EUROVIS 2007

Eurographics / IEEE VGTC Symposium on Visualization

Norrköping, Sweden
May 23th–25th, 2007

Symposium Co-Chairs
Ken Museth (Linköping University, Sweden)
Torsten Möller (Simon Fraser University, Canada)
Anders Ynnerman (Linköping University, Sweden)

Steering Committee
Frits Post (TU Delft)
Ronny Peikert (ETH Zürich)
Edi Gröller (Technische Universität Wien)
Dirk Bartz (Universität Leipzig)
Thomas Ertl (Universität Stuttgart)

Proceedings Production Editors
Dieter Fellner (TU Darmstadt & Fraunhofer IGD, Germany)
Torsten Möller (Simon Fraser University, Canada)

Co-Sponsored by IEEE-CS Visualization and Graphics Technical Committee and EUROGRAPHICS Association
Table of Contents

Table of Contents ... 3
Preface .. 7
Keynote ... 9
Capstone .. 10

Time-Series Visualization

Multiscale Visualization of Dynamic Software Logs 11
Sergio Moreta and Alexandru Telea
Relevance Driven Visualization of Financial Performance Measures 19
Hartmut Ziegler, Tilo Nietzschmann, and Daniel A. Keim
Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data 27
Ming Hao, Umeshwar Dayal, Daniel Keim, and Tobias Schreck
Depth Cues and Density in Temporal Parallel Coordinates 35
Jimmy Johansson, Patric Ljung, and Matthew Cooper

Text and Document Visualization

KeyStrokes: Personalizing Typed Text with Visualization 43
Petra Neumann, Annie Tat, Torre Zuk, and Sheelagh Carpendale
Visualization of Uncertainty in Lattices to Support Decision-Making 51
Christopher Collins, Sheelagh Carpendale, and Gerald Penn
Manual Clustering Refinement using Interaction with Blobs 59
Christian Heine and Gerik Scheuermann

Graph Visualization

Grouse: Feature-Based, Steerable Graph Hierarchy Exploration 67
Daniel Archambault, Tamara Munzner, and David Auber

BEST PAPER:
Online Dynamic Graph Drawing ... 75
Yaniv Frishman and Ayellet Tal
Path Visualization for Adjacency Matrices 83
Zeqian Shen and Kwan-Liu Ma
Table of Contents

Interaction Design

Story Telling for Presentation in Volume Visualization .. 91
 Michael Wohlfart and Helwig Hauser

Dimensional Congruence for Interactive Visual Data Mining and Knowledge Discovery 99
 Sebastian Baumgärtner, Achim Ebert, and Matthias Deller

Trust Neighborhoods: Visualizing Trust in Distributed File Sharing Systems 107
 Niklas Elmqvist and Philippas Tsigas

Multivariate Visualization and Rendering

A Tri-Space Visualization Interface for Analyzing Time-Varying Multivariate Volume Data ... 115
 Hiroshi Akiba and Kwan-Liu Ma

Interactive Visualization of Multi-Field Medical Data Using Linked Physical and Feature-Space Views .. 123
 Jorik Blaas, Charl P. Botha, and Frits H. Post

Design of Multi-dimensional Transfer Functions Using Dimensional Reduction 131
 Francisco de Moura Pinto and Carla M. D. S. Freitas

Subdivision Volume Splatting ... 139
 Kevin T. McDonnell, Neophytos Neophytou, Klaus Mueller, and Hong Qin

Visualization Systems for Applications

The CoMIRVA Toolkit for Visualizing Music-Related Data ... 147
 Markus Schedl, Peter Knees, Klaus Seyerlehner, and Tim Pohle

Sonar Explorer: A New Tool for Visualization of Fish Schools from 3D Sonar Data 155
 Jean-Paul Balabanian, Ivan Viola, Egil Ona, Ruben Patel, and Eduard Gröller

See What You Know: Analyzing Data Distribution to Improve Density Map Visualization ... 163
 Enrico Bertini, Alessio Di Girolamo, and Giuseppe Santucci

Integrating Local Feature Detectors in the Interactive Visual Analysis of Flow Simulation Data .. 171
 Raphael Bürger, Philipp Muigg, Martin Ilcík, Helmut Doleisch, and Helwig Hauser
Table of Contents

Feature Extraction

Flexible And Topologically Localized Segmentation ... 179
Gunnar Johansson, Ken Museth, and Hamish Carr

Segmentation of DT-MRI Anisotropy Isosurfaces .. 187
Thomas Schultz, Holger Theisel, and Hans-Peter Seidel

Feature Identification and Extraction in Function Fields 195

Parametric Visualization of High Resolution Correlated Multi-spectral
Features Using PCA ... 203
Alexander Broersen, Robert van Liere, and Ron M. A. Heeren

Flow Visualization

Visualization Methods for Vortex Rings and Vortex Breakdown Bubbles 211
Ronald Peikert and Filip Sadlo

Animation of Orthogonal Texture-Based Vector Field Visualization 219
Sven Bachthaler and Daniel Weiskopf

Priority Streamlines: A context-based Visualization of Flow Fields 227
Michael Schlemmer, Ingrid Hotz, Bernd Hamann, Florian Morr, and Hans Hagen

GPU Techniques

Hardware-accelerated Stippling of Surfaces derived from Medical Volume Data 235
Alexandra Baer, Christian Tietjen, Ragnar Bade, and Bernhard Preim

Multiresolution MIP Rendering of Large Volumetric Data Accelerated on
Graphics Hardware ... 243
Wladimir J. van der Laan, Andrei C. Jalba, and Jos B. T. M. Roerdink

Interactive Visual Exploration of Unsteady 3D Flows 251
Kai Bürger, Jens Schneider, Polina Kondratieva, J. Krüger, and Rüdiger Westermann

Visualization in Medicine

Functional Unit Maps for Data-Driven Visualization of High-Density EEG Coherence 259
Michael ten Caat, Natasha M. Maurits, and Jos B. T. M. Roerdink

Viewpoint Selection for Intervention Planning ... 267
Konrad Mühler, Mathias Neugebauer, Christian Tietjen, and Bernhard Preim
Table of Contents

Feature Emphasis and Contextual Cutaways for Multimodal Medical Visualization 275
Michael Burns, Martin Haidacher, Wolfgang Wein, Ivan Viola, and Eduard Gröller

Model-free Surface Visualization of Vascular Trees .. 283
Christian Schumann, Steffen Oeltze, Ragnar Bade, Bernhard Preim, and H.- O. Peitgen

Cover Image Credits ... 291

International Program Committee ... 292

Reviewers .. 294

Author Index .. 296
Preface

Welcome to the proceedings of the 9th Eurographics/IEEE VGTC Symposium on Visualization, which was held in Norrköping, Sweden from the 23rd to the 25th of May 2007. This year’s symposium has continued the tradition of a high standard of contributions and a high level of international interest in this European event, with submissions and attendees from all over the world. There were a total of 93 manuscripts submitted of which 35 full papers were selected for inclusion in the symposium, an acceptance rate of 38%.

We are happy to report that EuroVis is succeeding in attracting interest and submissions from all the diverse areas of visualization this year. As previous years we have received many good submissions in areas such as Medical Visualization, Flow Visualization, Multi-variate Visualization and Rendering as well as GPU techniques. However, this year we were very pleased to see an increase in submissions from areas of visualization that are traditionally under-represented at EuroVis. This includes areas such as Graph Visualization, Text- and Document Visualization, Interaction Design and Time-Series Visualization. This leads us to a well-balanced program, bringing together people with diverse backgrounds and one goal - improving the visual presentation of complex data.

This balance of ideas is also well reflected in the winner of the newly instated best paper award - “Online Dynamic Graph Drawing” by Yaniv Frishman and Ayellet Tal of Technion - Israel Institute of Technology. This paper presents a solution to a difficult problem - the real-time update of graphs that are changing on-the-fly. The challenge is to update a graph-layout while still making it easy for the user to comprehend the changes. The speed is gained via a clever implementation exploiting modern graphics hardware. The selection process was facilitated by the papers co-chairs in strong consultation with the primary reviewers. Given the long list of outstanding submissions, this was not an easy task.

The goal for a well-balanced conference extends to our keynote and capstone speakers. We are happy to present one of the leaders of the Visualization community - Ben Shneiderman of the University of Maryland - as our keynote speaker. He has been a driving force in conceptualizing the way we interact with data. On the other hand, our capstone speaker - Anders Persson of the University of Linköping - is a radiologist, who has seen visualization as a way of revolutionizing medical practice and literally saving peoples lives.

Our thanks are due to many people who have supported the process of organizing the symposium, not least the hundreds of reviewers worldwide who have carried out the extensive review process producing in total almost 500 reviews. Aided by the new Submission and Review Management system (our thanks go to EG’s René Berndt, the developer of this powerful tool) it was possible to use a hierarchical scheme of reviewing to ensure that all the papers were subjected to a high level of scrutiny and we are confident that the very best of the submissions were accepted. Thanks also to Stefanie Behnke for continuous support from the Eurographics organization.

We would also like to acknowledge the tremendous help from our supporters. The generous
support from Sweden’s Knowledge Foundation (www.kks.se) has made it possible to print the paper version of this year’s proceedings in full colour, avoiding the need for colour plates and making the proceedings a more informative and enjoyable source of information. In recognition of the rise of the ubiquitous laptop we have also decided to provide a ’micro-proceedings’ in the form of a USB memory device pre-loaded with the proceedings.

We hope you will enjoy reading the 2007 EuroVis papers as much as we did.

Ken Museth - Torsten Möller - Anders Ynnerman

EuroVis 2007 co-chairs.
Keynote

How Visualization Supports Discovery

Professor Ben Shneiderman

Abstract
The excitement about scientific visualization has spread to information visualization, and variations such as network visualization. These multiple forms enable domain experts to make discoveries, but the design principles that make for successful creativity support tools need elaboration. When is 3D good or bad? When is animation helpful or distracting? What degree of user control is most effective?

This talk will propose foundations for a theory of discovery based on visualization. It will offer demos, suggest principles, and tell stories.

Short Biography
Ben Shneiderman is a Professor in the Department of Computer Science, Founding Director (1983-2000) of the Human-Computer Interaction Laboratory, and Member of the Institute for Advanced Computer Studies at the University of Maryland. He was elected as a Fellow of the Association for Computing (ACM) in 1997 and a Fellow of the American Association for the Advancement of Science (AAAS) in 2001. He received the ACM SIGCHI Lifetime Achievement Award in 2001.

Abstract
The practice of medical image diagnosis is currently undergoing a fast transformation. Vast amounts of data can be generated in standard examination and focus is shifting from improving the collection of relevant data for diagnosis to development of effective methods to analyze, visualize, navigate, and interact with medical information. It is now becoming generally accepted in the medical community that one of the most important keys to manage the increasing information flow is the use of 3D and 4D applications.

This talk will take its starting point in state-of-the-art medical visualization and then discuss the need for a research agenda that focuses on the development of the next generation of medical visualization tools, emphasizing the fact that these tools must be based on medical user requirement and workflow studies as well as on new technical developments.

Short Biography
Anders Persson M.D, Ph.D. is the Director at Center for Medical Image Science and Visualization (CMIV) at Linköping University Sweden. The mission of the center is to develop future methods and tools for image analysis and visualization within health care and medical research. Persson has been working in the field of volume rendering and medical applications for over 15 years. As a radiologist and researcher he has worked on the introduction and validation of new visualization tools for the clinical environment and he has taught medical volume rendering in the clinical practice for more than 10 years. Currently his research is focusing on specialized volume rendering algorithms for specific clinical investigations (CT and MRI) as well as on using new 3D and 4D tools in education and virtual autopsies.