
Department of Science and Technology Institutionen för teknik och naturvetenskap
Linköpings Universitet Linköpings Universitet
SE-601 74 Norrköping, Sweden 601 74 Norrköping

Examensarbete
LITH-ITN-MT-EX--06/049--SE

Blending of implicit models by
means of anisotropic diffusion

Henrik Wrangel

2006-11-15

LITH-ITN-MT-EX--06/049--SE

Blending of implicit models by
means of anisotropic diffusion

Examensarbete utfört i medieteknik
vid Linköpings Tekniska Högskola, Campus

Norrköping

Henrik Wrangel

Handledare Ken Museth
Examinator Ken Museth

Norrköping 2006-11-15

Rapporttyp
Report category

 Examensarbete
 B-uppsats
 C-uppsats
 D-uppsats

 _ ________________

Språk
Language

 Svenska/Swedish
 Engelska/English

 _ ________________

Titel
Title

Författare
Author

Sammanfattning
Abstract

ISBN

ISRN

Serietitel och serienummer ISSN
Title of series, numbering ___________________________________

Nyckelord
Keyword

Datum
Date

URL för elektronisk version

Avdelning, Institution
Division, Department

Institutionen för teknik och naturvetenskap

Department of Science and Technology

2006-11-15

x

x

LITH-ITN-MT-EX--06/049--SE

Blending of implicit models by means of anisotropic diffusion

Henrik Wrangel

This thesis presents a novel approach for blending of level set models. The proposed method blends the
intersection area of two models by means of anisotropic diffusion, i.e. anisotropic Gaussian low pass
filtering. Combing different models to build new ones is a common and intuitive way of modeling,
however merging two models tends to lead to C1 discontinuities and some times even aliasing artifacts
along the intersection of the two models. This thesis will show that blending by means of anisotropic
diffusion solves theses issues and highly reduces blending execution times compared to mean curvature
flow based blending.

level sets, implicit surfaces, blending, anisotropic Gaussian filter

Upphovsrätt

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Henrik Wrangel

 i

Abstract
This thesis presents a novel approach for blending of level set models. The proposed
method blends the intersection area of two models by means of anisotropic diffusion,
i.e. anisotropic Gaussian low pass filtering. Combing different models to build new
ones is a common and intuitive way of modeling, however merging two models tends
to lead to C1 discontinuities and some times even aliasing artifacts along the
intersection of the two models. This thesis will show that blending by means of
anisotropic diffusion solves theses issues and highly reduces blending execution times
compared to mean curvature flow based blending.

 ii

Blending of Implicit Models by Means of
Anisotropic Diffusion

Master’s Thesis in Media Technology

Henrik Wrangel

Supervisor:
Prof. Ken Museth

Department of Science and Technology
Linköping University, Sweden

2006

 iii

Acknowledgements
I would like to thank Prof. Ken Museth for supervising this thesis, Anders Brodersen
for the geo texture bunny volumes and Ola Nilsson for helping out with the pbrt level
set plug-in.

 iv

Table of Contents
Abstract .. i
Acknowledgements... iii
1 Introduction.. 1

1.1 Purpose and Motivation ... 1

1.2 Problem Description .. 1
1.3 Objectives.. 2

1.4 Method .. 2
1.5 Thesis Outline.. 2

2 Background and Related Work ... 3
2.1 Level sets... 3

2.1.1 Dynamic level sets... 4
2.1.2 Level set model representations ... 5
2.1.3 The DT-Grid.. 6

2.2 Constructive Solid Geometry ... 7

2.3 Blending implicit surfaces.. 7
2.3.1 Blending of level sets... 8
2.3.2 Blending of analytical implicit functions.. 8

2.4 Surface smoothing ... 10
2.4.1 Smoothing of level sets.. 10
2.4.2 Mesh smoothing .. 11

3 Blending and smoothing by means of Gaussian diffusion................................. 12
3.1 Blending .. 12

3.1.1 ROI ... 12
3.1.2 Shape & Orientation of the Gaussian kernel... 12
3.1.3 Boundaries... 13

3.2 Surface smoothing ... 13

3.3 Gaussian diffusion ... 14
3.3.1 Isotropic Gaussian low pass filtering.. 15
3.3.2 Anisotropic Gaussian Low pass filtering.. 16
3.3.3 Non-orthogonal separation of the anisotropic Gaussian filter 16

3.3.3.1 Factorization .. 17
3.3.3.2 Separation of the convolution integral .. 18
3.3.3.3 Parameterization in 3D... 19
3.3.3.4 Discretization and interpolation.. 20

4 Implementation... 23
4.1 Blending – Anisotropic Gauss filtering .. 23

4.1.1 Finite impulse response filter ... 23
4.1.2 Where to blend .. 24
4.1.3 DT-Grid grid access – Random access vs. stencil access........................ 25

4.2 Global smoothing .. 26
4.2.1 Defining stencils and tubes .. 27

 5

5 Results... 28
5.1 Blending performance.. 28

5.1.1 Visual appearance.. 28
5.1.2 Speed... 30

5.2 Smoothing ... 31
5.3 Limitations .. 32

6 Discussion.. 33
6.1 Conclusion... 33

6.2 Future Work .. 34
6.2.1 Parallelization.. 34
6.2.2 Localization with quadrics ... 34
6.2.3 Surface smoothing with shape preservation.. 34

7 References ... 37

 1

1 Introduction
This thesis is the result of the work carried out at the Graphics Group of the
Department of Science and Technology at Linköping Institute of Technology. It
serves as a fulfillment of a Master of Science degree in Media Technology and
Engineering.

1.1 Purpose and Motivation
The main purpose for this thesis has been to develop a method to blend 3D models
represented as level set by means of anisotropic diffusion and to do it faster than
previously known methods. It has also been an aim to incorporate the blending
algorithm with the compact and efficient level set data structure, DT-Grid [5].
Secondary and as an extension of the blending algorithm it has been desired to
evaluate the anisotropic Gaussian diffusion algorithm for global surface smoothing.

There exists many algorithms today for editing polygonal meshes and parametric
surfaces. Lately the level set representation of 3D models has gained popularity since
more and more surface editing algorithms [1] has been developed. Level set models
are deformable implicit surfaces uniformly sampled on a volumetric grid [2]. These
level set models offer several benefits compared to polygonal meshes and parametric
surfaces. 1) The surfaces are guaranteed to be closed and non-self- intersecting, which
makes them physically realizable. 2) Level set models can very easily change
topological genus and 3) they are free of edge connectivity and mesh quality
problems.

An easy and intuitive way to create models is to use the cut and paste operation. The
basic idea is to create a new model by merging parts from different models. These
operations are easy to implement for level set models. However, to make the new
model look like a homogenous object and not a collection of objects, the transitions
need to be smooth. Another area of interest is geometric texturing [3], where smooth
transitions are needed to make the textures look integrated with the original model. A
method for automatic blending of level set do already exists [1] but it is slow since it
requires that one solve partial differential equations.

The creation of detailed complex 3D models can be a cumbersome and tedious
project. One way of creating 3D models of real world objects is 3D photography [4],
i.e. 3D scanning. The digital representations can be converted to polygonal meshes,
parametric surfaces or iso surfaces, i.e. level sets. The scanning process is rarely
perfect and errors and artifacts are introduced in digital representation. Some of theses
errors may be removed by surface smoothing. It would be interesting to see how the
surface might be enhanced by the anisotropic Gaussian diffusion.

1.2 Problem Description
The following problems have been identified.

• Artifacts. When merging two level set surfaces unwanted artifacts might
arise along the intersection of the two input surfaces. These artifacts
should be removed.

• Sharp intersections. The CSG union operation of two level set generates
sharp intersections between the two input surfaces. This is often an
unwanted feature. Therefore a blending function that integrates the two

 2

surfaces smoothly is sought-after. It is also desirable that the user can
choose the amount of blending.

• Speed. There already exist methods for automatic local blending of level
sets. Therefore it is important that a new blending function is faster than
any previously developed methods.

1.3 Objectives
From the problems identified in the previous section, the following general objectives
have been taken upon.

• Develop a method for blending surfaces, represented as level sets, by
means of anisotropic diffusion.

• Evaluate the use of anisotropic diffusion as means for blending of level set
surfaces.

• Evaluate the use of anisotropic diffusion as a mean for global surface
smoothing.

The following requirement has been established for the proposed level set blending
system.

• Full integration with the efficient level set data structure, DT-Grid [5].

1.4 Method
The method for blending was decided from the start and this thesis thereby also serves
as an evaluation of anisotropic diffusion as means for blending level set surfaces. Two
types of level set data structures have been used during the development of this thesis’
blending function; full grid level sets [2] and the very compact and efficient DT-Grid
level set data structure [5]. Initially all methods have been implemented and tested
using the full grid data structure. Finally they have been ported to the DT-Grid data
structure.

The development process has been of the incremental kind. First a blending function
using isotropic diffusion was implemented. The implementation of the isotropic
Gaussian diffusion blending showed that blending by means of anisotropic diffusion
might be a satisfying solution to the blending problem, which led to an
implementation of an anisotropic Gaussian convolution filter. Finally anisotropic
diffusion was implemented and evaluated for global smoothing of level set surfaces.

1.5 Thesis Outline
The rest of this thesis is laid out as follows. In chapter 2, the concept of level sets and
different level set data structures will be explained. Chapter 2 also addresses related
surface editing work, mainly with implicit modeling in mind. Chapter 3 will give a
technical description of the ideas behind Gaussian diffusion as a mean for blending
and smoothing of level set surfaces. The implementation of anisotropic Gaussian
diffusion for level set surfaces is explained in chapter 4. The results will be presented
in chapter 5 and finally discussed in chapter 6. It is assumed that the reader has a basic
knowledge of computer graphics, calculus and programming.

 3

2 Background and Related Work
This chapter will describe the general concept of level sets and the very compact and
efficient DT-Grid level set data structure. Further, previous work within the field of
surface smoothing and blending will be discussed.

2.1 Level sets
A level set is an iso surface, or an iso contour in 2D, of an implicit function φ for a
specified iso value C. Given a function φ: ℜn→ℜ, the level set surface S is defined as

{ }CxxS =!)(

rr
" , n

x !"
r (2.1)

In other words, the level set is the set of points in ℜn that satisfies the equation

φ(x) = C (2.2)

This means that the level set is defined as all the points in ℜn for which the implicit
function φ is equal to the specified iso value. This is best illustrated with the level set
φ(x) = x2 + y2 = C, which defines a circle centered in (0, 0). The set of points that
make up the level set is then obtained by solving x2 + y2 = C, which yields in a circle
with a radius, r = sqrt(C). When evaluating all points within the area containing the
level set three different cases will arise.

• φ(x) > C. The point x is outside of the surface.
• φ(x) < C. The point x is inside of the surface.
• φ(x) = C. The point x is on the surface.

Fig 2.1. Circle level set. Points where φ is larger than C are outside the level set, points where φ is
smaller than C are inside the level set and only the point where φ=C defines the level set.

This is an important property of level sets that makes it easy to classify points in space
as being inside, outside or on the interface. It is common practice to define the level

 4

set as the iso surface φ = 0. Now all points inside the surface have negative values and
points outside the surface have positive values.

It is often very important to calculate the gradient of a level set. For an n dimensional
level set it is defined as

),,,(
21 n

xxx !

!

!

!

!

!
"#

$$$
$ K (2.3)

The gradient of a level set is always perpendicular to the iso surfaces and points in the
direction of maximum increasing φ, which yield in the following expression for the
surface normal.

!

!

"

"
±=n (2.4)

The specific level set representation used for this thesis is a so-called signed Euclidian
distance function. It is an implicit function that always returns the shortest Euclidian
distance to the interface. It is defined as

!

"(
r
x) =min(

r
x #

r
x

s
), where xs is a point on the interface. (2.5)

n
x !"

=# 1$
 (2.6)

To be more specific, the level sets of interest for this thesis are signed Euclidian
distance functions. Since the interface is defined as the zero level set, the level sets get
the following property: all points inside the interface, φ < 0, have a negative distance
to the interface, points outside the interface, φ > 0, have a positive distance to the
interface. Points on the interface of course have zero distance to the interface.

2.1.1 Dynamic level sets
Deformation of level set models is the most important part of the level set concept and
is truly one of its strongholds. In fact it is the main reason why it is a popular surface
representation. To be able to deform level sets, a time parameter is added to the
previous definition of the interface.

!

S "
r
x (t)#(

r
x (t), t) = C{ } (2.7)

By differentiating the above definition of the interface one will see how the interface
may be deformed in its local normal direction.

 5

!

d

dt
"(

r
x (t), t) =

d

dt
C

#"

#t
+
#"

#x
1

#x
1

#t
+
#"

#x
2

#x
2

#t
+K+

#"

#x
n

#x
n

#t
= 0

#"

#t
= $%" •

d
r
x

dt

#"

#t
= $%" &

%"

%"
•

d
r
x

dt

#"

#t
= $%" &

r
n •

d
r
x

dt

#"

#t
= $%" & F(x,

r
n ,K)

The F term in eq. 2.9 is called the speed function and controls the movement of the
interface in the direction of the normal at each grid point. The type of speed function
to use depends on what kind of surface deformation that is sought after and is user
defined. The most basic case for propagating or moving a surface is when the speed
function is equal to one. This will make dφ/dt equal to minus one, which corresponds
to erosion of the level set interface. A more complex example would be to morph one
shape to another, which would correspond to a speed function equal to the final shape
level set [6]. By defining a proper speed function it is also possible to smoothly blend
two level set models, which is briefly explained in section 2.3.1. However, it will be
shown that blending level sets by anisotropic diffusion does not require a definition of
a speed function in contrast to all other surface deformation methods.

2.1.2 Level set model representations
Level sets are stored as a sampling of an implicit function. This means that in 2D a
level set contour is stored in a two-dimensional uniform grid and in 3D a surface is
stored as a volume. This makes the memory footprint of level sets a lot larger than for
parametric surfaces.

A lot of work has been devoted to making level set methods and level set storage
requirements more efficient. The main problem for level set methods is that since it
adds one extra dimension it is computationally very heavy. It requires that level set
computations for a surface involves all voxels within the volume containing the zero
level set interface. One is actually tracking all the level sets not just the one of
interest, the zero level set. To solve this problem, the narrow band concept was
introduced in [7, 8]. The concept of the narrow band technique is that level set
computations are restricted to a narrow band of voxels immediately surrounding the
interface. This reduces the time complexity of level set computations for a surface
from O(n3) to O(n2).

(2.8)

(2.9)

 6

Fig 2.2. 2D Uniform sampling of level sets. A) Euclidian distance field sampled on uniform grid b)
Narrowband representation of a Euclidian distance filed. Voxels that are parts of the narrow band are
marked with green. The blue curve represents the interface.

One problem still remains, the level set still makes use of a full grid, which means that
the memory footprint of the level set surface is still O(n3). A solution to the storage
problem is the tree implementation, which stores the level set surface in an octree data
structure [9, 10], allowing higher resolution around the interface. This reduces the
storage requirements to O(n2). Unfortunately, due to the hierarchical data structure,
the time complexity of the access operation is reduces to O(nlog n), which in turn
effects the performance of the level set computations. Another drawback of the tree
data structure is that the non-uniform sampling makes impossible to use higher order
finite difference upwind schemes.

2.1.3 The DT-Grid
As mentioned in the previous section there exists level set data structures that either
improves the performance of level set methods or decrease the memory footprint of
level set models. The DT-Grid (Dynamic Tubular Grid) [5] brings one solution to this
dilemma by offering a very compact and efficient data structure that reduces the
memory footprint and is efficient for level set methods.

The DT-Grid only stores values within a narrow band of the propagating surface,
which makes the memory usage proportional to the surface itself instead of the
containing volume. At the same time the level set surface is sampled on a dynamic
uniform grid. This means that the grid is free from any boundary restrictions on
surface expansion. In other words, the DT-Grid combines the best of two worlds, the
compactness of the hierarchical tree implementations and the uniform grid from the
narrow band implementations. A uniform grid is important since it allows the use of
all important finite difference schemes already developed for uniform full grids.
Moreover, uniform grids do not suffer from Lipschitz discontinuities that may arise
from interpolation over non-uniform grids.

The nature of the DT-Grid does not allow constant time for random access of grid
points. Even though random access is still very fast, this fact has lead to the
introduction of the iterator concept. Iterators are a fundamental part of the DT-Grid
data structure. The iterator is a construct that provides constant access time for grid
points when they are accessed sequentially. Constant access time may also be

 7

obtained for the iterator’s neighbors by using something called a stencil iterator.
Constant neighbor access time is important for different kinds of finite difference
schemes. The stencil iterator allows for constant neighbor access time on average
when iterating over the entire tubular grid. The stencil iterator is in fact not a single
iterator but a collection of iterators, one iterator for each grid point within the
specified stencil. The DT-Grid allows user-defined stencils and tubes, narrow band of
a certain with around the interface, for the iterator, which has been of most
importance for this thesis.

2.2 Constructive Solid Geometry
One major advantage of level set models is that they support straightforward
Constructive Solid Geometry (CSG) modeling, i.e. copy, cut and paste operations.
This has been of fundamental importance for this thesis. CSG modeling is a very
intuitive and simple way to create new and interesting models or for renovating pre-
existing models. For signed distance fields CSG operations are defined as a set of
Boolean operators, more exactly as max and min operations. These operations are
described in table 2.1.

Table 2.1 CSG operations. Positive outside sign and negative inside sign are assumed for the level set
A and B.
Union, FA∪B Min (FA, FB)
Intersection, FA∩B Max (FA, FB)
Difference, FA-B Max (FA, -FB)

Fig 2.3. CSG operations a) Union b) Intersection c) Difference

2.3 Blending implicit surfaces
There exists a lot of related work for blending of implicit functions. As always all
methods have their drawbacks and advantages. When it comes to modeling of implicit
surfaces they can be categorized in to two groups. Analytical implicit functions that
are continuous functions, for example the function describing a sphere.

2222
zyxr ++= (2.10)

The other type of implicit functions is called numerical implicit functions and is
discretely sampled functions, for example level sets. Blending of implicit functions
differ depending on the type of the implicit function. This section will first discuss
related work for blending of level sets and secondary discuss the topic of blending
analytical implicit functions.

a b c

 8

2.3.1 Blending of level sets
The only previous work known on local blending of level set is the mean curvature
flow blending method introduced in 2002 by K. Museth et al [1] The mean curvature
flow method produces blending of two level sets by means of moving the surface until
the mean curvature around the intersection region reaches a specified value. It is done
by constructing a specialized speed function and solving the level set equation. The
blending speed function takes several parameters into account and is defined as:

Fblend(x, n, φ) = αDp(d)C(K)K (2.11)

Where α is a user defined positive scalar that controls the rate of convergence of the
level set surface. Dp(d) is a distance based cut-off function dependent on the distance
d from the level set surface to the intersection curve. C(K) is another cut-off function
that lets the user determine the upper and lower band of the curvature value. K is a
curvature measure of the level set surface. The use of cut-off functions to control the
amount of smoothing is a feature shared by the anisotropic Gaussian diffusion
blending operator proposed in this thesis. The curvature parameter is found by
calculating the eigenvalues of the shape matrix [11]. For implicit surfaces, the shape
matrix is defined as the derivative of the surface normals projected onto the tangent
plane of the surface. The mean curvature can be written as:

!

!

"

"
•"=•"=

2

1

2

1
nK (2.12)

The mean curvature flow blending operator also lets the user constrain the direction of
the surface’s motion, i.e. controlling if material is added or removed from the model.
This is accomplished by clamping positive motion to zero for removing material and
vice versa for adding material. Even though the mean curvature flow based blending
operator produces great results it has the disadvantage of being slow. This is due to
the fact that it is required to solve the level set equation and the required propagation
and reinitializing of the level set that follows. As will be shown, this is not required
for blending by means of anisotropic diffusion, which allows it to be a lot faster.

2.3.2 Blending of analytical implicit functions
When it comes to blending of implicit functions there exists a wide range of blending
functions. This chapter will highlight some common blending methods that use
density functions and R-functions.

One way of blending implicit functions is to blend so called density functions. By
converting an implicit function to a density function it becomes easier to blend the
implicit models with different blending functions. The density function is defined as:

D(x) > 1 if x is inside the surface
D(x) = 1 if x is on the surface
D(x)∈[0,1[if x is outside the surface

A signed distance function can be turned into a density function by the following
transfer function,

Di = exp{-Fi(x)} (2.13)

 9

if the implicit function i is said to have a negative inside,

!

i =
r
x " #3

F
i
(
r
x) $ 0{ } . (2.14)

Three common blending functions for density functions are the linear blending, the
hyperbolic blending and the super-elliptic blending functions. They are defined as in
table 2.2.

Table 2.2 Blending density functions

Linear blending !
=

"=
k

i

ikL
xDxDxDB

1

1 1)())()((K

Hyperbolic blending !
=

"=
k

i

ikH
xDxDxDB

1

1 1)())()((K

Super-elliptic blending !!" /1

1

1)))(1,0((1))()((#
=

$$=
k

i

ikS
xDMaxxDxDB K

Fig. 2.4 Blending density functions a) Linear blend b) Hyperbolic blend c) Super-Elliptic blend

Another way to blend implicit models is to use R-functions. R-functions are real-
valued functions, f(x1, x2, …,xn), whose sign is completely determined by the sign of
its arguments xi. The R-function may be viewed as a logic switch. If negative values
correspond to false and positive values correspond to true it may be used as a logic
switch for Boolean operations of implicit surfaces with a positive inside. Take the
intersection case for example that corresponds to a logic AND switch, if the R-
function takes two implicit surfaces as input it will return true (inside) only if its two
input surfaces are true, i.e. inside both surfaces. For the solid object A defined as,

!

A =
r
x " #3

F
A
(
r
x) $ 0{ } , (2.15)

a popular R-functions can be described as:

)2(
1

1 22

BABABABA
FFFFFFFF !

!
"+++

+
=# (2.16)

)2(
1

1 22

BABABABA
FFFFFFFF !

!
"+"+

+
=# . (2.17)

Where α is a continuous function α =β(FA, FB) that satisfies the following conditions:

a b c

 10

-1<β(FA, FB)≤1, (2.18)

β(FA, FB) =β(FB ,FA) =β(-FA, FB) =β(- FB ,FA). (2.19)

One simple case of the above R-functions are when α = 1, which yields in simple Min
and Max operations.

)()(

),()(

)(
2

1

))((
2

1
)2(

2

1
)(222

BABA

BABA

BABA

BABABABABABA

FFMinFFR

FFMaxFFR

FFFF

FFFFFFFFFFFFR

=

=

!"±+=

"±+="+±+=

"

+

±

(2.20)

These Min and Max operations still have the problem of having C1 discontinuity
where FA = FB. However there are other types of R-functions that provide Cn
continuity along the entire boundary.

2/2222))((n

BABABABA
FFFFFFFF ++++=! (2.21)

2/2222))((n

BABABABA
FFFFFFFF ++!+=" (2.22)

The blending functions described in this section could be applied, with some
modifications, to level sets. The main draw back is that these blending functions are
global. This means that they act on the entire surface and may blend in areas where no
blending is desired, e.g. where two surfaces are close to each other. Their blending
parameters are also not very intuitive, which makes it hard to find a desired blending.

2.4 Surface smoothing
Mesh smoothing or in more general terms, surface smoothing, is an important topic
and a lot of research has been done in the field. The reason for its importance is that
computer graphics models constructed from real world data, e.g. 3D photography,
contains undesirable noise. It is desirable to remove the noise and at the same time
cause minimal damage to the underlying geometry of the object. This section will
focus on level set smoothing methods but also briefly discuss smoothing of meshes.

2.4.1 Smoothing of level sets
There are two main methods for smoothing of level sets, curvature flow [1] and
morphological operations [1]. The curvature based smoothing method is better suited
for local smoothing since it its more computationally demanding than morphological
operations.

The curvature based smoothing and sharpening operator makes use of the surface
curvature, as implied by its name, to determine how to move the surface in order to
make it smoother or sharper. It is the same idea as for curvature flow based blending,
only with a different ROI. By specifying a maximum curvature value, the surface is
moved until the curvature of the specified area is below the specified value for the
entire region. It is done by defining a proper speed function that moves the level set
surface in the direction of the local normal with a speed that is proportional to the
local curvature. The method may also be constrained to only move the surface

 11

inwards or outwards. It is constrained locally by defining the ROI with a quadric.
Now only the surface within the quadric will be affected.

For global smoothing of level sets, the morphological opening and closing operations
are probably more convenient. Opening and closing are different combinations of the
morphological operations, dilation and erosion. A morphological opening is the
combination of a dilation followed by erosion and the closing operation is the vice
versa. Opening tends to remove fine pieces or thin appendages while closing fills
small gaps or holes. Morphological operations adapt well to level sets as dilation can
be seen as an offset of the level set to an iso surface outside of the zero level set.
Erosion can in turn be described as moving the surface to an iso surface inside of the
zero level set. The morphological opening process may be seen as a four-step process
1) offset the surface inwards 2) reinitialize the level set to a signed distance function
with respect to the new surface 3) offset the surface outwards with the same amount
as the inward offset 4) reinitialize the level set to a signed distance function. The
procedure for morphological closing is the same but reversed. The morphological
operations may be implemented for level set by solving a special form of the level set
equation, the Ekonial equation,

!
!

"±=
dt

d (2.23)

2.4.2 Mesh smoothing
When it comes to smoothing of meshes, an extensive amount of work has been done.
Some of the most common approaches are the Laplacian smoothing method[13, 14],
the bilaplacian smoothing flow [14], the diffusion and curvature flow method [15]
and the Taubin λ|µ scheme [13]. A more interesting method for smoothing polygonal
meshes from this thesis’ point of view is the adaptive and anisotropic Gaussian
filtering method [16]. It is a three-step process where first an optimal scale of the
anisotropic Gaussian filter is calculated for each vertex normal, the vertex normals are
then smoothed with the appropriate filter kernel. In the final step the position of all
vertices are updated to fit the mesh to the field of smoothed mesh normals. The design
of the adaptive anisotropic Gaussian filter is based on the method described in [17],
where they propose an adaptive filter that enhance edges and corners. The main idea
is to scale the size of the filter kernel depending on the magnitude of the local
gradient. The larger the magnitude of the gradient is the less the image is diffused at
that point and vice versa. The idea to use this technique for mesh smoothing has
shown to produce visually very pleasing results.

 12

3 Blending and smoothing by means of
Gaussian diffusion
This chapter will describe how Gaussian diffusion can be used for smoothing
surfaces, both globally and locally. First there will be a description of how to use
Gaussian diffusion for blending and surface smoothing. Thereafter a detailed
description of Gaussian low pass filters with extra emphasis on non-orthogonal
separation of the anisotropic Gaussian convolution filter will follow.

3.1 Blending
Level set models produced by combining two level sets by means of the CSG union
operation tend to create sharp creases in the intersection of the two surfaces. Not only
is the intersection sharp, but it may also suffer from artifacts due to aliasing effects
from re-sampling. By performing a local blending operation around the intersection
area, the surface will be drastically improved. This can be accomplished by means of
mean curvature-based flow, but it will be shown that a more efficient method is
anisotropic diffusion.

The anisotropic diffusion blending operation is an anisotropic Gaussian low pass
filtering operation of a specified area around the intersection, the region of interest,
ROI. What the Gaussian low pass filter will reduce the high frequency components of
the surface within the ROI, which will reduce the surface’s curvature. A geometric
interpretation is that one is spreading the normal information at each point to its
neighbors. The operation can be divided into two main parts, specifying the region of
interest and calculating the size and orientation of the Gaussian filter kernel.

3.1.1 ROI
Before blending the two surfaces the region of interest must be specified. The naïve
and simple way is to define all areas where the two input surfaces are within a specific
distance from each other. This may however lead to blending in areas where blending
is undesirable, since surfaces may be close to each other but not intersect. The way to
do it is to sample the intersection curve, the curve where the two input surfaces
intersect, and define the blending ROI as a narrow band of a certain radius around the
intersection curve. The sample of the intersection curve is the set the voxels that
contain a zero-distance value to both input surfaces. For sampling of the intersection
curve, a voxel value of 0.7 has been found to produce satisfying results and for the
ROI a narrow band with a radius of four voxels has shown to be suitable.

3.1.2 Shape & Orientation of the Gaussian kernel
An anisotropic Gaussian filter kernel is a filter kernel with two or more free variance
parameters. In 3D that means that there are at most three and at least two free variance
parameters of the filter kernel. The variance parameters describe the standard
deviation along the filters main axes, u, v and w in 3D. If a Gaussian filter kernel in
3D only has two free variance parameters it means that two of its three parameters are
the same. For the blending operation a filter kernel with two free variance parameters
is used. The second and third variance parameters, σ2 and σ3, are set to be the same,
σ2 = σ3. When σ2 is set to be larger than σ1, the filter kernel will take the shape of an
oblate rotational spheroid. The filter kernel will then be oriented in such a way that its
first axis, the axis along σ1, is parallel with the local gradient at each voxel. This can
be interpreted geometrically as if the oblate shaped filter kernel, for each voxel, is

 13

lying on the voxel’s tangent plane. Since the filter kernel is of larger extent along the
surface’s tangent plane, the smoothing effect will therefore also be larger along this
plane. This allows for control over the amount of smoothing by controlling the size of
the Gaussian filter kernel. The larger the two variance parameters are, the greater the
blending effect will be.

3.1.3 Boundaries
One side effect of only filtering the intersection ROI is that there will be a sharp
transition from filtered voxels to non-filtered voxels. There is no in-between, only
filtered or non-filtered voxels. This may cause some irregularities or unwanted
artifacts on the boundaries of the blended areas. To avoid this, the size of the
Gaussian filter kernel can be made adaptive. By regulating the size of the filter kernel,
i.e. the size of the variance parameters, smooth borders around the blended areas may
be achieved. The following piece vice polynomial [1] has been found to produce good
results.

!
!

"

!
!

#

$

%

<<&&

'<

'

=

11

15.0)1(21

5.002

00

)(
2

2

(

((

((

(

(

for

for

for

for

p (3.1)

Where β is a function of the distance to the zero crossing (ZC), which is given by the
voxel value at each point.

ROIofradius

ZCtodist
=! (3.2)

The new variance parameter where then calculated as:
σnew = σstart – decayMax⋅ p(β)

Fig 3.1. The piece wise polynomial function for scaling the size of the kernel

3.2 Surface smoothing
This section aims to describe how the idea behind the use of anisotropic Gaussian
diffusion for blending of level set models may be reused and modified to suit global
level set surface smoothing. A Gaussian low pass filter is a blurring filter, i.e. it
regionally distributes the high frequency components of an image or 3D image. This
is a fundamental fact, which blending by means of anisotropic Gaussian diffusion

 14

relies on. But why only use it for blending when one may use it for surface smoothing
in general? The features of the surface smoothing Gaussian filter kernel correspond to
the features of the filter kernel used for blending. It is desired to construct a kernel
that does most of the smoothing along the surface. An oblate spheroid shaped kernel
oriented to lie on a tangent plane to the surface suits this purpose well, since it has a
larger extent along this plane than out of the tangent plane. This is the same type of
Gaussian kernel that is used for blending of two level set surfaces. Moreover, it is also
oriented in the same fashion as in the blending case, since it shall be lying on the
tangent plane to the surface as well. This is achieved by orienting the u axis of the
kernel along the local gradient of the surface. However, two things differ between
smoothing and blending. The most obvious difference is that the region of interest
differs. Now the entire surface is of interest and not just the intersection area of two
joined surfaces. Still, there is no need to filter the entire volume encapsulating the
surface. A set of voxels within a narrow band of some radius, r, is satisfactory.
Second, there is no need to have an adaptive size of the Gaussian kernel since there
are no areas that shall remain unaffected. The surface-smoothing algorithm may be
summarized as a filtering of the set of voxels within a narrow band around the
interface with an anisotropic Gaussian convolution filter.

3.3 Gaussian diffusion
Smoothing a surface by means of Gaussian diffusion corresponds to diffusing the
surface’s normals. High frequency components of a surface are defined as the fine
details of the surface. One can say that the more curvature there is on the surface the
more high frequency components there are. When smoothing a surface the objective
is to reduce the amount of high frequency components, trying to make the surface as
flat as possible. This can be accomplished by a simple low pass filter.

The Gaussian low pass filter has the properties of being exponentially decaying and at
the same time strict positive, which makes it suitable for smoothing and blending
level sets. The surface is low pass filtered by means of convolution of the level set
volume in 3D and the convolution kernel is given by the Gaussian distribution. In 1D
the Gaussian distribution takes the following form:

!

g(x) =
1

2"#
exp $

x
2

2# 2

%
&
'

(
)
*

 (3.3)

Fig 3.2. Gaussian distribution. The Gaussian distribution in 1D given by eq. 3.3 with standard
deviation 1.0.

 15

For a discrete signal F[x], as the in the level set case, the Gaussian kernel can be
implemented as a finite sum. Capital letters are use to accentuate that use of discrete
signals instead of continuous signals.

[] [] []!
"=

"=
K

Kk

kGkxFxF (3.4)

In theory the Gaussian distribution never reaches zero and would thereby require an
infinitely large convolution kernel. In practice the Gaussian distribution is effectively
zero more than about three standard deviations from the mean, which means that the
kernel can be truncated to zero beyond this point. This type of filter is called a finite
impulse response filter (FIR).

The Gaussian distribution can easily be extended from one-dimension to n-
dimensions and take different forms depending on the variance parameters along the
coordinate axes.

3.3.1 Isotropic Gaussian low pass filtering
A Gaussian filter has as many free variance parameters as dimensions. When all
variance parameters are the same, i.e. when there is only one free variance parameter,
it is said to be isotropic. In 2D the isotropic Gaussian filter would have the shape of a
circle and in 3D it would have the shape of a sphere.

Extending the Gaussian distribution from 1D to 3D for the isotropic case would look
like this:

=!!=)()()(),,(zgygxgzyxg

!

=
1

2"#
exp $

x
2

2# 2

%
&
'

(
)
*
+

1

2"#
exp $

y
2

2# 2

%
&
'

(
)
*
+

1

2"#
exp $

z
2

2# 2

%
&
'

(
)
*

=

!

=
1

2" 2"# 3
exp $

x
2

+ y
2

+ z
2

2# 2

%
&
'

(
)
*

 (3.5)

As seen in equation 3.5, the isotropic Gaussian filter in 3D can be described as the
product of the 1D Gaussian along the x-axis, the 1D Gaussian along the y-axis and the
1D Gaussian along the z-axis. This means that the n-dimensional isotropic Gaussian
convolution filter can be separated into n numbers of sequential 1D convolutions
along its coordinate axes. The one-dimensional kernel is described by the function
g(x), which is the same as g(y) and g(z). This feature can be used to enhance the
performance of the filter. For example, in the two-dimensional case with a filter of
size n*n, n2 operations would be needed for each pixel, but when separating the filter
only 2*n operations are needed. This is because when the filter is separated the image
is first filtered with a stencil of size n along the x-axis; the result is then filtered with
another stencil of the same size along the y-axis. Each grid point is thereby filtered
two times with a stencil of size n instead of filtered one time with a stencil of size n2.
The fact that isotropic Gaussian filters only have one free variance parameter makes
them easy to handle analytically and also easy to implement. This has made them very
popular but their anisotropic sibling is much more interesting for image processing
since they also encode information about orientation.

 16

3.3.2 Anisotropic Gaussian Low pass filtering
Since the purpose of the filtering is to smooth surfaces, a filter that takes this fact into
account is preferred. The anisotropic Gaussian filter suits this purpose. An anisotropic
Gaussian filter is a Gaussian filer with more than one free variance parameter. In
three-dimensions where u, v and w are orthogonal, the anisotropic Gaussian filter can
be described as

=!!=),(),(),(),,,,,(
wvuwvu

wgvgugwvug """"""

!

=
1

2"#
u

exp $
u
2

2#
u

2

%
&
'

(
)
*
+

1

2"#
v

exp $
v
2

2#
v

2

%
&
'

(
)
*
+

1

2"#
w

exp $
w
2

2#
w

2

%
&
'

(
)
*

 (3.6)

Where u, v and w are defined as

!
!
!

"

#

$
$
$

%

&

=

!
!
!

"

#

$
$
$

%

&

'

++''

+'+

!
!
!

"

#

$
$
$

%

&

w

v

u

z

y

x

()()(

)()*)*()*(

)()*)*()*(

coscoscossinsin

cossinsinsincoscoscossinsinsinsincos

sinsincossincossincoscossinsincoscos

 (3.7)

As in the case with the isotropic Gaussian filter the anisotropic filter can also be
separated. This however is not as simple as in the isotropic case. It is standard
procedure to separate the anisotropic Gaussian along its main orthogonal axes. The
problem is that the direction of integration has to be rotated with respect to the
coordinate grid. This means that interpolation must be used in all n dimensions for all
n integration steps, which will make it cumbersome to implement and slow.
Numerical errors may also occur and accumulate.

3.3.3 Non-orthogonal separation of the anisotropic Gaussian filter
It is possible to decompose the anisotropic Gaussian in ℜn in an efficient way [12].
Since this subject is of such great importance for the performance of the smoothing
operation, a description of how to efficiently separate the anisotropic Gaussian will be
given. This section about the non-orthogonal separation of the anisotropic Gaussian
filter is based on the paper by Lampert and Wirjadi [12].

The way an efficient separation of the anisotropic Gaussian is done is not to separate
it along its main axes but to try to separate it along arbitrary and possibly non-
orthogonal axes, with the original coordinate axes as a base. In this way the
cumbersome rotation of grid points is no longer needed. These directions, which the
kernel is decomposed along, may easily and efficiently be described as vectors.

“For any decomposition of the ∑ = VDVt covariance matrix ∑ into square matrices
D and V, where D is diagonal and positive, and V has determinant 1, there is a
separation of the nD-Gaussian into 1D-Gaussians, where the separation directions
are given by the column vectors of V.” [12]

The matrix Σ is defined in eq 3.25. By finding the matrices V and D, an efficient
separation of the anisotropic Gaussian kernel may be obtained. A description of this
procedure follows.

 17

Fig 3.3. Gauss kernel axes. A 2D schematic view of the axis of which a 2D Gaussian kernel is
separated along. a) The kernel’s principal axes are uv-aligned. b) The kernel’s principal axes are uv-
aligned but the kernel is defined in the x, v1system. [18]

3.3.3.1 Factorization
Below follows how the n-dimensional Gaussian filter kernel, g(x), can be factorized
to a series of one-dimensional Gaussians, g(x) = g1(x1)⋅ … ⋅gn(xn).

The anisotropic Gaussian kernel, g(x), can be written in the following form:

!
"
#

$
%
&

'(
'

=
(
xxxg

t

n

1

2/12/ 2

1
exp

)2(

1
)(

)
 (3.8)

Where x = (x1, …, xn), nn!"#$ is the covariance matrix (see eq 3.25) and ! is the
determinant of ! . In ∑ = VDV t, Assume that D is diagonal and positive, V has the
determinant 1, |V|= 1, then ∑-- 1 = V-tD-1V-1 and the Gaussian can be written as

!
"
#

$
%
&
'=

'''
xVDVx

D
xg

tt

n
)(

2

1
exp

)2(

1
)(11

2/172(
 (3.9)

Changing the x linearly to v =(v1, …, vn) with v:=V-1x. The Gaussian kernel becomes

!
"
#

$
%
&
'=

'
vDv

D
vg

t

n

rr 1

2/12/ 2

1
exp

)2(

1
)(

(
 (3.10)

Since D is a diagonal matrix and is assumed to have positive entries denoted by

22

1
,...,

n
dd and

n
ddD !!= ...

1

2/1 . It follows that D –1 is diagonal and with only positive
entries as well and that the matrix product is a weighted sum of squares.

!
"
#

$
%
&
'

((
=)

=

n

i i

i

n

n d

v

dd
vg

1
2

2

1

2/ 2

1
exp

...)2(

1
)(

*
 (3.11)

 18

As one can see this form of the Gaussian kernel can be can be factorized by means of
laws of the exponent.

!
"
#

$
%
&
'((

!
"
#

$
%
&
'=

2

2

2

1

2

1

1
2

1
exp

2

1
...

2

1
exp

2

1
)(

n

n

n
d

v

dd

v

d
vg

))
 (3.12)

)(...)(11 nn

vgvg !!=

Each gi (vi) is now an ordinary one-dimensional Gaussian distribution with mean zero
and standard deviation di along vi.

!
"
#

$
%
&
'=

2

2

2

1
exp

2

1
:)(

i

i

i

i
d

v

d
vg

(
 (3.13)

3.3.3.2 Separation of the convolution integral
By changing the coordinates of the convolution integral from x and y to u and v, it
will be shown how the above factorization gives rise to a separation of the
convolution integral. Convolution of the two functions f and g, in this case
corresponding to the level set (f) and the Gaussian (g), is given by:

! ! !
"" "

#$ ndydyyxgyfxgf K
rrr

K
r

1)()())(*((3.14)

Switching from the from x and y to u and v coordinates, yields in the following
integral

! ! !
"" "

##$ ndvdvVvVuVgvVfxgf K
rrr

K
r

1

1)()())(*((3.15)

Where u and v are defined as:

xVu
r1!

" yVv
rr 1!

"

|V-1| has been added to the integral since there has been a change of coordinates. Since
the determinant of V is assumed to be equal to one it follows that |V-1| = 1. The
separated integral now looks like:

! !!
" ""

###$ nnnnnnnnn dvdvvVfvugvugvugxgf K
r

K
v

11111)()()()())(*((3.16)

The matrix-vector product, Vv, in the last term of the integral f(Vv) may be split up
into a sum, !=

i

i

i
vvvV , where vi are the column vectors of the matrix V. This means

that when integrating over vi one is convoluting along the direction vi. The notation of
directional convolutions offer a very compact and neat notation for this.

fggxgf
vvn n 11))((!!=! K

r (3.17)

*v is the directional convolution operator and is defined as:

 19

!
"

"#

#$% &&& dxxfgxfg v)()())(((3.18)

Now the convolution integral of dimension n is separated into n one-dimensional
integrals, each one convoluting along their respective direction vi.

3.3.3.3 Parameterization in 3D
Next, we need to find the values for D and V. Only the three-dimensional case will be
discussed here since it’s the interesting case for surface smoothing purpose. To find D
and V triangular factorization of Cholesky type is used. The triangular factorization
has the advantage over the single value decomposition factorization that it will
generate directions that will require fewer interpolation steps for the convolution step.
The triangular factorization is computed by writing

!
"
"
"

#

$

%
%
%

&

'

=

333231

232221

131211

sss

sss

sss

,
!
!
!

"

#

$
$
$

%

&

=

100

10

1

23

1312

v

vv

V ,
!
!
!

"

#

$
$
$

%

&

=
2

3

2

2

2

1

00

00

00

d

d

d

D

Which leads to

33

13

2

23332233

2

23133312

11

2

1
)(

)(

s

s

ssss

ssss
sd !

!

!
!= , (3.19)

33

2

23

22

2

2

s

s
sd != , (3.20)

33

2

3
sd = (3.21)

2

233322

23133312

12

sss

ssss
v

!

!
= , (3.22)

33

13

13

s

s
v = , (3.23)

33

12

23

s

s
v = (3.24)

The covariance matrix ∑ can also be described as

SRR
t

=! , (3.25)

S is a diagonal matrix containing the variance values. R is a three by three matrix
describing the rotation. Rx1 denote rotation around the x1 axis and Rx3 denotes rotation
around the x3 axis.

)()()(),,(131 !"#!"#
xxx
RRRR = (3.26)

where

!

" # 0,$[[,

!

" # 0,
$

2

%

& '
(

) *
,

!

" # 0,$[[

 20

!

R
x1(") =

1 0 0

0 cos(") #sin(")

0 sin(") cos(")

$

%

&
&
&

'

(

)
)
)

!

R
x3(") =

cos(") #sin(") 0

sin(") cos(") 0

0 0 1

$

%

&
&
&

'

(

)
)
)

!

R
x1(") =

1 0 0

0 cos(") #sin(")

0 sin(") cos(")

$

%

&
&
&

'

(

)
)
) !

!
!

"

#

$
$
$

%

&

=

3

2

1

00

00

00

'

'

'

S

If σ2 = σ3, which is the most common case for filtering of 3D image data and for the
blending method proposed in this thesis, the anisotropic Gaussian is rotationally
invariant around its first axis. Because the base used is Euler angles this means that
the first rotation in the x1 direction can be removed from the equation. R is now only
dependant on the two angles θ and ϕ.

)()(),(13 !"!"
xx
RRR = (3.27)

!
!
!

"

#

$
$
$

%

& '

=

!
!
!

"

#

$
$
$

%

&

'

!
!
!

"

#

$
$
$

%

& '

=

)cos()sin(0

)sin()cos()cos()cos()sin(

0)cos()sin()cos(

)cos()sin(0

)sin()cos(0

001

100

0)cos()sin(

0)sin()cos(

((

()())

())

((

(())

))

Now the parameterization of ∑ can be obtained by solving tt

VDVSRR = and it
becomes

!"!"

""
22

1

22

2

2

2

2

12

1

sincos +
=d (3.28)

!"###

!#!##
222

1

2

2

2

2

22

1

22

2

2

22

2
sinsin)(

)sincos(

$$

+
=d (3.29)

!"### 222

1

2

2

2

2

2

3 sinsin)($$=d (3.30)

!"""

!!#""
22

1

2

2

2

2

22

1

2

2
12

sin)(

sincoscos)(

$$

$
=v (3.31)

!"###

!!"##
222

1

2

2

2

2

2

1

2

2
13

sinsin)(

sincossin)(

$$

$$
=v (3.32)

!"###

!!"##
222

1

2

2

2

2

2

1

2

2
23

sinsin)(

sincoscos)(

$$

$
=v (3.33)

3.3.3.4 Discretization and interpolation
The next and final step is to obtain a discrete convolution operator, which may be
described as a finite sum. The convolution filter for the discrete case described with
directional convolution notation in the three-dimensional case looks like

 21

FGGGFG
vvv
123 123

!!!=! , (3.34)

and the convolution integral turns into the following sum

!
"=

"=#
K

Kk

ivi
vkxFkGxFG)()())((. (3.35)

Since the convolution filter is separated it means that the input signal will first be
filtered along v1, the resulting signal will then be filtered along v2 and finally the
output signal of the second filter pass will be filtered along v3.

FGF
v
112

!=

223 2 FGF
v
!=

!

Ffinal =G
3
"
v
3 F3

Remember, vi are the column vectors of the matrix V, giving

v1 = (1, 0, 0)t
v2 = (v12, 1, 0)t
v3 = (v13, v23, 1)t

This yields in three sums, one for each filter pass

!!
"="=

"="=#=
K

Kk

K

Kk

t

v
xxkxFkGkxFkGFGF),,()())0,0,1(()(3211112 1

r , (3.36)

!!
"="=

""="=#=
K

Kk

K

Kk

t

v
xkxkvxFkGvkxFkGFGF),,()())0,1,(()(32121221222223 2

r ,

 (3.37)

!

!

"=

"=

"""=

"=#=

K

Kk

K

Kk

t

vfinall

kxkvxkvxFkG

vvkxFkGFGF

),,()(

))1,,(()(

323213133

23133333 3

r

 (3.38)

x is the current voxel to be filtered and Gi is given by

!"

!
#
$

!%

!
&
'
(=

2

2

2

1
exp

2

1
:)(

ii

i

d

k

d
kG

)
. (3.39)

Now all the pieces for an efficient anisotropic Gaussian convolution filter have been
given. As seen from the convolution sums, the reason that this separation scheme is so
efficient is that the directions of integration do not need to be rotated with respect to
the coordinate grid. The separation scheme also has the advantage of being very
effective in terms of interpolation. Thanks to the factorization, no interpolation is
needed for convolution along the x1 direction. For the following convolutions only
one additional interpolation direction is added per convolution. In the three-
dimensional cases this means that for the second pass interpolation is only needed
along the x-axis and for the third pass it is only needed within the xy-plane. This is a

 22

major advantage compared to regular anisotropic Gauss filtering where interpolation
always must be performed along all three axes if the kernel isn’t grid aligned.

Fig 3.4. Convolution directions. Schematic view of convolution directions and interpolation. In a) no
interpolations is needed, in b) interpolations is needed along x1 and in c) interpolations is needed in the
x1x2-plane.

 23

4 Implementation

This chapter intends to describe the implementation part of the thesis. The emphasis
of this chapter will be on how to incorporated the level set blending operation with the
DT-Grid level set data structure [5]. It will also be explained how to extend the
blending operator for global surface smoothing.

The level set blending and smoothing operations have been implemented in C++.

4.1 Blending – Anisotropic Gauss filtering
Blending of two level set surfaces by means of anisotropic diffusion has been
implemented as convolution of a specified region of interest of the union level set
with an anisotropic Gaussian filter kernel. The convolution filter has been
implemented as a finite impulse response filter (FIR).

4.1.1 Finite impulse response filter
Since the anisotropic Gaussian diffusion is implemented as a separated FIR
convolution filter in three dimensions three different convolution stencils have to be
calculated for each voxel. New stencil values need to be calculated for each voxel
since the stencils are dependent on the local orientation of the kernel, which in turn is
dependent on the local normal of the surface. The filter process has been a three-step
process. A copy of the original union volume has been used as a buffer volume. The
way it works is that while filtering one volume the results are stored in the other
volume and for the following filter pass the second volume is filter and the results are
stored back in the first volume. It continues in this way until all convolution passes
have been processed.

The Gaussian distributions given in the equations 3.36 - 3.38, describe each one of the
three stencils. The variance parameters of the stencils are given by the parameters in
the diagonal matrix D of the decomposition of the covariance matrix ∑.

!

d
1

2
corresponds to the standard deviation of first stencil,

!

d
2

2 corresponds to the second
stencil and

!

d
3

2 corresponds to stencil number three. The sizes of the stencils are
dependent on its variance parameter and are usually of the size 5σ, rounded upward to
the closes odd integer. Beyond this point the value of the Gaussian distribution is so
close to zero that it can be truncated to zero.

The directions of the stencils are described as the column vectors of the V matrix of
the decomposition of the covariance matrix ∑. The first column vector of V
corresponds to the first stencil, the second column vector to the second stencil and the
third column vector to the third stencil.

To obtain the variance parameters

!

d
1

2,

!

d
2

2 and

!

d
3

2 and the direction parameters v12, v13,
v23 the rotation angles θ and ϕ need to be found. These angles may be calculated with
the help of the local gradient (nx, ny, nz) at each voxel.

 24

x

z

n

n
1

tan
!

=" (4.1)

22

1
tan

zx

y

nn

n

+
=

!" (4.2)

Fig 4.1 Angles. Schematic view of how to find the angles θ and ϕ with help from the local normal n.

Where nx, ny, nz may be calculated by using finite difference and dx, dy and dz are the
distances between two voxels along the x-, y- and z-axis respectively.

dx
zyxzyxnx
2

1
)),,(),,((11 !+ != (4.3)

dy
zyxzyxnx
2

1
)),,(),,((11 !+ != (4.4)

dz
zyxzyxnx

2

1
)),,(),,((11 !+ != (4.4)

4.1.2 Where to blend
The tracking of the designated blending area may be performed in different ways.
Which method to choose depends on which kind of data structure that is used. For this
thesis the blending operator has been implemented both for the simple and intuitive
dens level set representation and the advanced and compact DT-Grid level set
representation. Different methods for tracking the intersection regions of the two input
surfaces have been used for the two different data structures. The simplicity of the
dens level set data structure lead to a very straightforward implementation where a
sampling of the intersection curve is stored during the CSG union operation. The
indices to these voxels are stored in an array and all neighbor voxels within a
specified distance to the zero crossing are added to the intersection ROI. The
intersection curve is defined as the set of voxels that contain both input surfaces.

For the DT-Grid, the blending operator has been implemented as a part of a large
framework, the Graphic Group Library. This in combination with the data structure it
self has lead to the use of an alternate approach for tracking the intersection ROI. The

 25

intersection ROI is defined as the regions where the beta band of intersection volume
intersects with the beta band of the union volume.

Fig. 4.2. ROI. The image shows how to find the intersection area of two curves with the help of the
intersection volume. The two original shapes are marked with dotted lines. The blue band corresponds
to the beta band of the union shape and the green band corresponds to the beta band of the intersection
shape. The intersection areas are marked with red.

The DT-Grid relies heavily on iterators for accessing and manipulating values in the
level set. To be able to set new values in the grid, an iterator must point to the
specified voxel. So in order to blend the level set surfaces an iterator that iterates over
the entire beta tube of the union surface is defined. While iterating over the beta tube
one has to check if the current voxel is within the beta tube of the intersection surface.
If inside, it means that the current voxel is within the intersection ROI and needs to be
filtered.

4.1.3 DT-Grid grid access – Random access vs. stencil access
The DT-Grid only stores values in a narrow band around the interface in contrast to a
simple dens level set which stores all values within a box-shaped volume. For a full
grid, random access is a simple mapping from the grid point to the corresponding
array index and is performed in constant time.

Array index = i⋅rows⋅columns + j⋅columns + k (4.5)

Where i = row index, j = column index and k = z index.

For the DT-Grid random access may be performed in logarithmic time in the number
of connected components within p-columns [5]. Since the numbers of connected
components are very small in relation to the number of grid points the random access
operation becomes almost as fast as for a full grid in practice. However, using random
access with DT-Grid is easy since it has full support for random access. One merely
has to specify the index, i, j, k, to the desired grid point. Constant time access can be
obtained if sequential access with iterators is used instead. When combining an
iterator with an iterator stencil constant time is obtained for neighbor access as well.
This is applies when iterating over an entire tubular grid. It is implemented by
specifying a stencil of iterators. These iterators are then stored in an array accessible
from the main iterator. One then has to create a function in the iterator class that by
accessing the values of the neighbor iterators can calculate the desired task.

 26

For the blending operation it seems like an iterator stencil that matches the Gaussian
convolution filter stencil would be the optimal way for incorporating the anisotropic
diffusion blending with the DT-Grid. However, random access has been proven to be
more efficient. This is because when using stencil iterator access additional iterators
for all grid points within the stencil needs to be incremented as well. In other words, it
may be faster to do a slow operation a few times than doing a fast operation a lot of
times, see fig 4.2 below. The number of grid points that belong to the intersection ROI
are very few in relation to the total number of grid points. Random access is therefore
faster than stencil iterator access for accessing neighbors of an iterator when it comes
to blending by means of anisotropic diffusion.

Fig 4.3. Random neighbor access vs. stencil neighbor access. This chart compares stencil iterator
access (continuous lines) and random access (dotted lines) for accessing neighbors of an iterator. The
y-axis is the time it takes to iterate over a surface and access the iterator’s neighbors for a certain
percentage of the total numbers of visited voxels. The test has been performed for three different
stencil sizes of 5, 7 and 21 points.

4.2 Global smoothing
Since Gaussian diffusion is a smoothing operator it has been a secondary goal to
implement it as an operator for global surface smoothing. The anisotropic Gaussian
diffusion filter has been implemented straightforward as a FIR filter and is very
similar to the blending case. There is however some differences that need to be
addressed. Obviously the region of interest is different. The smoothing operator has
been implemented to affect an entire surface and not only a sub part of it. There is
also no need to dynamically change the size of the Gaussian kernel since all surface
voxels are being convoluted. The fact that the entire surface is affected allows for a
more efficient use of DT-Grid data structure than for the blending case. To achieve
the best performance of the smoothing operator one wishes to constrain the Gaussian
convolution filter to only operate within a narrow band, as thin as possible around the
interface, but which still generates a satisfactory result. A narrow band with a radius

 27

of 1.5 has proven to be sufficient. When it comes to implementation issues, there are
two major differences between the implementation of the smoothing and blending
operator. The issues arise when incorporating the operator with the DT-Grid level set
data structure. They may be pinpointed to 1) defining stencil formats for stencil
iterator access 2) defining a tube which corresponds to the region of interest.

4.2.1 Defining stencils and tubes
Since the smoothing operator has to access the entire surface it will use sequential
access with a stencil iterator instead of random access, which is used for the blending
operator. Stencil iterator access allows constant time access of grid points when they
are accessed sequentially, compared to logarithmic time for random access. Two
different stencils need to be defined; one for each of the two first filter passes. These
stencils shall correspond to the stencils of the Gaussian convolution filters. The
stencils must however be extended with extra grid points to support fast calculation of
the local gradient. The first stencil must be extended with y+1, y-1, z+1, z-1, and the
second stencil with z+1, z-1, with respect to the center of the stencil. The reason that
the third filter pass uses random access and not stencil iterator access is that it requires
a very large stencil. A stencil for the third filter pass would require a minimum stencil
of 3x3x7 iterator, which is more expensive than accessing the few elements of the
convolution filter stencil by random access. Unfortunately, the structure of the DT-
Grid does not allow dynamic creation of stencil formats for the stencil iterator. This
means that variance parameters of the Gaussian kernel is somewhat limited.

The DT-Grid has some predefined tubes of certain widths but these are either too
narrow or too wide, therefore a custom tube has been implemented for the smoothing
operator. Defining a tube is merely to define the set of voxels that are within a certain
radius from the zero level set. It is an easy task, which follows a given structure of the
DT-Grid.

 28

5 Results
The intension of this chapter is to present the results of the blending and global
smoothing functions implemented for this thesis. Statistics from a comparison
between Gaussian diffusion blending and mean curvature flow based blending will be
presented. Limitations of the developed algorithm will also be highlighted. The
performance of the blending algorithms will be given first followed by the results
from implementation of global smoothing.

Over all, the implementation process has been found successful as well as the
integration with the DT-Grid and the Graphics Group Library.

5.1 Blending performance
The Performance of a blending function may be measured in two different ways,
namely the speed in which the blending is performed and the smoothness of the
blended area. The aesthetic results of the blending will be presented first.

5.1.1 Visual appearance
In computer graphic there is a saying, if it looks good it is good. Therefore the
aesthetic results of the blending algorithm have been measured by its visual
appearance in the eye of the beholder. Since it is all about the pictures, a set of images
comparing Gaussian diffusion blending with mean curvature flow based blending
follow below. They show that the presented algorithm produces a visual result at least
equivalent to one produced by the curvature based blending method. The images also
show how the amount of blending is controlled by the Gaussian filter kernel’s
variance parameters. To enhance the blending effects, the models have been rendered
with flat shading.

Fig 5.1 Union of a torus and a box. No blending has been performed. See fig 5.2 for blend results.

 29

Fig. 5.2 Union of a torus and a box. Anisotropic diffusion of different variances compared with
curvature flow based blending. a) diffusion, σ1 = 1.0 & σ2 = 1.5 b) diffusion, σ1 = 1.5 & σ2 = 2.25 c)
diffusion, σ1 = 2.0 & σ2 = 3.0 d) curvature, 10 iterations e) curvature 15 iterations f) curvature 30
iterations. For figures of the unblended model see fig 5.1.

Table 5.1. Anisotropic diffusion. Execution times for blending a box (180 * 60 *
180) and a torus (138 * 42 * 138) by means of anisotropic diffusion. The ROI consists
of131 072 voxels. The DT-Grid has been used as the level set data structure.

 1 2 3
Iterations 10 15 30
Time 576 s 944 s 1851 s

Table 5.2. Mean curvature flow. Execution times for blending a box (180 * 60 *
180) and a torus (138 * 42 * 138) by means of Mean curvature flow. The ROI consists
of 131 072 voxels. The DT-Grid has been used as the level set data structure-

 1 2 3
Variance σ1=1.0; σ2 = 1.5 σ1=1.5; σ2 = 2.25 σ1= 2.0; σ2=3.0
Time 63s 67 s 72
Filter pass 1 4,1 s 4,5 s 5,3 s
Filter pass 2 5,8 s 6,8 s 8,4 s
Filter pass 3 8,7 s 11,1 s 14,4 s

a b c
d e f

 30

5.1.2 Speed
The test case that has been used for speed measurements of the blending function is as
follows: a box with 180 * 60 * 180 grid points and a torus of the dimensions 138 * 42
* 138. The resulting intersection ROI consists of 131 072 voxels. The test
environment has been a window workstation with an AMD Sempron CPU on 1.4
GHZ and 512 MB of RAM. This has not been an optimal environment since the
computer is not performing as well as one can expect from workstation with this kind
of setup. Even though the timings are not representative for this kind of setup, it stills
show a proper relation between anisotropic diffusion based blending and mean
curvature flow based blending. As shown in table 5.1 and 5.2, the blending proposed
in this thesis out performs curvature based blending with a minimum factor of nine.
When extensive blending is demanded it outperforms the curvature based blending
with a factor larger than 25 and at the same time performs a heavier blending. As one
can see from table 1, the actual filtering takes about 30 % of the blending time. The
rest of the blending execution time is spent on initializing a buffer level set and
rebuilding the resulting model.

Fig 5.3. Winged horse. Detailed shots of the intersection between a wing and a horse. The images on
the left have not been blended while the images on the right have been blended by means of anisotropic
diffusion. The intersections are marked with a dotted red line. An overview of the model may be seen
in figure 6.2.

 31

5.2 Smoothing
The anisotropic diffusion algorithm proposed for blending has been extended to
perform global smoothing of level set surfaces. The level set surface is smoothed with
a constant anisotropic Gaussian filter kernel oriented with respect to the local
gradient. The smoothing operator is effective in terms of visual smoothing but since
the size of the filter kernel is constant, the surface is smoothed uniformly.
Anisotropic diffusion smoothing has been compared with morphological opening
since the opening method is the most efficient global smoothing operator for level
sets. When comparing the two methods it is concluded that morphological opening is
better at removing thin elements or spikes from the level set surface, see fig 5.4.
Beside the spikes the anisotropic Gaussian diffusion method offers smoothed surfaces
equivalent to the resulting surface of the opening operation. However, the method
proposed in this thesis is a lot faster than morphological smoothing, see table 5.3.

Fig 5.4 Diffusion vs. morphological opening. The model to the left is smoothed with an anisotropic
kernel with standard deviations of 1.5 and 2.2. The right model is smoothed with morphological
opening where the surface have been eroded three units three times then dilated three units three times.
As indicated by red, the anisotropic smoothing operator has not been able to remove the thin element in
the neck of the model.

Smoothing Execution time
Morphological opening 754 s
Anisotropic diffusion, σ1=1.5; σ2 = 2.2 115 s

Table 5.3 global smoothing. Comparison between morphological opening and
anisotropic diffusion. The morphological opening has moved the surface inward three
units three times then outwards three units three times. The resolution of the model is
251*242*168 grid points.

 32

Fig 5.5. Smoothing comparison. Comparison of smoothing by anisotropic diffusion, b, and
morphological opening, c. The original model is shown in a. Model c has been morphologically
smoothed in the fashion described in table 5.3 above.

5.3 Limitations
There are some limitations in this project’s implementation of the blending and
smoothing algorithms. These issues will be addressed in this section.

• Controlling material. One drawback with blending and smoothing
surfaces as proposed in this thesis is that the user cannot control if
material is added or removed from the model. This is a feature that
would give the user increased control of the final model.

• Arbitrary local smoothing. Only global smoothing has been
implemented for this thesis. However it is often desired to constrain a
smoothing operator locally. For example, there may be some damaged
areas of a model that would be improved by smoothing, but global
smoothing would lead to reduction of important details in other areas.

• Shape preservation. The global smoothing operator uses a constant
size of the filter kernel, which makes it less observant of surface
structure.

 33

6 Discussion
The task of implementing blending of implicit models by means of anisotropic
Gaussian diffusion has been interesting and challenging. The main issue has of course
been to fully grasp the efficient separation of the anisotropic Gaussian convolution
filter. Another challenge has been to understand the DT-Grid level set data structure.

The performance of the anisotropic Gaussian diffusion blending method is satisfying
and compared to the previous known method, mean curvature flow based blending, it
is superior in terms of execution times. The fact that the convolution part is the part of
the blending system that requires the least effort shows the strength of the algorithm.
Parts of the blending system that represents a significant part of the execution time are
the initializing and rebuilding of the level set. There are methods for improving the
performances of these processes, which are proposed in future work section. The fact
that no PDEs need to be solved is the key to the great speed of the anisotropic
diffusion method. It also makes it easier to implement since it does not require
numerical solvers.

The actual filtering process may also be broken down into a core process and a
support process. The support process is the process of iterating over the entire surface,
visiting an excess of grid points that are meant to be unaffected. Consequently, the
core blending function is faster than it first appears to be. This is pointed out since the
issues mentioned in this section mainly refer to the use of the DT-Grid data structure,
i.e. the performance of the blending algorithm may vary due to the level set data
structure at hand.

As for the visual appearance the proposed method delivers a satisfying result. It offers
just as smooth transitions between level set surfaces as the mean curvature flow
alternative. The Gaussian diffusion blending method also offers an intuitive way for
the user to control the amount of blending, i.e. the smoothness of the transition
between two level sets. It is controlled by the size of the filter kernel, i.e. the size of
the two variance parameters, larger variance gives smoother transitions. The proposed
method has also proven to be less sensitive to the quality of the input models, which
has been discovered during the implementation process.

The use of anisotropic Gaussian diffusions as a mean for surface smoothing was
mainly an extension of the idea behind the blending algorithm and has therefore not
been investigated as thoroughly as the blending. Gaussian diffusion would be a good
candidate for local smoothing as well since it is faster than curvature based flow,
which has been shown for blending. For global blending of level set surfaces
morphological opening and closing operations produce a visually more satisfying
result but there is still use for smoothing by anisotropic diffusion thanks to its great
advantage in speed.

6.1 Conclusion
This thesis has shown that anisotropic Gaussian diffusion is a very well suited method
for blending of implicit models and level sets in particular. The thesis has also shown
that the blending idea can be extended for global surface smoothing with very little
effort. The developed method has proved to be very advantageous in terms of speed,
compared to its alternative, the mean curvature flow blending method. It has at the
same time also shown to produce a visual result that is as good as previous methods.

 34

The general conclusion is that blending by means of anisotropic Gaussian diffusion is
a very good alternative to the mean curvature flow based blending method.

6.2 Future Work
This section will propose ideas on how to extend the use of anisotropic diffusion and
improve its over all performance.

6.2.1 Parallelization
One way to drastically improve the speed of level set methods in general is to
distribute the computations on a cluster of processing units, i.e. parallelization of level
set methods. While setting up a cluster of workstations may seem like a cumbersome
task, the central processing units (CPU) of today are increasingly using a dual core
technology. This new technology will allow parallelization on a single desktop or
laptop computer. Even more, today there exists workstations with two or more dual
core CPUs and apple is soon to release their Mac Pro with two quad core CPUs. This
will allow for numerous parallel processes for computations of level set methods. The
blending algorithm proposed in this thesis can easily adapt to this new technology. It
can be done by dividing a filter pass into several simultaneous processes, each one
filtering different parts of the surface. However, the greatest benefit would come from
the speed up of the CSG operations and the initialization and rebuilding of level sets,
since they can also be divided into different regions distributed on separate processing
units.

6.2.2 Localization with quadrics
Since the Gaussian blending operator is a smoothing operator it seems like a good
idea to use the technique for local surface smoothing as well. One way to localize the
smoothing operation would be regionally constrain the region of influence for the
smoothing operator by using quadrics or super quadrics. This method has been proven
successful for curvature based smoothing and sharpening [1].

6.2.3 Surface smoothing with shape preservation
A drawback of global surface smoothing, both morphological and by means of
anisotropic Gaussian diffusion, is that it tends to also smooth away sharp structural
features of the surface, not only the noise on the surface. By smoothing the surface
with an adaptive Gaussian kernel this may possibly be achieved as it has been for
polygonal meshes [16].

 35

Fig. 6.1. Greek bust. A 3d scanning of a Greek bust that have been repaired by copying a nose from
another model and copying the right cheek, the copied parts have then been pasted with anisotropic
diffusion blending to their respective place.

Fig 6.2. Winged horse. Wings have been copied from a griffin and then pasted on a horse. The left
wing is a mirrored duplication of the right wing. The wings and the body have been blended by means
of anisotropic diffusion. Close ups of the blending is shown in fig 5.3.

 36

Fig 5.6 Geo textured bunny. The Stanford bunny has been textured with 56 stars in different sizes that
then have been blended with the bunny.

 37

7 References

[1] K. Museth, D. Breen, R. Whitaker and A. Barr, "Level Set Surface Editing Operators", ACM
Transactions on Graphics, Vol. 21(3), ACM SIGGRAPH '02 (San Antonio, TX) pp. 330-338, 2002.

[2] S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations. Journal of ComputationalPhysics, 79, pp. 12–49, 1988.

[3] A. Brodersen, K. Museth, S. Porumbescu and B. Budge, “Robust Geometric Texturing Using Level
Sets”, IEEE Transaction On Visualization and Computer Graphics, submitted August 2006.

[4] BOUGUET, J.-Y., AND PERONA, P. 1999. 3D photography using shadow in dual space
geometry. International Journal of Computer Vision 35, 2 (Nov/Dev), 129–149.

[5] M. Nielsen and K. Museth, “Dynamic Tubular Grid: An Efficient Data Structure and Algorithms
for High Resolution Level Sets”, Journal of Scientific Computing Vol. 26, No. 3, pp. 261-299, March
2006

[6] D. Breen and R. Whitaker. A level set approach for the metamorphosis of solid models. IEEE
Trans. Visualization
and Computer Graphics, 7(2):173–192, 2001.

[7] Adalsteinsson, D. & Sethian, J. A. 1995. "A fast level set method for propagating interfaces."
Journal of Computational Physics. 118(2)269–277.

[8] Whitaker, R. T. 1998. "A level-set approach to 3d reconstruction from range data." International
Journal of Computer Vision. 29(3)203–231

[9] Strain, J. 1999. "Tree methods for moving interfaces." Journal of Computational Physics.
151(2)616–648.

[10] Losasso, F., Gibou, F., & Fedkiw, R. 2004. Simulating water and smoke with an octree data
structure. ACM Transactions on Graphics. 23(3)457–462.

[11] M. Do Carmo. Differential Geometry of Curves and Surfaces.
Prentice-Hall, Englewood Cliffs, NJ, 1976.

[12] C.H. Lampert and O. Wirjadi. An optimal non-orthogonal separation of the anisotropic gaussian
convolution filter. IEEE Trans. Image Processing, accepted for publication, 2006

[13] G. Taubin. A signal processing approach to fair surface design. In Proceedings of ACM
SIGGRAPH 95, pages 351–358, 1995.

[14] Taubin, L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multiresolution
modeling on arbitrary meshes. In Proceedings of ACM SIGGRAPH 98, pages 105–114, 1998.

[15] M. Desbrun, M. Meyer, P. Schr¨oder, and A. H. Barr. Implicit fairing of irregular meshes using
diffusion and curvature flow. Proceedings of ACM SIGGRAPH 99, pages 317–324, 1999.

[16] Y. Otake, A. Belyaev, H. Seidel ”Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter
Applied to Mesh Normals”. In Vision, Modeling and Visualization 2002, pages 203-210, Erlangen,
Germany, November 2002

[17] M. Nitzberg and T. Shiota. Nonlinear image filtering with edge and corner enhancement. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 14:826–833, 1992.

[18] j.-M. Guesebroek, A. W. M. Smeulders and J. van de Wiejer, “Fast anisotropic gauss filtering” in
ECCV ’02: Proceedings of the 7th European Conference on Computer Vision-Part 1. London, UK:
Springer-Verlag, 2002, pp. 99-112

