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CPU-Based Volume Rendering of Large Medical Data Sets with Level-Set Clipping

Ulf Lindgren, Olof Rehnström

Volume rendering provides means of efficiently visualizing volumetric scalar data in three
dimensions. It is a growing field of research with many applications, one of the most
prominent being medical visualization. For medical applications, very large data sets are
available that create a high demand on computational speed and memory efficiency. In this
work, we present and implement a framework for volume rendering of large medical data
sets in software. In addition, we present techniques for acceleration and handling of these
large data sets.
Another challenge in volume rendering lays in the task of extracting areas of interest
in the volume. Transfer functions, mapping sample density to colour and opacity values
provide one means for this, but it does not account for tissues of the same density
occluding each other. Clipping, which is based on the position rather than the density value
of a sample, can therefore be used. For this project, the possibility of using level set
segmentation data as clipping geometry in volume rendering was examined. Techniques for
high quality clipping and acceleration possibilities are presented. Finally, we present the
results of this and discuss further integration of the two techniques.

Volume rendering, level sets
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ABSTRACT 

Volume rendering provides means of efficiently visualizing volumetric scalar data in three 
dimensions. It is a growing field of research with many applications, one of the most 
prominent being medical visualization. For medical applications, very large data sets are 
available that create a high demand on computational speed and memory efficiency. In this 
work, we present and implement a framework for volume rendering of large medical data 
sets in software. In addition, we present techniques for acceleration and handling of these 
large data sets.

Another challenge in volume rendering lays in the task of extracting areas of interest 
in the volume. Transfer functions, mapping sample density to colour and opacity values 
provide one means for this, but it does not account for tissues of the same density 
occluding each other. Clipping, which is based on the position rather than the density value 
of a sample, can therefore be used. For this project, the possibility of using level set 
segmentation data as clipping geometry in volume rendering was examined. Techniques for 
high quality clipping and acceleration possibilities are presented. Finally, we present the 
results of this and discuss further integration of the two techniques. 
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1  INTRODUCTION

1.1 BACKGROUND 

The method of volume rendering has been the subject of research for over two decades, 
with applications such as manufacturing, geology and medicine. The general aim is to 
visualize volumetric scalar data in such a way that it can be explored and analyzed 
efficiently in three dimensions. A mayor obstacle for development and usage of volume 
rendering has been its inherently large demand of computational power and memory 
efficiency. However, due to the ever increasing performance of processors and memory 
together with the advent of specialized graphics hardware, this obstacle is constantly being 
reduced. Computational speed is still an issue, and as the resolution of data acquisition 
increases, applications must be adept in handling very large data files. 

Another challenge in dealing with volumetric data is how to extract regions of interest, 
and to separate different types of data from another. This is known as segmentation. The use 
of level sets has been shown to be efficient for automatic or semi-automatic segmentation 
of volume data. The level set representation of segmented regions can then be visualized by 
converting it into a triangular mesh before rendering. In this thesis, the combination of level 
set segmentation data and direct volume rendering is explored.  

This work is done at The Graphics Group, a research group at Linköping University 
dedicated to computer graphics and visualization. Fields of research include modeling, real-
time rendering, volume graphics, medical segmentation, point-based rendering, 
computational fluid dynamics and level set methods. The Graphic Group Library (GGL) is 
an internal library of graphics functions and classes used for research. One purpose of this 
thesis was to provide GGL with a generic and extendable volume rendering framework, to 
be used and further developed in future research projects. 

1.2  AIM 

The aim of this thesis is two-fold. First, it is to present an efficient method for visualization 
of large volumetric medical data sets in software. Second, to investigate the possibilities of 
utilizing level set representations of segmentation data as a means of extracting regions of 
interest from the volume data, i.e. clipping. 

1.3  METHOD 

The work on this thesis has been structured as follows. First, the general techniques of 
volume rendering, with focus on raycasting, is reviewed. The next step was to develop a 
basic application for volume rendering. After considering a number of available APIs for 
volume rendering, it was decided to write the application from scratch. The reason for this 
was to ensure full control of the system and to allow for the integration of a level set 

p. 1(51) 
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representation. Once the basic algorithms for raycasting had been implemented, the 
research and employment of different acceleration techniques had to be performed in 
order to decrease the rendering times. In a later stage, the system was further modified to 
allow for large data sets to be handled efficiently. This objective brought on a slight change 
of focus on the thesis work, at the expense of the level set part of the aim. The final step 
consisted of integrating a level set clipping into the visualization. For an efficient level set 
representation, classes from the Graphic Group Library were used.   

1.4  THESIS LAYOUT  

This thesis is divided in two parts.  In the first part, previous work and the theory of 
fundamental techniques will be described. Chapter 2 presents an overview of volume 
rendering,   chapter 3 describes techniques for volume rendering of large data sets and 
chapter 4 gives an introduction to level sets. 
 In the second part, we present the main contributions and results of this thesis. 
Chapter 5 describes how level set segmentation and volume rendering can be combined. In 
chapter 6 we describe our implementation in terms of features and system architecture. 
Chapter 7 presents results and illustrating examples. Finally, in chapter 8 we discuss the 
results and future work.

1.5 PREREQUISITS 

To be able to fully appreciate this thesis, basic knowledge of computer graphics, linear 
algebra and object-oriented programming is required. However, we have also tried to adapt 
the text for more general readers.

p. 2(51) 
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PART ONE 

PREVIOUS WORK
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2  VOLUME RENDERING

This chapter will describe the visualization technique of volume rendering, mainly in the 
context of medical applications. After a brief overview of the subject, principal techniques 
such as interpolation, gradient estimation and shading will be described. 

2.1  OVERVIEW 

In medical imaging, techniques such as CT (Computed Tomography) and MRI (Magnetic 
Resonance Imaging) provides high resolution three-dimensional scalar data which are used 
to visualize the internal structures of a subject.  Both scanning techniques produce a scalar 
density measurement of the internal tissue. For diagnostics, the volumetric data is 
traditionally displayed as a number of two-dimensional greyscale slices, where the image 
intensity level corresponds to tissue density. However, new acquisition hardware provides 
increasingly high resolution data, and hence more images, which cannot be evaluated 
efficiently in traditional ways. Therefore, improved techniques for better visualization of 
volumetric data have been a topic of research for many years. 

A common way to display volumetric data is to approximate a surface within a 
volume by geometric primitives and rendering them with hardware-supported algorithms, 
e.g. marching cubes [34]. These methods have two major drawbacks. First, converting 
volume data into geometric primitives is only an approximation of the surface. Second, a 
great deal of information from the volume data is lost by only using a surface 
representation. 

For these reasons, techniques that can visualize volume data without any intermediate 
representation are often preferable. Such techniques are referred to as direct volume 
rendering, or DVR for short.  Its main advantage compared to traditional surface rendering 
is the ability to visualize internal, often fuzzy, structures, in addition to surfaces. However, 
the requirements it poses on CPU speed and memory efficiency are very high. Nonetheless, 
volume rendering has become a widely appreciated technique with applications not only in 
medicine, but also in fields such as molecular science and geology.   

2.1.1  APPROACHES TO VOLUME RENDERING 

Within the field of volume visualization three distinct branches has evolved: techniques 
that utilize consumer graphics hardware, specialized hardware systems and CPU-based 
solutions.

GPU IMPLEMENTATIONS 

Implementations relying on consumer graphics hardware have evolved rapidly in recent 
years. The reason for this is the development of programmable GPUs on commodity 
graphics card. Using so called vertex- and pixel shaders in various 3D graphics APIs,  

p. 4(51) 
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such as the OpenGL Shader Language [9], the DirectX-based High Level Shader Language 
[10] and NVIDIA’s Cg language [11], solutions now exist that can produce high-quality 
renderings at interactive frame-rates. For further reference on hardware volume rendering 
refer to [5, 12]. 

Even though these have proven to be very powerful, they suffer from several 
drawbacks. One is their lack to provide for complex techniques needed in advanced 
visualization systems, such as filtering and segmentation. If these functions are not 
supported by the hardware, they have to be performed on the CPU, and data then have to 
be transferred back to the hardware. The transfer is very time-consuming and causes a 
considerable overhead. Another disadvantage is their inability to handle large data sets due 
to the rather limited internal memory of current graphics cards. Furthermore, these systems 
often depend on manufacturer specific features and drivers, which for example impair 
portability.

SPECIAL PURPOSE HARDWARE 

Before the introduction of programmable graphics cards, the wish for interactive volume 
rendering led to the development of powerful specialized hardware systems. Several such 
systems have been developed [3, 13, 14, 15, 16], many being able to render large data-sets 
with impressive quality and frame-rates. The most prominent, the Volume Pro board, can 
render a 512^3 data set at 30 frames per second [3]. However, the high price of these 
systems is a major drawback, limiting extensive use. 

CPU BASED SOLUTIONS 

The main advantage of CPU-based solutions is their high flexibility and independence of 
specialized hardware functions. However, both memory and processing bandwidth are 
limited. Even though numerous acceleration techniques exist, attaining high quality images 
at interactive frame rates when rendering large data-sets is not possible at present. This is 
of major concern due to the ever increasing dimensions of acquired data sets. Parallel 
architectures can account for this using large CPU clusters, but that is a large-scale solution. 
However, new acceleration techniques have been proposed that allows large data sets to be 
rendered on a single commodity PC [17, 18]. See chapter 3 for a more detailed description. 

2.1.2  VOLUME RENDERING ALGORITHMS 

DVR algorithm can be divided into three sub-categories of techniques; image-order, 
object-order or domain-based [5]. 

Image-order techniques, also known as raycasting, cast rays from the image pixels 
through the volume. The volume is re-sampled at equidistant positions along the ray and 
gradient estimation, shading and compositing is performed to produce a final pixel colour. 

In object-order techniques, the rendering pipeline is reversed. Every sample is 
mapped onto a region on the image plane, and thereby updating the corresponding pixel 
value according to a specified function. A common name for these methods is splattig [5]. 

p. 5(51) 
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Domain-based volume rendering transforms the volume data into another domain, such as 
the frequency domain, in order to visualize the information.  

Also, since each method has its own specific advantages a number of hybrid 
techniques has been developed that tries to combine the various benefits, the most well 
known is probably the shear-warp algorithm developed by Lacroute and Levoy [20]. Even 
though being a very fast algorithm the image quality is not acceptable for clinical use. 

2.2  PRINCIPAL TECHNIQUES 

Before describing the direct volume rendering process more in-depth, three central 
techniques must be described; interpolation, gradient estimation and shading.

2.2.1  INTERPOLATION 

A volume data-set only defines the sampled function at discrete points in space. If values 
between these points are required, interpolation has to be carried out. A vast number of 
interpolation functions exist; we will mainly focus on two of them: zero and first order 
interpolation.

Zero-order, or nearest neighbour, interpolation is the simplest form of interpolation. 
The function simply takes the value at the grid point closest to the sample point. This kind 
of interpolation corresponds to a box filter, i.e. there is a region of constant value around 
each sample point, and generally gives poor visual results. Especially noticeable are the 
characteristic jagged edges and the method is seldom used in applications where image 
quality is of high concern.  

First-order interpolation, or linear interpolation, produces a more accurate 
estimation. Its 2D and 3D variants are often referred to as bi-linear and tri-linear 
interpolation respectively.  

For a comparison of the two methods please see fig. 1. Note that the jagged edges are 
no longer visible when using linear interpolation. However, this function has discontinuous 
derivatives at cell boundaries, which can lead to visible aliasing when the samples changes 
rapidly between cells.

There also exist higher order interpolation functions, e.g. second order interpolation 
algorithms like the cardinal spline function [5]. These methods require more computational 
effort, and are thus more seldom used in real-time applications. In practice, linear filtering 
often gives satisfactory results for most applications since it offers an acceptable trade-off 
between quality and cost. However, if the discrete function already has been sampled at a 
high frequency, nearest neighbour interpolation can sometimes be adequate.  

It should be noted that many interpolation techniques tend to smooth or low-pass 
the original data and such methods can as a result not restore sharp edges that may have 
existed in the original data. If required, non-linear filters can be used. 

Moreover, proper pre-filtering has to be performed whenever a signal is sampled 
below its Nyquist limit, i.e. twice that of the highest frequency of the signal. If not 
considered, aliasing artefacts will occur. It is important that such filtering is performed 
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prior to interpolation, otherwise the high frequencies causing the aliasing will remain and 
be included in the interpolation. 

Figure 1 - Rendering using nearest neighbor interpolation (left) and linear interpolation (right), together 
with corresponding interpolation function (top). 

2.2.2  GRADIENT ESTIMATION 

Gradients are very useful in direct volume rendering since they provide important 
information of the rate of change of the volume data. They are primarily used in shading to 
estimate normals and in classification to enhance boundary interfaces.  

Two basic approaches exist to estimate the gradient in volume data: image-space and 
object-space methods. Simply put, image based techniques use the projected 2D-image to 
approximate the gradient and object-space methods estimate the gradient by using the 3D 
neighbourhood of the given voxel. Generally the latter gives better results but is also more 
computationally expensive. Since the gradients are used for shading, which is very sensitive 
to errors a good gradient estimation is of high importance. 

Object-space gradient estimation algorithms all employ some type of filter kernel to 
approximate a voxel gradient using its neighbours. A widely used method is the central-
difference scheme where the gradient is estimated as: 
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Methods using a larger neighbourhood produce a more accurate approximation at the cost 
of computational effort. However, such methods can have other advantages. For instance, 
in [21] Neumann et al. presents a scheme that performs gradient estimation and filtering at 
the same time using linear regression. This makes pre-filtering redundant, considerably 
reducing the pre-processing stage. Once the voxel gradients are computed, any of the 
interpolation schemes described in section 2.2.1 can be used to acquire the gradient at an 
off-grid sample point. 

Gradient estimation can be done either on the fly, i.e. continuously during run-time, 
or in a pre-processing stage and stored for later retrieval. The latter reduce rendering times 
at the expense of memory cost. Since the gradients often require 2-4 times the amount of 
memory as the volume itself, this memory consumption cannot be neglected, especially not 
in a large data context. By instead calculating the gradients on the fly, unnecessary memory 
usage is avoided, but it requires a great deal of additional calculations to be made during 
rendering.

2.2.3  SHADING 

As mentioned, volume rendering is a method for showing internal structures, where in 
reality no light is present. However, a lighting model is required for the user to appreciate 
the three-dimensional shape of structures inside the volumetric data. For example, the 
standard algorithm based on the Phong illumination model [22], can be employed.  

n
lsldaa sHsNCksLsNsCCkCksR ))()(())()()((0

Where, 
s  = the sample point 

sda kkk ,,  = ambient, diffuse and specular material coefficients 

aC = ambient colour  

lC = colour of light source 

0C = colour of the object determined by the density-colour mapping function 
)(sN = the surface normal vector at point s, determined by the normalized gradient 
)(sL = normalized vector in direction of light source 
)(sH = halfway-vector, i.e. the normalized vector in direction of maximum highlight, 

 calculated using view and light directions ||2/)( LVLVH
)(sV  = the view vector 

n = Phong exponent, used to approximate highlight 
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The term N(s)·H(s) is in fact an approximation of the original term R·V, to minimize 
rendering time, where R is the direction of the reflected light and V is the direction of the 
viewer.

To further reduce computational effort, the term N(s)·H(s) can be replaced with 
N(s)·L to save an expensive dot product calculation. This adjustment means that the 
specular highlight will always be at a maximum in the direction of the reflected light. This 
simplified model is acceptable due to the fact that light in this case is only an imagined 
presence to enhance the visualization of the data, rather than a physical factor to be 
modelled.

Figure 2 - Vectors used for shading. L is the direction of the light source, N is the surface 
normal at sampling point S. V is the viewing direction and R is the direction of the reflected 
light, often approximated by the so called halfway vector H. 

p. 9(51) 
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2.3  RAYCASTING 

Raycasting is probably the most popular direct volume rendering method. This is mainly 
due to its excellent image quality, ease of both understanding and implementation. 
Raycasting is an image order technique, as described in section 2.1, where rays are cast 
from every pixel in the image plane through the volume data to determine a pixel colour. A 
standard ray traversal pipeline for raycasting is illustrated in figure 3. 

Advance Ray 

Terminate 

Write Pixel  
YES 

Re-sampling 
Classification 

Visible

Gradient estimation 
Shading 
Compositing 

YES 

NO

NO

START

Figure 3 – Simple ray traversal pipeline

The principle drawback of the technique is its rendering cost. Since all voxels participate in 
the generation of each image, rendering times increase linearly with the size of the data set. 
Much research has been devoted to accelerating this process, both in software and 
hardware solutions. Acceleration techniques will be further described in section 2.3.4 and 3.3. 

2.3.1  PROJECTION TYPES 

There are several ways of determining the pixel colour of a ray, commonly referred to as 
projection types. These methods all have their own benefits and field of use. Many 
operations are common for all projection types; they all sample the grid at equidistant 
locations along their paths, and they all obtain sample values via interpolation. However, 
the modes vary in the manner the samples are composite to acquire the pixel colour. Below 
follows a simple explanation of the three most common projection types. For image 
examples please refer to fig 4. 
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X-RAY PROJECTION 

In the simplest of the three methods, x-ray projection, the pixel colour is given by the 
normalized sum of all samples. This gives rise to a typical x-ray image, except that it exists 
in three dimensions and can be viewed from any angle. 

MAXIMUM INTENSITY PROJECTION – MIP 

In the second method, maximum intensity projection or MIP, the pixel colour is set to the 
maximum sample value along each ray. It is often used in combination with radioactive 
agents, injected into the blood prior to scanning, in order to visualize blood vessels which 
otherwise can be hard to detect. 

TRANSPARENCY PROJECTION 

Transparency projection, also known as full volume rendering, is probably the most 
interesting one since it can generate semi-transparent 3D images of the volume data. Here, 
the interpolated samples are used to simulate the transportation of light through the 
medium.

Fig 4 - Projection types. From left to right: X-Ray-, Maximum Intensity- and Transparency Projection.

p. 11(51) 
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2.3.2  THE VOLUME RENDERING INTEGRAL 

The task of direct volume rendering is to simulate the transportation of light through a 
semi-transparent medium. This can be achieved by using an optical model. If only local 
lighting effects are considered, simplifications can be made to allow for interactive volume 
rendering. In addition, effects like shadowing and multiple scattering do not always make 
visualizations clearer. 
 One such a model [48], can be created by considering a volume containing particles 
of various densities. When light rays enter the volume, some pass right through it while 
others get blocked by particles. The attenuation coefficient,  , expresses the amount of 
incoming light that is absorbed per length unit. 
 Rays might also originate from particles, e.g. from emission or reflection. These 
particles emit light with intensity L, expressing the luminance of the volume. Given these 
parameters, the intensity behavior of a ray of light, passing through the volume can be 
expressed by the following differential equation:

   )()()()(
)( ssIssL

ds
sdI         (1) 

The change in intensity of a light ray, I(s), as it passes through the volume is equal to the 
light emitted at s minus the amount of incoming light that is attenuated. Equation 1 can be 
solved as follows: 
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The equation is then integrated along the ray, from s = 0 at the back of the volume to s= 
D at the eye: 
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Equation 2 is known as the volume rendering integral. The first term determines the 
amount of incoming light, I0, reaching the eye1. The second term adds the amount of light 
emitted at each point along the ray, considering the attenuation from each point to the end 
of the volume. If dealing with non-emissive media, L(s) can be calculated using the 
standard illumination model, described in section 2.2.3. Furthermore, (s) can be expressed 
by the mass density value at the sample point.  

The volume rendering integral cannot be solved analytically in an efficient way [5], 
but has to be numerically approximated. This can be done using a discrete Riemann sum, 
where each ray interpolates a number of discrete samples at a distance of s: 
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In order to make the computation more efficient, further approximations can be done. 
Transparency, t(i s), is defined as assuming values in the range [0,1], and  opacity,
(i s),  as 1 - t(i s). The exponential density term can then be approximated by the first 

two terms of its Taylor expansion which gives: 
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1
From here on, we will conider a model where no light enters the volume from behind, i.e. Io=0.
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Equation 4 is known as the compositing equation and gives us the recursive front-to-back 
compositing equations: 

oldoldnew isisiCcc )(

oldoldnew si 1      

Where,
c = the accumulated colour 
 = the accumulated opacity 

C(i s) = the sample colour 
(i s) = the sample opacity 

To summarize, each pixel colour, c, is determined by computing a colour C and opacity 
for each sample along the ray and compositing their product with the accumulated opacity 
of earlier samples. Alternatively, equation (4) can be implemented in a back-to front 
manner, which is less commonly used due to the fact that this mode cannot utilize early ray 
termination (see section 2.3.4).  

The technique used in equation (4) is sometimes referred to as pre-classification, 
meaning that colours and opacities are calculated from voxel densities before interpolation. 
This scheme does not allow for high frequency detail in the transfer function, often 
resulting in somewhat blurry images, especially during magnification. To account for this 
another model, post-classification, can be employed: 
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Where,
f(i s) = the interpolated sample value 
g(i s) = is the interpolated sample point gradient 
C= the colour transfer function 
 = the opacity transfer function 

This method first interpolates the voxel density values and then maps the result to colours 
and opacities. This gives rise to a new set of recursive implementation algorithms: 
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2.3.3  CLASSIFICATION AND TRANSFER FUNCTIONS 

In order to distinguish certain features in the data, volume data classification is used. 
Essentially, classification is the process of assigning colour and opacity values to each 
sample based on its mass density value. The raw density data values are always used, but 
the gradients, and even second-order derivatives, can also be utilized in the mapping to give 
additional information about edges etc.

Classification can be performed on the fly, via some classification function as in [1].
More frequently however, the mapping is performed using look-up tables known as 
transfer functions.

The reason for using transfer functions is two-fold. First, volume rendering is a very 
computationally expensive process, and the cost of classifying every sample is considerably 
smaller when using a look-up table instead of performing calculations on the fly. Second, 
transfer functions allows for a more intuitive classification process, either in a pre-
processing stage or at runtime. A transfer function editor usually allows the user to 
graphically edit curves in a histogram space, often consisting of both volume data and its 
first and second derivatives. Figure 5 shows a modern transfer function editor. The main 
focus of research in this field is the design of such multi-dimensional transfer functions and 
editors.

Fig 5 - A Histogram-based transfer function editor. Each colour represents different density values, i.e. tissue. 
The arches represent derivatives of the data. Image courtesy of the SCI Institute [47]. 
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2 .3 .4   SOFTWARE ACCELERATION TECHNIQUES 

As mentioned in previous sections; CPU-based volume rendering techniques, not least 
raycasting, are very time-consuming. The number of computations performed grows 
linearly with the number of voxels since they all, weather empty or not, have to be 
processed to produce the final image.  

This computational expense is a major drawback since it is very important to obtain 
rapid feed-back when used in clinical environments. To target this problem a vast number 
of software acceleration techniques have been developed over the years. These methods 
can be roughly divided into two major categories; image- and object order techniques. The 
former generally achieve speed-ups by only casting rays from a subset of pixels, hence 
often giving decreased image quality. Object order acceleration techniques decreases workload 
by skipping empty space in some manner, thus generally not decreasing image quality. 

Below some of the most common techniques are described. For a more in-depth 
review of current acceleration techniques we refer to [5, 23]. 

ADAPTIVE REFINEMENT 

The main idea of adaptive refinement, first proposed by Levoy [2], is to adaptively improve 
image quality over time. Hence, a coarse image can be displayed in a fragment of the time it 
would take to perform full raycasting.

An initial image is generated by casting a small number of rays into the volume, e.g. 
one per four pixels, and interpolating missing pixel values between the resulting colours. 
Subsequent images are generated by discarding interpolated colours, and alternately casting 
more rays and interpolating. Where new rays are cast is based on colour differences, i.e. 
they are cast to maximize sampling in regions of high image complexity, for example in the 
vicinity of edges.

EARLY RAY-TERMINATION 

In front-to-back composite raycasting, rays can be terminated when the accumulated 
opacity exceeds some user-defined threshold. Due to the nature of the algorithm, samples 
taken after this limit has been exceeded will not significantly contribute to the final pixel 
colour and can thus be ignored. 

SPACE LEAPING 

Probably the most investigated, and also most powerful, acceleration techniques involve 
some type of space leaping. These methods allow rays to skip over empty space, i.e. cells that 
can be considered empty in respect to the current opacity-colour mapping function. Usually 
this requires some kind of pre-processing to determine the extent of the objects in the scene.

A number of methods exist that utilize distance maps to alleviate the space-leaping, 
[24, 25, 26, 27, 28]. In a pre-processing step each empty voxel is assigned the distance to 
the nearest non-empty voxel. A ray that encounters an empty voxel during rendering can 
then safely leap forward the number of steps indicated by that voxel.  
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Another example is the PARC algorithm [29]. The pre-processing consists of enclosing the 
object in a convex polygon object. Two z-buffers then give the starting and termination 
point of all rays. 

Yet another category of space leaping algorithms is the ones that subdivide the volume 
into smaller sub volumes. Some does this in only a single step, like bricking [19], whereas 
some do it recursively in a number of steps and create hierarchical data-structures, e.g. an 
occtree [30, 31, 18]. These sub-volumes are then treated as large voxels during rendering. 

SHEAR WARP 

As mentioned in section 2.1.2, the shear-warp technique [20] takes advantage of both 
image and object order volume rendering methods. The idea is to create a sheared parallel 
projection on a plane that is parallel to one of the faces of the volume. A 2D warping is 
then performed on the image plane. This allows for very fast rendering times, but the 
image quality is not sufficient for most clinical applications.
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3  VOLUME RENDERING OF LARGE DATA SETS

In this section volume rendering of large data sets will be examined. First a brief 
introduction to the matter is given. Hereafter, memory management and acceleration 
techniques will be described. Focus lies on techniques developed by researchers at Vienna 
University of Technology [17, 18, 19].

3.1  INTRODUCTION

Volume visualization often deals with huge amounts of data. For instance, a standard 
512^3, 16 bit dataset occupies roughly 270 MB of memory. These quantities are increasing 
rapidly, mainly since higher resolution data often is sought after when making diagnoses. 
Furthermore, the gap between processor and memory performance is increasing with every 
new generation of hardware. Hence, the main bottleneck in today’s medical visualization 
systems is not CPU performance in the same way it was a decade ago, instead memory 
capacity and cache efficiency is.

Research has been carried out to handle these problems [14, 32, 17]. Both Knittel and 
Mora et al. accomplish high performance by using a spread memory layout. However, since 
their memory usage is approximately four times the data size, these techniques are not 
suitable for large data-sets. In contrast, Bruckner’s approach uses dramatically less memory 
by performing all computations on the fly. High performance is achieved by using a 
bricked memory layout, an efficient addressing scheme and high level acceleration 
techniques. A parallelization approach is also described to further increase performance on 
multi-processor systems. Parallelization will not be handled further due to being outside the 
scope of this thesis. 

3.2  MEMORY MANAGEMENT FOR LARGE DATA SETS 

As mentioned above, the gap between memory and processor performance is increasing 
rapidly. Thus, memory access will be an increasing bottleneck when dealing with 
visualization applications that handle large amounts of data. In particular, raycasting 
techniques will suffer since the memory access patterns in such methods are highly 
irregular and thus cause cache misses. However, techniques exist that target this difficulty 
by exploiting the memory hierarchy of modern computers. 

3.2.1  COMPUTER MEMORY LAYOUT 

The memory of modern computers is organized in a hierarchy of successively larger, slower 
and cheaper memory levels (Fig 6). When a data item is requested, the request is 
propagated down the memory levels until the item is found. Since data is accessed 
frequently it would be a major advantage if most items are found in one of the fast caches. 
In other words; accessing the slower levels more than necessary should be strictly avoided.  
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HARD DISK

MAIN MEMORY

LEVEL-2 CACHE

LEVEL-1 CACHE

REGISTER

PROCESSOR

Typical size Access

1 KB 1-3 ns

8-128 KB 2-8 ns

0.5-8 MB 5-12 ns

256-8000 MB 10-60 ns

100-200 GB 8-12 ms

Time 

Fig 6 - The memory of a modern computers consist of a hierarchy of 
consequently larger and slower memory levels.  

3.2.2  LINEAR VS.  BRICKED VOLUME LAYOUTS 

Normally data is stored linearly, i.e. the data is a set of 2D-images which are stored in 
lexicographic order. In standard raycasting rays are shot one after another into the volume. 
The volume data is then re-sampled along this ray and gradient computation, shading and 
compositing is performed to get a final pixel colour. Since rays often lie close to each other 
the same data frequently has to be accessed from the slower memory levels more than 
once. No spatial or temporal coherence is taken advantage, resulting in inefficient memory 
handling and low performance. 
 In bricking the data is divided into a number of small fixed-size data blocks, all stored 
in linear order. The idea is to choose the block size so that an entire block fits into the 
systems fast cache. The rendering pipeline is altered so that the computations are 
performed block-wise and thus all data-accessing can be done in the fast cache.  

Moreover, in raycasting, a neighbourhood of samples often needs to be accessed 
when computing gradients or samples at off-grid points. Assuming tri-linear interpolation, 
seven neighbours have to be accessed for re-sampling and 6 to 27 neighbours for each 
gradient, depending on gradient estimation scheme employed. Multiplying this with the 
number of samples, one can see that efficient addressing is of major importance for 
performance critical systems.
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3.2.3  ADDRESSING IN A BRICKED VOLUME 

Addressing in a linear volume layout is straightforward and efficient since only one offset 
has to be fully computed; that of the integer parts of the current sample position (i, j, k): 

offseti,j,k = i + j*Dx + k*Dx*Dy

where,  
Dx, Dy, Dz are the volume dimensions.  

Once this is done the neighbouring samples can be accessed by simple algebraic operations. 
For example, accessing the samples needed for re-sampling can be accomplished by: 

offseti+1,j,k  =  offseti,j,k + 1 
 offseti,j+1,k  =  offseti,j,k + Dx

 offseti+1,j+1,k  =  offseti,j,k + 1 + Dx

 offseti,j,k+1  =  offseti,j,k + Dx*Dy

 offseti+1,j,k+1  =  offseti,j,k + 1 Dx*Dy

 offseti,j+1,k+1  =  offseti,j,k + Dx + Dx*Dy

 offseti+1,j+1,k+1  =  offseti,j,k + 1 + Dx + Dx*Dy

In contrast to this, addressing in a bricked volume is more costly since two offsets have to 
be computed; one for the brick itself and one for the element within the brick: 

 offseti,j,k    =  brickIndex * nrOfElementsInBrick + internalBrickIndex (8) 

Considering the huge amounts of samples taken in raycasting this is quite inefficient. 
Although samples lying in the same block can be accessed in a similar way as above, this is 
not the case for samples lying on the edge to adjacent blocks. Even though these samples 
compose a minority, the computational overhead they add can not be ignored.

Bruckner deals with this problem by creating lookup-tables containing the offsets to 
neighbouring samples. The tables are not created for every sample position though, since 
most of them would contain the same offsets, creating an unnecessarily large table and 
thereby impairing the much sought after cache-coherence. 

A brick is divided into different subsets depending on in which block neighbouring 
samples lie. If the same lookup table is used for both re-sampling and gradient calculation, 
27 distinct cases exist, each with 26 neighbour offsets. To determine the subset 
membership of a sample position, and thereby the corresponding lookup table index [0-26], 
the following formulas are used2:

2 For further reference see [17, 19]
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i’  =  (((((i & (BBx – 1)) – 1) & (2BxB  – 1)) | 1) + 1) >> Nx

  j’  =  (((((j & (BBx – 1)) – 1) & (2ByB  – 1)) | 1) + 1) >> Ny

  k’  =  (((((k & (BBx – 1)) – 1) & (2BzB  – 1)) | 1) + 1) >> Nz

  subset  =  9i’ + 3j’ + k’ 

 Where, 
i, j, k are the integer parts of the current sample position 

 Bx, By and Bz are the brick dimensions, 
 Nx, Ny, Nz are the base 2 logarithms of BBx, By and Bz respectively 
 & denotes a bitwise and operation, 
 | denotes a bitwise or operation, 

>> denotes a right shift operation, and 
~ denotes a bitwise negation 

After computing the first offset, offseti,j,k, according to (8), the seven other voxel values 
needed for re-sampling can now be accessed by: 

 offseti+1,j,k   =  offseti,j,k + offsetLUT[subset][0] 
 offseti,j+1,k   =  offseti,j,k + offsetLUT[subset][1] 
 offseti+1,j+1,k  =  offseti,j,k + offsetLUT[subset][2] 
 offseti,j,k+1   =  offseti,j,k + offsetLUT[subset][3] 
 offseti+1,j,k+1  =  offseti,j,k + offsetLUT[subset][4] 
 offseti,j+1,k+1  =  offseti,j,k + offsetLUT[subset][5] 
 offseti+1,j+1,k+1  =  offseti,j,k + offsetLUT[subset][6] 

 Where, 
offsetLUT is the lookup-table containing offsets to neighbouring samples depending 
on subset membership  

Values needed for gradient estimation can be addressed in a similar manner. 

3.2.4  TRAVERSAL OF A BRICKED VOLUME 

As mentioned in 2.1.2, raycasting is an image-order approach to volume rendering as 
opposed to object-order solutions. One of its main advantages is that it allows for efficient 
acceleration techniques such as early ray termination (section 2.3.4). On the downside, 
image-order solutions have a very irregular data access, whereas object-order volume 
rendering allows for high cache coherency, i.e. data locality. In [33], Law and Yagel present 
an image-order raycasting scheme that utilizes the benefits of an object-order approach 
through an efficient traversal algorithm. A ray-front is advanced through a bricked volume 
and bricks are processed in visibility order. This solution has high cache coherency since 
the bricks will only be processed once, and one at the time. 
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Figure 7 - (a) Advancing ray front through a bricked volume. (b) Two-dimensional view of a bricked volume with seven brick 
lists. The arrows denote four possible view-cases, the un-dotted being the current one. 

The algorithm firsts sorts the bricks in front-to-back order, depending on the current 
viewing angle. In parallel projection eight distinct cases exist, each described by a set of lists 
that contain the order in which the bricks will be processed (fig. 7). These lists do not have 
to be computed in every pass, but can be created in a pre-processing stage and simply 
accessed during rendering using a lookup-table. Each brick holds a list of rays passing 
through it. 

Initially, rays are assigned to the brick it hits first and are then passed on to other 
bricks as the ray front advances through the volume. Bricks are then processed in order 
according to the brick list of the current view. The algorithm ensures that no ray that is 
processed by a brick can be passed on to another brick in the same brick list. Hence, bricks 
are processed as independent objects, beneficial for parallelized systems. The traversal 
process is summarized in figure 8. 

   Figure 8 - Rendering procedure of a bricked volume 
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3.3  ACCELERATION TECHNIQUES FOR BRICKED VOLUMES 

As described in [17], a bricked volume data structure can greatly improve cache coherency 
and enable large data to be rendered efficiently.  However, the computational load of 
volume raycasting is still a major challenge, and many CPU based applications rely on 
clusters or super-computers to achieve interactive frame rates on large data set. In [18] 
Grimm et al, presents a number of acceleration techniques for CPU and bricked-based 
volume raycasting, allowing them to render a [512x512x1202] CT data set at 2.5 fps on a 
commodity notebook. Below follow summaries of the three key techniques: gradient 
caching, skipping of translucent bricks and cell visibility caching. 

3.3.1  GRADIENT CACHING 

Gradient estimation is one of the most important and computationally heavy parts of 
volume raycasting (see section 2.2.2). As mentioned, gradients can be computed in a pre-
processing stage and stored in a separate data structure which is accessed during rendering. 
However, storing a gradient data structure of the same dimensions as the volume data in 
memory is not possible when dealing with large data. Thus gradients have to be computed 
on the fly.  Herein lays a great inefficiency, since a grid-point gradient is likely to be 
computed several times during one rendering. For example, consider an off-grid sample 
point for which a gradient is to be computed using tri-linear interpolation. The gradients of 
the eight grid-point corners of the current cell is then required. It is quite likely that one or 
more of these grid-points are a corner of another cell, which will be sampled by the same 
ray later, or by an adjacent ray. This is especially true if a small step size is used or if the 
rays are at a small distance from each other, e.g. the view is zoomed in (fig 9).  

Figure 9 - Gradient calculation is normally very 
inefficient since gradients often have to be computed 
several times. In the lower left cell for instance, each of 
the four voxel gradients are computed 5 times. In 3D 
the problem is even worse. 

To address this problem, Grimm et al, presents a solution where gradients that have been 
computed are stored in a cache data structure of the same size as a brick.3 An additional 
Boolean data structure of equal size is used to store whether a grid-point gradient has been 
calculated or not. During sampling, the Boolean data structure is used to determine if a 
gradient has to be computed, or simply fetched from the cache. Whenever a new brick is 
being processed the cache is emptied and the Boolean data structure reset. The gradient 
cache decreases the number of calculations that has to be performed during a rendering 
pass enormously at a reasonably small memory expense. 

3 Actually, the size of the cache is (brick dimension + 1)3, to allow for interpolation over the borders of a 

brick. 
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3.3.2  BRICK SKIPPING 

Depending on the choice of transfer function, the amount of data that is to be visualized 
varies, and in many cases large sections of a volume will not be visible at all. Algorithms 
designed to efficiently skip such areas can greatly improve the performance of a ray caster. 
A sub-divided data structure such as bricking, allows for a coarse classification of the 
volume in object space so that entire sub-sections, in this case bricks, of the volume can be 
set as invisible and thereby skipped during rendering.  

In a pre-processing stage the maximum and minimum value of each brick is stored. 
The value range can then be checked against the current transfer function to determine 
whether a brick is visible or not. Grimm et al. also employs a more granular sub-division by 
encoding each brick in a three level octree. 

3.3.3  CELL INVISIBILITY CACHE 

To further eliminate processing of non-visible cells, Grimm et al introduces a Cell 
Invisibility Cache, CIC, which ensures that empty cells only has to be classified once. The 
CIC encodes the visibility of each volume cell by one bit. All cells are initialized as visible 
and once a cell has been classified as invisible, the classification of all samples inside that 
cell can be replaced by a binary test. However, a visible cell has to be classified every time, 
since it is not possible to know if it has been classified previously without an additional data 
structure. The CIC remains valid as long as the transfer function does not change, and will 
gradually fill up so that rendering time decrease for each run. Figure 10 shows an extended 
ray-traversal pipeline with a CIC.

Advance Ray 

Terminate 

Write Pixel  

YES 

Re-sampling 
Classification 

Visible 

Gradient estimation 
Shading 
Compositing 

YES 

NO

NO

CIC

Visible

YES 

NO

START 

Figure 10 - Ray-traversal pipeline with a CIC. 
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4  LEVEL SET SEGMENTATION

Segmentation can be defined as the process of finding interfaces between different regions 
of interest.  Even though this could be accomplished using transfer function design in 
volume rendering, the two methods should not be confused. Most segmentation 
algorithms explicitly extract geometry, which often are rendered using triangles, whereas 
volume rendering is a direct visualization technique. Most techniques typically use not only 
intensity values, like for instance Marching Cubes [34], but also their derivatives as a basis 
for segmentation. Segmentation can either be used to detect hard edges, based on intensity 
changes, or to separate regions with smoothly varying intensities. 

Segmentation can be divided into two main categories; simple segmentation 
techniques and semi-automatic segmentation techniques. The former includes basic 
methods such as manual segmentation, threshold classification and region growing. These 
techniques are too limited for many applications and therefore much research has been 
focused on the second category. Methods such as live wire [45], and active contours [46], 
can semi-automatically find regions with high gradients, but they are generally limited to 
2D applications.  

In this chapter we will focus on a more powerful mathematical method which allows 
automatic or semi-automatic segmentation in three dimensions, level sets. Note however 
that the topic will only be briefly covered. For a more thorough description of the subject 
and detailed mathematics please refer to [5, 6, 7, 35, 36, 37, 42].   

4.1  LEVEL SET METHODS 

First proposed by Sethian and Osher [35], level set methods can describe complex 
deformable shapes of arbitrary dimensionality and topology. They implicitly represent an n-
dimensional interface by embedding it in a space of dimension n+1, giving the interface a 
co-dimensionality of one. For example, a one-dimensional curve is represented in a 2D-space 
and a 2D-surface is represented in a 3D-space.  

For each grid-point, the level set function, , defines the closest distance to the 
boundary, the zero level set (Fig 11). Distances inside the boundary have opposite sign 
from distances on the outside. In this thesis a positive sign will denote distances outside the 
zero level set and a negative sign distances inside. 

Figure 11 - A simple level-set; a closed line represented by a 
two-dimensional distance map.  
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By introducing a time-dimension into the model, the level set can be deformed in any way 
using so called speed functions, partial differential equations that determine how the boundary 
will move over time. These functions can range from constant steps in the surface normal 
direction (eq. 9), to complex edge-detecting equations. The advancement of the level set is 
computed by solving the speed function. 

dt
dx

dt
dxnnxF ,...,, (9)

Level set models have several advantages. They generate closed, non-self intersecting 
surfaces which can easily change topology over time. Furthermore, they do not suffer from 
mesh connectivity problems and there is no need to re-parameterize during deformation. 

Many frameworks for level set segmentation of volumetric data exist [6, 42]. 
Describing them in depth is outside the scope of this thesis. However, common for all is 
that they produce a separate volumetric representation of the segmented data. This 
representation is generally converted into a polygon mesh which can be rendered by 
graphics hardware.

4.1.1  NARROW BAND METHODS 

If only a single level set is of interest, computing the solution over the entire domain of phi 
is highly inefficient. Fortunately, the evaluation of a single level set only has to be 
performed in the vicinity of it; such methods are called narrow-band schemes [36]. As in 
normal level set methods, they construct an embedding of the evolving curve or surface in 
the form of a distance function. However, the function is only valid in a narrow band of 
grid points around the boundary, called the gamma band (fig 12). All grid points outside 
this band are set to a constant value, equal to width of the band, . In three dimensions, 
this is equivalent to a tube surrounding the level set interface.  Not only does this lead to a 
more efficient evaluation of the level set function, it also allows fore a more memory 
efficient representation [37]. 

Figure 12 - A narrow-band level-set. Only the 
distances inside the band of width  surrounding 
he interface are defined. Outside the narrow 
band, distances are set to a positive (outside), or 
negative (inside) constant.  
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5 COMBINING VOLUME RENDERING OF LARGE 
 DATA SETS WITH LEVEL SET CLIPPING

The major motivation for using volume rendering is its capability to simultaneously 
visualize several types of internal structures. This is made possible through designing 
transfer functions, mapping mass density to colour and opacity. However, separating 
interesting structures can often de difficult using only transfer functions.

Clipping is the process of excluding parts of a volume depending on their voxel 
position, in contrast to transfer functions which are based on the voxel value. Often 
clipping is performed using a plane, or a combination of planes. Although some geometry 
can be approximated in this way, many can not, and more complex clipping objects are 
then needed. In medical imaging, segmentation data can often be made available and can 
be used to define complex clipping geometry as polygon meshes. However, testing weather 
a voxel lies inside the polygon object is a rather complex and computationally expensive task. 

In this thesis, the possibilities of using segmentation data directly as clipping objects, 
without using intermediate polygon objects, was examined. Level set segmentation 
provides a powerful means to extract and represent complex internal structures in such a 
way. Using a narrow-band scheme (see section 4.1.1), level sets can in addition be 
represented in a memory efficient manner. They are therefore particularly suitable when 
dealing with large data sets, where memory size already is a limitation. 

First the adjusted ray traversal pipeline, including level set clipping, will de described, 
followed by acceleration possibilities and a discussion of how to achieve high quality 
interface shading. 

5.1  LEVEL SET CLIPPING 

Representing clipping geometry with a triangular mesh might seem as a straight-forward 
way, since it is an efficient and hardware-optimized way of handling objects of arbitrary 
size and complexity. When dealing with basic clipping or probing objects, such as spheres 
and cubes, this assumption holds. However, if the clipping is performed with segmentation 
data, the mesh has to be extracted from volume data using techniques such as Marching 
Cubes [34]. In this case, using the volumetric segmentation data for clipping is a more 
direct approach. Furthermore, the testing of whether a sample is inside or outside a 
triangular mesh requires advanced ray-surface intersection tests, which creates a calculation 
overhead. This problem is not present in level set clipping. 

The adjustment of the ray traversal pipeline to include level set clipping is rather 
straightforward (fig 13). Simply put; a test to see if a sample point lies inside the level set or 
not is all that is needed. Since the level set inherently holds distances from every grid point 
to the interface, this is a simple task. However, since distances to the level set can only be 
computed at grid points, interpolation needs to be performed in the vicinity of the interface 
in order to get a good representation of the clipping boundary and avoid artefacts. Outside 
this region, a simple nearest-neighbor re-sampling of the level set is sufficient. 
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Figure 13 - Ray traversal pipeline with CIC and level-set clipping. 

The introduction of a clipping geometry in the rendering pipeline requires an additional 
data structure which must be small unless becoming a memory bottleneck. The memory 
consumption of triangular mesh geometry is highly dependent on the complexity of the 
mesh. Since a level set object is defined over the entire domain, its size depends on the grid 
resolution. In the case of a narrow-band level set, the size of the data structure rather depends 
on the total area of the iso-surface, a clear advantage when dealing with large data sets. 

Another advantage of using level sets as clipping boundaries is that they allow for the 
interface to be altered during run-time. Simple morphological operations such as erode and 
dilate are easily implemented and in theory, speed functions of any complexity could be 
applied. In the application described in this thesis however, segmentation has to be 
performed externally and is then loaded from a file.

5.2  LEVEL SET ACCELERATION 

The signed distance function of a level set has yet another potential advantage for volume 
rendering, i.e. the possibility of implementing efficient space leaping. Instead of using a 
constant step size, a ray advancing through the volume can safely leap the distance given by 
the distance function without intersecting the clipping boundary. Once inside the level set, 
re-sampling is performed with normal step size. 
If the level set is defined over the entire volume, this scheme can be very efficient since the 
surface can be reached in only a few steps. However, if a narrow band level set is used, the 
ray can at best jump a distance corresponding to the width of the band, . This is due to 
the fact that all grid-points outside the gamma band will be set to that distance. Hence, if 
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the gamma band is very narrow, the safe distance to leap is rather small. The overhead of 
computing the distance to the level set at each sample point then becomes greater than the 
speed-up of the space-leaping. Again, a trade-off between memory usage and rendering 
speed has to be made. 

5.3  SHADING OF CLIPPING INTERFACE 

To achieve high rendering quality of the clipping boundary without artifacts and incorrect 
shading, several issues has to be considered. First, the clipping boundary has to be smooth, 
without artifacts or jaggy edges. Second, the shading of the boundary should reflect both 
the clipping geometry and the volume data in the vicinity of the boundary.  

In [4], two different methods to perform such a clipping are described. One of them 
performs clipping by adding an extra volume, representing the clipping geometry, and 
transforming it to a signed distance function; essentially a level set.  

Clipping is performed as described in previous sections, but a problem occurs when 
the clipped volume is to be shaded. As mentioned, shading should reflect both the clipping 
geometry and the volume data; the question is to what extent. A method described in [4], 
called gradient impregnation, takes both of these into account. The idea is to compute the 
shading components separately and combining them by a weighting function. Note that 
this only has to be performed for voxels lying at a small distance inside the level set. 

First, the shading of the closest point on the clipping surface has to be computed. 
The closest point on the interface can be calculated using the closest-distance transform: 

CPT(x) = x – phi(x)*grad(phi(x)) 

Once done, the gradient at that point can be computed using central difference. The shading 
of the level set interface is calculated using a standard Phong equation (see section 2.2.3). 

The influence of the volume and the level set shading is determined by a weighting 
function, w. Any interpolation function can be used, but a linear ramp function is often 
sufficient. The final shading at position x is calculated as: 

C = w * colorVol + (1-w) *colorLS 

This way, a smooth transition from clip geometry- and volume data shading is achieved. 
The results can be seen in figure 14.  

Figure 14 - Different methods of shading the clipping interface. Left: only level set data shaded. Middle: only volume data 
shaded. Right: weighted shading, 50% each. 
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6  IMPLEMENTATION 

In this chapter, we will briefly describe the implementation of our CPU based volume 
renderer, capable of rendering large data sets and perform clipping with level sets.

The implementation was carried out in C++ using Microsoft Visual Studio .Net. The 
application was developed entirely in software, except for the windowing, I/O functions 
and pixel drawing, which was implemented using OpenGL [38] and the OpenGL Utility 
Toolkit, GLUT [39], an API for platform independent I/O functions. The user interface 
was written in GLUI, a GLUT-based GUI API. For the level set functions, the Graphics 
Group Library, GGL [40], was used.  

6.1  SYSTEM ARCHITECTURE 

The system was designed in an object-oriented manner aiming to achieve high cache 
coherency (see section 3.2). In addition to this, a component-based design was used to 
alleviate future development and extensions. A simple class diagram of the system, as well 
as more detailed class descriptions, can be found in appendix 2.

Basically, we have used the approach to volume rendering of large data sets described 
in chapter 3, added a bounding box test, and combined this with the techniques for level 
set clipping described in chapter 5. However, we only use a two level hierarchy for empty 
space removal, consisting of bricks and voxels, as a contrast to Bruckner’s three level 
approach.

Level set segmentations cannot be done directly in our application; instead 
segmentations can be loaded and used as clipping data. Some simple morphological 
operations have also been added.

6.2 ALTERED APADTIVE REFINEMENT SCHEME 

To be able to interact with larger volumes (>256^3) we have also implemented a method 
similar to Levoy’s adaptive refinement technique (see section 2.3.4). Instead of refining the 
image progressively in several steps, we have chosen to make the transition in simply two 
phases. Furthermore, we do not ray-casting all pixels in the final image, but still attain full 
image quality.

During interaction only the first phase, corresponding to the first step of the original 
algorithm, is performed. Flags, which are cleared between frames, are used to keep track of 
which pixels have been ray-cast or interpolated. 

 During non-interactive modes, when full image quality is required, the second part 
of the algorithm is performed in addition to the first one. This step only processes pixels 
not already ray-cast during the first stage. The difference from Levoy’s technique is that all 
object-pixels are ray-cast, whereas only a sub-set of non object-pixels are. This is made 
possible by setting an initial block size, iterating over the pixels and recursively subdivide 
only if the corner pixels of a block not all have the same color and that color is not the 
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background color. Hence, substantially faster rendering times are achieved while still 
performing full ray-casting of the object.

Note also that no interpolation needs to be performed in the second step since pixels 
not ray-cast correspond to the background color. However, the shape of the object has to 
be considered before choosing the initial block size, so that no object part can be missed 
between background-colored block corner pixels. 

6.3 SUPPORTED FEATURES 

The core of the application is a full-featured volume renderer able to visualize data sets of 
different sizes and dimensions with a varity of options. Below follow a list of the most 
important features: 

Support for bricking with arbitrary dimensions, as long as they are a power of 2. 
Support for 8 and 16 bit data sets. 
Support for scaling in all dimensions. 
Support for 320x240 or 640x480 pixel maps, other sizes can easily be added. 
Support for the most common projection types, i.e. x-ray projection, maximum 
intensity projection (MIP) and full volume rendering. 
Support for different interpolation types, at the moment nearest-neighbour and tri-
linear interpolation. 
Support for different sampling steps. 
Support for different preview coarsenesses, to alleviate interactive rendering of data sets 
of different sizes.
Support for gradient modulation to enhance visualization of interfaces between 
different types of tissue. 
Support for two different zoom functions, a true zoom as well as a pixel zoom 
function.
Support for different acceleration techniques such as early ray termination (with a user 
defined threshold), skipping of translucent bricks, gradient caching and cell visibility 
caching.
Includes a simple transfer function editor able to create, save and load linear RGBA-
transfer functions. 
Loading and using level set segmentation as clipping data. 
Support for simple morphological operations on the level sets, i.e. erosion, dilation, 
opening and closing. 

6.4 GRAPHICAL USER INTERFACE 

Volume rendering requires a large number of variables and thus some kind of graphical 
user interface is needed for efficient use and testing. This is especially true since many of 
the parameters should be adjustable during runtime, allowing the user to alter the 
visualization interactively. With system portability in mind, the GLUT-based GUI API, 
GLUI, was used.
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The application consists of two windows, one being the graphical output and the other one 
being the user interface (see fig 15-16). In the output window the user can rotate the 
rendered object using a simple virtual trackball function. The GUI is composed by five 
collapsible panels, or rollouts, which holds components to adjust parameters regarding file 
properties, rendering options, acceleration, transfer function editing and clipping.  

Figure 15 - User interface with all rollouts collapsed. The interface consists of five main categories: file, options, acceleration, 
transfer function and clipping. 
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Figure 16 - Complete user interface. 
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7  RESULTS 

In the following, the performance of our system will be presented and evaluated. First, the 
volume renderer will be assessed in respect to image quality and rendering time. 
Acceleration techniques and other methods employed will also be tested and compared. 
Next, the implemented level set clipping will be evaluated and results presented. 

7.1 THE VOLUME RENDERER 

When evaluating our system, two data sets frequently used for analyzing performance of 
volume renderers were utilized (fig 17) The first, the UNC head [43], is a 256x256x225 
dimensioned, 8-bit data set of a male head. The second, the Visible Male [44], is a 
512x512x1621 dimensioned, 16-bit data set of an entire male body.  

All benchmark tests were performed on a portable Intel Centrino Duo System with 
2Mb of L2 cache and 2 Gb RAM. Rendering times were measured as an average of five 
frames using a timing feature with millisecond precision. 

a b

Figure 17 - data sets used for testing. Both renderings are done with the same transfer function, a sampling step of 0,5 and 
an image size of 640x480 pixels. a) The UNC head. Data dimensions: 256x256x225. Voxel bit siz: 8. b) The visible 
male: Data dimensions: 512x512x1621. Voxel bit size: 16. For rendering times please see 7.1.2 and 7.1.3. 

7.1.1 IMAGE QUALITY 

Our volume renderer is capable of producing very high quality renderings of medical data 
sets, matching or even surpassing the image quality of many other systems. The support for 
gradient modulation further enhances the capabilities to visualize interfaces between 
different types of tissue without compromising the visualization of internal structures. 
However, as in all volume renderers, there is always a trade of between image quality and 
rendering time; high quality is attained at the cost of long rendering times, and vice versa. 
Nonetheless, since rendering parameters can be altered during run-time, low quality 
renderings can be used when finding the region/s of interest and the parameters can then 
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be altered to analyze the data with full quality. Also note that all acceleration functions 
applied, except early ray termination, does not compromise image quality. A few renderings 
to illustrate the image quality of our system are presented in figure 18 below. 

Figure 18 – High quality renderings. Left: UNC-head, Right: Visible Male.

7.1.2 BRICKING 

The main motivation for using bricking is that the size of bricks can be chosen to fit into 
the fast cache memory (See section 3.2). Together with an efficient addressing scheme (see 
section 3.2.3), this should lead to considerable speed-ups without higher level optimization. 
For instance, Bruckner [17] achieves decreased rendering times by a factor of 2.8 when 
using an optimal trade of between brick and cache size for his system.

Unfortunately, our implementation only exhibit slight signs of better cache coherency 
due to the bricked volume layout, nowhere near Bruckner’s performance increase factor of 
2.8. Figure 19 shows the rendering times for varying brick dimensions without other 
acceleration techniques being employed. As can be seen, the rendering times decrease 
down to a brick size of 64^3 for both data sets. This brick size corresponds to 262 Kb for 
the 8-bit UNC head and 524 Kb for the visible mal and is also the brick size that should be 
the optimal for our test system. Larger dimensions lead to performance decreases since 
these bricks don’t fit in the cache but still cause an overhead due to the employed scheme. 
When no bricking is used this overhead is eliminated and the rendering times are again 
improved.
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Figure 19 - Rendering times for the UNC head and visible male using different brick dimensions. The renderings 
are achieved using brute-force, i.e. no optimization techniques have been employed. 

Interesting to note is that rendering times decrease up to a brick dimension of 64^3 for 
both data sets. This is the optimal brick size for our system, i.e. when exceeding these 
dimensions the data of one brick no longer fits in the test systems 2 Mb L2 cache and the 
performance decreases.

Moreover, the best result for the UNC head is achieved when deactivating bricking 
and instead using a linear volume layout. However, since all acceleration techniques we 
have implemented require bricking, this is not a sound alternative anyhow.  

Since cache management is very hard to analyse and debug in other ways than 
observing the change of performance, the cause for the lack of speed-up has yet to be 
determined. However, we believe that the reason is due to the use of local variables. Since 
most cache architectures work in a FIFO (first in, first out) manner, much of the cached 
data will be ejected when using many local variables. The choice would be to not use any 
local variables, but since this would make the code practically unreadable and tests has not 
proven this to be the case, we have decided to postpone this work.

7 .1 .3   RENDERING TIMES AND ACCELERATION TECHNIQUES 

As mentioned previously, volume rendering of large data sets in software requires immense 
acceleration efforts in order to give acceptable results. Without any acceleration, i.e. a 
brute-force sampling of the entire volume, the rendering of the UNC head shown in figure 
17 takes approximately 36 s. By using the implemented acceleration techniques this time 
can be reduced to less than one second, or about 2%, of the initial rendering time. This is 
due to the fact that decomposition of volume data into bricks allows for the 
implementation of powerful and memory efficient acceleration techniques (see section 3.3). 
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Figure 20 and 21 show the rendering times for the UNC-head and the visible male 
respectively using different brick sizes and acceleration by early ray termination, gradient 
cashing, skipping of invisible bricks, cell visibility caching and combinations of these. For 
exact rendering times please refer to the tables in appendix 1. Note that these figures are in 
no way generic for the data sets since the employed transfer function plays a major part in 
how fast a rendering can be performed.
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Figure 20 – Rendering times for the UNC head with different acceleration functions; early ray termination (e), gradient 
caching (gc), brick skipping (bs), and cell visibility caching (cvc). 

Impact of Acceleration Techniques for Varying Brick Dimensions, Visible Male
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Figure 21 – Rendering times for the Visible Male with different acceleration functions; early ray termination (e), gradient 
caching (gc), brick skipping (bs), and cell visibility caching (cvc). 
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EARLY RAY TERMINATION 

Early ray termination can reduce the rendering time considerably without introducing any 
visible loss of quality in the image if choosing a proper threshold. Here we have used a 
limit of 97%, i.e. when the opacity has accumulated to this percentage the ray is terminated, 
since this was the limit where we could not see any visual degradation. Note that the 
efficiency of early ray termination relies on what transfer function that is being used. The 
more rays that intersect opaque samples and hence terminate, the faster the rendering will 
be completed. This could be one reason why the technique is more powerful for the UNC 
head rendering. Rendering times for different brick dimensions when early ray termination 
is employed is shown in figure 22. 
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Figure 22 - Rendering times for both data sets in relation to brick dimensions. Acceleration by early ray termination is 
employed, with the opacity threshold set to 97%. 

GRADIENT CACHING 

Gradient caching decrease rendering times by approximately 30% for the UNC head and 
does not seem to depend heavily on brick size. This fact further strengthens our beliefs that 
our caching scheme is not working properly.

When using the visible male however, there are indications that the cache coherency 
functions, at least partly. With larger brick dimensions than 64^3 the rendering times 
increase significantly. One reason why this is more apparent with the visible male than with 
the UNC head could be that a great deal more bricks are being handled in this case, and 
accessing times are accumulated. Rendering times for different brick dimensions when 
gradient cashing is employed is shown in figure 23. 
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Acceleration by Gradient Caching
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Figure 23 -.Rendering times for both data sets in relation to brick dimensions. Acceleration by gradient caching is employed.

SKIPPING OF TRANSLUCENT BRICKS 

As expected, skipping of invisible or transparent bricks is highly dependent on brick 
dimensions. If bricks are too large, few or none of them will be without any visible data, 
thus they cannot be skipped. With a brick size of 8^3, rendering time of the UNC head is 
reduced with more than 80%. However, using such small bricks creates an unwanted 
overhead when dealing with larger data sets like the visible male, due to the enormous 
amount of bricks used. This is indicated by the slight performance decrease seen when 
rendering the visible male with a brick size of 8^3. Rendering times for different brick 
dimensions are shown in figure 24. 
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Figure 24 - Rendering times for both data sets in relation to brick dimensions. Acceleration by cell visibility caching is 
employed.
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CELL VISIBILITY CACHING  

Since the cell visibility cache operates on the entire volume, it is not dependent on brick 
dimensions. Looking at the graph for the UNC head this is clearly visible (fig 25). The 
increase in rendering time at brick sizes larger than 64^3 is again due to poorer cache 
coherency.

Looking at the times for the visible male, the reason for the increased rendering times 
for smaller bricks is due to the aforementioned overhead created by the large number of 
bricks being handled. Furthermore, this could partly explain why the best result is achieved 
when using no bricking at all. 

In either case, this is the most powerful acceleration technique and can reduce 
rendering times to below 10% of the original ones, depending on how many cells are 
classified as visible. Note however that a few runs through the volume, from different 
directions, are needed in order for the cache to fill up. Rendering times for different brick 
dimensions when cell invisibility caching is employed is shown in figure 25.
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Figure 25 - Rendering times for both data sets in relation to brick dimensions. Acceleration by cell visibility caching is 
employed. 

COMBINING ACCELERATION TECHNIQUES 

A combination of all acceleration techniques show even further decreases in rendering 
times, at least for the UNC head. The lowest rendering time, 0.79s, was achieved with a 
brick size of 16^3. This is approximately 2% of the initial 36s.  

For the visible male however, the improvements are minimal when combining the 
optimization functions. Compared to when using cell visibility caching without bricking 
they are actually worse. Due to this we tried a different acceleration configuration; without 
bricking but with cell visibility caching and early ray termination. This gave an average 
rendering time of only 2.5s, less than half of what was achieved with all the other 
techniques combined. As stated earlier, this could depend on a combination of the caching 
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not working and the large number of bricks used for data sets such as the visible male. In 
other words; instead of helping, the bricking and the brick dependant acceleration schemes 
might simply cause an overhead for large data sets.  

Moreover, when comparing rendering times for the two data sets with full 
acceleration (fig 26) and with no acceleration at all (fig 19) one can see that the times are 
more varied in the first case. In other words, the acceleration techniques work better for 
smaller data sets.
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Figure 26 - Rendering times for both data sets in relation to brick dimensions. All acceleration techniques are employed.

7.1.4  MEMORY MANAGEMENT 

The memory consumption (see fig 27) will only be evaluated for the visible male data set 
since the focus of this thesis is volume rendering of large data sets.

The visible male data set takes up roughly 855 MB. As long as staying within 
reasonable brick sizes, the extra memory consumption required by the system is roughly 
100Mb, divided in the following manner:

cell visibility cache ~ 53 Mb
rays (640x480) ~ 17 Mb
pixel map (640x480) ~ 12 Mb 
gradient cache (brick size of 64^3) ~ 3 Mb
rest is occupied by GLUT, GLUI and system variables

However, when dealing with very large brick sizes (> 128) the memory consumption 
increases due to gradient storage. On the other hand, when dealing with very small brick 
sizes (< 16), the memory consumption increases due to the enormous number of bricks 
used. For instance, with a brick size of 8^3, the visible male uses over 800000 bricks, and 
even though the memory used for every brick is very small, together they form quite a 
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substantial increase. When initiating the system with a brick size of 4^3 the systems 2 Gb 
of RAM is no longer enough and a memory overflow exception is produced. 

Memory Usage Related to Brick Dimensions
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Figure 27 – Memory usage in relation to brick dimensions for the visible male (855 Mb).

7.2  LEVEL SET CLIPPING 

In the work of this thesis, a simple framework for integrating level sets as clipping 
functions was implemented in order to provide a basis for testing of the clipping and 
shading algorithms. Simple geometries such as planes and spheres where used. The images 
in figure 25 are examples of level set clipping with a plane and a sphere respectively. High 
quality shading of the clipping interface, representing both the volume data and clipping 
geometry, was achieved by using methods described in section 5.3. 

Figure 28 – Level set clipping with plane (left) and sphere (right).
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For clipping with medical segmentation data (see fig 29), functions from the Graphics 
Group Library, GGL, were used. Principally, there is no difference between clipping with a 
sphere/plane or a medical segmentation, except in how the data is produced. A sphere is 
simply a function that can be created directly in our program while a medical segmentation 
has to be produced elsewhere, then loaded into the program and used as clipping data. All 
segmentations used in this thesis are produced by G. Johansson, Linköpings Tekniska 
Högskola.

Figure 29 - Volume renderings of the UNC head with different transfer functions. Level-set segmentation of skull used as clipping 
geometry. View from above. Segmentation data courtesy of Gunnar Johansson.

7.2.1 ACCELERATION 

As described in section 5.2, level sets should be very usable for leaping over empty space 
since they inherently hold distance information to the regions of interest. However, when 
using a narrow band scheme these possibilities are rather limited since the maximum 
distance one can leap without missing data is the width of the narrow band. 

It has been quite hard to analyze the accelerating possibilities of the level sets. Partly 
due to lack of segmentation data, but mostly because it is often not possible to render the 
same data with transfer functions and level set clipping.  

However, renderings performed with level set clipping have often taken longer than 
those without. This is probably due to the overhead produced for the interface shading and 
distance sampling. For suggestions of improvement and future development please see 
section 8.2. 

7.2.2 MEMORY CONSUMPTION 

One of the major advantages of using narrow-band level sets as clipping data is their 
memory efficient representation. The size of the segmentation data is not dependant of the 
actual volume size like many other representations, but is instead proportional to the 
segmentations surface area.  

To illustrate the difference in memory requirements between regular and narrow-
band level sets consider the segmentation used in figure 29 above. As a narrow-band LS 
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the segmentation requires roughly 14 Mb of memory. If the same segmentation would be 
represented as a regular level set it would take up more than 50 Mb. Actually, all 
segmentations would require this amount of memory, no matter how small the actual 
segmentation would be. 

If dealing with larger data sets, these figures would vary even more. A regular LS 
segmentation would require approximately 1.3 Gb of memory, a figure not many systems 
would be able to handle when adding the size of the actual data set which also has to fit in 
memory. Thus, using narrow band level sets is almost a requirement when dealing with 
large data sets.
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8 DISCUSSION AND FUTURE WORK 

In this section, a brief evaluation of the methods described in this thesis will be made on 
the basis of the results presented in section 7. Future development and research is also 
suggested.

8.1 VOLUME RENDERING IN SOFTWARE 

One objective of this thesis was to implement a volume rendering application in software 
that was capable of handling very large data-sets. Three major demands had to be 
considered:

Image quality had to be first-class. 
Rendering times had to be acceptable. 
Memory overload had to be avoided.

Regarding image quality we believe that our system can compete very well with other 
applications, both software and hardware based. For a selection of renderings please refer 
to section 7.2.  

As far as rendering time is concerned, software rendering can not compete with 
hardware implementation. With small data sets (~1283), interactive frame rates can be 
achieved, for larger (~2563) interactivity is made possible by reducing image quality during 
user interaction. For very large volumes, e.g. the visible male, a decent interaction is not 
possible with our system. The best rendering time for the visible male data set was 2.5 
seconds for one frame, achieved when using cell visibility caching and early ray termination. 
If we could get the cache coherency to work properly we should see speed-ups by a factor 
of approximately 2.5 – 3.0 for the bricking, and even more for the acceleration techniques, 
which would greatly increase the usability of the application. 

In regard to memory capacity, CPU implementation still has the upper hand. When 
rendering the visible male data set, our application uses about 950 Mb of memory, which is 
far more than most graphic cards can handle. It should be noted that in this aspect, graphic 
cards are beginning to catch up. For example, the NVIDIA’s Geforce 7950 GX2 has 1GB 
of memory and it is probably just a matter of time before these memory levels, and beyond, 
become standard. Furthermore, in a master’s thesis by P. Engström [12], an interesting 
framework for GPU-based raycasting utilizing bricking has been proposed and 
implemented to enable GPU-based volume rendering of large data sets. 

Still, our software approach has many advantages. The system portability is high since 
no hardware or OS specific features are necessary. Another advantage is the prospect of 
multithreading on multi-core CPUs. Moreover, the possibilities of integrating higher-level 
data structures, in this case level sets, into the rendering process are much wider. The 
advent of programmable graphic processors and shading languages such as GLSL has 
broadened the possibilities of hardware implementation, but still features are highly 
product-dependent.
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8.1.1 FUTURE DEVELOPMENT 

There are still further efforts to be made to reduce rendering times of the application 
described in this thesis. First and foremost, the cache coherency must be made functional 
since it is the key for interactivity in software based renderers. A more efficient empty-
space removal scheme using an entry-point buffer, created by brick- or octree projection as 
described in [17], would further decrease rendering times. Moreover, since the traversal 
algorithm described in this thesis is easy to adapt for multi-threading/parallelization, this 
could be implemented quite easily. Multi-threading is particularly interesting since 
computers with more than one CPU are emerging, e.g. the Duo processors from Intel.

Furthermore, in light of the recent developments of graphics card, it would be 
interesting to see what features could be made functional with newer versions of shader 
languages like the OpenGL Shader Language, Cg by Nvidia and HLSL by Microsoft.

Other possible extensions, not related to rendering times, would be to: 

Develop a more functional transfer function editor. The current one is rather limited 
and makes it difficult to visualize regions of interest.
Add some type of data compression method to make possible visualization of even 
larger data sets than the visible male. 
Add exception handling and help sections to alleviate for users other than ourselves. 
Some bugs also remain to be fixed. 
Allow for pre-filtering of large data sets like the visible male. At the moment this is not 
possible due to that an additional volume data structure is used during filtering and 
memory limits are exceeded. This could be solved by either perform filtering brick-wise 
or by altering the interpolation scheme to perform filtering on the fly. One option 
would be the scheme proposed by Neumann et al. [21].

8.2  LEVEL SET INTEGRATION 

Clipping using level sets could very well have a bright future ahead. As mentioned before, 
segmentations data in form of narrow-band level sets have many benefits compared to 
other types of clipping data, e.g. memory efficient representation and inherent distance 
information. The question is how to fully take advantage of these benefits, in particular the 
distance information. One way could be to send a few probing rays through the volume, to 
acquire some type of template of the object that is to be rendered, before complete 
rendering. Related work has for instance been carried out by Yagel and Kaufmann [41]. 

Another exciting possibility would be to extend the level set capabilities of our 
volume renderer to, for instance, allow for segmentation. The easiest way would probably 
be to merge the application with an already existing framework, e.g. the one created by G. 
Johansson [42]. In addition, exploring the possibilities of altering the rendering system to 
allow for GPU acceleration would be very interesting. 
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8.2 CLOSING STATEMENT 

In this thesis, we have investigated the possibilities of utilizing level-set segmentation data 
in software volume rendering framework. We believe that the integration of the two 
techniques can greatly enhance the usability of volume rendering in the future. Efficient 
ways of extracting and visualizing structures of interest is a major factor in making volume 
rendering truly useful in real applications, rather than being just visually pleasing. CPUs are 
constantly getting cheaper and faster and the possibilities of multi-threading are promising. 
Therefore, software volume rendering with level-set integration might very well be the 
technique that takes volume rendering to the next level. 
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Volume

vDimX : unsigned int 
vDimY : unsigned int 
vDimZ : unsigned int 
voxelBitSize : unsigned int 
xSpacing : float 
ySpacing : float 
zSpacing : float 
nrOfElements : int 
nrOfBricks : int 
brickSize : unsigned int 
bDimX : unsigned int 
bDimY : unsigned int 
bDimZ : unsigned int 
bDimXLog2 : int 
bDimYLog2 : int 
bDimZLog2 : int 
bvDimX : int 
bvDimY : int 
bvDimZ : int 
offsetLUT : int[27][27] 
gradientCache : Vec3* 
gradientComputed : bool* 
gcSize : int 

Volume()
Volume(voxelBitSize : int, vDimX : int, vDimY : int, vDimZ : int,
       bDimX : int, bDimY : int, bDimZ : int,
       xSpacing : float, ySpacing : float, zSpacing : float, bricking : bool) 
~Volume()
readBinFile(fileName : char*) 
boxFilter()
getVoxelValues(xv : int, yv : int, zv : int, cornerValues : int*, brickIndex : int) 
computeSampleValue(xv : int, yv : int, zv : int, xi : float, yi : float, zi : float, brickIndex : int) : float 
computeVoxelGradient(x : int, y : int, z : int) : Vec3 
getVoxelGradient(x : int, y : int, z : int, gcOffset : int, v : Vec3&) 
computeSampleGradient(xv : int, yv : int, zv : int, xi : float, yi : float, zi : float,
                      gradientCaching : bool) : Vec3 
computeBrickMaxMin(brickIndex : int, brickMax : Scalr&, brickMin : Scalar&) 
computeSubSpace(I : int, j : int, k : int) : int 
createOffsetLUTs()
getVolumeData() : Array3D<Scalar>* 
getXDim() : unsigned int 
getYDim() : unsigned int 
getZDim() : unsigned int 
getXSpacing() : float 
getYSpacing() : float 
getZSpacing() : float 
getVoxelBitSize() : unsigned int 
getBvDimX() : unsigned int 
getBvDimY() : unsigned int
getBvDimZ() : unsigned int
getBDimX() : unsigned int 
getBDimY() : unsigned int 
getBDimZ() : unsigned int 
setXDim(xS : int) 
setYDim(yS : int) 
setZDim(zS : int) 
setXSpacing(xSpac : float) 
setYSpacing(ySpac : float) 
setZSpacing(zSpac : float) 
setVoxelBitSize(vSize : int) 
setGradientComputed(i : int, b : bool) 
scaledFloor(xs : float, ys : float, zs : float, xv : int&, yv : int&, zv : int&) 
scaledRound(xs : float, ys : float, zs : float, xv : int&, yv : int&, zv : int&) 
getVoxelIndex(x : int, y : int, z : int) : int 
getVoxelValue(index : unsigned int) : Scalar 
getVoxelValue(x : int, y : int, z : int) : Scalar 
getBrickIndex(x : int, y : int, z : int) : int 
getInternalBrickIndex(x : int, y : int, z : int) : int 
getGradientCacheIndex(x : int, y : int, z : int) : int 
getNrOfBricks() : int 
getBrickSize() : int 
getMemUsed()
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APPENDIX 2 

RENDERING TIMES1 USING VARIOUS BRICK DIMENSIONS 
AND ACCELERATION TECHNIQUES 

Rendering times for the UNC head [s] 

Rendering times for the visible male [s] 

1By rendering time we refer to how long it takes to render one frame, in seconds. 

Brick Dim. No acceleration Early ray 
termination 

Gradient
caching 

Brick
Skipping 

Cell Visibility 
Caching

GC + BS + 
CVC

All

No Bricking 36,2 20,8   5,8    

128^3 40,7 23,5 23,8 40,7 6,6 5,3 2,00

64^3 39,8 22,7 23,8 28,4 5,5 3,8 1,53

32^3 40,2 23,1 24,1 16,1 5,6 3,1 0,97

16^3 40,7 23,3 24,5 9,8 5,9 2,8 0,79

8^3 41,4 23,7 25,6 6,4 6,6 3,0 0,87

Brick Dim. No acceleration Early ray 
termination 

Gradient
caching 

Brick
Skipping 

Cell Visibility 
Caching

GC + BS + 
CVC

All

No Bricking 41,2 35,5   3,3    

128^3 47,2 40,4 53,2 27,2 5,4 6,3 5,63

64^3 38,6 33,1 38,8 13,3 5,4 6,1 5,3

32^3 38,6 33,1 37,2 9,6 5,8 6,5 5,6

16^3 39,6 34,2 38,4 9,1 6,8 7,8 6,6

8^3 43,1 37,5 41,8 11,3 9,7 10,8 9,1


