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Abstract
A model  describing  the full  quantum mechanical three body problem of the
hydrogen molecular ion is presented, and  some of the numerical results are
subsequently discussed. The overall numerical scheme is based on a variation
principle for the matrix representation of the scattering problem set up using
grid-methods (e.g. finite element method) and  associated quadrature-schemes
(a discrete variable representation).

1. Introduction

We have performed full quantum mechanical three body scattering calculations to form
overall ÒreactionsÓ of the type:

H + H+  → H2
+ 3pσu / 2pπu[ ]  → H2

+ 1sσg[ ]  → H + H+ + ν (1.1)

The hydrogen molecular ion, H2
+ , comprising two protons and one electron, is the

simplest molecule of all. If we neglect all effects coming from the spin of the particles and
if in addition the motion of the protons is disregarded, we are faced with the problem of
an electron moving in the presence of two fixed Coulomb centers of attraction - the so-
called Born-Oppenheimer approximation (1). In this from, the analysis of H2

+  has
attended considerable attention over the years; thus, Burrau (2) in 1927, Hylleraas (3) in
1931 and many others have performed Born-Oppenheimer approximate calculations on
both the ground state and some of the excited states. The separability of the electronic
Schr�dingerÕs equation in the so-called spheroidal coordinates enables solutions of
almost unlimited accuracy to be computed. The full three-body problem of H2

+  on the
other hand, forms a much bigger theoretical as well as computational task - in fact it is
well-known that there does not exist any analytical or even ÒexactÓ numerical solution to
this problem. Further since the Born-Oppenheimer approximation in general terms is
acknowledged as being a very good approximation one could ask Òwhy bother to try and
solve the full three-body problem of H2

+  ?Ó

2. Astrophysical motivation

Like atomic hydrogen, the molecular ion plays a fundamental role in the understanding
and interpretation of light emitted from a large number of stars. H line absorption is
proportional to the absorber density, but in the H2

+-system the absorber density is
proportional to the square of the H density, and hence a greater sensitivity to the pressure



in the stellar atmosphere is found in the absorption features of H2
+  then in H. In an

atmosphere in equilibrium the pressure is given by the temperature and the gravity of the
star so that it becomes possible to accurately study these parameters in stars that show H2

+

absorption.
The stars in question are the Hydrogen rich white dwarfs (WD). At a certain temperature
(near 16,000K) these WDÕs show UV absorption features from H2

+  on the wings of the
Lyman a-line. The main interests in studying these WDÕs lies in the generally interesting
role WDÕs have as end-products of nearly all stellar evolution; 90% of all stars are
believed to end up as WDÕs (4). Of particular interest to some astrophysics (4) is the
presence of stellar oscillations in the so-called DA WDÕs in a temperature range that
coincides with the range of temperature in which the H2

+  features can be seen. Stellar
oscillations can be used to study the stellar interior, and important insight into stellar
evolution can be obtained if the most accurate information about the star can be gathered
from analysis of the observed light-spectrum and collated with the information available
from the analysis of the oscillations (5).
A study of the absorption due to transitions among states of H2

+ , begins with the problem
of obtaining a good representation of the transition dipole moment, which expresses the
amplitude for the given transition. So far the study of transition dipole moments for H2

+

has only been done in the adiabatic or Born-Oppenheimer approximation (1) using
classical or semi-classical arguments. A good example of such an approach is the work
by Bates (6), which is based on the adiabatic potential energy curves for H2

+ . This and
related models do not, however, give the right absorption-coefficients; it is believed that
this is due to the neglect of non-adiabatic effects, i.e., the coupling of the nuclear and
electronic motions.

3. Quantum mechanical motivation

At the very heart of practically all ab initio quantum mechanical calculations for molecular
systems lies either the Born-Oppenheimer (1) or the adiabatic approximation. The
philosophy of these approaches is a separation (complete or partial) of the electronic and
nuclear motions, taking point of reference in the large difference in the masses. Solving
ab initio quantum mechanical calculations for many particle systems in this picture of a
clamped nucleus Hamiltonian is difficult enough, and hence it is unlikely that calculations
will be made at a higher level of approximation in the near future. There are, however,
and this is of course the basis of this study, systems like H2

+  (and its isotopes) for which
this statement is definitely not true. These molecules contain so few particles that one
need not make ÒanyÓ approximations in the solving of Schr�dingerÕs equation.
Furthermore, since the nuclei are very light, the corrections to the Born-Oppenheimer (1)
or adiabatic results will be greater for these molecules then for most others.

4. Theory

The work takes point of reference in the Wigner-Eisenbud (7) R-matrix theory where the
configuration space is divided into two regions, a bounded internal interaction region V
and an external region in which the interactions have vanished. The mapping of the



internal scattering wave function onto the asymptotic states, H + H+ , on the surface S
enclosing V is expressed in terms of log-derivative boundary conditions represented by
the R-matrix. The variational formulation of the Schr�dinger equation and the above
associated scattering boundary conditions is conveniently expressed in the J-functional
(8) which reads,

J y ,f( ) º dv E - W w( )( ) y w( ) 2
- Ñy w( ) 2{ }ò

+ ds y * w( )f w( ) + f * w( )y w( ){ }ò
- dsds©f * w( )Rs w , ¢w( )f ¢w( ){ }ò

(4.1)

where y (w ) denotes the scattering amplitude and f(w )  the asymptotic state, H + H+ .
To reduce the full 3 ´ 3 dimensional problem of H2

+  to just three dimensions, 3
translation and 3 rotation coordinates are separated out to yield the following 3 body fixed
spheroidal coordinates
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where R denotes the inter-nuclear distance and   
r
r  the vector from the nuclear center of

mass to the electron. The full scattering wave function, y (w ), is expanded in a series of
Sturmian basis functions (10), u i (x ,h, f ), i = 1,..,N{ }, i.e. a basis-set where all the
members correspond to the same value of the energy.

y w( ) = y x ,h, f( ) = u i x ,h, f( )
i=1

N

å (4.3)

The Sturmian basis functions, u i x ,h, f( ), are in turn expanded in a series of product-
functions of linear finite element method (FEM) functions (9), h i f( ),{ i = 1,...,N}, and
Born-Oppenheimer approximate channel wave functions, j j

i (x ,h),{ j = 1,..M}.

u i x ,h, f( ) = h i f( ) C j
ij j

i x ,h( )
j=1

M

å (4.4)

Finally the channel wave functions, j j
i (x ,h) , are expressed in a product basis-set of

associated Legendre functions in h  and associated Laguerre functions in the x
coordinate. This particular choice of primitive basis functions in (x ,h)  allows for a very
powerful and convenient 2-dimensional discrete variable representation scheme (11)  to
be used. Inserting these basis-expansions, Eq. (4.3-4), into Eq. (4.1) and using some
aspects of variational R-matrix theory that emerge from the FEM representation of
y (x ,h, f )  in the f coordinate, the full scattering problem of the hydrogen molecular ion
reduces to the following matrix equation.
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In this equations A ij  is a square M ´ M  matrix representation of the first term in Eq.
(4.1), uN  and Ci  are column vector of dimension M  and R(w , ¢w ) is a real number (i.e.
a one-dimensional matrix). The idea is now to apply a recursive procedure that
successively computes R w , ¢w( ) starting at the boundary fmax , and then going inwards to
fmin , in such a way that it allow us to judge the possible convergence as more and more
functions are included in the domain of small f . It can easily be shown that the solution
to the matrix equation (4.5) can be expressed as

R = DN- k
T

RN- k DN- k

k =0

N-1

å (4.6)
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with the following initial expressions for RN  and DN  .

DN º uN

RN º -ANN
-1

BN-1 º RN ANN-1

(4.8)

The amplitudes read as

C1 = R1D1

Ck = Rk Dk + Bk -1Ck -1, 2 £ k £ N
(4.9)

This recursive formula causes the amplitude of the scattering wave function to be
propagated from fmin  to the boundary fmax . The overall numerical scheme for each
scattering calculation is then started by initiating the total scattering wave function,
y (w ), with a particular electronic state at the boundary fmax  - corresponding to fixing uN

in Eq. (4.8) to a desired asymptotic electronic wave function in the incoming channel.
This situation is illustrated in figure 1 below.
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Figure 1 Schematic illustration of a scattering calculation initiated by a
1ssg  electronic state. The in- and out-going arrows denote respectively the
in- and out-coming channels . All the other channels are assumed to be closed
in the calculations.

In the considered scattering calculations the in-coming channels were respectively an
electronic 1ssg  (as is illustrated in figure 1), 3psu  and 2ppu  state. Non-adiabatic radial
coupling terms were included in the formulation, but angular coupling terms were
neglected as a first approximation. Thus coupling between channels with different parity
was neglected.

5. Results

As a test of the stability of the overall numerical scheme, the zero order term in the
variational functional (i.e. the Born-Oppenheimer term) was evaluated. In table 1 the
convergence of the Born-Oppenheimer energy for the 1ssg  state with at a fixed nuclear
separation (2.0 a0 ) is shown as the number of grid-points in (x ,h)  is increased.

Table 1

Exact value -0.6026342144949 (12, 13)

E/au Nz =5 10 30 50

Nh =5 -0.6 -0.6026342 -0.6026342 -0.6026342

10 -0.6 -0.6026342 -0.60263421449 -0.602634214495

30 -0.6 -0.6026342 -0.60263421449 -0.6026342144949

50 -0.6 -0.6026342 -0.60263421449 -0.6026342144949



As suggested by these numbers we found the numerical scheme to be accurate for the
zero order term in the functional - down to the floating point precision of the machine. In
figure 2 the exact potential energy curves are shown.

Figure 2 Plot of the electronic potential energy curves for the hydrogen
molecular ion.

The FORTRAN code for the full scattering problem has been implemented on the Convex
3220 (hcocvx) in Lyngby and the Convex 3240 (beta) in Odense. Because of the size of
the presented problem, data had to be buffered to the scratch disk. By extracting the
shared steps in the algorithms for different scattering calculations, the high I/O
performance of the super-computers made the disk buffering practical. Once the shared
data had been computed and stored on disk, additional scattering calculations could be
computed with a significant speedup. Using 30 grid points in both of the coordinates
(x ,h)  (i.e. M=900 in Eq. (4.4))the computation of the shared data takes roughly 1 CPU
hour. Thereafter each scattering calculation ran for 1.5 CPU hour using 500 finite
element functions in the f coordinate (i.e. N=500 in Eq. (4.3)). In figure 3 and 4 the
radial variations of the resulting scattering wave functions are plotted for respectively a
1ssg  and 3psu  initiated calculation. Note that the classical turning-points (i.e. where the
amplitudes fade out rapidly for small f) in figure 3 and 4 are in exact agreement with the
respective potential energy curves shown in figure 2. The resulting scattering amplitudes
are then used to generate the dipole moment function, which takes 1.5 CPU hour. To
obtain a reasonable representation of the total transition dipole moment as a function of
the frequency and the temperature we expect to require around 50 of these data points,
i.e. 225 CPU hours. Finally to obtain absorption-coefficients for H2

+  we have to apply a
modified version of M. BarangerÕs Òsimplified quantum-mechanical theory of pressure



broadeningÓ (14). These absorption spectra should then be compared with the absorption
spectra recorded in hydrogen-rich white dwarf atmospheres (4, 15).

Figure 3 Plot of the radial variation of a scattering wave function initiated
by an 1ssg  electronic state with energy -0.4000 au.

Figure 4 Plot of the radial variation of a scattering wave function initiated
by an 3psu  electronic state with energy -0.0745 au.

6. Conclusion

We have demonstrated a new approach to the full quantum mechanical three body
problem of the hydrogen molecular ion, using a variational R-matrix method on proton
hydrogen scattering. So far this approach has proven to be very versatile and promising,



but it should be emphasized that a conclusive evaluation in terms of comparison with
experimental results, still can not be made. However it should be clear from the interim
results presented in the previous section that nothing so far indicates that the model suffer
from neither numerical instabilities nor subsequent problems with convergence. Actually
all the computed wave functions seems to be in excellent agreement with the intuitively
expected results using semi-classical arguments. Especially a justification or rather
motivation for the Born-Oppenheimer approximation emerge from the calculations. Of the
more practical aspects of this project, we would like to stress that it has been a very
computationally intensive task to solve this quantum mechanical three body problem, and
as such it is not surprising that it has never been attempted before - at least not in this sort
of formulation. Besides the fact that the implementation of the variational R-matrix
algorithm appears to give correct results, the numerically most exciting aspect of the
project was certainly that we obtained exact eigenvalues down to the floating point
precision of the computer, for at least the two lowest electronic states of H2

+ . Thus the
developed DVR-scheme has definitely proved practicable and possibly even
advantageous to the other numerical schemes used for solving the Born-Oppenheimer
approximate states of the hydrogen molecular ion.
As have been pointed out before, the project is not yet completed in terms of obtaining the
desires absorption coefficients for H2

+ . Next we have to compute transition dipole
moments from the obtained scattering amplitudes, and from these data the absorption
spectra for the hydrogen molecular ion should be generated. Also the development of the
non-adiabatic model itself is far from over. Future steps involve inclusion the non-
adiabatic angular momentum coupling terms in the variational functional Eq. (4.1). This
will introduce coupling between wave functions with difference in unity in the projection
angular momentum quantum number, such that states with different parity couples.
Consequently many more channels will be open, and the discrete variable representation
(DVR) scheme will be complicate by the fact that we must define a new DVR for every
value of the projection angular momentum.
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