −1

m η( ){ }
−1

1

∫ + Υl+1
m Υ ′l +1

m dη Pl+1
m η( )P ′l +1

m η( ){ }
−1

1

∫

= Υl
m( )2

δl ′l + Υl
mΥl−1

m δl ′l +2 + Υl+1
m Υl+2

m δl ′l −2 + Υl+1
m( )2

δl ′l

(5.7.14)

and we conclude that terms of this type couples the normalized associated Legendre

polynomial of degree   l  to polynomials of degree   l ± 2 . In other words we obtain a very

simple band structure for the matrix representation of the J-functional in the normalized

associated Legendre polynomials, see figure 13.
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Figure 13 Band structure of the S-matrix

We now define the expansion coefficients,   ClΩ , in Eq. (5.7.2), as the elements of the real

unitary Nη × Mη  matrix C  which diagonalizes the Nη × Nη  matrix S (see figure 13 where

Nη = 7) defined as68

  

Sl ′l ≡ κYm+l
m Ym+l+1

m δl ′l −2 + κYm+l−1
m Ym+l−2

m δl ′l +2

+ κ Ym+l−1
m( )2

+ κ Ym+l
m( )2

− m + l −1( ) m + l( )[ ]δl ′l

(5.7.15)

That is

C
T
SC = Λ (5.7.16)

68 To obtain row and column index for the matrix, going from 1 to Nη , we have made the substitutions   l→ m + l −1
and   ′l → m + ′l −1. Consequently for 

  
1≤ l ≤ 2 or Nη −1≤ l ≤ Nη   the corresponding off diagonal terms should not

enter the definition of S .
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In this way we have constructed a set of basis functions, {ϕΩ
m (η), Ω = 1,...,Mη }, in which the

matrix representation of the J-functional is now block diagonal - as opposed to the block

structure illustrated in figure 13. Finally we insert the expansion, Eq. (5.7.2), into the

functional, Eq. (5.7.4), use the definition of the matrix C in Eq. (5.7.15,16) and the fact that

the basis functions, ϕΩ
m (η), are orthonormal69, and obtain the following J-functional

Jelec Φm( ) = dξ λξ − κξ 2 + ΛΩ
m −

m2

ξ 2 −1









 ψΩ

m 2
− ξ 2 −1( ) ∂ψΩ

m

∂ξ

2









1

∞

∫
Ω=1

Mη

∑ (5.7.17)

where we have denoted the elements of the Mη × Mη  diagonal matrix Λ , in Eq (5.7.16), by

ΛΩ
m .

The next step is the expansion of ψΩ
m (ξ ), Eq. (5.7.2), in a suitable set of basis functions,

followed by the integration of the variational functional in the ξ  coordinate. If we were “just”

to solve the electronic problem, a natural choice would be to use the Hylleraas [13] or the

Jaffé [14] expansion70 resulting in simple three-term recursion relations, much like the one

we obtained in the normalized associated Legendre expansion of ϕΩ
m (η). Nevertheless this is

not the type of expansion that we will use. Besides convergence of the electronic term, the

important point that must be taken into consideration in choosing the form of expansion is the

simplicity of the numerical scheme that is to be implemented on the non-adiabatic terms of

the J-functional. In other words a direct application using one of the “standard” expansions

for the electronic term, would result in integrals for the non-adiabatic terms that could not

“easily” be dealt with numerically. When I started out with this project, at the University of

Aarhus, I spent some time implementing a FEM-expansion of ψΩ
m (ξ ) in Hermite type

functions (see Appendix C) known from Spline type interpolation. This was a relatively easy

task, but as I later on was to include the non-adiabatic terms, it soon became clear to me that

this was far from trivial in the FEM formulation. Though I had no reason to believe that it

was practically impossible to carry out such an implementation, I started to look for a

different numerical approach, and for this reason I have moved the description of the

Hermite-type FEM to an appendix (C). Eventually I spent two weeks with Professor Claude

69 The normalized associated Legendre polynomials are orthonormal, Eq. (5.7.7), and since the matrix C , through the
definition Eq. (5.7.16), is real unitary the basis functions ϕΩ

m (η)  are also orthonormal - that is

dη ϕΩ
m η( )ϕ ′Ω

m η( ){ }
−1

1

∫ = δΩ ′Ω , 0 ≤ m ≤ Ω, ′Ω

70 The Jaffé [14] expansion reads as

ψΩ
m ξ( ) = ξ 2 −1( )

m
2 ξ +1( )σ e−pξ Cn

Ω ξ −1

ξ +1











n−1

n=1

∞

∑
where σ = R / (2p)− m −1 and p = − 1

4 R2E . Hylleraas [13] on the other hand uses associated Laguerre polynomials
in the expansion of ψΩ

m (ξ )

ψΩ
m ξ( ) = ξ 2 −1( )

m
2 e

−u
2

Cn
Ω

m + n −1( )!
Lm+n−1

m u( )
n=1

∞

∑
where u = 2p(ξ −1).
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Leforestier [7] studying the discrete variable representation method discussed in chapter 3

section 3. The only problem was now to construct an expansion of ψΩ
m (ξ ) upon which a

DVR quadrature scheme could most conveniently be based. Somewhat inspired by the

original Hylleraas expansion [13] I came up with a formulation, which, in my opinion,

provides a very straightforward and easy numerical scheme.

As the formulation to be described now, is based on an expansion of ψΩ
m (ξ ) in

associated Laguerre polynomials71, Ln
m (x), we shall first have to introduce a new coordinate,

say ζ 72, that has a domain of definition from zero to infinity rather than from 1 to infinity as

is the range for the spheroidal coordinate ξ . We define the following change of coordinate,

ξ → ζ ,

ζ ≡ c ξ −1( ) ⇒
ξ =

ζ
c

+ 1 ⇒
dξ
dζ

=
1
c

c2 ξ 2 −1( ) = ζ ζ + 2c( )









(5.7.18)

where c is a scaling constant. This change of coordinate leads to the functional73

Jelec Φm( ) = dζ λ
ζ
c

+ 1





 − κ

ζ
c

+ 1







2

+ ΛΩ
m −

m2c2

ζ ζ + 2c( )








 ψΩ

m 2
− ζ ζ + 2c( ) ∂ψΩ

m

∂ζ

2









0

∞

∫
Ω=1

Mη

∑ (5.7.19)

We now write ψΩ
m (ζ ) as an expansion

ψΩ
m ζ( ) = Dn∆

Ω φn−1
m ζ( )

n=1

Nζ

∑
∆=1

Mζ

∑ (5.7.20)

in the so-called normalized associated Laguerre functions

φn
m ζ( ) ≡ n!

n + m( )!
e−ζ 2ζ m 2Ln

m ζ( ), m,n ≥ 0 (5.7.21)

that satisfy

71 In this thesis we use the following definition for the associated Laguerre polynomials [52]

Ln
m x( ) ≡ exx−m

n!

dn

dxn
e−xxn+m[ ], n,m ≥ 0

Some authors, for m a positive integer or zero, define the associated Laguerre polynomials by the equation

ƒLn
m x( ) ≡ dm

dxm
ƒLn x( )[ ], where ƒLn x( ) ≡ ex d n

dxn
e−xxn[ ]

such that
ƒLn+m

m x( ) = −1( )m n + m( )!Ln
m x( )

72 Though the reader might confuse the new Greek letter ζ  (zeta) with the old ξ  (xi), the former has been chosen for
this exact same similarity, simply to stress the fact that this change of coordinate is a mere mathematical redefinition
of a variable, and as such has no underlying physical meaning as did characterize the change of coordinates described
up till now.

73 We have ignored the constant scaling parameter c entering the functional from the change of the volume element.



86                                                                                                                Chapter 5

dζ φn
m ζ( )φ ′n

m ζ( ){ }
0

∞

∫ = δn ′n , m,n, ′n ≥ 0 (5.7.22)

When inserting the expansion, Eq. (5.7.20), into Eq. (5.7.19) the last term of the functional

introduces integrals that can be rewritten in terms of a simple integration by parts

In ′n = dζ ζ ζ + 2c( ) ∂φn
m ζ( )
∂ζ
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∞

− dζ 2 ζ + c( ) ∂φ ′n
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∂ζ

+ ζ + 2c( )ζ ∂ 2φ ′n
m ζ( )

∂ 2ζ
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∞

∫
(5.7.23)

where the first term vanishes due to the asymptotic behavior of the associated Laguerre

functions74. The associated Laguerre functions satisfy the following second order differential

equation [52]

ζ
∂ 2φn

m ζ( )
∂ 2ζ

= −
∂φn

m ζ( )
∂ζ

+
m2

4ζ
+
ζ
4
− n −
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2
−

1

2


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




φn

m ζ( ) (5.7.24)

Inserting this relation into Eq. (5.7.23), and collecting terms in ∂φn
m ∂ζ  gives

In ′n = − dζ ζ
∂φ ′n

m ζ( )
∂ζ

+ ζ + 2c( ) m2

4ζ
+
ζ
4
− ′n −

m

2
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2


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
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


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
φn

m ζ( )
0

∞

∫ (5.7.25)

Further for the associated Laguerre functions we have the recursion relation [52]

ζ
∂φn

m ζ( )
∂ζ

=
m

2
+ n −

ζ
2







φn

m ζ( ) − n n + m( )φn−1
m ζ( ) (5.7.26)

and inserting this into the expression for In ′n , Eq. (5.7.25), gives

In ′n = − dζ
m

2
+ ′n −

ζ
2

+ ζ + 2c( ) m2

4ζ
+
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m ζ( ) − ′n ′n + m( )φ ′n −1
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∞

∫ φn
m ζ( ) (5.7.27)

Finally we can rewrite the whole electronic J-functional75

74 The associated Laguerre functions, as opposed to the polynomials themselves, are elements in the Hilbert space.
From the definition Eq. (5.7.21) we deduce the correct asymptotic behavior of the functions

lim
ζ→∞

φ n
m ζ( )[ ] = 0

75 In the rewriting of the J-functional we have used the identity

−
m2c2

ζ ζ + 2c( )
+ ζ + 2c( ) m2

4ζ
=

m2 ζ + 4c( )
4 ζ + 2c( )

and ignored the constant factor, c−1 , entering the volume element of the functional. Note also that in Eq. (5.7.28) the
last term should only be included for 2 ≤ ′n ≤ Nζ .
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Jelec Φm( ) = Dn∆
Ω D ′n ′∆

Ω dζ λ
ζ
c

+ 1





 − κ

ζ
c

+ 1







2

+ ΛΩ
m +

m2 ζ + 4c( )
4 ζ + 2c( )










0

∞

∫
′n =1

Nζ

∑
n=1

Nζ

∑
′∆ =1

Mζ

∑
∆=1

Mζ

∑
Ω=1

Mη

∑

+
m

2
+ ′n −1( ) − ζ

2
+ ζ + 2c( ) ζ

4
− ′n −1( ) − m

2
−

1

2










φ ′n −1

m ζ( )

− ′n −1( ) m + ′n −1( )φ ′n −2
m ζ( )}φn−1

m ζ( )

(5.7.28)

Next we discuss how to obtain numerical values for the integrals entering in the above

variational functional. The associated Laguerre functions satisfy the recurrence relation [52]

ζφn
m ζ( ) = −Bn+1

m φn+1
m ζ( ) + An

mφn
m ζ( ) − Bn

mφn−1
m ζ( ) (5.7.29)

where we have defined the two factors

An
m ≡ 2n + m + 1, Bn

m ≡ n n + m( ) (5.7.30)

so that

dζ φn
m ζ( )ζφ ′n

m ζ( ){ }
0

∞

∫ = −Bn+1
m δn+1 ′n + An

mδn ′n − Bn
mδn−1 ′n (5.7.31)

and

dζ φn
m ζ( )ζ2φ ′n

m ζ( ){ }
0

∞

∫ = Bn
mBn−1

m δn−2 ′n − An
mBn

m + An−1
m Bn

m[ ]δn−1 ′n

+ Bn
m( )2

+ An
m( )2

+ Bn+1
m( )2[ ]δn ′n

− An+1
m Bn+1

m + An
mBn+1

m[ ]δn+1 ′n + Bn+2
m Bn+1

m δn+2 ′n

(5.7.32)

Using the orthonormality of the associated Laguerre functions and the above two relations,

Eq. (5.7.31,32), the integrals in the variational functional, Eq. (5.7.28), can be determined

analytically, except for the one term where ζ  enters the denominator. To evaluate this terms

we will have to use a numerical method, and as suggested before we are going to use the

DVR method. Following the exact procedure outlined in chapter 3 section 3, we write

dx φn
m ζ( ) m2 ζ + 4c( )

4 ζ + 2c( )
φ ′n

m ζ( )






0

∞

∫ ≈ Upn
m Uq ′n

m Xp

m2 ζ + 4c( )
4 ζ + 2c( )

Xq
q =1

Nζ

∑
p=1

Nζ

∑

= Upn
m Up ′n

m
m2 ζp + 4c( )
4 ζp + 2c( )p=1

Nζ

∑
(5.7.33)

where we have used Eq. (3.3.20,21). We now proceed by defining the following two Nζ × Nζ

matrices
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Hn ′n
Ω = dζ ζ 2 1

4
−
κ
c2







+ ζ
c

2
+

1− 2κ
c

−
m

2
− ′n





+ ΛΩ
m − κ +

m

2
+ ′n + c 1− m − 2 ′n( )










0

∞

∫

+
m2 ζ + 4c( )
4 ζ + 2c( )




φ ′n −1

m ζ( ) − ′n −1( ) m + ′n −1( )φ ′n −2
m ζ( )






φn−1

m ζ( )
(5.7.34)

and

Sn ′n = dζ φn−1
m ζ( ) ζ

c
+ 1






φ ′n −1

m ζ( )





0

∞

∫ (5.7.35)

where Eq. (5.7.31-33) are used to obtain the numerical values. Note that the matrix S has a

very simple tridiagonal structure (see Eq. (5.7.31)), as opposed to the matrix H , where

integrals of the type discussed in connection with Eq. (5.7.33) enter. The variational

functional now reads as

Jelec = Dn∆
Ω D ′n ′∆

Ω λSn ′n − Hn ′n
Ω{ }

′n =1

Nζ

∑
n=1

Nζ

∑
′∆ =1

Mζ

∑
∆=1

Mζ

∑
Ω=1

Mη

∑ (5.7.36)

To obtain the desired electronic bound states of the hydrogen molecular ion, we have to look

for the stationary points of the above variational functional. Variation of Eq. (5.7.36) with

respect to the expansion coefficients, ∂Jelec ∂D ′n ′∆
Ω = 0, leads, for each value of Ω , to the

following secular equation

HD = SDΓ (5.7.37)

where D  is an Nζ × Mζ  matrix and where the ∆ ‘th diagonal element of the Mζ × Mζ  matrix

Γ  denotes the λ  value (see Eq. (5.7.5)) for the eigenstate

ψΩ∆
m ζ( ) = Dn∆

Ω φn−1
m ζ( )

n=1

Nζ

∑ (5.7.38)

that is Γ∆
Ω = λ . Eq. (5.7.37) is a so-called generalized eigenvalue equation, where the

eigenvectors (given as the columns of D ) are normalized over the matrix S

D
T
HD = D

T
SDΓ = Γ (5.7.39)
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It should be noted that Eq. (5.7.37) is not an eigenvalue equation of the energy of the system,

such that the resulting states, ψΩ∆
m (ζ ), are not states in the “normal” sense. The following

remark is intended to clarify this situation.

In the scheme outlined above we fixed the parameter κ  and then solved the eigenvalue

equations Eq. (5.7.17) and Eq. (5.7.38) to obtain a set of the two solution matrices C and D

and a spectrum of the parameter λ  (given as the diagonal elements of Γ). Using the

definitions in Eq. (5.7.5) we then obtain a spectrum in f

  
f =

πh2ε0

e2µe

λ (5.7.40)

and in the energy

  
E =

1
2f

e2

4πε0

−
h2

µef
κ









 = 2µe

e2

4πε0h











2
λ − 4κ
λ2

(5.7.41)

To repeat, the basis functions, ψΩ∆
m (ζ ), are not eigenfunctions of the energy E of the system

with a fixed nuclear separation f, but solutions where all the members of the set

{ψΩ∆
m (ζ ), Ω = 1,..,Mη ; ∆ = 1,..Mζ } correspond to the same value of the parameter κ . These

circumstances resembles a situation where the potential in a Schrödinger equation is scaled in

such a way that all the solutions correspond to the same value of the energy. Such a set of

solutions are referred to as a Sturmian basis-set [6, 62]. To emphasize the connection with

these functions, we shall call the bound states obtained from the scheme discussed above

“Sturmian-like functions”. The explicit expression for the eigenstates of the electronic H2
+

system now read as

  

Φm ζ ,η( ) = ClΩDn∆
Ω Pm+l−1

m η( )φn−1
m ζ( )

n=1

Nζ

∑
∆=1

Mζ

∑
l=1

Nη

∑
Ω=1

Mη

∑

= B
ln( ) Ω∆( )Pm+l−1

m η( )φn−1
m ζ( )

ln( )
∑

Ω∆( )
∑

(5.7.42)

where we have defined the (Nη + Nζ ) × (Mη + Mζ ) matrix B. Each columns of this matrix

correspond to an eigenfunction expressed in the primitive basis of the normalized associated

Legendre and Laguerre functions. According to Eq. (5.7.1) the total (real) electronic wave

function is then given as one of these eigenfunctions multiplied by the factor

(2π)−
1

2 cos(mφ ). In figure 14 below the explicit structure and construction of the matrix B is

illustrated. The hatched rectangles in this figure correspond to columns of D   (column vector)

weighted by an element of the matrix C.
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1

Figure 14 Construction of the basis-matrix

Before we move on to discussing the full three-body problem, we will shortly comment

on the symmetry properties and labeling of the electronic states of the hydrogen molecular ion

(corresponding to the columns of B). The two center system of H2
+  that we are considering

processes the following types of geometrical symmetry elements: an infinite-fold rotational

axis C∞  along the z-axis, an infinite number of C2  axis and mirror planes σv  perpendicular to

the z-axis, a point of inversion at the nuclear center and finally a symmetry plane σh  in the

xy-plane. Thus it belongs to the point group D∞h . The reflection symmetry through the xy-

plane leads to the fact that the eigenfunctions have definite η  (or z) parity76, and hence the

eigenfunctions can be classified according to their parity. For even electronic wave functions,

we use the subscript “g” (from the German word “gerade”, meaning even); for odd wave

functions we use “u” (from “ungerade”). As mentioned in the beginning of this section the z-

component of the orbital angular momentum is conserved due to the rotationally symmetry

around the z-axis, and consequently we could define the quantum number m. Following

molecular physics, we then classify the eigenstates according to |±m| by Greek letters:

±m 0 1 2 3 4 ..........

Symbol σ π δ φ γ ..........

76 The inversion of the electronic coordinates (ζ ,η,φ ) through the nuclear center corresponds to the transformations

ζ → ζ , η→ −η, φ → φ + π

From the form, Eq. (5.7.1), of the φ  eigenfunctions we see that the transformation φ → φ + π  introduces a factor
(−1)m  in addition to any sign change from the transformation η→ −η .
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Besides classifying the states of H2
+  according to their η  parity and the magnetic quantum

number |±m|, we also give the eigenstates additional labels according to the usual atomic

quantum numbers “ n, l” in united atom limit (i.e. “H2
+

R→0 → He+ ”), where

l 0 1 2 3 4 ..........

Symbol s p d f g ..........

as is customary in molecular physics, even though n and l  are not good quantum numbers for

R ≠ 0. Following exactly the same procedure of Power [63], it can be shown that the number

of nodes (for Ψm (ξ ,η,φ ) ) in each of the coordinates (ξ , η, φ ) does not change with R, i.e.

nodes are conserved. This conservation law enables us to find the correspondence relation

between the united atom quantum numbers (n, l, m)  and the number of nodes in (ξ , η, φ ),

i.e.77 the function labels Ω, ∆  and m in Eq. (5.7.42). The number of nodes in φ  is simply m,

and in coordinates ζ and η  they are respectively n − l −1 and l − m . We can then write

∆ = n − l, Ω = l − m + 1 (5.7.43)

or

n = Ω + ∆ + m −1, l = Ω + m −1 (5.7.44)

Using these relations and that fact that the parity is also conserved with R, we can construct

the following table

Table 1 Labeling of the electronic states

State 1sσg 2sσg 3sσg 2pσu 3pσu 4pσu 3dσg 4fσu 2pπu 3dπg 4fπg

∆ 1 2 3 1 2 3 1 1 1 1 1

Ω 1 1 1 2 2 2 3 4 1 2 3

n 1 2 3 2 3 4 3 4 2 3 4

l 0 0 0 1 1 1 2 3 1 2 3

m 0 0 0 0 0 0 0 0 1 1 1

77 In the united atom limit ( He+ ) the wave function is simply given by

Ψnlm r,θ ,φ( ) = e−ρ 2ρ lLn+1
2l+1 ρ( )Υl

m θ ,φ( )
where r = ξR 2 (R → 0), ρ = 2r n and η = cos(θ ) . Using this expression it is easy to see that we have n − l −1
nodes in ξ , l − m  nodes in η  and m nodes in φ . Now recalling that the lowest eigenfunction in any of the three
coordinates has zero nodes, the first excited eigenfunction has one node, and so on, we can readily obtain Eq.
(5.7.43). Further Υl

m (θ ,φ )  is even in η = cos(θ ) for l − m  even.
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If for instance m = 0 the columns of the matrix B, in figure 14, correspond to states carrying

the following labels 1sσg , 2sσg , 3sσg , 4sσg ,2pσu , 3pσu , .... , and we note that the columns of

B represent states with changing parity for every Mζ  state.

5.8 The full hydrogen molecular ion problem

We are now going to derive a numerical scheme for the evaluation of the full three

particle variational R-matrix functional determined in section 6 of this chapter. The scheme

will largely be based on the numerical methods and results obtained in chapter 3, section 2

and 3, and especially on the scheme derived in the previous section of this chapter. The

working equation and starting point for this discussion is, to repeat, the translational and

rotational invariant functional Eq. (5.6.10-13). In this functional each term (J, m) is

uncoupled to the others, and in the following we deal with only one term and drop the labels

(J, m). The variational form gives a set of coupled, partial differential equations in the m’th

quantum number, but we proceed with a basis-set approach. Our first “ansatz” is a FEM

expansion of Φm (ξ ,η, f )  in linear elements (see figure 6) in the f coordinate. This approach

was discussed in chapter 3 section 2, and consequently we obtain a numerical formulation

that enables us to directly apply the R-matrix algorithm derived in the end of that section. We

write

Φm ξ ,η, f( ) = Φm
j ξ ,η( )Fj f( )

j=1

Mf

∑ (5.8.1)

where the linear FEM elements, Fj(f ) , are defined in Eq. (3.2.8). The integration over f in the

functional then becomes a sum of discrete integrals over the grid points, { fj, j = 1,..,Mf }. As

noted before, by virtue of the success of the Born-Oppenheimer approximation, the electronic

A-term of the J-functional makes up the zero order term of the complete non-adiabatic

functional. Therefore the numerical scheme to be derived now should at least give good

convergence for this term. Consequently we first restrict our attention to the three particle

electronic term, and then proceed with the addition of non-adiabatic terms hereafter. This

correspond to considering the limit 1 µ → 0 (see Eq. (5.3.5)) in Eq. (5.6.10-13), and we find

that the functional has no derivatives with respect to f. For the integrals to be considered, over

f, we introduce the following notation for the Mf   f-diagonal78 terms

f k

1
≡ df f kF1 f( )F1 f( ){ }

f1

f2

∫ , f k

Mf

≡ df f kFMf
f( )FMf

f( ){ }
fMf

−1

fMf

∫

f k

j
≡ df f kFj f( )Fj f( ){ }

fj−1

fj+1

∫ , j = 2,...,Mf −1

(5.8.2)

78 The terms f-diagonal and f-off-diagonal refer to the tridiagonal block structure (see Eq. (3.2.10)), of matrices written
in a basis of simple linear FEM functions as expressed in Eq. (5.8.1).
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and

f k

j

′ ≡ df f kFj f( )Fj+1 f( ){ }
fj

fj+1

∫ , j = 1,...,Mf −1 (5.8.3)

for the Mf −1 f-off-diagonal terms. The explicit expressions for these integrals are easily

obtained using Eq. (3.2.4). It should be clear from figure 6 that the overlap f k
j
 is larger

than f k
j

©
. Actually, if we choose a very dense grid in f, { fj, j = 1,..,Mf }, the f-diagonal

elements will be close to four time as large as the corresponding f-off-diagonal terms. We

then conclude that the electronic, f-diagonal terms will contribute most to the total variational

functional, and consequently we will construct the numerical scheme in such a way that it is

accurate79 for these terms of the functional. In other words we wish to evaluate the whole

functional in a basis-set of eigenfunctions for the f-diagonal electronic term. This is precisely

a type of preconditioning, that we discussed in end of section 3, chapter 3 (see Eq. (3.3.27-

32), and, to repeat, this yields a compact basis-set for the full problem. As it is only the so-

called angular momentum coupling terms, Eq. (5.6.12-13), that introduces coupling in the m

quantum number, we consider only one term in m (in addition to fixed J label). From Eq.

(5.6.10) it follows that the contribution to the functional which is sesquilinear in Φm
i (ξ ,η)

(i.e. f-diagonal) read as

  

Aelec Φm
j( ) = 8 dξ dη E f 5

j
−

e2

8πε0

f 4

j







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
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−
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f 3
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2
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

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
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
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



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4h2

µe

f 3

i
dξ dη λ jξ − κ j ξ

2 − η2( )[ ]Φm
j 2{

−1

1

∫
1

∞

∫

− ξ2 −1( ) ∂Φm
j
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2

− 1− η2( ) ∂Φm
j
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−
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ξ2 −1
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
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
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(5.8.4)

where we have defined the parameters

  

κ j ≡ −
2µe

h2 f 3

j

E f 5

j
−

e2

8πε0

f 4

j









 , λ j ≡

µee
2

h2πε0

f 4

j

f 3

j

(5.8.5)

by analogy with Eq. (5.7.3-5). Eq. (5.8.4) clearly resemble Eq. (5.7.4), and we proceed with

the change of variable ξ → ζ  and an expansion of Φm
j (ξ ,η)  in a primitive product basis of

normalized associated Legendre polynomials and Laguerre functions. We then follow the

79 Strictly speaking the scheme will of course only be accurate if the primitive basis is chosen large enough.
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exact same procedure as outlined in the previous section, to yield a Sturmian-like basis-set,

{ΨΩ∆
j (ζ ,η)}, given as the columns of the Bj matrix. Expressing Φm

j (ξ ,η)  in terms of this

basis

  
Φm

j ζ ,η( ) = C Ω∆( )
j ΨΩ∆

j ζ ,η( )
Ω∆( )
∑ , ΨΩ∆

j ζ ,η( ) = B
ln( ) Ω∆( )

j Pm+l−1
m η( )φn−1

m ζ( )
ln( )
∑ (5.8.6)

gives a diagonal form of the functional

  
Aadi Φm

j( ) =
4h2

µe

f 3

j
λ j − Γ∆

Ω( )CΩ∆
j 2{ }

Ω∆( )
∑ (5.8.7)

where Γ∆
Ω denotes the diagonal elements of the Mζ × Mζ  matrix Γ  resulting from the

solution of the generalized eigenvalue equation given in Eq. (5.7.37).

To include the f-off-diagonal (see Eq. (3.2.10)) electronic terms we make the

substitution f k
j
→ f k

j

©
 in Eq. (5.8.4,5). As the parameters λ j and κ j  have now

changed values, clearly the corresponding f-off-diagonal A-term of the J-functional will not

take a simple linear form (Eq. (5.8.7)) in the Sturmian-like basis-set obtained from the

diagonalization of the f-diagonal A-terms. Consequently we shall have to determine explicitly

the
 
(Nζ + Nη ) × (Nζ + Nη ) matrices Aj  of the f-off-diagonal electronic terms in the primitive

basis-set   { Pl
m (η), φn

m (ζ )}, and then transform it to the Sturmian-like basis-set to obtain a

(Mζ + Mη ) × (Mζ + Mη )  matrix Aj
′  - that is

Aj
′ = Bj

T
Aj Bj+1 (5.8.8)

The block structure of Aj  is shown in figure 13, where the η -off-diagonal80 terms read as

  
A

ln( ) l+2 ′n( )
j =

4h2

µec
κ j f 3

j

′ Υm+l
m Υm+l+1

m δn ′n (5.8.9)

and the η -diagonal terms81
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m( )2

− m + l −1( ) m + l( ))
+
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
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
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
φn−1
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(5.8.10)

In the evaluation of Eq.(5.8.10) we used Eq. (5.7.30-33) derived in the previous section.

80 The terms η -diagonal and η -off-diagonal refer to the band tridiagonal block structure (see figure 13), of matrices
written in a basis of normalized associated Legendre functions as expressed in Eq. (5.8.1).

81 In the derivation of Eq. (5.8.10) we have used Eq. (5.7.34) and substituted ΛΩ
m  with Eq. (5.7.15).
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The next step is now to include non-adiabatic corrections to the variational functional.

As a first “ansats” we will only include the radial non-adiabatic A-term, Eq. (5.6.11), for

several reasons. First this term can be expected to be dominant over the angular non-adiabatic

terms due the f-derivative term entering the former. Secondly there seems no point in adding

further non-adiabatic corrections to the functional, if it should turn out that the algorithm,

already at this point is numerically unstable. Finally the addition of the angular momentum

coupling terms will complicate the numerical scheme unnecessarily for a first evaluation of

the algorithm, due to the coupling in m entering these terms. This complicating aspects in

connection with the addition of the angular momentum coupling terms will be discussed in

the next chapter. We start with the radial non-adiabatic term, Eq. (5.6.11), and rewrite it to

obtain

  

Aradi Φm( ) = df dη dξ
h2f 3

µ ξ2 − η2( )
ξ2 − η2( )f ∂

∂f
+ ξ − ξ3( ) ∂

∂ξ
+ η3 − η( ) ∂

∂η








Φm

2









1

∞

∫
−1

1

∫
f min

f max

∫ (5.8.11)

where we have specified the domain of definition of f in order to obtain a simple notation for

integrals over this variable82. Next we change variable ξ → ζ  and introduce the operator √α

  

Aradi Φm( ) =
h2

µ
df dη dζ ξ2 ζ( ) − η2( )f 5 ∂

∂f
+

f 3

ξ2 ζ( ) − η2
√α












Φm

2









0

∞

∫
−1

1

∫
f min

f max

∫ (5.8.12)

where

√α ≡ ξ ζ( ) − ξ3 ζ( ) ∂

c∂ζ
+ η3 − η( ) ∂

∂η
(5.8.13)

As with the off-diagonal electronic terms in f, discussed above, the procedure is now to

evaluate Eq. (5.8.12) in the primitive basis  set   { Pl
m (η), φn

m (ζ )}, and then transform it to the

Sturmian-like basis-set using Eq. (5.8.8). As a prelude to this evaluation we deduce the action

of the operator √α  on the primitive basis

  

√α Pl
m η( )φn

m ζ( )[ ] =
ξ ζ( ) − ξ3 ζ( )

c
Pl

m η( ) ∂

∂ζ
φn

m ζ( ) + φn
m ζ( ) η3 − η( ) ∂

∂η
Pl

m η( )

=
ξ ζ( ) − ξ3 ζ( )

cζ
Pl

m η( ) m

2
+ n −

ζ

2






φn

m ζ( ) − n n + m( )φn−1
m ζ( )








+ η lηPl
m η( ) −

l2 − m2( ) 2l + 1( )
2l −1

Pl−1
m η( )












φn

m x( )

(5.8.14)

82 It is assumed that the reader by now is familiar with the nature and definition of the linear FEM basis functions.
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where we have used the recursion relations Eq. (5.7.26) and [52]

  
η2 −1( ) ∂

∂η
Pl

m η( ) = lηPl
m η( ) −

l2 − m2( ) 2l + 1( )
2l −1

Pl−1
m η( ) (5.8.15)

After inserting Eq. (5.8.14) into Eq. (5.8.12) a fairly complicated integral over the two83

variables ζ and η  appears. It is at this very point that the DVR scheme will prove very useful

as we can use a two dimensional DVR scheme as described in chapter 3 section 3. Each

primitive basis function,   φn
m and Pl

m , is expressed in terms of an orthogonal basis-set

ζq{ } and ηp{ }84 through the unitary transformations, (see Eq. (3.3.20))

  

φn−1
m ≈ Θqφn−1

m ζq( ) ζq
q =1

Nζ

∑ ≡ Vqn
m ζq

q =1

Nζ

∑ , n = 1, 2,.... Nζ

Pm+l−1
m ≈ Ωp Pm+l−1

m ηp( ) ηp
p=1

Nη

∑ ≡ Upl
m ηp , l = 1, 2,.... Nη

p=1

Nη

∑
(5.8.16)

where ζq / ηp and Θq / Ωp  are respectively the abscissa and weights for the normalized

associated Legendre polynomials and the normalized associated Laguerre functions. Using

Eq. (3.3.21) we deduce the following very simple relation for a general two dimensional

integral

  
dη dζ Pm+l−1

m η( )φn−1
m ζ( )g ζ,η( )Pm+ ′l −1

m η( )φ ′n −1
m ζ( ){ }

0

∞

∫
−1

1

∫ ≈ Vqn
m Vq ′n

m Upl
m Up ′l

m g ζq ,ηp( ){ }
p=1

Nη

∑
q =1

Nζ

∑ (5.8.17)

Expressed in the primitive product basis   { Fj(f ), Pl
m (η), φn

m (ζ )} the nuclear-kinetic term of

the J-functional then reads as

  

A
ln( ) ′l ′n( )

ij = −
h2

µ
UplUp ′l VqnVq ′n ξ2 ζq( ) − ηp

2[ ] f 5

ij
+ UplVqnαpq

′n ′l f 4

ji{
q =1

Nζ

∑
p=1

Nη

∑

+ Up ′l Vq ′n αpq
nl f 4

ij
+ αpq

nlαpq
′n ′l ξ2 ζq( ) − ηp

2[ ]−1
f 3

ij}
(5.8.18)

where we have defined

83 The integration over the linear FEM basis functions in f is considered trivial.
84 In order not to confuse the abscissa ζ q and ηp  with the DVR functions ζ q and ηp  we have used a Bra-ket

notation.
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αpq
nl =

ξ ζq( ) − ξ3 ζq( )
cζq

m

2
+ n −1−

ζq

2









Vqn − n −1( ) n −1 + m( )Vqn−1









Upl







+ ηp l + m −1( )ηpUpl −
l + m −1( )2 − m2( ) 2l + 2m −1( )

2l + 2m − 3
Upl−1














Vqn









(5.8.19)

and

f 3

ij
= df Fi f( )f 3Fj f( ){ }

fmin

fmax

∫

f 4

ij
= df Fi f( )f 4 ∂Fj f( )

∂f







fmin

fmax

∫

f 5

ij
= df

∂Fi f( )
∂f

f 5 ∂Fj f( )
∂f







fmin

fmax

∫

(5.8.20)

5.9 Representation of the transition dipole moment

As mentioned in the “general motivation” of this project, we wish to give a more

detailed description of the transitions among states of H2
+  in white dwarfs (WD), than have

been presented in the literature up till now [9, 17, 18]. The main improvement from these

previous works on H2
+ , to repeat, will be to work in a complete non-adiabatic picture, where

the H2
+-system is treated as a full three body problem as described in the preceding sections.

A fully consistent treatment of this problem, however, would require that the field as well as

the three particles should be subject to quantum conditions. In other words the Hamiltonian

for the radiation field should be included with those for the particles, leading to a far more

complicated variational problem (J-functional), than the one described in the previous section.

The use of such a J-functional permits interchange of energy between the molecular states of

H2
+  and the field states, implying that the radiation field participates in the dynamical

processes. However, such a non-adiabatic treatment of H2
+  in the framework of quantum

electrodynamics [48] would be very troublesome, and thus approximations must be made.

Instead we will use semiclassical electrodynamics85, where the Hamiltonian has only the

atomic or molecular terms, plus a term for interaction with the radiation. The particles are

subject to quantum conditions, but the radiation field is taken to be classical and prescribed as

a fixed external agent - the so-called “driving field” viewpoint. Solving non-adiabatic

quantum mechanical calculations for many particle systems in this semiclassical picture is

85 If the Hamiltonian for the radiation field is not part of the complete Hamiltonian (as in the semiclassical theory)
spontaneous decay cannot be accounted for. In the Semiclassical Electrodynamics this lead to the introduction of the
Einstein A-coefficient. However in this thesis we choose to ignore such phenomena in which energy is transferred
between molecular system and radiation field.
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difficult enough, and moreover acceptable when the radiation field is so strong that any

influence on it by the matter present is negligibly small. As discussed in the excellent text

book by Craig and Thirunamachandran [48] the inclusion of the interaction term gives the

well-known electric dipole interaction moment plus higher order terms86. Again

approximations will be made. When the radiation wavelength is long compared with the

molecular dimension the variation of the vector potential (using the Coulomb gauge

formulation [48]) can be neglected. Consequently the magnetic field vanishes and the electric

field is uniform over the extent of the molecule, so that there is no magnetic interaction and

the electric dipole moment is the only term entering the interaction operator at this level. This

is the so-called electric dipole approximation which we are going to apply to the study of

transitions among states of H2
+  in WD’s. Thus the starting point for the this study is to derive

a numerical scheme for the electric transition dipole moment for H2
+ , which will be the topic

for this section.

In the previous section we described how to evaluate the Aij  matrices entering the

algorithm presented in the end of section 2 chapter 3. The outcome of this algorithm are the

amplitudes Cj , expressing the total three particle wave function in a Sturmian-like basis-set.

The next step is then to generate the full three particle transition dipole moment from these

amplitudes. To do this we need to derive an explicit expression for the matrix representation

of the translationally and rotationally invariant transition dipole moment operator,   
r
µ , in the

basis of Sturmian-like functions. In the laboratory fixed frame of reference, presented in

section 2 of this chapter, the electric dipole moment operator simply reads as

  
r
µ = e

r
ra +

r
rb −

r
re( ) (5.9.1)

To express   
r
µ  in terms of space fixed coordinates we invert the matrix equation Eq. (5.3.2)

  

r
ra ,

r
rb ,

r
re[ ] =

r
′r ,

r
′R ,

r
′RG[ ]

−
me

M
−

me

M

ma + mb

M
mb

ma + mb

−
ma

ma + mb

0

1 1 1

























=
r
′r ,

r
′R ,

r
′RG[ ]

−
me

M
−

me

M
2

m

M
1

2
−

1

2
0

1 1 1





















(5.9.2)

where we have used ma = mb = m for the H2
+-system. Hence we find

  

r
µ = e −

me

M

r
′r +

1
2

r
′R +

r
′RG







+ −
me

M

r
′r −

1
2

r
′R +

r
′RG






− 2

m
M

r
′r +

r
′RG















= −2
e m + me( )

M

r
′r + e

r
′RG

(5.9.3)

86 When spatial variation of the vector potential is taken account for higher order terms enter the interaction operator
between the matter and the radiation field. If a linear variation of the vector potential is assuming, an electric
quadrupole moment and a magnetic dipole moment enter the interaction operator in addition to the electric dipole
moment.
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Before we go any further let us consider the contribution to the transition dipole moment

from the last term in Eq. (5.9.3). Let 
  
Ψi

r
′r ,

r
′R ,

r
′RG( ) denote the initial state and 

  
Ψf

r
′r ,

r
′R ,

r
′RG( )

the final state. From the general discussion in chapter 4 section 2 and Eq. (4.2.10) we deduce

  
Ψi

r
′r ,

r
′R ,

r
′RG( ) e

r
′RG Ψf

r
′r ,

r
′R ,

r
′RG( ) = e ei

r
ki

r
′RG

r
′RG ei

r
kf

r
′RG Ψi

r
′r ,

r
′R( ) Ψf

r
′r ,

r
′R( ) (5.9.4)

Noting that 
  
Ψi

r
′r ,

r
′R( )  and 

  
Ψf

r
′r ,

r
′R( )  refer to two different quantum states (hence the name

transition dipole moment) they are, by definition, characterized by a different set of quantum

numbers and have zero overlap. In other words the last term of Eq. (5.9.4) is always zero, and

we conclude (as was expected) that the center-of-mass does not contribute to the transition

dipole moment and can therefore be eliminated.

  

r
µ = −2

e m + me( )
M

r
′r (5.9.5)

Next we shift to a body fixed frame of reference (see Eq. (5.4.4)) in which the electronic

Cartesian components are x, y and z, then the spheroidal coordinates (see Eq. (5.5.4)) are

introduced, and finally the result is express in spherical components (see Eq. (4.3.9,16)) - that

is

  

r
′r = R α ,β ,0( )

x

y

z

















= R α ,β ,0( )
f ξ 2 −1( ) 1− η2( ) cosφ

f ξ 2 −1( ) 1− η2( ) sinφ

fξη



















= D
1∗

α ,β ,φ( )
2−1 2 f ξ 2 −1( ) 1− η2( )
2−1 2 f ξ 2 −1( ) 1− η2( )

fξη



















(5.9.6)

where the Euler angle φ  has been absorbed87 into the rotation matrix in the last step. The

spherical components of the body fixed dipole moment then read as

87 For the change from the Cartesian basis to Spherical basis Eq. (5.4.18) and Eq. (5.5.4) give us

  

r
r ≡ x

r
ex + y

r
ey + z

r
ez = x

1

2

r
e+1 +

r
e−1( )− y

i

2

r
e+1 −

r
e−1( ) + z

r
e0

=
d ±1

2
cosφ − i sin φ( )re+1 +

d ±1

2
cosφ + i sin φ( )re−1 + d0

r
e0 =

d ±1

2
exp −iφ( )re+1 +

d ±1

2
exp iφ( )re−1 + d0

r
e0

where we have defined

d ±1 ≡ f ξ 2 −1( ) 1− η 2( ) , d0 ≡ fξη

The factors exp ±iφ( )  can then be absorbed into the rotation matrix in Eq. (5.9.6) using Eq. (5.6.5).
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µ i = Dij

1∗

α ,β ,φ( )d j
j=−1

1

∑ ,
r
d ≡ −

e m + me( )f
M

ξ 2 −1( ) 1− η2( )
ξ 2 −1( ) 1− η2( )

2ξη



















(5.9.7)

To evaluate the transition dipole moment between an initial state 
  
ΨJimi

r
′r ,

r
′R( ) and a finale

state 
  
ΨJfmf

r
′r ,

r
′R( )  we make use of Eq. (5.6.6)

Jimi µ i Jf mf = dΩ DmfΛf

Jf ∗
Ω( )DmiΛi

Ji
Ω( ) −1( )i− j D− i− j

1
Ω( )

j=−1

1

∑








∫




Λf =− Jf

Jf

∑
Λi =− Ji

Ji

∑

× 8f 5 ξ 2 − η2( )dξdηdf ΦJfΛf

∗ ξ ,η, f( )diΦJiΛi
ξ ,η, f( ){ }∫ ]

(5.9.8)

where we have denoted the Euler angles collectively by Ω  and used the symmetry relation

D ′m m
J∗

Ω( ) = −1( ) ′m −m D− ′m −m
J

Ω( ). To integrate over the rotation matrices we use Eq. (4.3.25)

and arrive at the following central result

Jimi µ i Jf mf = Ji µ i Jf Cm i − i m f

J i 1 J f (5.9.9)

where we have defined the matrix element

Ji µ i Jf ≡
2π

2Jf + 1
−1( )i− jCΛ i − j Λ f

J i 1 J f JiΛ i d j JfΛ f
j=−1

1

∑
Λ f =− J f

J f

∑
Λ i =− J i

J i

∑ (5.9.10)

and

JiΛ i d j JfΛ f = 8f 5 ξ 2 − η2( )dξdηdf ΦJfΛf

∗ ξ ,η, f( )d jΦJiΛi
ξ ,η, f( ){ }∫ (5.9.11)

The quantity, Ji µ i Jf , in Eq. (5.9.10) is Condon and Shortley’s [64] notation for a

reduced matrix element and is, as its definition shows, independent of all projection quantum

numbers ( mi and mf ) and hence a rotational invariant. Eq. (5.9.9,10) are actually the

manifestation of a very fundamental “physical circumstance” - known as the Wigner-Eckart

Theorem; “Each matrix element in an angular momentum basis of an irreducible tensor

operator is a product of two factors; a purely angular momentum dependent factor (the

Wigner coefficient in Eq. (5.9.9)) and a factor that is independent of projection quantum

numbers (the reduced matrix element in Eq. (5.9.10)).” The electric dipole moment operator

is a vector operator (also called an irreducible tensor of rank J=1) and hence the Wigner-

Eckart theorem applies to matrix elements of µ i  in a basis of functions with a sharp angular

momentum. Biedenharn and Louck [54] expresses the essence of the Wigner-Eckart theorem

in the following way; “The most striking feature of the Wigner-Eckart theorem is the clear-

cut separation of the generic (group-theoretic) aspects of an operator from its particularities -

the reduced matrix element - that relate to the physical measurement in question.
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Conventionally one expresses this by saying that one has separated the geometric aspect from

the physics of the problem.” Applying the relations for non-vanishing Wigner coefficients88

to Eq. (5.9.9) give us the following selection rules for dipole allowed transitions89.

∆J = 0,±1 and ∆m = 0,±1 (5.9.12)

We also note in general that, if Jf = Ji = 0 , all Wigner coefficients are zero, such that

J = 0 → 0 transitions are forbidden in the dipole approximation. The Wigner coefficients in

Eq. (5.9.10), on the other hand, select the body fixed components of   
r
d that give a non-zero

contribution to the transition dipole moment. If we restrict ourselves to considering transitions

among the three lowest electronic states of H2
+ , the contribution to the transition dipole

moments are listed in table 2 where we have denoted the components of   
r
d according to the

orientation along the nuclear axis (i.e. d|| ≡ d0 and d⊥ ≡ d±1), and substituted J → l  since we

neglect any spin angular momentum from the particles.

Table 2 Transition dipole moments

  i
r
µ f 1sσg 2pσu 2pπu

1sσg
0 0,0 d|| 1,0 0,0 d⊥ 1,±1

2pσu 1,0 d|| 0,0 0 0

2pπu 1,±1 d⊥ 0,0 0 0

Thus we need to evaluate the two different types of matrix elements listed in table 2 and

defined in Eq. (5.9.11). The wave functions are expanded in simple linear FEM elements (see

Eq. (5.8.1)) and in both cases we get the following contribution from the integration of f in

Eq. (5.9.11).

8 f 6

ij
≡ 8 df f 5f{ }

fi

fj

∫ (5.9.13)

where i and j denote the grid points in f. The strategy is now as follows; first we evaluate Eq.

(5.9.11) in a basis of associated Legendre polynomials and Laguerre functions (see Eq.

(5.8.6)), and next we transform the resulting matrix representation of d j  into the Sturmian-

like basis using Eq. (5.8.8). Then we determine the transition moment using the amplitudes

Ci obtained from the scattering calculation discussed in section 2 chapter 3, and finally we

88 See the end of section 3 chapter 4.
89 These selection rules could have been obtained more directly from the fact that   

r
µ  is a vector operator with respect to

rotations of physical space generated by the total angular momentum   
r
J  and changes sign under spatial inversion (i.e.

odd parity). Group theory tells us that any matrix element is zero unless it is totally symmetrical under the symmetry
operations of the system, such that the only allowed electric dipole transitions are those involving a change of parity.
This is exactly what table 2 shows; g /↔ g u /↔ u g ↔ u .
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sum the different contributions over the f-grid points. Let us first consider the matrix elements

over d||  where ∆m = 0 .

  
D

ln( ) ′l ′n( )
|| ≡ dη dζ Pm+l−1

m
η( )φn−1

m ζ( )c−1 ξ 2 ζ( ) − η2( )ξ ζ( )ηPm+ ′l −1
m

η( )φ ′n −1
m ζ( ){ }

0

∞

∫
−1

1

∫ (5.9.14)

where we have introduced the new variable ζ  defined in Eq. (5.7.18). We could now derive

an analytical expression for these matrix elements, using Eq. (5.7.12) and Eq. (5.7.29), to

discover that D
||

 has a very simple band structure, but instead we simply use the

straightforward multi dimensional DVR scheme (see Eq. (5.8.17)). Next we consider the

matrix elements over d⊥  where ∆m = ±1, and for simplicity we assume that ′m = m + 1.

  
D

ln( ) ′l ′n( )
⊥ ≡ dη dζ Pm+l−1

m
η( )φn−1

m ζ( )c−1 ξ 2 ζ( ) − η2( ) ξ 2 ζ( ) −1( ) 1− η2( )Pm+ ′l
m+1

η( )φ ′n −1
m+1 ζ( ){ }

0

∞

∫
−1

1

∫ (5.9.15)

Clearly we will have to use a numerical method to evaluate these matrix elements, and the

“natural choice” is again a multi dimensional DVR. However there is a catch somewhere;

from the discussion on the DVR method in chapter 3 section 3, we recall that when we

defined the DVR scheme we first had to determine some quadrature points defined as the

roots of the orthogonal polynomials - but for different values of m we will find different sets

of quadrature points. In other words we have two different FBR’s and hence also to different

DVR’s. A general discussion on this problem is given in the paper [65] by Leforestier.

Nevertheless in our case with two different FBR’s of associated Legendre polynomials and

Laguerre functions the problem is easily dealt with. The idea is simply to express the

functions of order m+1 in functions of order m and then evaluate the matrix elements in a

DVR defined from the FBR of order m. This is possible because there exist a set of recursion

relations90 for associated Legendre and Laguerre polynomials. For the normalized associated

Legendre polynomials and associated Laguerre functions we have

  

1− η2 Pl
m+1

η( ) = Al
m η( )Pl

m
η( ) + Bl−1

m Pl−1
m

η( ) ,

Al
m η( ) ≡ −η

l − m

l + m + 1

Bl
m ≡

2l + 3( ) l + m + 1( )
2l + 1( ) l + m + 2( )













(5.9.16)

and

90 From reference [52] we have the following recursion relations for respectively the associated Legendre and Laguerre
polynomials

  
1− η2 Pl

m+1 η( ) = m − l( )ηPl
m η( ) + l + m( )Pl−1

m η( ), Ln
m+1 ζ( ) =

1

ζ
ζ − n( )Ln

m ζ( ) + m + n( )Ln−1
m ζ( )[ ]
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φn
m+1 ζ( ) = Xn

m ζ( )φn
m ζ( ) + Yn−1

m ζ( )φn−1
m ζ( ) ,

Xn
m η( ) ≡ ζ − n

ζ n + m + 1( )

Yn
m ζ( ) ≡ n + 1( ) n + m + 1( )

ζ n + m + 2( )













(5.9.17)

Substituting Eq. (5.9.16,17) into Eq. (5.9.15) leads to the following expression

  

D
ln( ) ′l ′n( )
⊥ = c−1 l,n Al

m η( )Xn
m ζ( ) + l,n −1 Al

m η( )Yn−1
m ζ( ) +[

l −1,n Bl−1
m Xn

m ζ( ) + l −1,n −1 Bl−1
m Yn−1

m ζ( )]g ζ ,η( ) ′l , ′n
(5.9.18)

where we have defined the function

g ζ ,η( ) ≡ ξ 2 ζ( ) − η2( ) ξ 2 ζ( ) −1( ) (5.9.19)

Eq. (5.9.18) is then easily evaluated using Eq. (5.8.17). Next we transform D
ν

 into the

Sturmian-like basis, evaluate the transition moment in the discrete f-points using the

amplitudes Ci obtained from the scattering calculation discussed in section 2 chapter 3, and

finally sum the different contributions over the f-grid points - that is

init dν final = 8 f 6

ij
Ci

T
Bi

T



 init

D
ν

BjCj[ ]
final







ij

∑ , i − j = 0,±1 , ν = ⊥ or || (5.9.20)

where care should of course be taken in the first and last f-grid point.
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6    Numerical results for the hydrogen molecular ion

6.1 Introduction

With the completion of a numerical scheme to describe the hydrogen proton scattering

it is now finally time to present and discuss some concrete numerical results. However before

we do so, I would like to comment on the derived algorithms in terms of flow charts and

stress the fact that a lot of effort and time has been put into the actual implementation of this

scheme on a computer. Actually, it is no secret that far the most of the time spent on this

project was dedicated to this step of passing from chapter 5 to chapter 6. The reason why this

step turned out to be so effortful was partly that many of the numerical subroutines needed to

carry out the calculations were not available in any standard library on the computers.

Consequently I had to develop and program my own numerical routines. Also the algorithms

that successively compute the R-matrix and next propagate the scattering wave function via a

recursive procedure (Eq. (3.2.21-22)) turned out to be more complicated to implement, and

especially optimize, than expected. Further it should of course also be noted that this type of

numerical problem - a full quantum mechanical description of a three particle system - simply

is a very computationally intensive task, which is obviously also reflected in the complexity

of the source code itself. During this project I have programmed many thousand lines of

FORTRAN-77 code (and c-shell scripts), and although these computer routines naturally

form a very significant part of my contribution to this research project, I have decided not to

take up space in this (admitted already quite extensive) thesis with a presentation of the

source codes. However, should the reader have any desire for such an insight to the actual

source codes used in this project, I will gladly provide him/her with a copy.

Programming and optimizing several thousand lines of code evidently implies a lot of

tedious debugging, and although you tend to develop quite good skills in programming with

time, this does not seem to have any serious positive influence on the actual time spent on

debugging. The fact that you have become a “better programmer” (i.e. developed more

sophisticated programming techniques) often just results in more “complex bugs” to be

resolved; the decline in the frequency of bugs tends to be canceled out by the “growing size”

of the bugs. Actually at some stages of programming I had the feeling that in addition to the

celebrated laws and postulates of quantum mechanics, another much more elusive and

deceptive “law” appeared to control my project; Murphy’s law (“anything that can go wrong

will go wrong” - and, if I might add, probably at the least expected time). As a matter of fact I

some times felt that Murphy was an optimist. However I would also like to draw the reader's

attention to the fact that the sort of approach to the three body problem of H2
+  , presented in

this thesis, has never been attempted before. Therefore neither does it come to me as a shock

to realize that the project, as it was originally formulated by me two and a half year ago, is not
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yet fully completed. To be more specific I am still in the phase of debugging the code

evaluating the transition dipole moments for the non-adiabatic states of H2
+ . In other words

the last (astrophysical) part of this project, concerning the application of my results to a

detailed model for the role of H2
+  absorption in DA white dwarfs, and the subsequent

comparison with absorption spectra recorded by the International Ultraviolet Explorer

Satellite, still has to be looked at. However nothing so far have suggested that this last part of

the project cannot be carried out, and I feel absolutely confident that it will be in the

foreseeable future.

6.2 Schematic outline of programs and routines

As mentioned above the actual source code will not be presented in this thesis, but

instead I will shortly go through the overall structure of the four most central programs and

routines used in the study of H2
+ . So before I move on to a presentation and discussion of the

results in the next section, flow charts for the computer routines will be presented and a short

comment on the programs follows. As outlined in section 5.7-9 the numerical schemes

derived for the Born-Oppenheimer and the full three body treatment of H2
+ , are based on

respectively a one- and two-dimensional DVR. Since no routines were available to generate

the abscissas and weights for a general N-point normalized associated Legendre or Laguerre

DVR of order m, I had to develop my own routine. The mathematical basis for this routine

was discussed in section 3.3, and a schematic outline is given in figure 15 below where

Pn
m x( )  denotes both the Legendre and Laguerre polynomials.

Compute roots for PN−1
m

x( )
using Laguerre's method.

Compute roots for
using Newton-Raphson.

PN
m

x( )

Solve the linear Eq. (3.3.10) and
generate the Collocation matrix,
R, from the resulting weights.

Figure 15 DVR subroutine

From the explicit expressions for the polynomial coefficients, given in reference [52], the first

block in figure 15 computes the roots of the polynomial of degree N-1 (the order, m, is fixed

throughout the routine) using the direct Laguerre’s method [53]. This is a very fast
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straightforward method using complex arithmetic. However, the catch is that exactly because

it uses a direct method to evaluate Pn
m x( ) , in a general point x, the accuracy on the resulting

roots drops dramatically as the degree, n, increases. To understand this, one should note that

the numerical values of the polynomial coefficients increase very rapidly with growing

degree, such that with the alternating signs of the coefficients, a direct method successively

adds and subtracts very large numerical components of Pn
m x( ) , and thus effects a poor

accuracy on the numerically small result. Conventionally one expresses this by saying that the

direct approach is “numerically unstable” for large degree, n, in the sense that the calculations

“explode numerically”. An easy way to overcome this problem is to implement a method, for

finding the roots of Pn
m x( ) , which does not explicitly make use of the algebraic expression for

Pn
m x( ) , such that the very convenient recurrence relations, existing for the orthogonal

polynomials91, can be used instead. My choice fell on the well-known Newton-Raphson

method discussed in reference [53]. However this root-finding scheme is slower than the

direct Laguerre’s method, so I decided to combine the speed of the later and the accuracy of

the former in the following way: The polynomial Pn
m x( )  can easily be shown to have exactly

n distinct roots in the domain of definition. Moreover, it can be shown that the N roots of

PN
m x( )  “interleave” the N-1 roots of PN−1

m x( ), i.e. there is exactly one root of the former in

between each two adjacent roots of the latter. This fact came in handy when the two different

root-finding schemes was to be combined into one fast and accurate routine, figure 15. The

first block in figure 15 generates the approximate location of the N-1 roots of PN−1
m x( ) and

then, in turn, the second block bracket the N roots of PN
m x( ) , pinning them down more

precisely by the Newton-Raphson method. Next the resulting abscissas (or roots) are

substituted into Eq. (3.3.10) and the linear equation is solved in the third block in figure 15

using a “Singular Value Decomposition” technique (SVD) [53] that allows for an ill-

conditioned92 coefficient matrix. This procedure of solving Eq. (3.3.10) directly, to obtain the

weights, is probably the only questionable step in the overall DVR routine, as we have no

control over the conditioning of the coefficient matrix (i.e. it can be close to singular).

However it was my experience that the routine was numerically stable for up to N=60 - thus

the upper limit was a 60-point DVR scheme, but indeed, as we will see in the next section,

this was sufficient. Finally the weights and abscissas are used to construct the Collocation

matrix, R, and the unitary matrix, U , defined in Eq. (3.3.17).

Next we go through the routine computing the pure electronic potential energies, E, as

91 From reference [52] we deduce

  

l − m( )Pl
m η( ) = η 2l −1( )Pl−1

m η( )− l + m −1( )Pl− 2
m η( ), where

Pm
m η( ) = −1( )m 2m −1( )!! 1− η 2( )m 2

Pm +1
m η( ) = η 2m +1( )Pm

m η( )







and

nLn
m ζ( ) = 2n + m −1−ζ( )Ln −1

m ζ( )− n + m −1( )Ln − 2
m ζ( ), where

L0
m ζ( ) = 1

L1
m ζ( ) = m +1−ζ







92 i.e. the matrix is close to singular in terms of the machine’s floating point precision.
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function of the inter-nuclear separation, R. The numerical scheme for the Born-Oppenheimer

approximate treatment of the H2
+   was discussed in section 5.7, and a schematic outline of the

program is given in figure 16 below.

Fix ∆, Ω and m using table 1.

Fix κ, defined in Eq. (5.7.5), and setup
the S-matrix defined in Eq. (5.7.15).

Solve the eigenvalue Eq. (5.7.16) to obtain Λ

Compute abscissas and weights for
using the DVR subroutine.

.

φNζ

m ζ( )

Extract and setup
defined in Eq. (5.7.34,35).

ΛΩ H and S

Solve the generalized eigenvalue
Eq. (5.7.37) to obtain Γ .

Extract λ ≡ Γ∆
Ω and obtain E

and R=2f from Eq. (5.7.40,41).

Figure 16 BO program

To solve the eigenvalue equation in block three in figure 16 a “Householder reduction

method” followed by a “Tridiagonal QL Implicit” algorithm was implemented. The

Householder algorithm (TRED2 in [53]) reduces the Nη × Nη  symmetric matrix S (see

figure 13) to a tridiagonal form, which in turn can be diagonalized by the “Tridiagonal QL

Implicit” algorithm (TQLI in [53]). The combination of TRED2 and TQLI (269 lines of
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FORTRAN-77 code) is believed to be the most effective known technique for finding all the

eigenvalues (and/or eigenvectors) of a real, symmetric matrix. The generalized eigenvalue

problem in block 6, on the other hand, forms a much bigger computational task. No

algorithms are discussed in Numerical Recipes [53] for this type of eigenvalue problem, and

no standard subroutine libraries (e.g. “The Numerical Algorithms Group (NAG) library”)

offer routines that most effectively can solve such generalized eigenvalue equations. First I

was provided with a software package that solves a generalized eigenvalue problem using an

implementation of the “Spectral Transform Lanczos Method” (STLM) developed by Ruhe

and Ericsson [66]. A short outline of the algorithm is given in reference [23]. The STLM

package is quite large (6268 lines of FORTRAN-77 code) and involving to implement in the

sense that a “black-box-user” has to provide many “strange” input parameters and additional

CPU-time- and random-number-generating subroutines, but nevertheless it is a very effective

and powerful routine to find a subset of eigenvalues and eigenvectors of a generalized

eigenvalue matrix problem when the dimension is large. However the matrix dimension in

the eigenvalue problems I considered was typically of the order 30-40, and therefore the

STLM routine turned out to be quite inefficient and most of all slow. The use of the STLM

package was simply an “overkill” for the sort of problems I had at hand. Unfortunately it took

me a while before I realized this, and besides nor was I motivated to think in terms of a

replacement since it seemed I had no alternative to the STLM routine. Eventually I got hold

on a software package (RGG) developed by Garbow [67] that very efficiently solves a

generalized eigenvalue equation for all the eigenvalues (and/or eigenvectors) using an

implementation of a “QZ algorithm” [68]. This routine is much smaller (only 1245 lines of

FORTRAN-77 code), easy to implement and, perhaps most importantly, for the dimensions I

was considering, it proved to be substantially faster than the STLM routine. Actually it took

15 seconds93 to solve a 30 × 30 generalized eigenvalue problem using STLM whereas it only

took 0,15 seconds to solve the same problem using RGG. Again these numbers should be

compared with the CPU-times spent in the other blocks in figure 16, which is illustrated in

figure 17 below for Nζ = Nη = 30 . Thus a tremendous speed-up followed when I changed

from STLM to RGG - a factor of 100 for the generalized eigenvalue routine itself when

Nζ = 30, as in figure 17. It should be noted that in figure 17 the CPU-time is shown for the

different subroutines for the instance where only one eigenpair, (E, R), was desired - in which

case the DVR subroutine was clearly the far most time consuming single subroutine.

However this subroutine is only called one time per execution of the BO program, such that

when hundreds of eigenpairs were desired, the real “bottle-neck” in the BO program was the

RGG routine.

93 All the elapsed execution times presented in this thesis are measured as the CPU-time it took to execute a scalar
optimized and vectorized (O2) FORTRAN-77 routine on a CONVEX C3240 with four CPU’s of each 43Mflop.
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TRED2 and TQLI: 0,03
DVR: 0,75s
Setup H and S: 0,03s
RGG: 0,15s
Other: 0,05s

Total: 1,01s

Figure 17 CPU-time in BO program

Finally I will go through the programs that computes the full three particle wave

function for the H2
+  system. The program was split up into two different parts; the first

program (BASIS) computes the Born-Oppenheimer approximated energy dependent

Sturmian-like basis functions (see the Bj matrices in Eq. (5.7.42) and Eq. (5.8.8)), and the

second program (SCATT) generates the R-matrix and propagates the wave function, in this

electronic Sturmian basis-set, for a selected initial electronic state. Schematic outlines of the

BASIS and the SCATT programs are given in figure 18 and 19, respectively. Clearly the

BASIS program resembles the BO program discussed above, and evidently the same

eigenvalue routines were used in both programs. Thus figure 17 also gives a description of

the elapsed execution times in the BASIS program, just in this algorithm we sum over all the

grid points in f and each of the eigenstates in the truncated (Mη < Nη) basis-set obtained

from the diagonalization of Eq. (5.7.16). For Nf = 500, Nζ = Nη = 30  and Mζ = Mη = 10 ,

the total CPU-time was estimated to 18 minutes and 7 seconds. Due to the limited core

memory the energy dependent basis-set matrices, Cj j = 1,...Nf{ }  and DΩ
j
, j = 1,....Nf{

∧ Ω = 1,...Mη}, computed by the BASIS program, had to be stored off-core. The high I/O

performance of the super-computers (typically 20Mb / s) made this disk buffering practical,

such that Cj and DΩ
j
 were easily accessible to the SCATT program. In SCATT the successive

computation of the R-matrix and the following propagation of the scattering wave function,

using the recursive procedure derived in section 3.2, are all performed in the basis of

electronic Sturmian-like functions. These electronic basis functions are represented by the Bj

matrices, introduced in section 5.7 (should not be confused with the Bj‘s defined in section

3.2), and they are in turn constructed from the Cj and DΩ
j
 matrices, computed in BASIS. To

repeat, these Bj matrices are the transformation matrices from the primitive basis of Legendre

and Laguerre functions to the Sturmian-like basis in which the zero order A-term of the J-

functional is diagonal. The algorithm is started by initiating the scattering wave function, uN

(see end of section 3.2) at the boundary, f = fN , by a specific electronic state characterized by
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the quantum numbers ∆, Ω and m. Thus in accordance with the structure of BN (see figure

14), uN  is initiated as the Ω −1( )Mζ + ∆[ ]´s unit-vector in the second block in figure 18.

Generate defined in
Eq. (5.8.2,3), Eq. (5.8.5) and Eq. (5.8.20).

Compute abscissas and weights for

using the DVR subroutine.

Sum over the
j index

Setup the -matrix, defined in Eq. (5.7.15),
with . Next solve the eigenvalue Eq.
(5.7.16) to obtain

Extract and setup

Eq. (5.7.34,35). Next solve the generalized

defined in

eigenvalue Eq. (5.7.37) to obtain

SCATT 

Summation completed

Summation completed

Sum over the
index

fj, f k

j
, λ j and κ j

φNζ

m ζ( )
and PNη

m η( )

S
κ ≡ κ j

Λ j and Cj.

Ω

ΛΩ
j H and S

ΓΩ
j

and DΩ
j
.

Figure 18 BASIS program
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Fix ∆,  Ω and m using table 1

Initiate DN as the

Ω -1( )Mζ + ∆[ ] 's unit-vector

RN ≡ − ANN[ ]−1

R ≡ DN
T

RN DN

Sum over j index
from N-1 to 1

Bj = R j+1Aj+1j

Dj = Bj
T
Dj+1

R j = − Ajj + Aj+1j
T

Bj[ ]
−1

R = R + Dj
T

R j Dj

Summation
completed

Sum over j index
from 1 to N

C1 = R1D1

Cj = R j Dj + Bj−1Cj−1

Summation
completed END

2 ≤ j ≤ N

j = 1

Figure 19 SCATT program

To allow for possibly ill-conditioned Aij-matrices, the matrix inversions in SCATT (see

figure 19) were carried out using an implementation of the “Singular Value Decomposition”
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technique (SVD) [53] previously used to solve the linear equations in the DVR subroutine

just discussed. This was, as we shall soon see in the next section, a necessary precaution

because the variational R-matrix scheme could occasionally display “mild singularities” in

agreement with the predictions made in the end of section 2.2. The f-diagonal Ajj -matrices,

entering the block where R j is computed in figure 19, were constructed using Eq. (5.8.7) for

the electronic part and Eq. (5.8.18,19) for the radial non-adiabatic part, followed by a

transformation into the Sturmian-like basis-set using Eq. (5.8.8). The f-off-diagonal Aj+1j-

matrices were constructed using the same scheme, just in this case Eq. (5.8.9,10) replaced Eq.

(5.8.7). In order to optimize the code I extracted the four terms of the two dimensional DVR,

Eq. (5.8.18,19), that were independent of f. In this way the very time-consuming 2-D DVR

(25 minutes and 18 seconds for Nζ = Nη = 30) would only have to be computed one time per

scattering calculation. Actually, for fixed Nζ and Nη , it turned out that with the high I/O

performance of the super-computers, disk buffering was substantially faster than re-

calculating the radial non-adiabatic elements. Once the shared data had been computed and

stored on disk, additional scattering calculations could be computed with a significant speed-

up. When this was done the real “bottle-neck” in the SCATT program was actually the

transformation from the primitive basis of Legendre and Laguerre functions to the Sturmian-

like basis given in Eq. (5.8.8). In figure 20 below the CPU-times are shown for the different

steps in the SCATT program for one iteration with Nζ = Nη = 30  and Mζ = Mη = 10 . Note

that the two largest wedges in figure 20 represent the following steps: first the matrices

Aij, Ci , Cj, DΩ
i

and DΩ
j
Ω = 1,...Mη{ } are read from the disk (≈ 2s), then Bi and Bj  are

construct as described in section 5.7 (<< 1s), and finally the transformation given in Eq.

(5.8.8) is performed (≈ 15 −16s). In the case of Nf = 500 the total CPU-time was estimated

to 4 hours 56 minutes and 23 seconds.

Bj
T
Ajj Bj :16,1s

Bj+1
T

Aj+1j Bj :17,2s

R = R + Dj
T

R j Dj : 0,5s

R j = − Ajj + Aj+1j
T

Bj[ ]
−1

:1,5s

Bj = R j+1Aj+1j : 0,2s

Total  : 35,5s

 

 

 

 

 

Figure 20 CPU-time in SCATT program
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6.3 Results

As a prelude to the presentation of the results from the full scattering calculations, I will

first discuss the results obtained for the Born-Oppenheimer approximate treatment of H2
+ . To

repeat, this part of the project was only included to test the accuracy and stability of the DVR,

BO and BASIS routines against some exact tabulated results. Thus the results to be presented

now, for the electronic states, are not exciting in the sense that they have been reproduced

many times before. However this comparison is very interesting in the present context of a

full three body calculation in a basis of electronic states, as it will give us a first impression of

the accuracy for the zero order term in this scattering calculation.

As mentioned in the introduction to section 5.7, a large number of theorists have

already studied the clamped nucleus problem of the hydrogen molecular ion, and it is well-

known that the resulting ordinary differential equations can, ideally speaking, be solved to

any desired accuracy. The first extensive calculations have been carried out for several states

of the molecule by Bates et al. in 1953 [69]. However these eigenvalues are only tabulated

with 4-5 significant figures. For the lowest 1sσg and 2pσu  states more extensive calculations

in the Born-Oppenheimer approximation have been performed by Peek in 1965 [70]. Actually

these results are accurate to 10-12 significant figures, and thus for these states the tables of

eigenvalues should replace the better known ones of Bates et al. Also Peek’s results for

1sσg and 2pσu  were confirmed to the last figure by Montgomery Jr. in 1977 [71].

When I started out with this project, at the University of Aarhus, I spent some time

implementing a FEM-expansion of ψΩ
m (ξ ) (see Eq. (5.7.17)) in Hermite type functions (see

Appendix C) known from Spline type interpolation. This was a relatively easy task for the

clamped nucleus problem, but as I later on was to include the non-adiabatic terms, I decided

to use the DVR method instead. Thus I have also calculated the electronic eigenvalues using a

FEM approach, but as this technique was not used for the full three body problem, I find it

irrelevant to present these results here. I will just state that the routine was written, and that it

gave very accurate results. Before we compare my results for the electronic energies, using

the DVR method, with the ones mentioned above, I would like to comment on the

convergence of the numerical schemes. First we should note that the electronic states

computed by the BO and BASIS routines, are Sturmian-like eigenfunctions with the same

value of the parameter κ . In other words this parameter had to be fitted or adjusted to a

specific value in order to obtain the electronic energy, E, for a given inter-nuclear separation,

R. This, in turn, meant that the accuracy of the computed eigenpair, (E, R), was largely

determined by the precision with which the specific κ  parameter could be pinned down. The

accuracy on κ  itself was given by the floating point precision of the computer (typically

10−13 −10−14), such that the precision on R (and E) varied from 10−13 at small distances and

up to 10−9  at larger R. Thus it should be emphasized that when comparing the exact energies

with the computed eigenvalues, at a given separation R, the precision with which the
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eigenvalue R could the determined, should also be considered. Below I have tabulated the

convergence of the energy of 1sσg  at the fixed separation R=2.0 a0 for different values of the

parameters Nζ and Nη  entering the numerical scheme discussed in section 5.7. 1sσg  was

chosen since for this state we have exact values for E, and the separation R=2.0 a0 was then

picked because at small distances the κ  parameter could be pinned down to give R with

almost the floating point precision of the machine (i.e. R = 2.0 ± 10−13 ).

Exact value -0.6026342144949 [70, 71]

E/au Nζ=5 10 30 50

Nη=5 -0.6 -0.6026342 -0.6026342 -0.6026342

10 -0.6 -0.6026342 -0.60263421449 -0.602634214495

30 -0.6 -0.6026342 -0.60263421449 -0.6026342144949

50 -0.6 -0.6026342 -0.60263421449 -0.6026342144949

It should be clear from these numbers that less than 10 functions in any of the two

coordinates, ζ or η , was insufficient. Also we see that the accuracy of the scheme was largely

determined by the number, Nζ , of associated Laguerre polynomials included in the expansion

of the wave function, and thus less dependent on Nη  - just as long as this number was higher

than 10. However the most exciting conclusion that can be drawn from the above numbers is

of course that with a sufficiently large basis-set ( Nζ ≥ 50 and Nη ≥ 30) I obtained an

eigenvalue that was in complete agreement with the exact results [70, 71] - correct to 13

decimal places. It is no secret that I was beside myself with joy when I first realized that my

DVR approach to this problem gave literally exact results down to the floating point precision

of the machine. Actually the joy was amplified by the fact that my scheme first appeared to

give energies that were only correct to 3 decimal places. The problem was, as it turned out,

that in all the calculations done by Bates, Peek and Montgomery Jr. the mass factor, µe  (see

Eq. (5.3.5)), had been put to unity. In other words they all ignored the finiteness of the mass

of the protons, which is of course the central assumption in the Born-Oppenheimer

approximation - but nevertheless, here I was, completely focused on how to go beyond the

Born-Oppenheimer approximation, and thus not thinking in terms of infinite nuclear masses.

Anyway, once the mistake was discovered, I was very pleased to see the exact agreement. In

table 3 below the converted eigenvalues are shown for the 1sσg  state at other values of R. In

the first column the inter-nuclear separation is given with the precision of R listed in

parentheses. The next column shows my results with µe ≡ 1, and the third column with µe

fixed to its real value listed in Eq. (5.3.5). The fourth column shows the exact results [70, 71],

and the last column gives the eigenvalues obtained when adiabatic corrections have been
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added to the Hamiltonian (see end of section 1.3) [72]. When the precision of the fitted

nuclear separation, R, is taken into consideration, we see that my results are in complete

agreement with the exact results [70, 71]. Further we note that the inclusion of adiabatic

corrections increase the energies slightly at the fourth decimal place. Also it is interesting to

see that just changing the mass-factor, µe , to its real value actually results in electronic

energies that are closer to the adiabatic energies. In table 4 the computed electronic energies

for the 2pσu  state are compared against the exact results [70, 71], and again we see a

complete agreement with the precision of R. In table 5 I have tabulated the computed energies

for 2sσg  against Bates’ [69] results. Once more we see a complete agreement, to at least five

decimal places. Instead of taking up more space with tabulating energies for the higher

excited states of H2
+ , I have chosen to present the potential curves for the ten lowest electronic

states graphically in figure 21, and then just state that they are all in agreement with Bates’

[69]  results. Besides, for the study of non-adiabatic transitions between 1sσg and 2pσu , the

curves for the two lowest states, are of particular interest, since they are typical of the

behavior for bonding and anti-bonding orbitals in molecular orbital (MO) theory. From figure

21 we see that, for large inter-nuclear separations, R, the energy for both states is equal to the

energy of a hydrogen atom in its ground state, 1s - that is with no inter-nuclear repulsion, 1
R

(in au), we have E1sσg / 2pσu
 

R→∞ →  E1s = − 1
2 hartree94. Thus the wave functions must also go

over into a linear combination of the ground states, 1sa and 1sb of an electron centered on

nuclei a, b. As the wave function for 1sσg  has positive parity with respect to inversion, and

2pσu  negative parity, we obtain the well-known correlations

Ψ1sσg R→∞ → Ψ1sa
+ Ψ1sb

≡ σ 1s( )

Ψ2pσu R→∞ → Ψ1sa
− Ψ1sb

≡ σ∗ 1s( )
(6.3.1)

The last two expressions for the molecular orbitals in Eq. (6.3.1) are the separate-atom

designation. Here, to distinguish from the united-atom notation defined in section 5.7, the

symmetry symbol is given first followed by the appropriate state of the separated atoms in

parenthesis. An asterisk is used to distinguish anti-bonding orbitals, which are characterized

by a nodal surface bisecting the inter-nuclear axis, that is by anti-symmetry under the

transformation η→ −η  of Eq. (5.7.42)95. In figure 22 I have plotted the variation of purely

electronic energy for the ten lowest states of H2
+  (i.e. E R( ) − 1

R (au)). At R=0, the two protons

have come together to form the He+  ion with the ground-state energy: − 1
2 2( )2hartree=-2

hartree. Hence, we note that the lowest curve in figure 22 goes to the value -2 for R → 0 ,

even though this is not shown. Next, I would like to discuss the results from the scattering

94 For the hydrogen-like atoms we have the energy levels

  

En = −
me

2h2

Ze2

4πε 0









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2

1

n2
= −

1

2

Z

n




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2

hartree(au)

95 See also fodnote 76.
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calculations.

It is difficult, if not impossible, at this point to give any conclusive verification of the

results to be presented now - at least in terms of a decisive quantitative check. Besides the fact

that this sort of calculation has never been attempted before, I am faced with the problem of

having to comment on something as “abstract” as a three particle wave function. In other

words the final evaluation of this sort of approach to the three particle problem, will have to

wait until the next step in this project has been completed; namely the computation of the

transition dipole moments between the calculated states, and the subsequent comparison with

the absorption spectra recorded in DA white dwarfs. However when this has been said, I

would like too add that with a “little intuition and common knowledge” about theoretical

chemistry, I definitely believe that useful conclusions and information can be drawn from my

results, even at this point. Especially when using semi-classical arguments, we can obtain

valuable information about the asymptotic behavior of the channel wave functions: As argued

in connection with Eq. (6.3.1), the electronic part of the total wave function can, for large

values of the inter-nuclear separation, approximately be expressed as some linear combination

of states for the hydrogen atom. Thus asymptotically we would expect the total wave

functions to roughly converge to a product of some wave function for a hydrogen atom and a

free-particle wave function for a proton - that is

  
Ψ

H2
+

r
r,

r
R( ) R→∞ → ei

r
k

r
RΨH

r
r( ) (6.3.2)

and

  
Etot ≈ Eelec +

h2k2

2µ
(6.3.3)

where k = 2π λ  and the mass factor , µ , is given in Eq. (5.3.5). Hence a rough estimate of

the asymptotic wave length in the radial motion is given by

  

λ ≈
2πh

2 Etot − Eelec( )µ
(6.3.4)

In other words, we expect the wave functions to asymptotically approach a periodic (cosine)

function with a wave length approximately given by this expression. Moreover, using the

“topology” of the potential energy curves, shown in figure 21, in a more general qualitative

respect, we can deduce the expected classical behavior of the channel wave functions in the

whole range of the inter-nuclear separation, R. Deviations from this expected classical

behavior, should then be ascribed the quantum mechanical phenomena’s as tunneling.

Finally, the relative amplitudes of the “adiabatic forbidden or closed-channel” wave functions

give a feeling of the validity of the Born-Oppenheimer approximation - which we of course

expect to be quite good, even for a light system as H2
+ .

In the following I have shown the results from three different scattering calculations:
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One where the incoming channel was fixed to the electronic ground-state, 1sσg , with a total

energy of -0.45 hartree, and two where the wave functions were initiated with the

electronically excited states 2pσu and 2pπu   with a total energy of -0.1245 hartree. The total

energies were fixed more or less arbitrarily; though as a rough guidance the energy in the

1sσg  calculation was fixed such that asymptotically the kinetic energy in the radial motion

corresponded to a typical temperature in the DA white dwarfs, i.e. 16000 K ≈ 96 0.05 hartree

= −0.45 − (−0.50)hartree. The total energies in the scattering calculations, initiated with the

excited electronic states, were then fixed such that a transition would correspond to the line

recorded in the absorption spectra, i.e. 1400Å ≈ 97 0.3255 hartree = −0.1245 − (−0.45)

hartree. In all the calculations the parameters introduced in the numerical schemes discussed

in chapter 5 were fixed to the following: Nζ = Nη = 30 , Mζ = Mη = 10  and Nf = 500. Thus

the BASIS routine computed 30 × 30 Sturmian-like electronic basis-functions in each grid

point in f(=R/2), and in the SCATT routine this basis-set was then truncated to the 10 ×10

lowest eigenfunctions. A very important step in the construction of the Sturmian-like basis-

set, was to define the phases of the eigenfunctions consistently from one grid point in f to the

next. This was done in the BASIS routine, by a simple test of normalization of the matrices

Cj and DΩ
j
 on Cj−1 and DΩ

j−1
 using Eq. (5.7.16,39). The Nf  parameter was then fixed such that

the overlaps between the successive computed basis matrices were larger than 0.7. From table

3 I argued that inclusion of adiabatic terms introduced corrections to the electronic energies at

the third decimal place, and thus there seemed no point in evaluating the electronic Sturmian-

like basis functions to 13 decimal places, when the non-adiabatic calculations were

performed. However as these calculations involved a 2 dimensional DVR, I fixed, on a rough

estimate, Nζ and Nη  to 30.

In the following plots the amplitudes of the radial scattering wave functions have been

normalized such that the wave function in the incoming channel (1sσg , 2pσu or 2pπu ) has

unit amplitude on the surface (R=8 au), after the scattering has taken place. In figure 23 I

have depicted the radial variation of the 1sσg-channel wave function for a scattering situation

with a pure 1sσg  electronic state in the incoming channel. Asymptotically we observe the

expected periodic oscillation, discussed in connection with Eq. (6.3.2), and as we move in the

R-axis the wave length decreases slightly to reach a minimum at R=2 au. Also the amplitude

has a very large maximum at this point. Thus gradually more energy in transferred from the

electronic degree of freedom into the kinetic radial motion when R is decreased. When

moving further in the R-axis, λ  increases dramatically, and at inter-nuclear separations

smaller than 1 au, the wave function “dies out” very rapidly. All in all this behavior is in

excellent agreement with the attractive potential energy curve for 1sσg , shown in figure 21.

This curve has a deep minimum at R=2 au, and for Etot = −0.45hartree we find the classical

96 To convert from energy in atomic units (hartree) to an absolut temparature we have used T = Eh

3.1668⋅10−6[ ]oK .

97 To convert from energy in atomic units (hartree) to wavelength in Angstrom we have used λ = h⋅c
E = 455.6

Eh[ ]Å .
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turning-point to be at R=1 au. Using Eq. (6.3.4) with Eelec ≈ −0.50 hartree we expect the

wave length to be close to 0.66 au for large inter-nuclear separation. With an accuracy of two

hundredth au this is exactly what we observe in figure 25 (λ ≈ (0.64 ± 0.02)au). In this figure

I have also plotted the actual position of the points, and we see that with 500 points in the

f(=R/2) coordinate, in the range from 0.2 au to 8.0 au (i.e. ∆f = 0.0312au), the grid-density is

large enough to ensure a good resolution of the wave function, and thus effect a converting

propagation from one grid point to the next. As mentioned before, I had 100 open (electronic)

channels ( Mζ =  Mη = 10 ) in each of the three scattering calculations presented, and in figure

24 and 26 I have shown a plot of the radial variation for the three outgoing channel wave

functions with largest amplitude. The first thing that we note is that these components of the

total wave function are very small compared to the component from the incoming channel.

This is a strong indication of the validity of the Born-Oppenheimer approximation, which

classically assumes that these channels are closed, see figure 21. In agreement with the

potential curves for respectively the 2sσg and 3dσg  states we observe, in figure 24, that the

later component is killed much earlier than the former. The dramatic change in the amplitudes

at the surface, in figure 26 (and figure 36), should be ascribed to a boundary effect from the

Finite Element Method, but we also note that it is relatively small since this behavior is not

observed in any of the plots of channel wave functions with a larger amplitude. In figure 27

and 28 I have graphically illustrated the coupling between the incoming 1sσg  channel wave

function and the 2sσg and 3dσg  outgoing channel wave functions, as a simple smoothened

plot of the ratio of the amplitudes. In these figures it is even more evident, that the non-

adiabatic corrections to the Born-Oppenheimer approximation are very small. Note also the

maximum at respectively R=2.5 au and R=4.7 au which suggests a maximum coupling at

these inter-nuclear separations.

In figure 29 to 37 I have shown similar plots for the results obtained from the

2pσu and 2pπu  initiated scattering calculations. Instead of going into a long tiresome

discussion and interpretation of these results I will just emphasize the most distinct features of

the plots, and then leave the detailed study of the graphs to the reader. An outline of the sort

of information that can be extracted from the plots was given above, and moreover I think

that most of the figures speak for themselves. In figure 29 we notice, a much faster oscillatory

behavior of the incoming channel wave function, than we say in figure 23, which is clearly

due to the higher channel energy ( Etot = −0.1245hartree). The wave length increases all the

way in the R-axis, and the maximum amplitude at R=2 is considerably smaller than the one

observed in figure 23. After R=2 au the function is killed very rapidly. Again this classical

turning-point and the overall behavior observed for the wave function is in excellent

agreement with the very repulsive 2pσu  potential curve shown in figure 21. Using Eq. (6.3.4)

with Eelec ≈ −0.50 hartree, we expect the wave length to be close to 0.23 au for large inter-

nuclear separation, and from figure 31 we find λ = (0.24 ± 0.02) au. In figure 33 and 34 we

see a much larger coupling between the channel wave functions, than in figure 27 and 28,



120                                                                                                              Chapter 6

which is caused by the fact that the potential curves for the involved electronic states in this

case lie notably closer, see figure 21. The small top in figure 33 is a point of singularity from

the ration of the two wave function, and hence has no physical significance. In figure 35 I

have shown the radial variation of the 2pπu  incoming channel wave function. As the

potential curve lies substantially higher than the once for the 1sσg and 2pσu  states, we see a

very slow and weak oscillation in this case. Actually we only have “1 3
4  oscillations” in this

plot, and consequently it is very difficult to speak of a true asymptotic value of the wave

length at a specific inter-nuclear separation. However, if we take an averaged value of λ , in

the interval from R = (6.60 ± 0.01)au to R = (7.34 ± 0.01)au, we obtain an approximate wave

length on (1.48 ± 0.04)au. In this interval of R the Eelec varies from -0.133 hartree to -0.134

hartree (see figure 21), and thus when using Eq. (6.3.4) we obtain an expected λ  on

1.55 ± 0.05( )au. As the kinetic energy in the radial motion is low (about 0.009hartree for

large R), we observe very little coupling in between the wave function in the incoming

channel and the other channel wave functions. The only notable coupling in shown in figure

37, where we also observe a minimum close to the classical turning-point in the 2pπu

channel, followed by a maximum at R=4 au. At present time I can not come up with any

rational explanation for this feature in figure 37, but definitely this must be ascribed to some

kind of tunneling phenomenon as the 3pπu  channel is classically closed. Finally in figure 38,

39 and 40 I have plotted the partial components of the R-matrix computed in the three

different scattering calculations. These partial components correspond to the individual terms

in the sum in Eq. (3.2.20). In the figures for the 1sσg  and the 2pσu  cases, we observe several

discontinuities in the successive construction of the R-matrix. In figure 40, for the 2pπu

scattering, these discontinuities are even more striking (note the logarithmic scale), and in this

case we could indeed speak of a singularity-like behavior of the R-matrix. This situation

resembles, to a limited extend, the “Kohn anomalies” [31] inherited in the Kohn variational

principle discussed in the end of section 1.4, and as argued in the end of section 2.2 the

applied variational R-matrix method was also excepted to display these spurious unphysical

singularities and thus potentially be plagued by Kohn anomalies. However, and this can not

be overemphasized, the numerical scheme seemed to be very stable and reliable in the sense

that the wave functions converted nicely, and no singularities or discontinuities were

observed for the wave functions in any of the calculations - even in the cases where “close-to-

singularities” appeared as shown in figure 40. Thus I did not note any behavior in the overall

numerical scheme that could justify the term “Kohn anomalies” when used in its original

meaning, as in reference [31, 39], but if the same sort of terminology was to be used we could

phrase it provocatively as follows; “the applied variational R-matrix method displays

numerically insignificant singularities that could be referred to as integrable Kohn

anomalies”.

As a “colorful” completion of this section I have included two pictures, figure 41 and

42 (see also front-page), each showing two iso-surfaces (of which one is transparent) and one
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contour-surface of the total wave function resulting from a scattering calculation where the

incoming channel was respectively a pure electronic 1sσg and 2pσu  state. The pictures are

3D-scalar plots in the coordinates ξ , η and φ  where the inter-nuclear separation, R = 2f , was

fixed to 2 au. Note that the selected color-map is cyclic, such that a cycle of the color-scale

does not necessarily correspond to a node-plane. This was preferred in order to obtain more

colors in the pictures. The plots were created using the very powerful software package AVS

(Application Visualization System).



122                                                                                                              Chapter 6

Table 3 Data for 1sσg

R/au BO-approx.

Present/au

µe ≡ 1

BO-approx.

Present/au

µe = 0.99972776

BO-approx.

Exact [70, 71]/au

µe ≡ 1

Adiabatic

Exact [72]/au

µe = 0.99972776

1.0(13) -0.4517863133781 -0.4515214744047 -0.4517863133781 -0.45170606

1.5(13) -0.5823232054550 -0.5821225574873 -0.5823232054550 -0.58211045

2.0(13) -0.6026342144949 -0.6024702982357 -0.6026342144949 -0.60237486

2.5(13) -0.5938235109905 -0.5936814005940 -0.5938235109905 -0.59354587

3.0(12) -0.577562864049 -0.5774335761403 -0.5775628640490 -0.57727792

3.5(12) -0.560855538798 -0.560733234764 -0.5608555387980 -0.56056794

4.0(11) -546084883713 -0.54596561189 -0.5460848837129 -0.54579676

4.5(11) -0.533940031109 -0.53382113487 -0.5339400311092 -0.5336552

5.0(11) -0.524420295168 -0.524300105543 -0.5244202951676 -0.52413409

5.5(12) -0.517231507858 -0.517109134078 -0.5172315078579 -0.51694708

6.0(10) -0.51196904847 -0.51184418352 -0.5119690484667 -0.51168644

6.5(10) -0.50821546996 -0.50808819645 -0.5082154699635 -0.50793509

7.0(10) -0.50559400424 -0.50546461996 -0.5055940042393 -0.50531547

7.5(11) -0.50379296471 -0.50366184915 -0.5037929647147 -0.50351601

8.0(10) -0.5025703886 -0.50243791995 -0.5025703886000 -0.50229471

8.5(10) -0.50174718746 -0.50161369632 -0.5017471874643 -0.50147248

9.0(10) -0.5011954529 -0.50106120890 -0.5011954528984 -0.50092147

9.5(9) -0.500826207 -0.5006914181 -0.5008262065266 -0.50055276

10.0(9) -0.50057873 -0.5004435550 -0.5005787289439 -0.50030566
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Table 4 Data for 2pσu

R/au BO-approx.

Present/au

µe ≡ 1

BO-approx.

Present/au

µe = 0.99972776

BO-approx.

Exact [70, 71]/au

µe ≡ 1

1.0(14) 0.4351863748985 0.4353718111477 0.4351863748985

1.5(13) 0.04349846453898 0.0437121627581 0.04349846453898

2.0(12) -0.1675343922024 -0.1673155490316 -0.1675343922024

2.5(11) -0.292072048783 -0.291861964854 -0.2920720487832

3.0(11) -0.3680850000399 -0.3678879284367 -0.3680850000399

3.5(11) -0.415495726456 -0.415311449993 -0.4154957264561

4.0(12) -0.4455506393605 -0.4453774215001 -0.4455506393605

4.5(11) -0.46483897466 -0.464664781054 -0.4648389746611

5.0(10) -0.47729161323 -0.477134555039 -0.4772916132283

5.5(10) -0.485383144066 -0.485231611058 -0.4853831440662

6.0(10) -0.49064389237 -0.49049656837 -0.4906438923684

6.5(10) -0.49406031671 -0.49391615337 -0.4940603167091

7.0(10) -0.49627171254 -0.49612989067 -0.4962717125439

7.5(10) -0.49769564367 -0.49755553374 -0.4976956436628

8.0(10) -0.4986960156 -0.49846714126 -0.4986960156017

8.5(10) -0.49918273308 -0.49900447392 -0.4991827330795

9.0(10) -0.49954382946 -0.49940645523 -0.4995438294691

9.5(9) -0.499766514 -0.49962957102 -0.4997665142042

10.0(9) -0.49990107 -0.49976442234 -0.4999010686027
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Table 5 Data for 2sσg

R/au BO-approx.

Present/au

µe ≡ 1

BO-approx.

Present/au

µe = 0.99972776

BO-approx.

Bates [69]/au

µe ≡ 1

1.0(14) 0.5770754112160 0.5771697336712 0.57708

1.4(13) 0.3194077319428 0.3194907915564 0.31941

2.0(12) 0.1391351246605 0.139206100001 0.13914

2.4(12) 0.0743942884928 0.074459281677 0.074397

3.0(11) 0.014446279533 0.01450433047 0.014448

3.4(12) -0.011527483115 -0.01147307477 -0.011527

4.0(11) -0.038514867457 -0.03846484360 -0.038515

4.4(11) -0.051312574673 -0.05126490795 -0.051312

5.0(11) -0.065505814677 -0.06546101890 -0.065505

5.5(11) -0.07418097328 -0.07413807373 -0.074182

6.0(11) -0.08088792282 -0.08084655183 -0.080888

6.5(11) -0.08617579900 -0.08613564906 -0.086174

7.0(10) -0.09042225667 -0.09038307413 -0.090423

7.5(11) -0.093892813458 -0.09385438459 -0.093892

8.0(11) -0.096777332868 -0.09673948282 -0.096775

8.5(10) -0.09921332940 -0.0991759167 -0.099213

9.0(11) -0.10130135623 -0.1012642688 -0.10130

9.5(11) -0.103115483793 -0.1030786351 -0.10312

10(10) -0.104710625912 -0.1046739512 -0.10471
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Figure 21 Potential energy curves
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Figure 22 Pure electronic energy curves (E(R)-1/R)
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Figure 23 Plot of C 1sσg( )
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Figure 24 Plot of C 2sσg( ), C 3dσg( ) and C 4dσg( )
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Figure 25 Plot of asymptotic C 1sσg( )
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Figure 26 Plot of asymptotic C 2sσg( ), C 3dσg( ) and C 4dσg( )
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Figure 27 Plot of C 2sσg( ) C 1sσg( )
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Figure 28 Plot of C 3dσg( ) C 1sσg( )
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Figure 29 Plot of C 2pσu( )

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

0.0 1.0 2.0 3.0 4.0 5.0 6.0
R(au)

C(3pσu), C(4fσu) and C(5fσu) for a 2pσu initiated 

wave function with Etot= -0.1245 hartree

3pσu

4fσu

5fσ
u

7.0 8.0

Figure 30 Plot of C 3pσu( ), C 4fσu( ) and C 5fσu( )



Chapter 6                                                                                                              131

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

6.0 6.4 6.8 7.2 7.6
R(au)

Asymptotic C(2pσu) for a 2pσu initiated

wave function with Etot= -0.1245 hartree

8.0

Figure 31 Plot of asymptotic C 2pσu( )

-0.50

-0.30

-0.10

0.10

0.30

0.50

6.0 6.4 6.8 7.2 7.6 8.0
R(au)

Asymptotic C(3pσu), C(4fσu) and C(5fσu) for a 2pσu

initiated wave function with Etot= -0.1245 hartree

3pσ
u

4fσ
u 5fσ

u

Figure 32 Plot of asymptotic C 3pσu( ), C 4fσu( ) and C 5fσu( )



132                                                                                                              Chapter 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 1.0 2.0 3.0 4.0 5.0
R(au)

Ratio of C(3pσu) to C(2pσu) for a 2pσu initiated

 wave function with Etot= -0.1245 hartree

6.0 7.0 8.0

Figure 33 Plot of C 3pσu( ) C 2pσu( )

0.00

0.04

0.08

0.12

0.16

0.20

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
R(au)

Ratio of C(4fσu) to C(2pσu) for a 2pσu initiated

wave function with Etot= -0.1245 hartree

Figure 34 Plot of C 4fσu( ) C 2pσu( )



Chapter 6                                                                                                              133

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0.0 1.0 2.0 3.0 4.0 5.0 6.0
R(au)

C(2pπu) for a 2pπu initiated wave

function with Etot= -0.1245 hartree

7.0 8.0

Figure 35 Plot of C 2pπu( )

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.0 1.0 2.0 3.0 4.0 5.0 6.0
R(au)

C(3pπu), C(4fπu) and C(5fπu) for a 2pπu initiated 

wave function with Etot= -0.1245 hartree

3pπu

4fπu

5fπu

7.0 8.0

Figure 36 Plot of C 3pπu( ), C 4fπu( ) and C 5fπu( )



134                                                                                                              Chapter 6

0.00

0.01

0.02

0.03

0.04

0.05

3.0 4.0 5.0 6.0 7.0 8.0
R(au)

Ratio of C(3pπu) to C(2pπu) for a 2pπu initiated

 wave function with Etot= -0.1245 hartree

Figure 37 Plot of C 3pπu( ) C 2pπu( )

-100.00

-50.00

0.00

50.00

100.00

150.00

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
R(au)

Partial R-matrix for a 1sσg initiated scattering

wave function with Etot=-0.4500 hartree

8.0

Figure 38 Plot of partial R-matrix for C 1sσg( )



Chapter 6                                                                                                              135

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

0.0 1.0 2.0 3.0 4.0 5.0 6.0
R(au)

Partial R-matrix for a 2pσu initiated scattering

wave function with Etot=-0.1245 hartree

7.0 8.0

Figure 39 Plot of partial R-matrix for C 2pσu( )

10-7

10-5

10-3

10-1

101

103

0.0 1.0 2.0 3.0 4.0 5.0 6.0

R(au)

Partial R-matrix for a 2pπu initiated scattering

wave function with Etot=-0.1245 hartree

7.0 8.0

Figure 40 Plot of artial R-matrix for C 2pπu( )



136                                                                                                              Chapter 6

Figure 41 Color plot of C 1sσg( )

Figure 42 Color plot of C 2pσu( )
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6.4 Conclusion

I have demonstrated a new approach to the full quantum mechanical three body

problem of the hydrogen molecular ion, using a variational R-matrix method on proton

hydrogen scattering. So far this approach has proven to be very versatile and promising, but

as emphasized previously a conclusive evaluation in terms of comparison with experimental

results, still can not be made. However it should be clear from the interim results presented in

the previous section that nothing so far indicates that the model suffer from neither numerical

instabilities nor subsequent problems with convergence. Actually all the computed wave

functions seems to be in excellent agreement with the intuitively expected results using semi-

classical arguments. Especially a justification or rather motivation for the Born-Oppenheimer

approximation emerge from my calculations. Of the more practical aspects of this project, I

would like to stress that it has been a very computationally intensive task to solve this

quantum mechanical three body problem, and as such it is not surprising that it has never

been attempted before - at least not in this sort of formulation. Besides the fact that the

implementation of the variational R-matrix algorithm appears to give correct results, the

numerically most exciting aspect of the project was certainly that I obtained exact eigenvalues

down to the floating point precision of the computer, for at least the two lowest electronic

states of H2
+ . Thus the developed DVR-scheme has definitely proved practicable and possibly

even advantageous to the other numerical schemes used for solving the Born-Oppenheimer

approximate states of the hydrogen molecular ion.

As have been pointed out several time before, the project is not yet completed in terms

of obtaining the desires absorption coefficients for H2
+ . Next I have to compute transition

dipole moments as outlined in section 5.9, and from these data the absorption spectra for the

hydrogen molecular ion should be generated. Also the development of the non-adiabatic

model itself is far from over. Future steps involve inclusion the non-adiabatic angular

momentum coupling terms in Eq. (5.6.12,13). This will introduce coupling between wave

functions with difference of unity in the m quantum number, such that states with different

parity couples. Consequently many more channels will be open, and the DVR scheme will be

complicate by the fact that we must define a new DVR/FBR for every value of m. However

using the same sort of technique as outlined in the end of section 5.9 and discussed in

reference [65], this problem can be dealt with most efficiently.

Concluding a project that has been going on for more than to years, brought me to

Aarhus, Copenhagen and Paris, and still “not produced concrete decisive results” is not an

easy thing. However one conclusion can be drawn from this project without any hesitation at

all: I have learned a lot about many different aspects of quantum mechanics and general

numerical methods in the past two years. Still this must be the primary and central object for

such a project, for as Blaise Pascal (1623–1662) has put it “since we cannot know all that is to

be known of everything, we ought to know a little about everything”.
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A      The mass-weighted Jacobi-coordinates

In this appendix we are going to present a general scheme for the construction of mass-

weighted Jacobi-coordinates for the N-particle system. Let

  

t
α ≡

r
R1,

r
R2,.....,

r
RN[ ] (A.1)

collectively denote the coordinates of the particles in the laboratory-fixed frame of reference.

The corresponding kinetic energy density   T Ψ
t
α( )[ ] now reads as

  
T Ψ

t
α( )[ ] =

1
2m j

−ih
r
∇ jΨ

t
α( )

2

j=1

N

∑ (A.2)

where m j refers to the mass of particle j. To obtain the desired canonical form for the kinetic

energy density

  
T Ψ

t
β( )[ ] =

1
2M

−ih
r
′∇ jΨ

t
β( )

2

j=1

N

∑ (A.3)

where M is the total mass of the system and   
t
β  collectively denotes a new set of coordinates

  

t
β =

r
′R1,

r
′R2,.....,

r
′RN[ ] (A.4)

clearly from Eq. (A.2) and Eq. (A.3)   

r
∇ jΨ

t
α( ) should then transform as

  

r
∇ jΨ

t
α( ) →

m j

M

r
′∇ jΨ

t
β( ) (A.5)

which is easily obtained if the coordinates   
t
α  transform into the new coordinates   

t
β  in the

following way

  

r
R j →

m j

M

r
′R j (A.6)

In a matrix notation this transformation then reads as

  

t
β ≡

r
′R1,

r
′R2,....,

r
′RN[ ] =

r
R1,

r
R2,....,

r
RN[ ]

β1 0 L 0

0 β2 0 M

M 0 O 0

0 L 0 βN





















= β1

r
R1, β2

r
R2,...., βN

r
RN[ ]

(A.7)
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where we have defined the constants β j = mj M , that should not be confused with   
t
β  defined

in Eq. (A.4). This new set of N coordinates   
t
β  is clearly not translationally invariant as

desired. To obtain such a set of N-1 translationally invariant coordinates,   
t
γ , that leaves the

kinetic energy density in the canonical form depicted in Eq. (A.3), we have to construct an

orthogonal matrix C  that when multiplied on   
t
β  generates the center of mass coordinates as

one of the new vectors, say at position N in the array   
t
γ . That is

  

t
γ ≡

r
r1,

r
r2 ,....

r
rN−1,

r
RG[ ] =

r
′R1,

r
′R2,....,

r
′RN[ ]C =

t
βC (A.8)

Hence the last column of C  should read as β1 , β2 ,...., βN , i.e. CiN = β i . We now

initiate our scheme choosing only the first two elements of the first column to be different

from zero, as this is the simplest possible choice. From the constraint that C  should be

orthogonal it follows that

C11
2 + C21

2 = 1

β1C11 + β2 C21 = 0






⇒

C11 = µ12 m1

C21 = − µ12 m2






(A.9)

where 1 µ12 ≡ 1 m1 + 1 m2  is the inverse of the reduced mass of particle 1 and 2. In the

second column we choose the three first elements to be different from zero, and it then

follows that

C12
2 + C22

2 + C32
2 = 1

C12 µ12 m1 − C22 µ12 m2 = 0

β1C12 + β2 C22 + β3C32 = 0










⇒

C12 = µ12,3m1 m1 + m2( )
C22 = µ12,3m2 m1 + m2( )
C32 = − µ12,3 m3










(A.10)

where we have defined the inverse three particle reduced mass as 1 µ12,3 ≡ 1 m1 + m2( )
+1 m3 . We could now proceed in this way for the rest of the N-3 columns, and for each

column j we would have the following j+1 working equations

β i Cij = 0
i=1

N

∑ , for 1≤ j ≤ N −1

CikCij = δ jk
i=1

N

∑
(A.11)

In a matrix notation we have
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r
r1,

r
r2 ,...,

r
rN−1,

r
RG[ ] = β1

r
R1, β2

r
R2,....., βN

r
RN[ ]

µ12

m1

µ12,3m1

m1 + m2

M β1

−
µ12

m2

µ12,3m2

m1 + m2

M β2

0 −
µ12,3

m3

M β3

0 0 M β4

M M M M

0 0 M βN



































(A.12)

and rewriting this in terms of the coordinate set   
t
α , using Eq. (A.7), we find

  

t
γ =

r
R1,

r
R2,.....,

r
RN[ ]

µ12β1

m1

µ12,3β1m1

m1 + m2

M β1

−
µ12β1

m2

µ12,3β2m2

m1 + m2

M β2

0 −
µ12,3β3

m3

M β3

0 0 M β4

M M M M

0 0 M βN



































=
t
αV

(A.13)

Hence

  

r
r1 =

µ12

M

r
R1 −

r
R2( )

r
r2 =

µ12,3

M
m1

r
R1 + m2

r
R2

m1 + m2

−
r
R3











(A.14)

which correspond to   
r
ra  and   

r
Ra  mentioned in chapter 1 section 2. The first N-1 coordinates in

the new coordinate set   
t
γ  are now referred to as mass weighted Jacobi coordinates. It is

important at this stage to emphasize that the matrix C , and hence also V , can of course be

constructed in a number of different ways corresponding to different choices of Jacobi

coordinates. Since the sum of all the elements in each column of V  vanish, by virtue of the

definition of C  as an orthonormal matrix (A.11), we observe that the defined Jacobi

coordinates are translationally invariant as expected - that is

  
r
r1,

r
r2 ,....,

r
rN−1,

r
RG[ ] Translation by 

r
K →

r
R1 +

r
K,

r
R2 +

r
K,....,

r
RN +

r
K[ ]V =

r
r1,

r
r2 ,....,

r
rN−1,

r
RG +

r
K[ ] (A.15)

Also from the chain-rule
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r
∇i

αΨ =
∂
r
rj
γ

∂
r
ri
α

r
∇ j

γΨ
j=1

N

∑ = β i Cij

r
∇ j

γΨ
i=1

N

∑ , i = 1,2,...N (A.16)

we conclude that the canonical form Eq. (A.3) is maintained for the mass weighted Jacobi

coordinates

  

T Ψ[ ] =
1

2mi

−ih
r
∇i

αΨ
2






i=1

N

∑ =
β i

2mi

−ih Cij

r
∇ j

γΨ
j=1

N

∑
2










i=1

N

∑

=
h2

2M

r
∇ j

γ ∗Ψ
r
∇k

γΨ CikCij
i=1

N

∑
k =1

N

∑
j=1

N

∑ =
1

2M
−ih

r
∇ j

γΨ
2

j=1

N

∑

(A.17)

where we have used the orthogonality relation Eq.(A.11).
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B      Reduction of the total kinetic energy density

The total kinetic energy density of a N particle system, in the laboratory-fixed frame of

reference

  
T Ψ[ ] =

1
2m j

−ih
r
′∇ jΨ

2

j=1

N

∑ (B.1)

where the labels 1 through g refer to nuclei and the remainder to electrons, is transformed into

a space-fixed frame of reference whose origin is the nuclear center of mass according to Eq.

(2.1.5),Eq. (2.1.6), Eq. (2.1.7) and Eq. (2.1.8). Using the well known chain rule it follows that

the gradient transforms as

  

r
′∇ jΨ =

r
∇iΨ

∂
r
ri

∂
r
′rj











i=1

N

∑ +
r
∇GΨ

∂
r
rG
∂
r
′rj

=
r
∇iΨ

∂
∂
r
′rj

r
′ri − βk

r
′rk

k =1

N

∑




















i=1

N

∑ +
r
∇GΨ

∂
∂
r
′rj

µ i

r
′ri

i=1

N

∑










=
r
∇ jΨ −β j

r
∇iΨ

i=1

N

∑ + µ j

r
∇GΨ

(B.2)

and inserting this into Eq. (B.1) gives

  

T Ψ[ ] →
1

2m j

−ih
r
∇ jΨ

2
+

µ j
2

2m j

−ih
r
∇GΨ

2



j=1

N

∑

+
β j

2

2m
−ih

r
∇kΨ

k =1

N

∑
2

−
h2β j

2m j

r
∇ j

∗Ψ
r
∇kΨ

k =1

N

∑ − C.C.

+
h2µ j

2m j

r
∇ j

∗Ψ
r
∇GΨ + C.C.−

h2β jµ j

2m j

r
∇k

∗Ψ
k =1

N

∑










r
∇GΨ − C.C.







(B.3)

where C.C. denotes the complex conjugated of the term before. Using that

µ j

2mj

=
mj

MG

1
2mj

=
1

2MG

(B.4)

the last four cross terms in Eq. (B.3) reduce to

  

r
∇G

h2µ j

2m j

r
∇ j

∗Ψ
j=1

N

∑ −
h2βkµk

2mkk =1

N

∑










r
∇ j

∗Ψ
j=1

N

∑












+ C.C.

=
h2

2MG

r
∇GΨ

r
∇ j

∗Ψ
j=1

N

∑ − βk
k =1

N

∑










r
∇ j

∗Ψ
j=1

N

∑








 + C.C.

(B.5)
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and noting that

β j
j=1

N

∑ =
m j

Mj=1

g

∑ = 1 (B.6)

it is clear from Eq. (B.5) that these four cross terms involving   
r
∇G  all cancel out. We proceed

with a partitioning of the third, forth and fifth term in Eq. (B.3) into a nuclear and a electronic

part, using

β j

2m j

=
m j

M
1

2m j

=
1

2M
, for j = 1,....,g

β j

2m j

= 0, for j = g + 1,....,N













⇒
β j

2

2m jj=1

N

∑ =
1

2M
β j

j=1

g

∑ =
1

2M
(B.7)

We further choose to eliminate the vector   
r
rg  (i.e.   

r
∇gΨ =

r
0) as argued in Eq. (2.1.8). We then

have

  

β j
2

2m
−ih

r
∇kΨ

k =1

N

∑
2

−
h2β j

2m j

r
∇ j

∗Ψ
r
∇kΨ

k =1

N

∑ − C.C.










j=1

N

∑

=
1

2M
−ih

r
∇kΨ

k =1

N

∑
2

− h2
r
∇ j

∗Ψ
r
∇kΨ − C.C.

k =1

N

∑
j=1

g

∑












(B.8)

The first term in (B.8) can be rewritten as

  

1
2M

−ih
r
∇kΨ

k =1

g−1

∑
2

+
1

2M
−ih

r
∇kΨ

k =g+1

N

∑
2

+
h2

2M

r
∇ j

∗Ψ
r
∇kΨ + C.C.

k =g+1

N

∑
j=1

g−1

∑ (B.9)

The last two terms of Eq. (B.8) can equally be rewritten as

  

−
h2

2M

r
∇ j

∗Ψ
r
∇kΨ +

r
∇kΨ

k =g+1

N

∑
k =1

g−1

∑










j=1

g−1

∑ − C.C.

= −
2

2M
−ih

r
∇kΨ

k =1

g−1

∑
2

−
h2

2M

r
∇ j

∗Ψ
r
∇kΨ

k =g+1

N

∑
j=1

g−1

∑ − C.C.

(B.10)

and adding Eq. (B.9) and Eq. (B.10) we see that Eq. (B.8) reduces to

  

−
1

2m j

r
∇ j

j=1

g+1

∑ Ψ

2

+
1

2M

r
∇ j

j=g+1

N

∑ Ψ

2

(B.11)

All in all we now conclude that under the transformation described in Eq. (2.1.5-8) the kinetic

energy density Eq. (B.1) can be written as
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T Ψ( ) = TN Ψ( ) + TE Ψ( ) + TG Ψ( ) (B.12)

where we have defined the nuclear, electronic and center-of-mass terms

  

TN Ψ( ) =
1

2m j

−ih
r
∇ jΨ

2









j=1

g−1

∑ −
1

2M
−ih

r
∇ jΨ{ }

j=1

g−1

∑
2

TE Ψ( ) =
1

2m j

−ih
r
∇ jΨ

2









j=g+1

N

∑ +
1

2M
−ih

r
∇ jΨ{ }

j=g+1

N

∑
2

TG Ψ( ) =
1

2MG

−ih
r
∇GΨ

2

(B.13)
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C      The third degree Hermite type functions

The simple linear basis functions defined in chapter 3 belong to C0 , and operators

represented in this basis will be simple tridiagonal matrices. The price on the other hand for

this simplicity is that one will have to include a large number of these linear basis function in

order to obtain convergence, and for a fixed grid interval this is equivalent to using a dense

grid. Alternatively one can use polynomials of a higher degree in each element of the grid, at

the price of less sparse matrices. As this was also one of the techniques used in the study of

H2
+  we introduce the so-called third degree Hermite type functions defined from the third

degree Bézier polynomials (Eq. (3.2.3) with N=3) as

ƒBi
3 Hj

3[ ] =

H0
3 H1

3 H2
3 H3

3

ƒB0
3

ƒB1
3

ƒB2
3

ƒB3
3

1 0 0 0

3 h 0 0

0 0 3 −h

0 0 1 0



















, h ≡ b − a (C.1)

In reference [50] Linderberg uses a different notation for these third degree Hermite type

functions

ha ≡ H0
3 , da ≡ H1

3, hb ≡ H2
3, db ≡ H3

3 (C.2)

for reasons that shall soon become obvious. In figure (C.1), below, the four basis functions

are shown for the interval a = −1 and b = 1.
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Figure (C.1) Third degree Hermite type functions
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From the definition given in Eq. (C.1) it follows that ha x( )  has unit amplitude at x = a , zero

derivative at x = a  and x = b and zero amplitude at x = b, while da x( ) is a function that has

zero amplitude at both a and b, unit derivative at a and zero derivative at b. The functions

hb x( )  and db x( ) have analog relations, just where a and b has been interchanged. A Hermite

type interpolation of a function f x( ) in the interval from a to b then reads as

f x( ) ≈ f a( )ha x( ) + f b( )hb x( ) + ′f a( )da x( ) + ′f b( )db x( ) (C.3)

For these functions, Hk
3 x( ) , we have the following expression for the x-derivative

d
dx

Hk
3 x( ) = x P Hk

3 = x P Bi
3 ƒBi

3

i=0

3

∑








Hk
3 = x P Bi

3 ƒBi
3 Hk

3

i=0

3

∑ (C.4)

where we have introduced the third degree Bézier functions Bi
3 x( )  and their biorthogonal

functions ƒBi
3 x( )  as described in chapter 3. Inserting Eq. (3.2.5) into Eq. (C.4) give us

d
dx

Hk
3 x( ) = ƒBj

3 Hk
3 ƒBj

3 P Bi
3 x Bi

3

i, j=0

3

∑ = ƒBi
3 P Hk

3 x Bi
3

i=0

3

∑ (C.5)

which expresses that the matrix ƒBi
3 P H j

3[ ] is readily obtained by multiplying ƒBi
3 P Bj

3[ ]
(from Eq. (3.6)) by ƒBi

3 H j
3[ ]  (from Eq. (C.1)) to give

ƒBi
3 P Hj

3[ ] =

P H0
3 H1

3 H2
3 H3

3

ƒB0
3

ƒB1
3

ƒB2
3

ƒB3
3

0 1 0 0

−6h −1 6h −2

−6h −2 6h −1

0 0 0 1



















(C.6)

Higher order x-derivatives are now simply obtained by using Eq. (3.7) in Eq. (C.4). In order

to fulfill the continuity criterion Fi x( ) ∈C0 for the overall basis functions or elements Fi x( )
defined in this FEM scheme, we construct the basis functions as shown in figure (C.2) (where

we have assumed for simplicity that the grid consists of only 3 grid points). We note that in

this way we have 2N elements Fi  defining the FEM scheme, where N denotes the number of

grid points, and that Fi ∈C1 for 3 ≤ i ≤ 2N − 2.
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Figure (C.2) Hermite type FEM functions

A matrix representation of an operator in this FEM basis results in a sparse matrix with a

simple block structure as illustrated in figure (C.3), where the type of overlap integrals has

been indicated using a prime for integrals involving Hermite type functions defined in the

second grid interval (from 1 to 2 in figure (C.2)) and no labels for functions defined in the

first interval (from 0 to 1 in figure (C.2)).
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Figure (C.3) Structure of matrix expressed in Hermite functions
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D      Representation of derivatives in the FD method

An analytic function, Ψ x( ), at a grid point xp can be expanded in a Taylor series

around some other grid point x0 .

Ψ xp( ) = Ψ x0 + p∆x( ) =
p∆x( )n

n!
dn

dxn
Ψ x( )[ ]x0

n=0

∞

∑

≈
p∆x( )n

n!
Ψn x0( )

n=0

2D

∑ , where p = −D,−D + 1,....,D

(D.1)

This set of 2D + 1 equations can be written in the following matrix notation,

  

Ψ ≡

Ψ x−D( )
M

Ψ xD( )

















=

1 L
−D∆x( )2D

2D( )!

M Apn =
p∆x( )n

n!
M

1 L
D∆x( )2D

2D( )!

























×

Ψ0 x0( )
M

Ψ2D x0( )
















≡ A ′Ψ (D.2)

and inverting this linear equation result in

  

′Ψ ≡

Ψ0 x0( )
M

Ψ2D x0( )

















=

1 L
−D∆x( )2D

2D( )!

M Apn =
p∆x( )n

n!
M

1 L
D∆x( )2D

2D( )!

























−1

×

Ψ x−D( )
M

Ψ xD( )

















= A
−1
Ψ (D.3)

Since A  obviously can be written as

  

A =

1 L
−D( )2D

2D( )!

M
pn

n!
M

1 L
D2D

2D( )!

























×

1 0 L 0

0 ∆x 0 L

M 0 O 0

0 M 0 ∆x( )2D



















(D.4)

if follows that
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A
−1

=

1 0 L 0

0 ∆x−1 0 L

M 0 O 0

0 M 0 ∆x( )−2D













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


×

1 L
−D( )2D

2D( )!

M
pn

n!
M

1 L
D2D

2D( )!
















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(D.5)

and combining Eq. (D.3) and Eq. (D.5) we write

  

Ψ0 x0( )
M

Ψ2D x0( )














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0 M 0 ∆x( )−2D
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M
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D2D

2D( )!



















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


(D.6)

We finally obtain the expression

Ψn x0( ) ≈ ∆x( )−n Cp
D( )Ψ xp( )

p=−D

D

∑ (D.7)

where we have introduced the coefficients Cp
D( ) , and just note that it is actually possible to

derive an explicit expression for these coefficients using the solution for a so-called

Vadermonde’s determinant. However we will demonstrate that for (very) small meshes it is

equally possible to determine the coefficients Cp
D( )  analytically in a more straightforward

way, but it should be emphasized that this approach is generally poor for larger meshes. Let

us consider the trivial situation for which D = 2. Eq. (D.2) then reads as

Ψ x−2( )
Ψ x−1( )
Ψ x0( )
Ψ x1( )
Ψ x2( )























=

−2∆x( )0 −2∆x( )1 1
2 −2∆x( )2 1

6 −2∆x( )3 1
24 −2∆x( )4

−1∆x( )0 −1∆x( )1 1
2 −1∆x( )2 1

6 −1∆x( )3 1
24 −1∆x( )4

0∆x( )0 0∆x( )1 1
2 0∆x( )2 1

6 0∆x( )3 1
24 0∆x( )4

1∆x( )0 1∆x( )1 1
2 1∆x( )2 1

6 1∆x( )3 1
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(D.8)

We now invert this matrix equation to give
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Ψ0 x0( )
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(D.9)

Taking the second derivative as an example, we conclude from the above derivations that

d2

dx2
Ψ x( )

x0

≈ ∆x−2 −
1

12
Ψ x−2( ) +

4
3
Ψ x−1( ) − 5

2
Ψ x0( ) +

4
3
Ψ x1( ) − 1

12
Ψ x2( )








(D.10)

Hence the matrix representation T of the one dimensional kinetic energy operator T

  
TΨ x( ) = −

h2

2m
d2

dx2
Ψ x( ) (D.11)

in a five point finite difference scheme reads as

  

TΨp = −
h2

2m
′′Ψp = −
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(D.12)
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E      Volume-elements and the Jacobian-determinant

For the transformation of general coordinates   
t
x = xi , i = 1, .., N{ } to the coordinates

  
t
y = yi , i = 1, .., N{ } we define the Jacobian matrix, J , as

  

J ≡
∂
t
y

∂
t
x

=

∂y1

∂x1

∂y2

∂x1

L
∂yN

∂x1

∂y1

∂x2

∂y2

∂x2

L
∂yN

∂x2
L L L L
∂y1

∂xN

∂y2

∂xN

L
∂yN

∂xN

























(E.1)

For this transformation it can be shown98 that the corresponding change of the volume-

element in an N-fold integral reads as

  

dx1dx2 ⋅ ⋅ ⋅dxN = det
∂
t
x

∂
t
y









 dy1dy2 ⋅ ⋅ ⋅dyN = det J

−1





dy1dy2 ⋅ ⋅ ⋅dyN =
dy1dy2 ⋅ ⋅ ⋅dyN

det J[ ]
(E.2)

If the transformation from the coordinates   
t
x = xi , i = 1, .., N{ } to   

t
y = yi , i = 1, .., N{ } is a

simple linear transformation (i.e. Y = XT, where X and Y are row vectors), we simply have

J = T. Thus if the linear transformation is unitary (i.e. T
−1

= T
+
  ⇒ det T[ ] = 1) or just

unimodular (i.e. det T[ ] = 1), we have the trivial result

dx1dx2 ⋅ ⋅ ⋅dxN = dy1dy2 ⋅ ⋅ ⋅dyN (E.3)

In other words there is no contribution from the Jacobian determinant to the volume-element

for unitary or unimodular linear transformations. In the special case of a three dimensional

transformation of Cartesian coordinates we have the result99

  

J ≡
∂
t
y

∂
t
x

=

∂y1

∂x1

∂y2

∂x1

∂y3

∂x1
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∂x3


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















= ∇xy1 • ∇xy2 × ∇xy3( ) (E.4)

and consequently we write

98 In the simple two-dimensional case this is shown in reference [73] p. 798-800. This procedure can then easily be
generalized to an N-fold integral as discussed above.

99 We recall that y1 • y2 × y3( )  exactly denotes the volume of the polygon spanned by the three vectors y1 , y2 and y3 ,
and hence we can designate the name “differential volume-element” to the term ∇xy1 • ∇xy2 ×∇xy3( )  in Eq. (E.5).
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dx1dx2dx3 = ∇xy1 • ∇xy2 × ∇xy3( )
−1

dy1dy2dy3 (E.5)

We are now in the position to transform the volume-element entering the A-term of the

J-functional, Eq. (5.2.1), from the lab-fixed coordinates to the body-fixed coordinates as

outlined in chapter five. The space-fixed coordinates,   
r
′r ,   

r
′R  and   

r
RG

′ , were obtained from

the lab-fixed coordinates,   
r
ra ,   

r
rb  and   

r
re , by a simple linear transformation, Eq. (5.3.2), of the

latter. Consequently the Jacobian of this transformation simply reads as

  

J ≡

∂
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∂
r
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∂
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∂
r
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∂
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∂
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∂
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∂
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∂
r
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∂
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′RG

∂
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∂
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∂
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∂
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∂
r
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∂
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∂
r
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
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




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

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= V =

−
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−
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

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
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(E.6)

such that the Jacobian is easily shown to be unimodular

det J[ ] =
ma

M
+

mb

M
+

mame

ma + mb( )M
+

mbme

ma + mb( )M
= 1 (E.7)

Hence for the transformation from lab-fixed to space-fixed coordinates we write the

corresponding volume-element as

  d
r
rad

r
rbd

r
re = d

r
′r d

r
′R d

r
′RG (E.8)

Next we transform the space-fixed coordinates,   
r
′r ,

r
′R and

r
′RG, into the body-fixed

coordinates,   
r
r,

r
R and

r
RG, using the definition Eq. (5.4.2) - that is

  
r
r,

r
R,

r
RG[ ] =

r
′r ,

r
′R ,

r
′RG[ ]R α ,β ,0( ) (E.9)

where R α ,β ,0( ) is the real unitary matrix, Eq. (4.3.3), representing the rotation of the space-

fixed frame of reference into body-fixed frame of reference. Thus it follows from Eq. (E.3)

that

  d
r
′r d

r
′R d

r
′RG = d

r
rd

r
Rd

r
RG (E.10)

With the introduction of body-fixed coordinates, as described in chapter 5 section 4, the inter-

nuclear coordinate vector   
r
R, can be parametrized in terms of the two Euler angles α  and β ,

needed to rotate the space-fixed frame of reference into the body-fixed frame of reference,

and the inter-nuclear separation R. From the explicit expression of this rotation, Eq. (5.4.4), it

follows that
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(E.11)

Clearly the transformation from the coordinates R1, R2, R3{ } to α , β , R{ } is not linear, and

so we use the definition of the Jacobian, Eq. (E.1), to determine the change in the volume-

element caused by this change of variables.

J
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=
∂ R1, R2, R3{ }
∂ α , β , R{ }
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∂R1
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

(E.12)

such that

det J
−1[ ] = −R2 sinβ = R2 sinβ (E.13)

and

  d
r
R = dR1dR2dR3 = R2 sinβdαdβdR (E.14)

Finally we combine Eq. (E.8), Eq. (E.10) and Eq. (E.14), and conclude in a somewhat vague

notation

  
d
r
rad

r
rb∫ d

r
re = d

r
′r d

r
′R d

r
′RG∫ = d

r
rd

r
Rd

r
RG∫ = d

r
r sinβR2{ }dαdβdRd

r
RG∫ (E.15)
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Subject index

A
active rotation 56

adiabatic approximation 14

adiabatic states 11

angular momentum coupling terms 78

angular momentum matrices 54

atomic units 62

functional convention 57

B
Bézier functions 37, 147

body-fixed coordinates 63-64

body-fixed frame of reference 63-64

Boltzmann distribution 2

Born-Oppenheimer approximation 14, 78, 92

bra-ket notation 12

C
Cartan mapping 54

channel 4

channel wave functions 39

clamped nucleus equation 10

Clebsch-Gordan coefficients (see Wigner

coefficients)

closed channels (see channel)

collinear 4

collocation matrix 42

collocation method 42

coordinate problem 3

cut-off function 18

D
Delvers hyper-angle 7

diabatic states 10

differential cross section 1

Dirac notation 38

discrete variable representation 36, 43-48, 96

DVR (see discrete variable representation)

E
elastic scattering 2

electric dipole approximation 98

electronic term 77

Euler angles 52-53, 64

F
FEM (see finite element method)

finite basis representation 35

finite difference method 41, 42, 149-151

finite element method 36-39

G
Gauss quadrature theorem 43-44

generalized eigenvalue equation 88

Green’s theorem 29

H
Hermite type functions 146-148

Hilbert space 31

Householder reduction method 108

hyper-angle 7

hyper-spherical coordinates 6

hyper-spherical radius 7

I
inelastic scattering 2

integral cross section 1

J
J-functional 28

Jacobi-coordinates 5, 60

Jacobian determinant 152-154

Jacobian matrix 152-154

K
Kohn anomalies 16, 20

Kohn variational principle 15, 19

KVP (see Kohn variational principle)

L
laboratory-fixed coordinates 51, 60

laboratory-fixed frame of reference 59-60

Laguerre functions 85-87, 102

Laguerre’s method 106

LCAO (see linear combination of atomic
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orbitals)

Legendre polynomials 80-81, 102

linear combination of atomic orbitals 6

M
mass-weighted Jacobi-coordinates 139-142

Mead’s coordinates 8

Murphy’s law 105

N
natural collision coordinates 4

Newton-Raphson method 107

non-adiabatic treatment 92-96

O
open channels (see channel)

P
parity 90

passive rotation 56

preconditioning 47

product channels (see channel)

projection method 10

Pseudo-Spectral methods (see collocation

method)

Q
quantum electrodynamics 97

quantum numbers 49

QZ algorithm 109

R
R-matrix 24

R-matrix theory 23-33

radial term 77

Rayleigh-Ritz variational principle 15

reactance matrix 16

reactant channel (see channel)

reactive scattering 1

reduced mass 62, 140

reduced matrix element 100

reduced rotation matrix 55

rotating symmetric top 58

rotation matrix 54, 55

rotations 52-58

S
S-matrix version of the Kohn variational

principle 16-21

scattering matrix 16

second quantization 35

selection rules 100

semiclassical electrodynamics 97

Siegert eigenvalues 20

Singular Value Decomposition 107

skewing angle 8

Sobolev space 31

space-fixed coordinates 51, 60-61

Space-fixed frame of reference 61

Spectral Transform Lanczos Method 109

spherical basis 55, 67

spherical components 99

spheroidal coordinates 69-70

Sturmian basis-set 89

T
Thermal rate constants 1

total reactive thermal rate coefficient 2

transition dipole moment 98

translation generator 50

Tridiagonal QL Implicit algorithm 108

W
Wigner coefficients 58

Wigner-Eckart theorem 100



References                                                                                                            157

References

1. M. Born, J. R. Oppenheimer, Ann. Phys. 84, 457-484 (1927).

2. E. P. Wigner, L. Eisenbud, “Higher Angular and Long Range Interaction in Resonance

Reactions”, Phys. Rev. 72, 29-41 (1947).

3. J. Linderberg, B. Vessel, “Reactive Scattering in Hyperspherical Coordinates”, Int. J.

Quant. Chem. 31, 65-71 (1987).

4. R. T. Pack, J. O. Hirschfelder, “Separation of Rotational Coordinates from the N-

Electron Diatomic Schrödinger Equation”, J. Chem. Phys. 49, 4009-4020 (1968).

5. J. Linderberg, “An Algorithm for R Matrix Calculations for Atom-Diatom Reactive

Scattering”, Int. J. Quant. Chem. 35, 801-811 (1989).

6. J. Avery, D. R. Herschbach, “Hyperspherical Sturmian Basis Functions”, Int. J. Quant.

Chem. 41, 673-686 (1992).

7. C. Leforestier, Université Paris-Sud, Orsay, France, private communication (1992)

8. M. Baranger, “Simplified quantum-mechanical theory of pressure broadening”, Phys.

Rev. 111, 481-493 (1958).

9. N. Allard, J. Kielkopf, “Temperature and density dependence of the Lyman α line wing

in hydrogen-rich white dwarf atmospheres”, Astron. Astrophys. 242, 133-141 (1991).

10. P. Thejll, NORDITA, Niels Bohr Institute, University of Copenhagen, private

communication (1992)

11. W. Pauli, Ann. Phys. 68, 177 (1922).

12. O. Burrau, Kgl. Danske Vid. Selsk. Math.-fys. Medd. 7, Nr. 14 (1927).

13. E. A. Hylleraas, Z. Phys. 71, 739 (1931).

14. G. Jaffé, “Zur Theorie des Wasserstoffmolekülions”, Z. Phys. 87, 535-544 (1934).

15. I. Sandman, Proc. Roy. Soc. Edinb. 55, 72 (1935).



158                                                                                                            References

16. P. A. Thejll, Molecules in the Stellar Environment., U. G. Jørgensen, ed.  (Springer

Verlag, p.x., 1993).

17. D. R. Bates, “Rate of formation of molecules by radiative association”, M. N. R. A. S.

III, 303-314 (1951).

18. D. R. Bates, “Absorption of radiation by an atmosphere of H, H+ and H2
+ - semi-

classical treatment”, M. N. R. A. S. 112, 40-44 (1952).

19. B. R. Johnson, J. Chem. Phys. 73, 5051 (1980).

20. L. M. Delvers, Nucl. Phys. 9, 391 (1959).

21. L. M. Delvers, Nucl. Phys. 20, 275 (1960).

22. C. A. Mead, J. Chem. Phys. 72, 3839 (1980).

23. J. Linderberg, “Basis for Coupled Channel Approach to Reactive Scattering”, Int. J.

Quant. Chem. 19, 467-476 (1986).

24. Y. Öhrn, J. Linderberg, “Hyperspherical coordinates in four particle systems”, Mol.

Phys. 49, 53-64 (1983).

25. K. L. Bak, Masters thesis, Born-Oppenheimer approksimationens vanskeligheder,

University of Aarhus, Denmark (1989).

26. M. Born, K. Huang, Dynamical Theory of Crystal Lattices. (U. P., Oxford, 1955), vol.

Appendix 8.

27. B. T. Sutcliffe, The Born-Oppenheimer Approximation, Advanced NATO study

institute. Methods in Computational Molecular Physics. (Bad Windsheim, Germany,

1991)

28. L. Hulthén, Kgl. Fysiogr. Sällsk. Lund Förh. 14, No. 21 (1944).

29. L. Hulthén, Arkiv Mat. Astron. Fysik 35A, No. 25 (1948).

30. W. Kohn, “Variational Methods in Nuclear Collision Problems”, Phys. Rev. 74, 1763-

1772 (1948).



References                                                                                                            159

31. R. K. Nesbet, Variational Methods in Electron-Atom Scattering Theory. (Plenum, New

York, 1980).

32. J. Z. H. Zhang, S. Chu, W. H. Miller, “Quantum scattering via the S-matrix version of

the Kohn variational principle”, J. Chem. Phys. 88, 6233-6239 (1988).

33. G. W. Kellner, Z. Phys. 44, 91 (1927).

34. E. A. Hylleraas, Z. Phys. 48, 469 (1928).

35. E. A. Hylleraas, Z. Phys. 54, 347 (1929).

36. J. Schwinger, Phys. Rev. 72, 1763 (1947).

37. R. G. Newton, Scattering Theory of Particles and Waves. (Plenum, New York, 1982).

38. T. Kato, “Variational Methods in Collision Problems”, Phys. Rev. 80, 475 (1950).

39. C. Schwartz, “Electron Scattering from Hydrogen”, Phys. Rev. 124, 1468-1471 (1961).

40. C. Winstead, V. McKoy, Phys. Rev. A 41, 49 (1990).

41. D. W. Schwenke, et al., J. Chem. Phys. 92, 3202 (1988).

42. X. Wu, B. Ramachandran, R. E. Wyatt, “A single arrangement variational method for

total reaction probabilities”, Chem. Phys. Letters 214, I, 118-124 (1993).

43. A. J. F. Siegert, Phys. Rev. 56, 750 (1939).

44. A. M. Lane, R. G. Thomas, “R-matrix Theory of Nuclear Reactions”, Rev. Mod. Phys.

30, 257-353 (1958).

45. D. M. Hirst, A Computational Approach to Chemistry. (Blackwell Scientific

Publications, Oxford, 1990).

46. J. Linderberg, S. B. Padkjær, “Numerical implementation of reactive scattering theory”,

J. Chem. Phys. 90, 6254-6264 (1989).

47. A. Szabo, N. S. Ostlund, Modern quantum chemistry. (McGraw-Hill Publishing co.,

New York, 1989).



160                                                                                                            References

48. D. P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynamics., Theoretical

Chemistry (Academic Press, London, 1984).

49. P. Jørgensen, Calculation of geometrical derivatives in molecular electronic structure

theory, Advanced NATO study institute. Methods in Computational Molecular Physics.

(Bad Windsheim, Germany, 1991)

50. J. Linderberg, “Finite Element Method in Quantum Mechanics”, Comp. Phys. Rep. 6,

209-242 (1987).

51. D. R. Hartree, “The wave mechanics of an atom with a noncoulombic central field”,

Proc. Camp. Phil. Soc. 24, 111 (1928).

52. M. Abramowitz, I. A. Stegun, ed., Handbook of Mathematical Functions  (Dover

Publications, Inc., New York, 1968).

53. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, The

Art of Scientific Computing (FORTRAN Version). (Cambridge University Press,

Cambridge, 1989).

54. L. C. Biedenharn, J. D. Louck, Angular momentum in quantum physics: Theory and

Applications., G.-C. Rota, ed. , Encyclopedia of Mathematics and its Applications

(Cambridge University, New York, 1981), vol. 8.

55. D. M. Brink, G. R. Satchler, Angular Momentum. (Oxford University Press, 1968).

56. B. R. Judd, Angular Momentum Theory for Diatomic Molecules. (Academic Press, Inc.,

New York, 1975).

57. M. E. Rose, Elementary Theory of Angular Momentum. (Wiley, New York, 1957).

58. M. Tinkham, Group Theory and Quantum Mechanics. (McGraw-Hill Book Company,

1964).

59. R. T. Pack, “Quantum reactive scattering in three dimensions using hyperspherical

(APH) coordinates. Theory”, J. Chem. Phys. 87, 3888-3921 (1987).

60. R. C. Weast, ed., Handbook of Chemistry and Physics  (CRC press, Inc., Boca Raton,

Florida, 1984).

61. I. N. Levine, Quantum Chemistry. (Allyn and Bacon, Inc., 1983).



References                                                                                                            161

62. M. Rotenberg, Adv. At. Mol. Phys. 6, 233 (1970).

63. J. D. Power, Phil. Trans. R. Soc. London A 274, 663 (1974).

64. E. U. Condon, G. H. Shortley, The Theory of Atomic Spectra. (Cambridge University

Press, London, 1935).

65. C. Leforestier, “Grid representation of rotating triatomics”, J. Chem. Phys. 94, 6388-

6397 (1991).

66. T. Ericsson, A. Ruhe, “STLM, A Software Package for the Spectral Transform Lanczos

Method”, Math. of Comp. 35-152, 1251 (1980).

67. B. S. Garbow, . Applied Mathematics Division, Argonne National Laboratory,

68. Moler, Stewart, SIAM J. Numer. Anal. 10, 241-256 (1973).

69. D. R. Bates, K. Ledsham, A. L. Stewart, “Wave Functions of the Hydrogen Molecular

Ion”, Phil. Trans. R. Soc. London A 246, 215-240 (1953).

70. J. M. Peek, “Eigenparameters for the 1sσg and 2pσu Orbitals of H2
+”, J. Chem. Phys.

43, 3004-3006 (1965).

71. H. E. Montgomery Jr., “One-electron Wavefunctions. Accurate Expectation Values”,

Chem. Phys. Letters 50, 455-458 (1977).

72. K. Way, ed., Atomic Data and Nuclear Data Tables , vol. 14 (Academic Press, Inc.,

New York, 1974).

73. J. Irving, N. Mullineux, Mathematics in Physics and Engineering. (Academic Press,

London, 1959).


