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Locating and segmenting objects such as bones or internal organs is a common problem in medical
imaging. Existing segmentation methods are often cumbersome to use for medical staff, since they
require a close initial guess and a range of different parameters to be set appropriately. For this work, we
present a two-stage segmentation framework which relies on an initial isosurface interactively extracted
by topological analysis. The initial isosurface seldom provides a correct segmentation, so we refine the
surface using an iterative level set method to better match the desired object boundary. We present
applications and improvements to both the flexible isosurface interface and level set segmentation
without edges.
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Abstract

Locating and segmenting objects such as bones or internal organs is a common problem in
medical imaging. Existing segmentation methods are often cumbersome to use for medical staff,
since they require a close initial guess and a range of different parameters to be set appropriately.
For this work, we present a two-stage segmentation framework which relies on an initial isosurface
interactively extracted by topological analysis. The initial isosurface seldom provides a correct
segmentation, so we refine the surface using an iterative level set method to better match
the desired object boundary. We present applications and improvements to both the flexible
isosurface interface and level set segmentation without edges.
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Chapter 1

Introduction

A common task in medical imaging is locating and segmenting objects of interest such as the
brain or other internal organs. This is often complicated since medical datasets are noisy and
hard to study using direct techniques such as isosurface visualization and direct volume ren-
dering. Moreover, these techniques rely on a single isovalue to represent the object of interest
which seldom gives a close match to the real boundary.

In contrast, level set segmentation techniques rely on other properties of the data such as gradi-
ents or image variations to represent a particular object. Level set methods describe an initial
value problem which are evolved over time using a specific partial differential equation. Thus,
they tend to give local solutions which are highly dependent upon the initial surface.

In this work, we combine isosurface techniques with level set segmentation in a pipelined manner
to solve the problem of both approaches. Isosurfaces seldom represent the real object but they
provide the user with an efficient way of selecting and generating a close initial surface to use
as input to the level set method. In this thesis we have used a segmentation method based on
global image variations as described by Chan and Vese [CV01].

Chapter 2 will start by introducing the basic concepts of medical imaging, flexible isosurfaces
and level set methods as the core components of this thesis. Chapter 3 will expand on these by
presenting the previous work in each area.

Thereafter, Chapter 4 will present the main contributions of this thesis. This will explain the
topological issues of converting an isosurface to the implicit representation of a level set followed
by a description of how we localize and restrict the global method of Chan and Vese.

Finally, Chapter 5 and Chapter 6 will present the implementation and results and describe
future work in this field.

1



Chapter 2

Background

This chapter will introduce and provide the background for the core components of this work.
We will start by presenting preliminaries important for the understanding of the thesis. Then
we will describe the concepts of medical imaging and the key techniques used in such an appli-
cation. This is followed by introducing the contour tree which is a datastructure representing
the topology of a scalar dataset. The contour tree defines the base of a technique called flexible
isosurfaces used for exploratory visualization. Last we briefly describe level set methods which
is a robust and flexible way to represent and interact with surfaces in 3D.

2.1 Preliminaries

In this section we will describe some fundamental terms used in visualization. An important
concept is the relation between sampling and reconstruction. Most visualization techniques
assume that the property being visualized is a continuous function and defined everywhere in
the domain. However, most of the time we are dealing with sampled datasets, where the property
is defined only at discrete sample points. Thus, we need to reconstruct the property in-between
sample points using an interpolating function.

How the sample points are organized defines our grid. Usually the points are regularly sampled
with a uniform spacing giving us a regular grid. The function is then reconstructed using a mesh
which is subdivided into cells defining how the points in the grid, or equivalently vertices in
the mesh, are interconnected. Commonly used cell types include simplicial (triangular in 2D,
tetrahedral in 3D) and square or cubic. An interpolating function uses the vertices of the cell
to interpolate the value of any point inside the cell. Simplicial meshes often use barycentric
interpolation while square and cubic meshes often use bilinear or trilinear interpolants.

If not stated otherwise, we assume that medical datasets are sampled in a regular grid. We will
further discuss the implications of different cell types and interpolants in Chapter 3.

2.2 Medical Imaging and Segmentation

Medical imaging is a rapidly advancing field with the important purpose of assisting medical
staff in everyday tasks such as diagnostics and surgery planning. Data from MRI and CT

2



2.2. Background – Medical Imaging and Segmentation 3

(a) Cut planes showing slices of a 3D dataset (b) Isosurface with context

(c) Isosurface without context (d) Direct volume rendering

Figure 2.1: Cut planes, isosurface visualization and direct volume rendering. In 2.1(b) the
isosurface is displayed together with a slice to give context. This isosurface consists of two
connected components, the brain in yellow and parts of the skull in red.

scans are increasing in size and efficient methods are needed to present the information in a
useful and correct way. The fundamental task of a medical imaging application, or any scientific
visualization application, is to hide redundant data, only showing that of interest to the user. In
other words, the visualization problem aims to reduce the dimensionality of the data such that
the important information is easily perceivable.

For this work we assume that medical datasets are described by a scalar function f : IR3 → IR.
The task of the visualization is to reduce the information and provide a two dimensional view
projected onto the user’s screen. A simple approach is to use cut planes in the 3D dataset as
shown in Figure 2.1(a). This may work for simple targets but can not be considered a volumetric
technique since it does not provide a complete 3D view of the data. The two major techniques
for volume visualization are isosurface visualization and direct volume rendering.

Isosurface visualization relies on a specific isovalue defining the objects of interest. For medical
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datasets this isovalue can be equivalent to the density of the tissue or other physical properties.
An isosurface for an isovalue h is the level set f−1(h) = {x ∈ IR3 : f(x) = h} of a scalar
function f . We use the term contour to define a single connected component of an isosurface.
Figure 2.1(c) shows an isosurface with two contours - the brain in yellow and parts of the skull
in red.

Direct volume rendering is a technique which maps values in the data, or derivatives thereof,
to a specific color and opacity by means of transfer functions (Figure 2.1(d)1). In contrast to
isosurfaces, volume rendering tend to be better at displaying internal structures and provide a
more “volumetric feel”.

Both isosurfaces and volume rendering rely on the assumption that any object of interest can
be described by a specific value or a range of values. This assumption is rarely true however,
due to noise or non uniform measuring of the data. For example, the attenuation of a ray
in computed tomography (CT) varies. As a result, the measured density of a uniform-density
object is seldom perfectly uniform, and the boundary can not be well represented by an isovalue.
Therefore, segmentation methods are often used to provide a better match to the boundaries of
an object. In this thesis we will only describe segmentation based on level set methods. These
methods must be provided with an initial surface which is then attracted to the boundaries of
interest. There are two principal methods with different definitions of a boundary - segmentation
with edges and segmentation without edges.

Segmentation with edges assumes that a boundary can be defined by gradient, which is true
for objects with well defined edges. Provided that this requirement is satisfied, these methods
have been proven quite successful. However, since the gradient is a local feature these methods
tend to converge to local solutions, requiring an initial surface very close to the actual boundary.
Moreover, if the edges are not well defined the segmentation easily passes through the boundary.
In contrast, segmentation without edges defines a boundary by solving a partition problem which
aims to minimize the variation inside each partition. This approach has the benefit of finding
objects with very soft edges and is not sensitive to the initial surface. We will describe these
approaches further in Section 3.4 and Section 3.5.

2.3 The Contour Tree and Flexible Isosurfaces

The contour tree is a topological representation of the contours of a dataset. It gives an under-
standing of how different contours merge or split and can be used to gain a more clear view of the
data. In this section I will illustrate this idea by providing an example in 2D. The computation
of the tree and further applications will be discussed in Section 3.2.

The contour tree was first introduced in the context of topographic maps by Boyell and Ruston
[BR63]. A landscape can be represented as a heightfield which maps a point in two dimensional
space to a height value. Throughout this thesis we will use the heightfield of Vancouver, Canada,
as shown in Figure 2.2. The landscape itself is shown in Figure 2.3(a).

1Direct volume rendering image produced by the courtesy of Ulf Lindgren and Olof Rehnström
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Figure 2.2: Heightfield of Vancouver, Canada
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Figure 2.3: Heightfield

Topographic maps use isolines to display height differences in a landscape. Isolines is the
2D counterpart of isosurfaces, where the isovalue corresponds to height in our case. As for
isosurfaces, we use contour to define a single connected component of an isoline. Thus, the
term contour can be used in any dimension - whether a contour is a line or a surface is derived
from the context. Figure 2.3(b) shows the contours of the heightfield as usually displayed in a
topographic map. The height, or isovalue, is noted along each contour.

The contour tree gives us information about the peaks, pits and saddles (critial points) in a
landscape, and tells us how they are interconnected. For example, the points A and B of
Figure 2.4(a) are the highest peaks of Vancouver. They are represented as the top nodes in the
contour tree as shown in Figure 2.4(b). The third highest peak is C, at the right boundary of
the map. As two persons walk downhill from A and C, aiming for the first saddle, they would
meet at D where the contours of A and C merge. The two lowest points in the landscape are P

and Q which naturally define the sea level.
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Figure 2.4: Critical points and the corresponding contour tree

By definition, it is impossible for contours to intersect. They are very much like the layers of an
onion, nested in an hierarchical manner. That is why the contour tree is indeed a tree instead
of a more general graph. Visualizing and exploring contours in 2D is in general simple, but it is
non trivial in 3D. The nested contours have a tendency to occlude smaller features which is a big
problem in isosurface visualization. Consider Figure 2.1(c) where the skull occludes most of the
brain. The contour tree provides a tool for solving this problem as demonstrated by Carr and
Snoeyink [CS03]. Using flexible isosurfaces, the user can select and evolve individual contours
in the contour tree, isolating features which are very hard to find using other techniques. An
example is shown in Figure 2.5.
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Figure 2.5: The flexible isosurface interface [Car04]
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2.4 Level Set Methods

The level set method was originally introduced by Sethian and Osher [OS88] in the context
of modeling propagating fronts described by a number of physical phenomenon. A front, or
interface, is implicitly represented by embedding it in a space one dimension higher than that of
the boundary. We say that the interface has codimension one. For example, a one dimensional
curve is embedded in a two dimensional space, a two dimensional surface is embedded in a three
dimensional space, and so on. In general, an n − 1 dimensional interface is embedded in an n

dimensional space. This space defines the level set function where every point evaluates to the
closest distance to the boundary. Moreover, the sign of each point determines whether the point
is inside or outside the boundary. For this thesis we use a negative inside, positive outside sign
convention. The boundary itself is defined as the zero level set of the function, equivalent to the
isoline (in 2D) or isosurface (in 3D) with isovalue zero. A simple example is shown in Figure 2.6.

27 18 12 10 17 30 44

18 6.5 -2.4 -2.5 12 27 42

15 0.7 -12 2.9 15 15 21

20 7.5 -1.9 -3.0 0.1 0.0 15

29 19 9.5 -1.8 -10 3.2 17

26 11 -1.4 -1.5 1.6 10 23

30 18 12 13 16 22 31

Figure 2.6: A simple level set function. A one dimensional curve embedded in a two dimensional
space.

In order to modify the boundary, we introduce an artificial time dependance to the level set
function. We can then define a set of partial differential equations to evolve the function, and
thus the boundary, over time. This approach has the great benefit of allowing any topological
changes - the boundary can split, disappear and merge in any way. This is complicated using
other representations such as meshes and parameterized surfaces, and the main reason for its
success. The level set method will be further described in Section 3.3.

This chapter has introduced the core concepts of this thesis. We presented sampling and recon-
struction which strongly direct the numerical methods we apply on the data. Then we described
medical imaging and the basic techniques for visualizing volumetric datasets. We noted the
problem of representing and segmenting an object using a particular isovalue and presented
segmentation which relies on other properties of the data rather than isovalue alone. However,
segmentation methods often need close initial surfaces to match the object to be segmented.
The flexible isosurfaces based on the contour tree provides the user with an interface to generate
such an initial surface or boundary. Last we introduced the level set method which provide a
powerful representation of the boundaries we will use for the segmentation. We will study each
of these parts in more detail in the next chapter.



Chapter 3

Previous Work

This chapter will provide a more detailed description of the concepts introduced in Chapter 2.
We will start by describing algorithms for extracting isosurfaces, with marching cubes in par-
ticular. We will then study the computation of the contour tree, providing more insight in the
topological analysis. Finally we will describe the mathematical foundation of level set methods
and segmentation methods derived from this methodology.

3.1 Isosurface Extraction

We gave a brief introduction to isosurface visualization in Section 2.2. This section will further
describe the extraction of isosurfaces with specific applications to the contour tree. An isosurface
for an isovalue h is the set f−1(h) = {x ∈ IR3 : f(x) = h}. Thus, we require the function f(x)
to be a continuous function. However, as noted in Section 2.1, we usually deal with sampled
functions which are defined only at discrete sample points. To reconstruct the function value
in-between the sample points, we choose a cell type and an interpolant.

An example of such is the simplicial cell combined with barycentric interpolation. The simplicial
cell is a triangle in 2D and a tetrahedra in 3D. These cells are mathematically convenient since
barycentric interpolation is monotonic, so that any critical point is required to be at the vertices.
This means that the function is bounded by the values at the vertices. For example, consider a
triangular cell with vertex values 4, 10 and 20 as depicted in Figure 3.1. The monotonic function
defines a plane which gives the value at any point x by the height of the plane. An isoline is
the cross-section of the plane at a given height giving us a straight line passing through the
cell. This extends also to the tetrahedral cell in 3D where any isosurface is a cross-section of a
hyper-plane (volume) giving us a plane passing through the cell.

4
10

20

9

x

Figure 3.1: Barycentric interpolation function
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0: Empty 1: Triangle 2: Quad

Figure 3.2: Possible cases for tetrahedra with barycentric interpolation

To analyze the different ways in which a cell can be intersected by an isosurface we classify each
vertex as either above (black) or below (white) a certain isovalue h. Reducing the equivalent
cases by rotation and value symmetry, we get three possible isosurface cases for the tetrahedral
cell as shown in Figure 3.2. In practice, extracting the correct isosurface for a tetrahedra is a
two step process. First we classify the vertices as above or below to determine the isosurface
case. Then we simply interpolate the corners of the isosurface along each intersected edge.

However, there are reasons for not choosing this simple cell type. Most scientific datasets are
organized in a cubical grid, which can indeed be subdivided to a simplicial mesh. However, as
shown in [CMS06], this introduces visible artifacts and may increase storage and computation
since some subdivision schemes require the insertion of additional vertices. To avoid these
problems, a more complex cell type and interpolant must be used.
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Figure 3.3: Bilinear interpolation function with isolines

In 2D, a natural choice is the square cell with bilinear interpolation. The bilinear interpolation
function can be written on the form F (x, y) = axy + bx + cy + d, where (x, y) is a point in the
cell and a, b, c and d depends on the values at the vertices. The gradient of F (x, y) is:

∇F =
(

∂F

∂x
,
∂F

∂y

)
= (ay + b, ax + c) (3.1)

Since the partial derivatives of F are linear, we cannot have any local maximum or minimum
in the cell. However, we have a saddle point where ∇F = 0, which evaluates to x = −c/a

and y = −b/a. For an intuitive understanding, a bilinear function with a = b = c = d = 1 is
depicted in Figure 3.3. This figure also displays isolines at regular intervals. Thus, in order to
correctly identify all critical points in such a mesh, we need to consider possible saddle points
inside each cell. Moreover, the isolines are not straight lines as compared to the isolines for a
simplicial mesh. This inconvenience is even more evident when studying the cubical cell with a
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Figure 3.4: The Marching Cubes Cases

trilinear interpolation function, given by F (x, y, z) = axyz + bxy + cxz + dyz + ex+ gy +hz + k.
Following the analysis in [PCM03], we can show that this cell have at most two interior saddle
points, further complicating the extraction of correct isosurfaces.

3.1.1 Marching Cubes

As a way of simplifying the extraction of isosurfaces using cubical cells, the marching cubes algo-
rithm was proposed by Lorensen and Cline [LC87]. Instead of using the full trilinear interpolant,
they interpolate linearly along each edge of the cube. As for the simplicial cell, we classify each
vertex as being either above or below a specific isovalue. The binary classification of the eight
vertices gives us 28 = 256 possible ways in which an isosurface can intersect a cube. Due to
symmetry, these cases were reduced to 15 for the original algorithm. However, this algorithm
was later found to generate holes in the surface under certain conditions [Dur88]. A number
of solutions were presented to this problem, the simplest of which, proposed by Montani et al.
[MSS94], added complementary cases to the original 15 basic cases (Figure 3.4) to resolve the
problem.

This idea can also be applied in 2D for the square cell, resulting in marching squares. For later
discussion in this thesis, the complete set of marching squares cases are shown in Figure 3.5.

3.1.2 Continuation

The marching cubes algorithm proceeds by iteratively visiting every cell in the mesh, classifying
the vertices and interpolating the isosurface for the corresponding case. There are two problems
with this basic approach. The first problem is efficiency - an isosurface is expected to intersect
much fewer cells than the total number of cells in the mesh, so the algorithm spends much time
in empty cells. This problem can be minimized by applying accelerating datastructures such
as the kd-tree [Ben75, LSJ96] or the interval tree [Ede80, CMM+97]. The second problem lies
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Figure 3.5: The Marching Squares Cases

in the order in which the cells are processed. By traversing the cells in an arbitrary order, the
notion of a connected surface is lost.

Building on the same idea as marching cubes, the continuation method [WMW86] by Wyvill et
al. solves both problems stated above. Instead of visiting the cells in any order, it starts at a cell
which is known to be intersected by the surface and follows the surface to the neighbouring cells.
Since only cells intersected by the surface are visited, the algorithm is optimally efficient. In
addition, this method gives the possibility to distinguish between single connected components,
or contours, of the isosurface.

The problem with this method is knowing at which cell to start. You need at least one seed
cell for all isovalues and contours in the data. As we will see, the contour tree provides a good
structure for solving this as initially shown by van Kreveld et al. introducing the minimal seed
sets [vKvOB+97]. Later, Carr and Snoeyink [CS03] introduced the path seeds, which will be
further described in Section 3.2.2.

3.2 The Contour Tree

As introduced in Section 2.3, the contour tree is a topological representation of the contours of
a function. It follows from Morse theory as a special case of the Reeb graph which describes
arbitrary contours as a parameter changes. This parameter could be any parameter of the
function, such as spatial coordinate or time. When the parameter is the isovalue, the Reeb
graph is called a contour tree. A special property of the contours states that no two contours
can intersect. Thus we can have no cycles in the graph, why the contour tree is indeed a tree.

3.2.1 Computation

The first contour tree algorithm called contour nesting was introduced by Boyell and Ruston
[BR63] in 1963. Their method may have been manual as they manually constructed the contours
from a topographic map. The second algorithm, using a heuristic technique, was proposed by
Itoh and Koyamada [IK94] in 1994. In 1995, Takahashi et al. [TIS+95] proposed a method called
monotone path search. This algorithm was later extended to 3D by Takahashi, Fujishiro and
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Takeshima [TTF04] with a runtime complexity of O(n2) where n is the number of vertices in the
mesh. The contour sweep algorithm was introduced by van Kreveld et al. in 1997 [vKvOB+97],
with a time complexity of O(N log N) in 2D, where N is the number of cells in the mesh.
However, the implementation was complex, and they stated a runtime of O(N2) in dimensions
higher than two. Based on this algorithm, Carr, Snoeyink and Axen [CSA03] proposed sweep
and merge with a runtime complexity of O(n log n + N) in all dimensions. We will present this
algorithm next.

Sweep and Merge

In the sweep and merge algorithm, the contour tree is computed by sweeping through the data
from high to low isovalue, and the reverse, to create the join tree and the split tree respectively.
These trees are merged to form the contour tree. Basically, the join tree represents the connec-
tivity of {x ∈ IRd : f(x) ≥ h}, where d is the dimensions, while the split tree represents the
connectivity of {x ∈ IRd : f(x) ≤ h}.

Intuitively, one can compare the process of computing the join tree with draining a landscape
flooded with water while keeping track of the peaks appearing at the water surface. Computing
the split tree is the exact opposite, flooding a landscape while keeping track of the parts drop-
ping below the water surface. For example, consider the landscape of Vancouver as shown in
Figure 2.3(a). The computation of the join tree is illustrated in Figure 3.6. The first peak to
appear above surface is A, shortly followed by B and C. A and C joins in D and the process
continues. The efficient implementation of this algorithm depends on sorting the vertices accord-
ing to height and using a union-find structure to handle the connected components in constant
time. For further details, the reader is referred to [CSA03] and [Car04]. The final join and split
trees are shown in Figure 3.7.

The final contour tree is constructed in the merge phase. One can show that the up-degree
(number of edges upwards from a node) is the same in the join tree and the contour tree.
Likewise, the down-degree (number of edges downwards from a node) is the same in the split
tree and the contour tree. So, we can assemble the contour tree by picking either upper leaf
nodes from the join tree or lower leaf nodes from the split tree, transferring them to the contour
tree in an arbitrary order. This process is depicted in Figure 3.8. The final contour tree is
depicted in Figure 2.4(b).

An example of a contour tree for a simple 3D dataset is shown in Figure 3.9. Here, we have four
contours at isovalue (a). At (b) and (c) these contours join to form two rings. As the isovalue
decreases we get two contours at (f). At this stage the inner contour is effectively occluded in the
image. Indeed, it would be very hard to tell what is actually occluded without the information
provided by the contour tree.

3.2.2 Path Seeds and Piecewise Continuation

The continuation method as introduced in Section 3.1.2 is an optimally efficient method for ex-
tracting isosurfaces. In addition, it gives the possibility to distinguish between different contours
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Figure 3.6: Computation of the Join Tree
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Figure 3.7: Join Tree and Split Trees
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Figure 3.8: Computation of the Contour Tree. The join and split trees are merged by picking
upper leaf nodes from the join tree or lower leaf nodes from the split tree. The green node is
selected for transfer to the contour tree. For space reasons, the end of the process is omitted.

Figure 3.9: Contour Tree for 3D dataset [CS03]
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of the isosurface. The main problem with this method is knowing at which seed cells to start.

As presented by Carr and Snoeyink in [CS03], the contour tree provides an elegant solution for
this. Instead of storing the seed cells explicitly, each edge in the contour tree corresponds to a
monotone path which leads to the desired contour. For example, to extract the contour denoted
by α in Figure 3.9, we observe that the contour corresponds to a point on the edge (α, ε). Thus,
to find a suitable seed cell for continuation, we start at the vertex represented by ε in the contour
tree, and walk up-hill in a given direction until we reach the desired isovalue. The computation
of these path seeds is a simple extension to the computation of the contour tree and has small
storage requirements.

By construction, the path seeds in the contour tree give the additional benefit of extracting
individual contours of an isosurface by piecewise continuation [CS03]. This is achieved by
following a specific surface in each cell, in contrast to the original continuation method which
tracked all surfaces in a cell. This idea is the foundation of the flexible isosurfaces as introduced
in Section 2.3. This allows the user to select and evolve individual contours by picking the
corresponding edge in the tree. Thus, it is possible to locate and extract contours of different
isovalues, providing a great tool for exploratory visualization. In this thesis we use the flexible
isosurfaces to successfully locate particular objects to initialize the segmentation process. This
will be further described in Chapter 4.

3.2.3 Local Geometric Measures and Simplification

In [Car04], Carr shows how the merge phase in the computation is equivalent to sweeping through
the dataset one contour at a time. In principal, these sweeps pass through subregions of the
data, topologically defined by the contours. A powerful consequence of this is the idea of local
geometric measures. During the sweep through each subregion, the contours can be augmented
with geometric properties in that region such as area, volume, variance etc.

One important application of these measures is the simplification of the contour tree as showed
in [Car04]. Since the contour tree detects all critical points in a dataset, it is very suscepti-
ble to noise. Thus, a standard medical dataset can result in a contour tree with millions of
edges, obviously useless for human interaction and for most numerical algorithms. By using the
geometric properties of each contour, we can simplify the contour tree by applying a certain
geometric condition. For example, we can remove, or flatten, all contours corresponding to a
peak below a certain height. This is a very effective and reliable technique for “cleaning up” the
contour tree of a noisy medical dataset, making it useful for exploratory visualization and other
techniques. An example of a useful simplification is shown in Figure 3.10(a) before simplication
and Figure 3.10(b) after simplification. Figure 3.10(b) clearly represents the five toes as five
distinct branches in the tree.

3.2.4 Extending to any Mesh and Interpolant

The original algorithm assumed a simplicial mesh with barycentric interpolation. As discussed
in Section 3.1 this mesh type contains all critical points at the vertices of the mesh, why only
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(a) Before simplification (b) After simplification

Figure 3.10: A noisy contour tree before and after simplification [Car04]

the vertices need to be considered during the computation of the contour tree. When using
bilinear or trilinear interpolation, the topological complexity increases since saddle points can
exist inside each cell.

The computation was first extended to the trilinear interpolant for a cubic mesh by Pascucci and
Cole-McLaughlin in [PCM03]. They proposed a divide-and-conquer strategy which recursively
subdivided the mesh to a single cell. An “oracle” analyzed this cell to provide one of four
possible join (or split) trees, which was merged with the neighbors through the recursive call.

Carr [Car04] generalizes and formalizes this approach to form join graphs and split graphs. By
defining all possible join or split trees for a cell, these graphs reveal the contour tree for any
mesh and interpolant. In [Car04], Carr presents this approach for the bilinear and trilinear
interpolant in addition to the Marching Cubes cases.

3.3 Level Set Methods

Level set methods was briefly introduced in Section 2.4. This section will expand on this by
explaining the underlying mathematics and the basic numerical implementation. The level set
method implicitly represents an interface as a specific level set S with isovalue h of the level set
function φ, such that:

S = {x ∈ IRd : φ(x) = h} (3.2)

Although applicable to any dimension, we generally deal with interfaces where d = 2 (isolines)
or d = 3 (isosurfaces). For further discussion, we introduce some concepts. It can be shown that
the normal of any level set of φ is n = ∇φ/ |∇φ| [MBW+05]. We use this to define the level set
speed function:

F (x,n, φ, ...) = n · dx

dt
=

∇φ

|∇φ|
· dx

dt
(3.3)

This can be interpreted as the speed dx/dt at a point x on the interface projected onto the normal
at that point. That is, the speed in the normal direction. As we will see, the speed function
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provides the user with the means of modifying the level set function, and thus the interface,
over time. To make this possible, we derive equations of motion for the level set function by
introducing time dependence to Equation 3.2. There are two distinct ways of doing this, the
first of which varies the isovalue h over time, such that S = {x(t) ∈ IRd : φ(x(t)) = h(t)}. This
is called the static level set formulation. It describes the evolution of level sets of a function as
the isovalue changes. However, the level sets cannot intersect by definition, imposing a great
constraint on the deformations possible. The second option of introducing time dependence is
to vary the level set function itself over time, such that S = {x(t) ∈ IRd : φ(x(t), t) = h}. To
derive equations of motion for the interface, we differentiate with respect to time, rearrange and
apply the definition of the speed function in Equation 3.3:

∂φ

∂t
= −∇φ · dx

dt
(3.4a)

= − |∇φ|F (x,n, φ, ...) (3.4b)

These partial differential equations (PDEs), known as the fundamental level set equations, give
the dynamic level set formulation. This allows for any deformations of the interface, making it
the method of choice for most applications. In theory, the choice of h is arbitrary. However, it
makes practical sense to use h = 0 as this allows the definition of an inside and an outside of
the interface using a simple sign convention. In this thesis we define the set of points inside,
Sinside, and the set of points outside, Soutside, such that:

Sinside = {x ∈ IRd : φ(x(t), x) < 0} (3.5a)

Soutside = {x ∈ IRd : φ(x(t), x) > 0} (3.5b)

Equation 3.4 assumes that the level set function φ is continuous with well defined gradients
everywhere in the domain. However, to use these mathematical expressions on a computer, we
need to discretize the function, only computing values at discrete points. More specifically, we
have to discretize both the temporal domain and the spatial domain. Depending on the particular
PDE used, this introduces a number of numerical implications, constraining the speed at which
we can evolve the PDE. Next we will study the temporal and spatial discretizations separately.

3.3.1 Temporal Discretization

The temporal discretization determines how we evolve Equation 3.4 in time. Since the time
needs to be discrete, we evolve the PDE using discrete time steps of ∆t, using either an implicit
or explicit integration scheme. The implicit schemes have the advantage of being unconditionally
stable, regardless of the time step ∆t. However, since the computation of these schemes relies on
solving a large system of equations, they are computationally heavy and often hard to implement.
Explicit methods, on the other hand, are easy to implement but suffer from stability constraints
imposed on the time step. Despite this constraint, explicit methods are often used for solving
level set equations. A simple, first order accurate, explicit scheme is the forward Euler given by:

∂φ

∂t
≈ φn+1 − φn

∆t
(3.6)
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where φn denotes the values of φ at time instance tn while φn+1 denotes the values of φ at
the time instance tn + ∆t. Although practical experience shows that this first order scheme
usually suffices when solving level set equations, the accuracy can be improved by using the total
variation diminishing Runge-Kutta (TVD RK) schemes proposed by Shu and Osher [SO88].
The first order TVD RK scheme is simply the forward Euler. The accuracy is increased by
sequentially taking Euler steps and linearly combining the results. The second order TVD RK
scheme, also known as the midpoint rule, advances the solution by two Euler steps to get φn+2

at time instance tn + 2∆t. The solution at φn+1 is the average:

φn+1 =
1
2
φn +

1
2
φn+2 (3.7)

The third order TVD RK scheme proceeds by advancing the solution by Euler steps to φn+2,
followed by a linear combination to get φn+ 1

2 . This solution is advanced to φn+ 3
2 , followed by a

final linear combination to get φn+1:

φn+ 1
2 =

3
4
φn +

1
4
φn+2 (3.8a)

φn+1 =
1
3
φn +

2
3
φn+ 3

2 (3.8b)

3.3.2 Spatial Discretization

Since the spatial discretization strongly depends on the behavior of the particular PDE used we
will study two different versions of Equation 3.4, giving rise to two fundamental types of PDEs,
hyperbolic type and parabolic type.

Hyperbolic Advection

To introduce hyperbolic advection, two versions of Equation 3.4 can be stated as:

∂φ

∂t
= V · ∇φ (3.9a)

= a |∇φ| (3.9b)

This corresponds to advecting (transporting) the interface in a vector field V (Equation 3.9a)
or in the direction of the surface normal (Equation 3.9b). This type of equation could be used
for erosion or dilation of a surface and is often found in computational physics describing a flow
of information in a certain direction. Imagine a numerical wave, propagating information in a
flow field as directed by Equation 3.9. The Courant-Friedrichs-Lewy (CFL) stability condition
[CFL28] states that only the sample points behind, or up-wind to, the wave should be used in
the discretization. This makes intuitive sense, since sample points in front of the wave have not
been “touched” by the flow field. Thus, they do not contain any reliable information needed to
evaluate the partial derivatives. Considering Equation 3.9a, this results in the finite difference
(FD) approximation given by:

∂φ

∂x
≈

φ+
x = (φi+1,j − φi,j) /∆x if Vx < 0

φ−x = (φi,j − φi−1,j) /∆x if Vx > 0
(3.10)
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This introduces some new notation. Without loss of generality, we assume a 2D level set function
φ. Then, φi,j is the discrete sample point at position (i, j) in the grid, while ∆x is the grid
spacing along the x axis. The stencil defines the grid points which are used by the operator. In
Equation 3.10, the stencil is two grid points wide, meaning the operator uses information from
two sample points. For Equation 3.9b the direction of the flow is not known explicitly. For this
we can use Godunov’s method [RT92] to evaluate the partial derivatives:(

∂φ

∂x

)2

≈

max
[
max(φ−x , 0)2,min(φ+

x , 0)2
]

a < 0

max
[
min(φ−x , 0)2,max(φ+

x , 0)2
]

a > 0
(3.11)

These discretizations result in a first order accurate approximation of the partial derivatives.
For higher order approximations, the essentially non-oscillatory (ENO) [OS91] or weighted ENO
(WENO) [LOC94] polynomial interpolation techniques can be used. The basic idea is to provide
better approximations to φ−x and φ+

x by the smoothest combination of grid points in an up to six
point wide stencil. These methods give a 3rd to 5th order accurate approximation depending on
the smoothness around a grid point (i, j). For more information on the actual implementation,
we refer the reader to [OF03].

When using an explicit method for the temporal discretization, the CFL condition defines the
stability condition for the time step ∆t. Since information is propagated one grid point each
time step the numerical wave speed along the x axis is ∆x/∆t. This speed needs to be at least
as fast as the physical wave speed given by V or a in Equation 3.9 to ensure stability. It is
common to use the CFL number α ∈ (0, 1) to specify the rate of stable propagation. When
considering a two dimensional level set function, the time step can be chosen such that:

∆t = α min
{

∆x

|Vx|
,

∆y

|Vy|

}
= α

min {∆x,∆y}
|a|

(3.12)

Parabolic Diffusion

To introduce parabolic diffusion, a version of Equation 3.4 can be stated as:

∂φ

∂t
= αK |∇φ| (3.13)

where α is a scaling parameter and K is curvature. This equation has its correspondence in
physics as the geometric heat equation, describing a diffusion problem. For level set surface
deformations it has been shown to minimize surface area, or to smooth the surface [MBW+05].
This type of PDE is very different from the hyperbolic type in that the information flow has no
particular direction. This means that a solution at a point at a particular time step can depend
on any other point in the domain at the previous time step. For the spatial discretization, we
need to use the second order accurate central difference given by:

∂φ

∂x
≈ φ±x =

φi+1,j − φi−1,j

2∆x
(3.14)

In [MBW+05] it is shown that the curvature K is described by the divergence of the normal,
that is K = ∇ · n (in 2D). Expanding this gives the following expression for K:

K =
φ2

xφyy + φ2
yφxx − 2φxφyφxy

(φ2
x + φ2

y)2/3
(3.15)
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where φx = ∂φ/∂x and φxy = ∂2φ/∂x∂y. This expression can be discretized using the following
second order central difference scheme:

∂2φ

∂2x
≈ φi+1,j − 2φi,j + φi−1,j

∆x2
(3.16a)

∂2φ

∂x∂y
≈ φi+1,j+1 − φi+1,j−1 + φi−1,j−1 − φi−1,j+1

4∆x∆y
(3.16b)

The same derivations can be made in 3D, where the mean curvature is given by K = (∇ · n)/2
[MBW+05]. When considering stability constraints for the time step ∆t, we note that the
information travels at an infinite speed. Thus, the CFL stability condition in Equation 3.12 is
not applicable for the parabolic type PDE. For a two dimensional level set function, the stability
constraint can be derived by a von Neumann stability analysis [Str89]:

∆t <

(
2α

∆x2
+

2α

∆y2

)−1

= {∆x = ∆y} =
∆x2

4α
(3.17)

3.3.3 The Signed Distance Property and Reinitialization

We previously stated that φ needs to be continuous with well defined gradients, in order to solve
Equation 3.4. However, because of the spatial discretization, this requirement can be relaxed.
More specifically, we require φ to be Lipschitz continuous, satisfying the following condition:

|φ(x0)− φ(x1)| ≤ C|x0 − x1| (3.18)

where C ≥ 0. This means that the gradients of φ can be discontinuous, although the rate-of-
change of φ must be bounded by the finite Lipschitz constant C. This constant is affected by
the numerical schemes used to solve the discretized equations. In order to assure stability, C ≈ 1
meaning that φ has to approximately satisfy the Eikonal equation:

|∇φ| = 1 (3.19)

Intuitively, this means that the level sets of φ have a uniform density. In other words, as you
walk in a direction orthogonal to the level set interface, the distance increases one unit each step.
Combined with Equation 3.5, this means that φ is a signed distance function. This constraint
can be motivated by considering Equation 3.9b and Equation 3.13. If |∇φ| would drift away
from one, the speed of the information flow would increase, implying that we need to evolve
the PDE with smaller time steps. However, it is often more efficient to keep the time step fixed
while making sure φ approximately satisfies the Eikonal equation.

This process is called reinitialization and should be performed more or less frequently depending
on how sensitive the discretization of the particular PDE is to numerical fluctuations. There are
a number of ways of doing this, the first of which solves the reinitialization equation to steady
state [SSO94]:

∂φ

∂t
= S(φ)(1− |∇φ|) (3.20)
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where S(φ) is the sign of φ, with a smooth numerical approximation given by [PMO+99]:

S(φ) =
φ√

φ2 + |∇φ|2 ∆x2

(3.21)

At steady state ∂φ/∂t = 0, implying |∇φ| = 1. Since Equation 3.20 is an hyperbolic type PDE,
∇φ needs to be discretized using an up-wind scheme as discussed in Section 3.3.2. This approach
has a runtime complexity of O(N), where N is the number of grid points.

Another way of maintaining the signed distance property is to solve the Eikonal equation directly,
using for example the fast marching method as proposed by Sethian in [Set96]. The idea behind
this method can be described by sequentially adding “layers” to the interface. It walks around
the interface, computing the time-of-arrival at each grid point immediately adjacent to the
current layer. When a layer is completed, a second layer is added with a later time-of-arrival.
Using a heap datastructure, this algorithm has a runtime complexity of O(N log N). A faster,
and simpler, algorithm called fast sweeping was later proposed by Zhao [Zha05]. This is based
on a number of sequential sweeps through the grid, following the characteristics of the Eikonal
equation in a certain direction in each sweep. The complexity is optimally O(N) and in d

dimensions, 2d sweeps are necessary. However, this method is not easily adapted to narrow
band schemes, which we will present next.

3.3.4 Narrow Band Schemes

The level set method as initially proposed solves the level set equation on the entire domain
of φ. However, for most applications, the method is used to track the motion of a particular
interface, or level set, of φ with isovalue zero. Therefore, the computations can be restricted
to a neighborhood around the zero crossing, with the same results as solving the equations on
the entire domain. Using such a narrow band scheme, the computational cost is proportional to
the size of the interface. This makes a considerable difference for the running time, especially
when propagating surfaces in three dimensions or higher. This idea was first introduced by
Adalsteinsson and Sethian in [AS95] and further improved by Peng et al. in [PMO+99]. We will
describe the scheme by Peng et al. further.

Using this approach we define two narrow band tubes, Tβ and Tγ such that:

Tβ = {x ∈ IRd : φ(x) < β} (3.22a)

Tγ = {x ∈ IRd : φ(x) < γ} (3.22b)

where 0 < β < γ. This is depicted in Figure 3.11. The level set equations will now be solved
only within these tubes. However, to avoid numerical oscillations at the tube boundary, we
introduce a cut-off function:

c(φ) =


1 if |φ| ≤ β

(2|φ|+γ−3β)(|φ|−γ)2

(γ−β)3
if β < |φ| ≤ γ

0 if |φ| > γ

(3.23)
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interface

β tube

γ tube

Figure 3.11: Narrow band displaying the interface, the β tube and the γ tube by Peng et al.
[PMO+99]

Equation 3.4 is modified using the cut-off function such that:

∂φ

∂t
= −c(φ) ∇φ · dx

dt
(3.24a)

= −c(φ) |∇φ|F (x,n, φ, ...) (3.24b)

Thus, the level set equation is solved exactly only within Tβ. In order to rebuild the tubes, we
note that the numerical scheme can only move the interface at a maximum of one grid point
each time step. Assuming a grid spacing of ∆x, we use this to define a tube N = {x ∈ IRd :
φ(x + x0) < γ, |x0| ≤ ∆x} in which we perform the reinitialization described in the previous
section. In other words, we reinitialize in a tube corresponding to Tγ dilated by one grid point.
After the reinitialization, we have the correct signed distance function in N which is required to
contain all {x ∈ IRd : φ(x) < γ}. Using N , we can now rebuild the tubes Tβ and Tγ . The actual
choice of β and γ depends on the stencil used for the spatial discretization. For a first order
scheme, β = 2∆x, γ = 3∆x could prove sufficient, while the 3rd to 5th order WENO scheme
could require β = 4∆x, γ = 6∆x.

This approach is computationally efficient since it only computes the level set equations and
reinitializes in a narrow band around the interface of principal interest. The implementation
is simple and the rebuilding of the tubes can be optimized to give an overall runtime of O(N)
where N is the size of the interface. However, it is not memory efficient since it stores the full
level set function. Moreover, since the narrow band is stored scattered in memory, the CPU
cache can not be efficiently used.

An approach which is both computationally and memory efficient is the dynamic tubular grid
(DT-grid) proposed by Nielsen and Museth [NM06]. It is based on the method by Peng et al. but
only stores the actual narrow band in memory. Not only does this reduce storage requirements,
but it also very efficiently uses the CPU cache for sequential memory access. Moreover, since
the narrow band can be seen as “floating” in free space, it is not constrained within any grid
boundaries and can expand freely in an out-of-the-box like behavior.
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3.4 Level Set Segmentation with Edges

Level set segmentation with edges aims to find a segmentation of a particular object based on
sharp edges. These methods are often based on the classical “snakes” model of [KWT88] which
minimizes a variational functional based on balancing the influence of sharp edges against curve
smoothness. This idea was originally formulated using a parameterized curve but later adapted
to the level set framework in [CCCD93] and [CKS97]. The latter work define an implicit energy
F over the full domain Ω of the level set function φ, such that:

F (φ) =
∫

Ω
E(I(x)) |∇H(φ(x))| dΩ (3.25)

where H is a Heaviside function, usually numerically approximated by:

H(z) ≈


1 if φ < −ε

1
2 −

z
2ε + 1

2π sin(−πz
ε ) if |φ| ≤ ε

0 if φ > ε

(3.26)

and E is an edge detector of the image I subject to segmentation, often defined such that:

E(I(x)) =
1

1 + |∇(Gσ ∗ I(x))|p
(3.27)

where p ≥ 1 and Gσ ∗ I is a convolution of the image with a Gaussian filter kernel of variance
σ. We note that E ≈ 1 as ∇(Gσ ∗ I(x)) ≈ 0 and that E ≈ 0 as ∇(Gσ ∗ I(x)) grow. In other
words, E is approximately zero at the edges in the image and approximately one elsewhere. We
also note that the term |∇H(φ(x))| in Equation 3.25 is only non-zero in a neighborhood around
the level set interface. Thus, the functional F is minimized only when the level set interface
coincides with the edges in the image. This problem can be solved using level set methods
by deriving the gradient descent minimization of the corresponding Euler-Lagrange equation as
described in [ZCMO96]. This results in the following PDE:

∂φ

∂t
= E(I(x))K |∇φ|+∇E(I(x)) · ∇φ (3.28)

where K is mean curvature. We recognize these terms from Equation 3.9 and Equation 3.13.
The first term is a diffusion term corresponding to a “smoothing” of the interface, while the
second term advects the interface in the direction of the edges in the image.

While this formulation has proven very successful it suffers from some limitations. Firstly, the
target object for segmentation must be well defined by its edges. This is further complicated by
the Gaussian filter which naturally smoothes all edges in the image in addition to suppressing
high frequency noise. Secondly, since most edge detectors are short-ranged the initialization
(initial level set interface) must be close to the edges of the object. The latter problem can be
solved by using a long-range edge detector, like the Canny edges [Can86], for the initial advection
as described in [MBZW02]. However, since the gradients of the image are bounded, the edge
detector E can never be zero. Thus, stable convergence is a common problem when using this
method. A sequence of images showing a segmentation with the Canny edge detector is shown
in Figure 3.12. We see that the final result is not completely satisfactory, since the initial level
set interface is too far from the edges of the lung, particularly in the lower right region.
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(a) Original image (b) Gaussian filter (c) Gradients (d) Canny edges

(e) Initial level set interface (f) Distance transform of

Canny edges

(g) Refining by local gradi-

ents

(h) Final segmentation

Figure 3.12: A sequence of images showing a segmentation with edges using the Canny edge
detector.

3.5 Level Set Segmentation without Edges

Recent work by Chan and Vese starting with [CV01] describes a level set segmentation approach
which does not rely on edge information. They replace the edge based model with a reduced case
of the Mumford-Shah functional for segmentation [MS89] called the minimal partition problem.
The aim of this partition problem is to find a boundary in the image which best approximates
the image by two piecewise-constant regions. This approach solves the main problems with the
method described in the previous section. In addition to finding objects not necessarily defined
by gradient, the final solution is global and insensitive to the initialization. However, the global
behavior is not always appropriate, and can be considered a disadvantage of this method. We
will explain this further in Chapter 4.

To simplify terminology, we assume that the level set interface is a curve defined using a two
dimensional level set function. The energy functional in [CV01] is given as:

F (φ) =
∫

Ω

[
µ |∇H(φ)|+ νH(φ) + λ1H(φ)(I − c1)2 + λ2H(−φ)(I − c2)2

]
dΩ (3.29)

Note that
∫
Ω |∇H(φ)| dΩ and

∫
Ω H(φ)dΩ give the curve length and area inside the curve respec-

tively, where H is the Heaviside function (Equation 3.26). Thus, the first two terms correspond
to minimization of curve length (smoothing) and area. Secondly we note that the third term is
non-zero only inside the curve while the fourth term is non-zero only outside the curve. The
constants µ, ν, λ1 and λ2 control the influence of each term. Usually, λ1 = λ2 = 1 and ν = 0
are kept fixed while µ is varied to control the smoothness of the solution. The constants c1 and
c2 are the approximate piecewise-constant intensities inside and outside the curve respectively.
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(a) F1 > 0, F2 = 0 (b) F1 = 0, F2 > 0 (c) F1 > 0, F2 > 0 (d) F1 = 0, F2 = 0

Figure 3.13: Motivation for the functional in [CV01] using a simple example,
where F1 =

∫
Ω H(φ)(I − c1)2dΩ and F2 =

∫
Ω H(−φ)(I − c2)2dΩ

To compute these intensities, we keep φ fixed and minimize Equation 3.29 with respect to c1

and c2 to get:

c1(I, φ) =

∫
Ω I(x)H(φ(x))dx∫

Ω H(φ(x))dx
(3.30a)

c2(I, φ) =

∫
Ω I(x)H(−φ(x))dx∫

Ω H(−φ(x))dx
(3.30b)

Thus, the interpretation of c1 and c2 is simply the average image intensity inside and outside
the curve. For an intuitive motivation of Equation 3.29, the terms F1 =

∫
Ω H(φ)(I − c1)2dΩ

and F2 =
∫
Ω H(−φ)(I − c2)2dΩ can be considered the total variations inside and outside the

curve. Equation 3.29 is minimized as the variations inside and outside are balanced as depicted
in Figure 3.13.

In order to derive the level set equation for solving Equation 3.29, we employ the gradient
descent of the corresponding Euler-Lagrange equation [ZCMO96]:

∂φ

∂t
= δ(φ)

[
µK − v − λ1(I − c1)2 + λ2(I − c2)2

]
(3.31)

where K is mean curvature and δ(z) = dH(z)/dz is the Dirac delta function. In the discretization
of this equation, Chan and Vese use a Dirac delta function which is non-zero over the entire
domain of φ, contributing to the global nature of the final segmentation. Figure 3.14 shows
an example segmentation using this technique, with µ = ν = 0, λ1 = λ2 = 1. Ironically, the
strength of producing a global solution is also the main weakness of this method. For example,
the segmentation would give the same result as in Figure 3.14(b) independently of the initial
curve in Figure 3.14(a). In order to succesfully segment particular objects the process must be
localized. We address this issue in Chapter 4.

To conclude, this chapter has presented the previous work starting with the foundation of
isosurface extraction. We introduced the important concepts of mesh and interpolant for recon-
structing a discrete function and described the contour tree representing the contours of this
function. Applications of the contour tree for piecewise continuation and the flexible isosurface
interface were presented. Thereafter we described the mathematical foundation and numerical
discretization of the level set method. Finally, segmentation with and without edges based on
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(a) Initial curve (b) Final segmentation

Figure 3.14: Images showing the initial curve and the segmented result by “segmentation
without edges”

the level set method were presented. The next chapter will describe the combination of these
techniques, as the main contribution of this thesis.



Chapter 4

Combining Topological Structures

with Local Segmentation

This chapter presents the main contribution of this thesis. We will start by describing the
basic idea and motivation for our segmentation pipeline. We will proceed through this pipeline,
explaining and motivating each step taken. The first step consists in converting the initialization
produced by the flexible isosurfaces into an implicit level set representation. The level set
interface will then be subject to a localized version of the segmentation without edges method.

4.1 Motivation

As introduced in Section 2.2, there are two principal methods for segmentation. The first of
which relies on a distinct isovalue, or a range of values, to represent a particular object. This is
commonly manifested using isosurface extraction, explained in Section 3.1. The second method
relies on minimizing a functional based on edge information or other variational information.
This approach is efficiently handled using the level set method as described in Section 3.4 and
Section 3.5.

However, both of these techniques have drawbacks. The boundaries extracted by isosurfaces are
seldom perfect due to noise in the data or non-uniform measurements. Level set segmentation
techniques are cumbersome to use since they require a careful choice of parameters and a close
initial guess for stable convergence. The idea behind the work in this thesis is to combine the
two approaches for solving these fundamental problems. We will use the isosurface extraction,
with the flexible isosurface interface in particular, as the input to the level set segmentation.

4.2 Topological Computation on Discrete Data

The input to our segmentation pipeline is a contour of an isosurface selected by the user. For the
work in this thesis we employed the flexible isosurface interface by Carr and Snoeyink [CS03].
This is a tool for exploratory visualization based on the contour tree, allowing the user to pick
and evolve individual contours in a powerful way. Once the object targeted for segmentation
has been found by its contour, it is selected and converted to a level set representation for

27
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refinement. Depending on the quality of the data, the initial contour may be very far from, or
very close to, the actual object being segmented.

This raises a number of questions. The first issue is what interpolating function the contour tree
should represent. As discussed in Section 3.2.4, different interpolants define a different set of
critical points. For a correct conversion from an isosurface to a level set, the isosurface resulting
from a particular interpolant must be representable by the level set function. Interestingly, this
is not at all an issue. Recall that a level set surface is in fact an isosurface of the level set
function. As such, it must also be extracted using the techniques discussed in Section 3.1. As
long as the interpolants used to extract the initial isosurface and the level set surface are the
same, the conversion can be exact. However, we have stated that the initial isosurface seldom
provides a good final segmentation. The purpose of the level set segmentation is to refine an
initial guess. So, the conversion can in reality be approximate, and the choice of interpolant for
the topological analysis does not really matter.

However, for practical reasons, it is desirable to compute the contour tree based on the topology
of the Marching Cubes cases. Firstly, Marching Cubes itself provides a good balance between
accuracy of the isosurfaces and simplicity, compared to simplicial meshes and multilinear inter-
polants. Secondly, this better match the convention used for level set methods, which structure
the level set function in a regular grid with cubic cells. Carr [Car04] has shown that the topology
of Marching Cubes matches 6–18 digital image connectivity. Recall that Marching Cubes uses
linear interpolation between black (inside) and white (outside) vertices (Figure 3.4). The 6–18
connectivity rule means that the black vertices are connected along 6 edges, while the white
vertices are connected along 12 face diagonals in addition to 6 edges, as depicted in Figure 4.1.
This rule guarantees that the black vertices inside a surface form a watertight boundary and
simplifies the initialization of the level set function as we describe in the next section.

(a) 6-Connectivity (b) 18-Connectivity

Figure 4.1: 6–18 Connectivity. The red vertices are connected with the center blue vertex by
different connectivity rules.

4.3 From Contours to Initial Level Set

One option for converting the contours to a level set representation is to extract the polygonal
mesh of the contours and run a scan conversion algorithm [MBW+05]. However, this relatively
complex procedure is not necessary since we noted that the level set surface is in fact an isosurface
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(a)

(b)

Figure 4.2: Union operation for two contours intersecting the same cell

with isovalue zero. So, to convert any isosurface with isovalue h to a level set surface we could
simply offset the data values by h, followed by reinitialization as described in Section 3.3.3.

Recall, however, that we are interested in specific contours, or single connected components, of
an isosurface. Moreover, the flexible isosurface interface provides the possibility to manipulate
and evolve each of these contours individually, so the contours may in fact be described by
different isovalues. So we need to approach this problem differently.

We solve this by using the assumption of digital connectivity as described in the previous section.
Since the black vertices inside a contour guarantees a watertight boundary, we can simply add
them to the level set function to initialize the boundary. This operation corresponds to a union
of the contours. We will motivate this idea using the marching squares topology as depicted
in Figure 3.5, which is the 2D analogy of marching cubes. This topology deploys the 4–8
connectivity rule. Imagine that you stand on the inside, at a black vertex. The 4 connectivity
rule then states that you can only “leak” to another black vertex along any of the four edges. If
you stand at a white vertex, the 8 connectivity rule states that you can “leak” to a white vertex
along any diagonal in addition to the edges.

Consider two contours, possibly described by different isovalues, intersecting the same cell.
Figure 4.2(a) depicts a situation where the level set function can maintain the union of these
contours as in fact two distinct contours. Note that the contours are watertight with respect
to the 4–8 connectivity rule. However, we may have the situation depicted in Figure 4.2(b),
where the union is not representable by the level set function. This is not really a problem
though, since the conversion from contours to level set surface is not required to be perfect.
More importantly, we require the conversion to be robust and to produce a watertight boundary
which is guaranteed by the union of these black vertices.

In [Car04], Carr has shown how to modify the continuation method of Wyvill et al. [WMW86]
to extract individual contours using piecewise continuation. We use this approach also for
initializing the level set boundary. However, instead of generating geometry for each cell, we
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add the black vertices in the cell to the level set function as described above. When this process is
completed, we have successfully initialized the boundary, or the grid points immediately adjacent
to the level set surface. An iterative algorithm for this is shown in Algorithm 1.

Require: Sets of seed cells Scell, seed edges Sedge and isovalues Sh, given by the contour tree
Output: A level set function with an initialized boundary

1: Initialize the level set function φ with large negative numbers

{Loop through all contours}
2: for each cell, edge and isovaluein Scell, Sedge and Sh do
3: Push the edge to the queue Q

4: while Q is not empty do
5: Pop an edge from Q

6: Classify the cell and convert the edge to a surface

7: if the surface is visited then
8: continue
9: end if

10: Mark the surface as visited

{“Add” vertices to the level set function by a union of the “black” vertices}
11: for each vertex in the cell do
12: if φ(vertex) ≤ 0 then {the vertex is “white”}
13: Set φ(vertex) to the value at the vertex, subtracted by the isovalue

14: end if
15: end for

{Follow the surface to neighboring cells}
16: for each face intersected by the surface do
17: Push an edge of the face, intersected by the surface, to Q

18: end for

19: end while
20: end for

21: return φ

Algorithm 1: InitializeLevelSetBoundary()

The next step in the process is to determine the inside and the outside of the level set surface.
The convention used for isosurfaces is that black vertices are “above” and “inside”, whereas
the white are “below” and “outside”1. One would think that relying on this convention should
provide the correct inside and outside for the level set surface. However, there is an ambiguity
to this as depicted in Figure 4.3. By convention, the positive side, or the side above the isovalue,
is inside. But, for reasons explained in the next section, we want the target object to be inside
the level set surface. Clearly, the signs in Figure 4.3(b) need to be swapped. This is corrected

1Recall that we use a negative-inside, positive-outside sign convention for the level set surface. This confuses

the convention used in the isosurface community, which uses the exact opposite.
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(a) (b)

Figure 4.3: The inside/outside ambiguity (white is “low”, black is “high”)

by flood filling the level set function in order to determine a particular inside/outside situation
suitable for the segmentation. For example, this can be performed by starting the flood filling
at a point which is known to be outside, which is usually the case for any point at the boundary.
The flood filling algorithm using 6–18 connectivity is shown in Algorithm 2.

After flood filling, the final step is to employ a reinitialization algorithm as described in Sec-
tion 3.3.3 to compute the distances in the full level set function. In this work we use the fast
sweeping method by Zhao [Zha05] which is efficient and simple to implement.

In practice, medical datasets are noisy, resulting in a very large contour tree. For memory
efficiency, it is beneficial to base the contour tree and the flexible isosurfaces on a low resolution
version of the dataset. This makes the exploratory visualization smoother and reduces the
memory footprint considerably. Thus, a low resolution level set function is initialized using the
steps described above. A high resolution level set function is then created by trilinear sampling
and used by the level set segmentation method. To conclude, we give the algorithm for the
complete initialization process in Algorithm 3.

4.4 Localizing Segmentation without Edges

As noted in Section 3.5, the global behavior of the Chan and Vese method is not always desirable.
Firstly, it prevents the segmentation of isolated objects chosen by the user. Secondly, since the
computation of the averages c1 and c2 in Equation 3.31 is global, the solution actually depends
on the background, or the embedding, of the object. A simple example is shown in Figure 4.4
where we run the segmentation on a soft object embedded in a black background. The thick
line shows the final segmentation, whereas the thin line displays an isoline for reference. We see
that different results are produced, simply by varying the size of the embedding space.

In addition to the problems stated above, solving the level set equation in the entire domain is
computationally very demanding and simply not feasible for standard medical datasets of today.
Thus, in order to use the otherwise beneficial method of Chan and Vese, we need to localize the
behavior and the computation.
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Require: A level set function φ

Output: φ with a particular inside/outside situation

1: Set the current sign to positive (outside)
2: Add a vertex of φ which is known to be on the outside, to the queue Q

3: loop {loop until φ has been entirely flooded}
4: while Q is not empty do {loop until the current region is flooded}
5: Pop a vertex from Q

6: Mark vertex as visited

7: if the sign of vertex is not current sign then
8: Add vertex to the list Vflips for later sign change
9: end if

10: if φ(vertex) > 0 then {the vertex is “black”}
11: The set Sneighbors is the 6 neighbors along the edges
12: else {the vertex is “white”}
13: The set Sneighbors is the 18 neighbors along the edges and the face diagonals
14: end if
15: for each neighbor in Sneighbors do
16: if neighbor is not visited andthe signs of neighbor and vertex are the same then
17: Push neighbor to Q

18: end if
19: end for

20: end while

21: if all vertices of φ have been visited then
22: break
23: end if

24: Push a non visited vertex of φ to Q

25: Find a visited neighbor to vertex

26: Set current sign to the sign of visited neighbor
27: if the visited neighbor is not in Vflips then
28: Flip current sign
29: end if

30: end loop

31: for each vertex in Vflips do
32: Flip the sign of vertex

33: end for

34: return φ

Algorithm 2: FloodFill()
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Input: A set of contours given by seed cells Scell, seed edges Sedge and isovalues Sh

Output: A level set function φ

1: Create a low resolution level set function φlow

2: Initialize the boundary of φlow by InitializeLevelSetBoundary() (Algorithm 1)
3: Flood fill φlow by FloodFill() (Algorithm 2)
4: Compute the distances in φlow by Fast Sweeping [Zha05]

5: Create a high resolution level set function φhigh

6: Compute φhigh by trilinear sampling in φlow

7: return φhigh

Algorithm 3: ConvertFromContoursToLevelSet()

(a) Embedded in 128x128 (b) Embedded in 256x256

Figure 4.4: Different solutions depending on the embedding space. The thick line displays the
final solution whereas the thin line displays an isoline for reference.



4.4. Combining Topological Structures with Local Segmentation – Localizing Segmen-

tation without Edges 34

The first obvious solution is to use an existing narrow band scheme as presented in Section 3.3.4,
and simply restrict the level set propagation to the narrow band tube. The result is depicted
in Figure 4.5 where the actual narrow band is visible in Figure 4.5(a). While the result in
Figure 4.5(b) is promising the computation of the averages c1 and c2 is still global, making
the solution very sensitive to changes in fundamentally unrelated parts of the image. This is
seen in Figure 4.5(c) where the insertion of an artificial object drastically changes the resulting
segmentation.

(a) Initial curve and narrow band (b) Solution with original image (c) Solution with artificial object

Figure 4.5: Segmentation without edges using narrow band level set propagation. In (c),
an artificial object fundamentally unrelated to the lung is inserted, resulting in a drastically
different solution.

The reason why Figure 4.5(b) produces such a good result is much due to numerical diffusion.
Recall the level set equation in Section 3.3.2 corresponding to parabolic diffusion. The geometri-
cal interpretation of this is smoothing, or minimization of high curvature spikes. It can be shown
that the numerical approximation (discretization) of the level set equation itself introduces nu-
merical diffusion. As the order of the spatial discretization increases, the numerical diffusion
decreases. Thus, the level set method has an inherit difficulty of representing sharp edges. For
the segmentation, the effect of this is the inability to develop high curvature spikes along the
curve. In other words, the curve cannot leak through holes below a certain size, which is why
the solution in Figure 4.5(b) is maintained inside the lung.

In order to further localize the computation of c1 and c2 we need to localize the computational
domain of the segmentation method. In this work, we restrict this domain by using the level set
function itself. More precisely, we define the computational domain to be the set Ωlocal = {x ∈
IRd : φ(x) < α}, where α > 0 defines the area of influence around the level set curve. In other
words, we compute the averages only inside the level set and in its immediate neighborhood as
specified by α. This makes sense since we rely on the user to select an appropriate initial contour,
and thus computational domain. In addition to restricting the computations, this formulation
allows the computational domain to move as the level set deforms. Thus, it can adopt very well
to initial surfaces that are very far from the final solution. In practice, using α = γ where γ

specifies the narrow band width (Section 3.3.4), amounts to iterating through the narrow band
and the inside of the level set. Figure 4.6 shows the same sequence of images using this idea.
We see that the segmentation is not sensitive to changes in unrelated parts of the image.
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(a) Initial curve and narrow band (b) Solution with original image (c) Solution with artificial object

Figure 4.6: Segmentation without edges using local computations. Compared with Fig-
ure 4.5(c), the insertion of an object does not change the segmentation of the lung.

This chapter has described the main contributions of this thesis. By using the flexible isosur-
face interface, the user selects any object by its contour for segmentation. We explained what
interpolant to use for the contour tree computation, in order to ensure a simple and watertight
conversion from a contour to a level set. We described the implications of this process including
the union of the black vertices and the inside/outside ambiguity. When the level set function
has been initialized by the fast sweeping method, the segmentation without edges is applied.
We confirmed the weakness of the original method and proposed solutions for localizing the
behavior. The next chapter will show further results using this approach.



Chapter 5

Implementation and Results

This chapter will briefly outline the implementations for the 2D and the 3D versions used to
test and verify our ideas presented in previous chapters. This is followed by some resulting
segmentations.

5.1 Implementation

Our idea was first tested in a 2D implementation using the narrow band scheme by Peng et al.
[PMO+99]. This allowed us to thoroughly test and evaluate the setup, while having complete
overview of the full image. A task which is not equally simple in 3D. Actually, the major part
of the work was spent in 2D to avoid the additional complexity of visualizing and debugging 3D
output.

For the 3D version we used a reference implementation of the DT-Grid [NM06] by the courtesy
of Michael Bang Nielsen. This is a very efficiently implemented and complex datastructure and
it was out of the scope of this thesis to implement from scratch.

The contour tree algorithms and the piecewise continuation for Marching Cubes were also refer-
ence implementations provided by the courtesy of Hamish Carr. This implementation assumes
a 3D dataset input, but is general enough for computing the topology of 2D images as well.
During the limited time span of this thesis, we did not fully incorporate the flexible isosurfaces
interface into the segmentation interface, but we consider this future work.

The codebase is written in C++ verified to compile using the GNU C++ compiler and Visual
C++. The GLUT and OpenGL APIs are used for the visualization which runs on any standard
graphics card.

5.2 Results

We show two sample segmentations in Figure 5.1 and Figure 5.2. For Figure 5.1 we used the
“UNC head” MRI dataset and computed the contour tree on the full resolution of (256x256x109).
In (a) we see the problem of occlusion when using a regular isosurface. In (b) we use the contour
tree to extract so called local contours which represent peaks in the dataset. We pick the brain
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as the target for segmentation as shown in (c). This segmentation is not perfect however, so it
is refined using the level set technique to give the final result in (d).

In Figure 5.2 we used the “stent” dataset (512x512x174) from www.volvis.org. For this dataset it
is beneficial to compute the contour tree on a lower resolution of (256x256x87) for two reasons.
Firstly, the memory footprint of the computation is very large, and unmanageable for most
standard workstations. Secondly, exploring the dataset using the flexible isosurfaces are much
smoother using the lower resolution. When the contours in (a) had been selected, the level set
segmentation refined this using the high resolution dataset to give the final segmentation in (c).
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(a) Isosurface (b) Local Contours

(c) Single Contour (d) Final Surface

Figure 5.1: Interactive Brain Segmentation. In (a), an isosurface has been chosen, but the
skull surface occludes the brain. In (b), local contours are used to extract contours around the
largest “peaks” (by volume) in the dataset. In (c), one of these contours has been selected
visually as the initialization surface for level set segmentation. This contour fails to segment the
brain properly since at lower isovalues a spurious connection is formed with the skull fragments.
In (d), the final level set segmentation is shown. Using a level set segmentation instead of the
single-isovalue contour of (c) allows us to produce a better boundary of the actual brain, in this
case the grey matter.
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(a) Initializing Contours (b) Segmented Surfaces

Figure 5.2: Kidney Segmentation. As in Figure 5.1, individual contours were selected inter-
actively (a) to initialize the level set segmentation (b). Here, the level set segmentation is able
to cope with internal variation in the isovalue of the kidneys to produce a better result than
contours alone.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we have described two principal methods used for segmentation - isosurface ex-
traction and level set methods. We pointed out that each of these have drawbacks. Isosurfaces
rely on a particular isovalue, while level set segmentation methods require a close initial guess
for stable convergence.

We explained how these techniques can be combined to remedy each others weaknesses by using
the flexible isosurfaces as an input to the level set segmentation. In our work we used a level set
method without edges, although a method with edges could just as easily be deployed, depending
on the characteristics of the input data.

We further showed that using a lower resolution dataset for the flexible isosurfaces is beneficial
for two reasons. Firstly, it shortens the computation time and the large memory footprint of
the contour tree. Secondly, it makes the exploratory visualization smoother, providing a better
experience for the user. The first initial segmentation is later refined using level set methods
based on the high resolution data.

6.2 Future Work

In the future, we would like to further investigate later work by Chan and Vese and see if this can
be successfully applied to medical data. Furthermore, we want to combine the segmentation with
and without edges in a general functional, giving the user better control over the segmentation
process.

We would also like to improve the interface by bringing in the full idea of flexible isosurfaces.
Since the rendering of the contour tree itself is non trivial, we want to study different solutions
to this for an optimal and intuitive interface.

The output can be further improved by incorporating direct volume rendering. Using the final
segmentation, the transfer functions for volume rendering can be used to provide a better view
of the interior of the segmented object.

We want to study query driven segmentation. The contour tree can be augmented with various
properties of each topological subregion in the data. In the future we would like to fetch the
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contours matching a certain query, such as volume or mass, and run the segmentation in an
automatic manner.

We would like to explore methods for reducing the memory footprint of the contour tree, since
this is very large for noisy medical datasets. We also want to further investigate whether
topological analysis can be performed for specific level set methods, allowing visual exploration
of possible segmentations.
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